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1 .1 L E A R N I N G A N D M E M O R Y 

It is difficult to give a precise definition of learning or memory. In general, learning relates to an 

organism changing its behaviour, in a relatively permanent way, in order to adapt to some 

change in the environment (see McFarland, 1987). However, this process is always inferred 

afterwards, i.e. we may infer that an animal has learned something out of an experience when 

we observe that a particular alteration in its behaviour has taken place. Not all changes imply 

learning. For example, activities due to an altering state of motivation (hunger, thirst) or 

(sexual) maturation are not consequences of learning processes and neither are behavioural 

changes because of fatigue. Memory refers to the persistence of a learned response over time 

and memory processes involve neuronal mechanisms that sustain acquired information or 

responses. 

Psychology has a long tradition of studying learning and memory processes at a behavioural 

level, resulting, among others, in a large number of descriptive distinctions. Since appropriate 

neurobiological techniques became increasingly available, attempts have been made to 

understand learning and memory also at physiological, cellular or even molecular levels. 

Phases 

In the process of learning and memory we discriminate the actions (Squire, 1987; Heise, 1981) 

of acquisition of new information (i.e. learning; in a one-trial learning paradigm or during a 

course of several training trials); consolidation of the acquired information (a dynamic process 

which is assumed to take place over some period of time immediately after the training-trial); 

the retention or preservation of stored information (for some, more or less measurable, period 

of time: the so-called retention-interval); the retrieval of the learned information (as shown by 

the actual expression of the learned response on one or more test-trials); the phases of 

forgetting the information or extinction of a learned response (figure 1). 

The design of the procedure of experimental intervention should carefully consider which of 

these phases may be altered by the manipulation, depending on when the intervention is 

carried out. 

Memory consolidation & Forgetting or 
Acquisition retentention Retrieval extinction 

I 
I . time 

training retention interval test 
trial(s) trial (s) 

INFORMATION REMEMBRANCE/ 
LEARNED RESPONSE 

Figure 1. Phases ¡n the process of learning and memory 
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Simple and complex learning 

Historically, a distinction has been made between simple versus complex learning (McFartand, 

1987, Squire, 1987) In fact, different kinds of learning and memory processes can be more or 

less arranged in order of increasing complexity 

Habituation and sensitization constitute examples of simple learning Repeated presentation of 

one stimulus may result in a decreased responsiveness (habituation) The habituated 

response will reappear if the stimulus is withheld for a long period of time Furthermore, 

habituation to one stimulus may generalize to another, similar stimulus On the other hand, 

repeated presentation of an intense or significant stimulus may result in an increased 

responsiveness to a wide variety of neutral stimuli 

Conditioning Classical and instrumental (operant) conditioning, forms of simple associative 

learning, already bear more complexity A huge amount of research has been earned out 

regarding conditioning, which has profoundly influenced the research on learning and memory 

Therefore and because dopamine appears to play a role in instrumental behaviour (see § 1 2), 

a brief discussion on these two topics will follow here 

A (biologically) significant unconditioned stimulus (US) elicits a specific unconditioned 

response (UR) In classical conditioning, pairing or association of a previously neutral 

conditioned stimulus (CS) with the US will lead to the CS alone to be able to elicit the 

response, which then becomes the conditioned response (CR) A well-known example of 

classical conditioning is Pavlov's experiment on conditioned salivation in dogs 

In the most simple form of instrumental conditioning, the occurrence of a motivationally 

significant event is contingent on the performance of a specific response of the organism This 

significant event is said to reinforce (strengthen) the response, resulting in an increased 

probability that the animal will perform that response The magnitude of the increase in 

probability depends on how reliably performance of the response and the significant event 

coincide (contingency) Among many others, Thomdike (1933) and Skinner (1938) have 

investigated instrumental conditioning its most simple version involves an animal learning to 

open a door or press a lever, whereafter food becomes available (in Thorndike's puzzle box 

and the Skinner box, respectively) In the case of classical conditioning, the presentation of the 

US is sometimes said to reinforce the occurrence of the CR in response to the CS One 

important difference between classical and instrumental conditioning appears to be that the 

latter is more readily modified by the consequences of the performed response 

The notion of reinforcement is still debated in literature (see White, 1989, White and Milner, 

1992, Lieberman, 1990) 

In the traditional view (of the associationists and the behaviourists), reinforcement refers to the 

capacity of certain important events to enhance the storage of information or to strengthen the 

connection between a stimulus and a response For example, general emotional stimulation 

(by approval or disapproval) may facilitate recall of a list of words in human subjects (see 

White, 1989) Furthermore, post-training delivery of food can improve retention in a passive 
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avoidance test (Huston and Oitzl, 1989) This function of remforcers implicates that no 

meaningful relationship between the reinforcing event and the stored information needs to 

exist Thorndike (1911, 1933) defined this memory enhancing property of remforcers in his 

"Law of Effect" (see White and Milner, 1992) Thus, in the case of the instrumental 

conditioning in his puzzle box, Thorndike emphasized that receiving food "stamped in" an 

association between the stimuli of the box and the response of escaping from it 

However, cognitive theorists (e g Tolman et a l , 1932, Bindra, 1978, Bolles, 1972) recognized 

the motivational role of reinforcement A reinforcer may induce a certain expectational or 

motivational state in the animal, that is capable of eliciting a wide range of preparatory and 

consummatory behaviours in order to obtain this reinforcer The unconditioned reinforcing 

stimulus is defined as the primary reinforcer, also called the primary incentive stimulus or 

reward Association of a primary reinforcer with a previously neutral stimulus results in this 

latter stimulus to acquire the capacity of motivationally eliciting the same group of behaviours 

Such a stimulus is then called a conditioned motivational reinforcer, also termed the secondary 

reinforcer or the conditioned incentive motivational stimulus The process of association is 

termed incentive motivational learning (Beninger, 1983, Salamone, 1992) 

The term reinforcement is often used interchangeably with the term reward However, the 

notion of reward goes a longer way back in history The Epicurean philosophers already 

descnbed that behaviour of individuals is determined by the tendency to maximize pleasure 

and minimize pain (see White, 1989) In modem psychology an operational model of reward 

and its counterpart aversion is used the operational definition of reward is approach, whereas 

aversion is operationally defined as withdrawal (Young, 1962) A positively reinforcing stimulus 

is assumed to have rewarding properties The hedonic view of reinforcement is based on this 

assumption, stating that stimuli are reinforcing because they are rewarding, ι e inducing a 

state of pleasure (hedonía) However, pleasure and pain are subjective sensations and such 

states of mind are difficult to identify in organisms So, this view is rejected by many authors 

and replaced by other theories on drive reduction or activation of consummatory responses, 

among others (see Salamone, 1992) 

Traditionally, associative forms of learning were regarded as fundamentally simple processes, 

just based on the formation of associations between contiguous events Decades of research 

on a large variety of conditioning tasks, however, have shown these processes to be governed 

by a complexity of factors and rules, leaving still unresolved issues Associatiomsm also 

assumed that complex ideas were built up from associating simple ideas and according to the 

related movement of behaviounsm only the visible and overt behaviour was allowed to be the 

object of investigation, because of the impossibility of observing mental states In contrast to 

these traditions, cognitive behaviourists have pointed to the existence of internal cognitive 

processes, such as attention, expectations, motivation, discrimination and insight, and to the 

importance of these processes even in associative learning For these scientists, abilities of 

organisms to impose structure (categories) on their experiences by means of internal 

processes are needed to explain the complexity and flexibility of the behaviour of both humans 
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and animals Lieberman (1990) exhaustively discussed these contrasting scientific views in 

memory research 

Complex learning Perceptual or discriminative learning, conceptual learning, cognitive 

mapping and rule learning (learning sets) are examples of learning of high complexity, that is 

not easily explained in terms of simple, fixed associations between stimuli and responses 

Discriminative learning includes brightness discrimination and visual discrimination between 

forms The ability to discriminate may develop in the absence of reinforcement, as a result of 

'mere exposure' to the stimuli and it is assumed to result from an active process of building up 

a set of descriptions of relevant, differentiating features of particular stimuli and situations Rule 

learning involves the acquisition of information on complex (sets of) rules governing the 

sequence of occurrence of events 

Cognitive or spatial mapping has its own history of research Apart from a philosophical and 

psychological debate on the notion of space, research has been earned out on the ability of 

organisms to find their way back home or to regain buried food (see O'Keefe and Nadel, 

1978) A well-known and extensively studied example of such an ability is the phenomenon of 

bird navigation (homing, migration, e g Keeton, 1974) 

Furthermore, many experiments on maze behaviour in rats have been executed, by 

proponents of the opposing theories on response learning and place learning The 

behaviounstic view assumes that, in learning to solve a maze problem, the animal acquires the 

ability to execute a chain of responses that are directed by proprioceptive stimuli (stimulus-

response association or habit formation, leading to a sequence of turn left - turn right - etc ) 

However, several nice maze experiments by Tolman (Tolman and Hoznik, 1930, Tolman, 

1948) and Hebb (1949) showed place-learning tendencies Animals demonstrated a sense for 

direction, and after having learned to locate a specific object in a particular place, rats 

preferred to approach a different object in the previously correct place rather than to approach 

the same object in a different place So, Tolman and Hebb supposed that animals exposed to 

a novel environment would construct map-like representations (cognitive maps) of that 

environment in their brain 

In general, rats appear to learn running to one place from different directions more readily than 

making the same turn to different places This finding supports the place learning hypothesis 

Later maze expenments by Olton (Olton and Samuelson, 1976) have provided additional 

evidence rats quickly learn to collect food pellets from maze arms in an efficient way and 

without making obvious fixed responses 

Among place learning theorists, the importance of distal cues (outside the apparatus or extra-

maze), relative to local cues (within the apparatus or mtra-maze), has been emphasized Distal 

cues provide hints on directions and remain relatively constant when the animal moves about 

its local environment Distal cues cannot precisely point to specific places 
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O'Keefe and Nadel (1978) further elaborated the theory on spatial mapping abilities Different 

strategies, either using simple routes or more complicated maps, may indeed be employed to 

find a specific location 

The use of routes requires instructions for the execution of (a fixed sequence of) movements, 

it is a simple and fast but inflexible strategy This so-called taxon strategy include two types of 

'instructions' guidance by a clearly available and detectable stimulus or landmark that is to be 

avoided or approached (also called cue strategy) and orientation of the body axis (also called 

response strategy) Both strategies are supposed to rely on the activation of egocentric spatial 

systems 

The construction and use of cognitive maps about the spatial relations between objects in the 

external world provides a more complex but stable and flexible way of localization It enables 

an organism to find a goal in a specific place from different places O'Keefe and Nadel termed 

this the locale strategy, it is assumed to rely on the activation of allocentnc spatial navigation 

systems (O'Keefe and Nadel, 1978) 

Stages and types of memory 

The brain processes events or information of very different kinds leading to the formation of 

memories containing the information Nowadays, theory on information processing is based on 

analogy to computer technology and comprises the stages of coding the incoming information, 

its (local) storage and the retrieval of memories from storage With regard to the organization 

of memory itself we may distinguish between several stages and types of memories (Squire, 

1986) Classifications have arisen from experimental or cognitive psychology, human 

neuropsychology and animal neurobiological studies 

One important division splits memory into the stages of short-term (STM) or recent and long-

term (LTM) or remote memory Short-term memory refers to a capacity-limited system that 

retains information only temporarily (for seconds or minutes) before it becomes incorporated or 

transferred into a more stable and potentially long-term storage system James (1890) already 

distinguished primary from secondary memory, more or less comparable to the division in 

STM and LTM A remarkable example of the separation between STM and LTM stems from 

human neuropsychology The well-known patient Η Μ , who became amnesic after 

neurosurgery to relieve severe epilepsy, still showed (aspects of) the ability to retain 

information in STM, while he appeared to be unable to acquire new information and hold it 

over a longer period of time (LTM), despite normal vocabulary, language skills and IQ (Milner 

et a l , 1968) 

Another distinction can be made between working (WM) versus reference (RM) memory 

Working memory denotes a memory buffer in which to maintain information that is of only 

temporary value, e g during the time of one trial Information valid for a longer period of time 

may then be held in reference memory The concepts of WM and RM can be studied in a 

radial arm maze in which a number of arms, always the same over the whole penod of 

training, are never baited, whereas an animal needs to remember within one trial which arms it 
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Memory has already visited Recently, 
e P | S 0 d , c ( w o r k i n 9 memorY> the working memory system is 

•Short-term Declarative 1 U U 1 t 
/ \ , , thought of as a collection of 

/ semantic (reference memory) 
• Long-term - ' multiple temporary capacities, 

\ / based on different modalities 
Procedural ^_ 

^ simple classical (see Squire, 1987) 
v ' ι ο π ι π 9 A further classification of long-

x habituation t e r m memory (denving from 
human studies) may be into 

Figure 2. A tentative taxonomy of memory (adapted from j n e ^ 0 tV Des of declarative 
Squire, 1986) 

and procedural memory 

Amnesic patients often show unimpaired learning and memories in distinct tasks In general, 

these people are perfectly capable of performing even complex tasks, while at the same time 

they seem to be unaware of having been in the test before Declarative memory thus concerns 

explicit information (including facts, events, times, places), that is directly accessible to 

conscious recollection and that can be declared in a proposition or an image Acquisition of 

perceptual-motor skills leads to implicit procedural knowledge, only accessible through 

engaging these skills (Squire, 1987, 1986) 

Next, declarative memory may be subdivided into episodic and semantic memory (Tulvmg, 

1983) Episodic memory records information about dated events in an individual's life (building 

up someone's autobiography) Semantic memory, on the other hand, refers to knowledge of 

the world (facts, concepts, vocabulary), without relation to temporally landmarks 

Together, the above standing distinctions may be used to compose a tentative taxonomy of 

memory (see figure 2, from Squire, 1986) Apart from the distinctions mentioned sofar, many 

others have been put forward by researchers believing memory to fall apart in at least two, 

often opposing, systems Examples include the distinction between memory versus habit 

(Mishkin et a l , 1984), representational versus dispositional memory (Thomas, 1984), locale 

versus taxon memory (O'Keefe and Nadel, 1978) and explicit versus implicit memory (Graf 

and Schacter, 1985) Often, effects on distinct kinds of learning and memory related to 

damage in specific brain areas in humans are at the ongm of imposing these categories onto 

memory 

Localization 

Naturally, a major issue in the study on learning and memory processes is the debate on 

where memory is localized and which brain areas contribute to the processes of learning The 

complete set of changes in the nervous system representing the stored memory is commonly 

termed the engram Historically, two contrasting theones exist with regard to where the 

engram is located the so-called localizationist versus the distributed view (Squire, 1987) 

According to localizationist scientists, distinct and identifiable localized parts of the brain have 

distinct behavioural functions Experimental research supported this view, demonstrating that 
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localized brain lesions or stimulation produce specific effects on language or vision or motor 

movements, etc (Luna, 1966) Consequently, particular brain areas would be involved in 

representing particular memories 

The distributed view states that behaviour and mental activity arise from the integrated activity 

from the entire brain Part of the distributed theorists favoured the field theory, for instance 

scientists from the Gestalt psychology (eg Kohier, 1940) In field theory, behavioural and 

mental function correspond to how electrical activity is distributed over large areas of the 

cortex, and not to any specific neuronal connections activated by the activity 

Others, more empirical scientists, although not supporting the field theory, also attacked the 

localizations view For example, Lashley (1929, 1950) spent many years, training lesioned 

rats to run through a maze, on attempting to identify any particular brain region as special or 

necessary to the formation of the maze habit He failed to do so Instead, he concluded that 

the reduction in learning ability is "the same, quantitatively and qualitatively, after equal lesions 

to diverse areas" (Lashley, 1929) Thus, he postulated the theory of memory being 

equivalent^ distributed over brain areas (functional equipotentiahty) 

Reconciliation of these views points to the expenmentally supported notion that no separate 

areas exist where an entire memory (engram) is stored, but that representation of aspects of a 

memory may indeed be highly specifically localized Memory is distributed in the sense that 

many areas of the brain are involved Consequently, questions to be asked include which brain 

regions are involved in learning and memory processes, how they contribute and to what 

degree they are essential to these processes 

A huge amount of experiments have been carried out regarding the specific brain areas that 

are somehow involved in specific kinds of learning and memories Investigations have shown 

which neural pathways are involved in the acquisition of, for instance, the acoustic startle 

reflex (habituation) in mammals (see Davis et a l , 1982) or which areas are necessary for 

maintaining the conditioned nictitating membrane/eyeblmk response in the well-trained rabbit 

(see McCormick and Thompson, 1984) It is expected to find the essential neural modifications 

underlying long-term behavioural change in those regions that are minimally required for 

maintenance of the response 

Human neuropathology may provide data on effects of brain damage in diverse areas Specific 

neural damage can induce particular memory impairments in humans, often resulting in a 

division in two opposing kinds of memories A number of these divisions stems from a 

classification based on the effects of damage to the temporal lobe, especially the hippocampal 

formation Results obtained from testing amnesic patients, like the above mentioned Η Μ , 

showing preserved abilities to acquire motor skills, have suggested the distinction between 

declarative and procedural learning and memory, with the former kind linked to a well-

functioning hippocampus 

Animal experiments have further supported dichotomic divisions in memory, related to specific 

brain areas For instance, studies employing lesions in the hippocampus provided evidence for 

a role of the hippocampus in WM (Olton and Papas, 1979) Allocentnc spatial navigation is 
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proposed to depend on a well-functioning hippocampus (O'Keefe and Nadel, 1978) Mishkin 

linked his division in memory versus habit to the cortico-hmbic versus the cortico-stnatal 

system, respectively (Mishkin et a l , 1984) Today, numerous learning and memory tasks for 

animals and humans are used to examine the question which specific brain areas contribute to 

the processing of information, the acquisition of task-specific responses, or which areas are 

necessary for the maintenance of the information or the response 

Stonng or representing information ultimately occurs at the cellular and molecular level 

(synaptic plasticity) Mechanisms such as a depressed synaptic transmission in the habituation 

of the withdrawal reflex in the marine snail Aplysia (Kandel, 1976) and a long-lasting increase 

in the strength of a synaptic response to particular electncal stimulation (long-term potentiation 

(LTP)), among others found in the hippocampus and the nucleus accumbens and possibly 

related to learning (Bliss and Lomo, 1973, McNaughton and Morris, 1987, Colley and 

Routtenberg, 1993, Mulder et a l , 1993), have been desenbed 

1.2 THE INVOLVEMENT OF DOPAMINE IN PROCESSES OF LEARNING AND MEMORY 

Dopamine has been implicated in a diversity of learning and memory processes Numerous 

studies have reported on various aspects in diverse learning and memory tasks that are or are 

not sensitive to dopaminergic treatment 

General memory enhancement 

Post-training stimulation of the dopaminergic activity can have a memory enhancing effect 

So, a post-training injection of amphetamine (AMP), a known stimulant of dopaminergic 

activity, has been shown to facilitate memory consolidation, as expressed by improved 

retention during the test tnal (see Carr and White, 1984) 

Retention of a tone-shock association, as measured by the level of suppression of drinking, 

was significantly improved after injection of AMP immediately following the tone-shock 

presentation (Carr and White, 1984) Post-training intraventricular injections of DA also 

improved retention in a passive avoidance task (Haycock et a l , 1977) Reversely, inhibition of 

the dopaminergic activity immediately after training, e g by means of the antagonist 

chlorpromazine, disrupted retention of a passive avoidance task (see Carr and White, 1984) 

The memory improving effect upon systemic application of AMP has been replicated applying 

micro-injections of AMP into the dorsal stnatum (see § 1 3) (Carr and White, 1984) 

Furthermore, AMP has been demonstrated to improve memory retrieval Pre-test application 

of AMP attenuated forgetting in mice, that was induced by several sources (pharmacological, 

time-interval) (Quartermain et a l , 1988a, Quartermain et a l , 1988b) 

Stimulus-stimulus association 

Dopamine appears not to be essential for the establishment of the association itself between 

two stimuli (classical conditioning) 
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During the first experimental phase, rats drugged with neuroleptics (DA antagonists) were 

presented with paired stimuli (e g light <-> shock) in a one-trial avoidance training The animals 

failed to learn the avoidance response However, dunng the second undrugged phase, these 

animals showed clear signs (a conditioned emotional response, CER) upon presenting the 

light, that the association between the light and the shock had been made (see Beninger, 

1983, Beninger et a l , 1980) 

Reward-related instrumental learning 

Dopamine has been demonstrated to affect instrumental responding It may be involved in the 

acquisition as well as in the maintenance or performance of a learned response However, 

different studies sometimes yield contrasting effects The reader is referred to reviews on 

studies of instrumental behaviour by Beninger (1983), Salamone (1992) and Blackburn and 

coworkers (1992) 

DA receptor blockers have been shown to impair the acquisition of avoiding an aversive 

stimulus (shock), without affecting the ability of the animal to escape it (see Beninger, 1983, 

Beninger, 1989, Blackburn et a l , 1992) The acquisition of lever pressing for food reward is 

also disrupted by neuroleptics (Wise and Schwartz, 1981 ) 

Furthermore, neuroleptics induce a gradual decline over time in the performance of the 

response in well-trained animals (Wise et a l , 1978, see Beninger, 1983) 

The effects of dopamine on instrumental behaviour have often been related to reward Several 

tasks are used for measuring reward electrical self-stimulation, drug self-administration and 

diverse place preference tests All three paradigms have been shown to be sensitive to 

manipulation of the dopaminergic activity (Carr and White, 1983, Hoffman and Beninger, 1988, 

Wise and Bozarth, 1981, White, 1989, see Beninger, 1989) For instance, self-stimulation can 

be reduced by dopaminergic antagonists (see White, 1989) and pairing AMP with one of two 

compartments results in a preference for the AMP-paired environment (Hoffman and 

Beninger, 1988) 

In addition, dopamine is implicated in conditioned reward In the conditioned reward 

experiment, a neutral stimulus (the CS, e g a tone) is paired to a rewarding unconditioned 

stimulus (the primary remforcer, e g food) during the first phase The animal is only required to 

consume the rewarding stimulus during the pairing trials In the subsequent test session, it is 

examined whether the previously neutral stimulus has become a conditioned motivational 

stimulus, ι e whether it has acquired response eliciting capacities Two levers are presented, 

one of which produces the conditioned stimulus whereas the other has no consequences 

Normal rats appear to be prepared to press the lever producing the conditioned stimulus (the 

tone) (without ever receiving the primary reward upon lever pressing1) Thus, this stimulus has 

become a conditioned reward, also called a secondary, conditioned remforcer Neuroleptic 

treatment during the pairing sessions results in a decrease in the conditioned reward effect 

(Beninger and Phillips, 1980) 
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Secondary reinforcement (or incentive motivational learning or conditioning) has been 

extensively studied by Robbins and coworkers, showing that dopaminergic activity, especially 

within the nucleus accumbens (see § 1 3), is involved in this phenomenum (Robbins et a l , 

1983, Taylor and Robbins, 1984, Even« et a l , 1989, see also Cador et al ,1991) 

Complex learning 

Dopamine has been shown to affect more complex learning processes, such as spatial 

mapping and maze learning Also in these cases, conflicting results have been published 

Disruptive effects of dopaminergic treatments on spatial localization of a hidden platform in the 

Morris water maze (see § 1 5) have been reported Depletion of dopamine by means of 

extensive 60HDA lesions (specifically destroying catecholammergic nerve terminals) 

appeared to block spatial learning (Whishaw and Dunnett, 1985) However, non-spatial 

localization of the platform also was deteriorated in this study In contrast, a different study on 

the effects of 60HDA lesions (Hagan et a l , 1983) demonstrated sufficient learning about the 

location of the platform as measured in the retention test Application of dopaminergic agents 

has been shown to affect mainly the acquisition phase in the Morns maze task (Scheel-Kruger 

et a l , 1990, Taghzouti et a l , 1987) 

Effects of dopaminergic treatment on radial arm maze (RAM) performance have been 

examined Impaired acquisition of the standard version of the RAM (see § 1 5) after 

halopendol (HAL) injection (systemic as well as into the nucleus accumbens) has been 

reported (McGurk et a l , 1989, Taghzouti et a l , 1987) Furthermore, lesions of the stnatal 

dopaminergic areas have been shown to affect aspects of radial maze learning or 

performance (Schacter et a l , 1989, Cook and Kesner, 1989, Packard and White, 1990, 

Packard et a l , 1989), while others are spared (Cook and Kesner, 1988) It should be noted 

that in some of these RAM studies (Packard et a l , 1989) animals were trained on a reinforced 

stimulus-response association Thus, it is important to distinguish between the aspects that are 

affected and the aspects that are left intact after dopaminergic treatments 

Dopamine in learning and memory 

In this paragraph, we have sofar provided examples of effects of dopaminergic manipulation in 

diverse learning and memory tasks The question remains whether dopamine mediates (a) 

common aspect(s) in learning and memory 

Some authors have reviewed studies on the involvement of dopamine in instrumental 

responses (Salamone, 1992, Blackburn et a l , 1992) It may be concluded from these reviews 

that dopamine from the telencephahc area (see § 1 3) potentiates the ability of (cortically 

processed) significant stimuli to induce the execution of (complex) motor responses 

We will extend this view on the role of dopamine with a differential involvement for dopamine in 

the dorsal versus the ventral striatum in behaviour (see § 1 4) Prior to this, an overview of the 

anatomy and neurochemistry of the telencephahc striatum will be given 
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1.3 A BRIEF SURVEY ON THE ANATOMY AND NEUROCHEMISTRY OF THE VENTRAL 
AND DORSAL STRIATUM 

Dopamine is present in the striatal areas. The striatum of the rat can be divided into two parts, 

based on their specific inputs and outputs: a dorsal part, the neo- or dorsal striatum (which is 

called the nucleus caudatus/putamen complex in humans), and a ventral part, that 

encompasses the ventromedial part of the neostriatum, the nucleus accumbens and the 

olfactory tubercle (Heimer et al., 1982). Each of these regions is characterized by its own 

pattern of af- and efferente. Both the dorsal striatum and the nucleus accumbens of the ventral 

striatum are considered in this thesis; throughout the text, however, the latter area will often be 

named as the ventral striatum as opposed to the dorsal striatum. 

The striatal areas lie in the telencephalic basal ganglia, positioned in the forebrain. On the one 

hand they are considered to be part of the extrapyramidal motor system (see, however, the 

commentary of Côté and Crutcher, 1985). On the other hand, these areas are connected to 

several cortical and subcortical structures involved in cognitive and limbic funtions. 

Dopamine can furthermore be found in mesolimbocortical areas (like the prefrontal cortex, 

hippocampus, amygdala) and in the tuberoinfundibular pathway; these structures are 

disregarded in this thesis. 

Nucleus accumbens 

The nucleus accumbens is positioned rostroventrally to the dorsal striatum; cytoarchitec-

tonically the transition to the dorsal striatum is rather indistinct. 

The accumbens is an important dopaminergic area, receiving innervation primarily from 

dopamine (DA) cells in the mesencephalic ventral tegmental area of Tsai (VTA; also labeled 
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as the A10 cell-group (Ungerstedt, 1971), figure 3) These dopaminergic fibers ascend through 

the medial forebrain bundle The VTA itself receives input а о from serotonergic and 

noradrenergic brainstem areas (non-specific arousing sensory stimulation) and from forebrain 

structures like the nucleus accumbens (feedback loop), prefrontal cortex, septum, amygdala 

and ventral pallidum (more specific processed information) (Scheel-Kruger and Willner, 1991, 

Kalivas, 1993, see Oades and Halliday, 1987 for a review on the VTA) A small contribution to 

the dopaminergic innervation of the accumbens is made by the A9 dopamine cell-group in the 

substantia nigra (pars compacta) (see Vnjmoed-De Vries, 1985, Fallon and Moore, 1978, 

Swanson, 1982) Several distinct dopamine receptors have been characterized (see below) 

The nucleus accumbens also contains noradrenergic nerve terminals, although this 

neurotransmitter is present in lower quantities than the transmitter dopamine (Allin et a l , 

1988) Both α- and ß-noradrenergic receptors have been found, which appear to be 

modulated by noradrenaline from the ventral noradrenergic bundle and the dorsal 

noradrenergic bundle, respectively (Cools et al, 1991) 

Furthermore, the nucleus accumbens receives afférents from various cortical and subcortical 

limbic structures (Groenewegen et a l , 1991, Phillipson and Griffiths, 1985, Scheel-Kruger and 

Willner, 1991) The major allocortical input is from the hippocampal formation, in particular the 

subicular area and to a minor degree the CA1 region, descending through the fimbria and 

precommissural fornix (see figure 3, Groenewegen et a l , 1987, Kelley and Domesick, 1982) 

Amygdalar input, traversing via the stria termmalis, arises primarily from the basolateral 

nucleus, whereas the central, medial and cortical nuclei of the amygdala provide a minor 

contnbution to the projection to the accumbens Inputs further come from prefrontal, perirhinal 

and entorhinal cortices and from specific limbic related, midline thalamic nuclei The 

(sub)cortical projections appear to be glutamatergic (using the neurotransmitters 

glutamate/aspartate) and excitatory (Walaas, 1981, Yang & Mogenson, 1985, Yim and 

Mogenson, 1986) 

All the afférents project to the nucleus accumbens in a distinct topographic order 

Concentrations of both dopamine and noradrenaline seem to increase towards the caudal part 

of the nucleus accumbens (Allin et a l , 1988) The prefrontal cortex only projects to the anterior 

nucleus accumbens, which further receives afférents from the dorsal (or septal) subiculum and 

CA1 area (medial and lateral NAC) and from the basolateral amygdala (medial NAC) The 

ventral (or temporal) subiculum sends fibers to the more posteromedial NAC (Phillipson & 

Griffiths, 1985, Groenewegen, Vermeulen-VanderZee, Tekortschot, & Witter, 1987) Overall, 

Phillipson and Griffiths concluded that the largest volume of inputs is projected to the 

anteromedial accumbens, where output from the subiculum and the hippocampal CA1 region, 

the entorhinal and prefrontal cortices and the amygdala converge with output from the VTA 

and midline thalamus 

Two main groups of cells are found within the nucleus accumbens medium-sized spiny 

GABAergic output neurons (Smith and Bolam, 1990) and large spine-poor or aspinous 
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cholinergic interneurons (Phelps and Vaughn, 1986) Medium-sized aspmous GABAergic 

interneurons also are present In the nucleus accumbens, cell clusters as well as a mosaic-like 

distribution of receptors, transmitters and fibers have been described (see Groenewegen et 

a l , 1991 and see below) Cells within the accumbens can exhibit both spontaneous and 

evoked electrophysiological responses Evoked responses may appear in, e g , reaction to 

stimulation of hippocampal inputs (Hakan et a l , 1989, Boeijinga et a l , 1990) 

Glutamatergic hippocampal and dopaminergic mesolimbic afférents may converge on the 

dendrites of the same neuronal targets (Sesack & Pickel, 1990, Totterdell & Smith, 1989), 

making postsynaptic interaction possible Furthermore, a presynaptic modulation of 

glutamatergic transmitter release by dopamine may exist (Yang & Mogenson, 1986) The 

reverse, a glutamatergic modulation of dopamine release, also has been reported (Imperato, 

Honoré, & Jensen, 1990) 

Nucleus accumbens efferente project to motor areas, like the ventral pallidum and subpalhdal 

areas, entopeduncular nucleus and the mesencephalic reticular formation (figure 3, 

Groenewegen and Russchen, 1984, Mogenson et a l , 1983) The ventral pallidum is known to 

project а о via the subthalamic nucleus to the thalamus, while this latter structure sends 

efferente to (frontal) cortical areas Together, these connections represent a parallel 

organization of many (sub)cortico-stnato-pallidal-thalamo-cortical loops (see Groenewegen et 

a l , 1991) 

A feedback-loop, from the accumbens back to the VTA, is found to exist However, the main 

projection from the accumbens to the mesencephalic dopamine cells is to the substantia nigra, 

both to the A9 cell-group in the pars compacta as well as to the pars reticulata (Groenewegen 

et a l , 1991, Heimer et a l , 1991) As the substantia nigra innervates the dorsal striatum, the 

ventral striatum thus appears to be capable of influencing the dopaminergic input to the dorsal 

striatum 

In addition, modest projections from the nucleus accumbens are also directed to limbic areas, 

such as the lateral septum, the amygdala and the bed nucleus of the stria terminahs (see 

Pennartz, 1992, Heimer et a l , 1991, Sesack and Pickel, 1990) Projection neurons from the 

accumbens are found to be mainly GABAergic and peptidergic 

Dorsal striatum 

The dorsal striatum receives an important dopaminergic innervation from the A9 dopamine 

cell-group in the pars compacta of the substantia nigra (Snpc, see figure 3) The substantia 

nigra is located lateral to the VTA (Ungerstedt, 1971) Dendntic fibers from neurons in the 

ventral part of the SNpc extend ventrally into the cell-poor pars reticulata of the substantia 

nigra (SNpr) (Gerfen et a l , 1987) 

A large amount of input comes from the entire neocortex, from sensorimotor cortices as well 

as associative cortical areas (figure 3, see Vnjmoed-De Vries, 1985, Graybiel and Ragsdale, 

1979) These cortical projections appear to be excitatory and to use glutamatergic 

21 



neurotransmitters (Walaas, 1981, Fonnum et a l , 1981) Furthermore, afférents arrive from the 

intralammar thalamic nuclei (Veenmg et a l , 1980) 

The ventral part of the dorsal striatum also receives afférents from limbic (hippocampal) areas 

(Heimeretal, 1982) 

Cytoarchitectonically, the dorsal striatum looks homogeneous the medium-sized spiny 

projection neurons form over 90% of the total cell population in the dorsal stnatum (Kemp and 

Powell, 1971, Smith and Bolam, 1990) Most of them contain the neurotransmitter GABA and 

a large portion also use either substance Ρ or enkephalin (Gerten and Young, 1988) 

However, similar to the nucleus accumbens, a neurochemical compartmental organization can 

be found in the dorsal stnatum, which is briefly described below 

Efferents from the dorsal striatum are directed to the globus palhdus and the substantia nigra, 

pars reticulata in a highly ordered manner (figure 3, Parent, 1986) Within the substantia nigra 

they appear to terminate on both dopaminergic and GABAergic output neurons (Gerfen et al, 

1987) 

As in the ventral striatum, the actual existence of many parallel circuits has been discovered, 

which originate from all over the neocortex and project via the striatum, pallidum, subthalamic 

nuclei and the thalamus back to the cortical areas Also direct connections between the 

striatum and the thalamic nucleus have been found (Alexander and Crutcher, 1990) Contrary 

to previous views on a convergence of cortical information in the striatum, the existence of 

such parallel circuits implies that information from different cortical areas is processed 

separately in segregated neural loops 

Compartmental organization 

Both the dorsal and ventral striatum display a mosaic-like (or compartmental) organization of 

fibers, neurons, receptors and/or neurochemical substances 

The nucleus accumbens is cytoarchitectonically and neurochemically inhomogeneous 

Clusters of small cells are found in the medial and ventral parts of the accumbens A so-called 

core and shell region can be distinguished, more or less corresponding with the distribution of 

the cell clusters The shell contains cell-poor regions with scattered neurons and clusters of 

cells at its dorsal and lateral borders, that are dispersing ventrally into the shell The central 

core contains more closely packed and more homogeneously distributed neurons 

(Groenewegen et a i , 1991, Herkenham et a l , 1984) 

A differential localization of several receptors and neurochemicals has been found in the 

accumbens For instance, regions with low AChE activity (Herkenham et a l , 1984) and clear 

patches with the opioid peptide enkephalin are found (Voorn et a l , 1989, Groenewegen et a l , 

1991) 

In addition to the above described topographical organization of the afférents to the 

accumbens, these fibers may relate to distinct compartments, depending on the site of origin 

For example, hippocampal inputs originating from the dorsal subiculum terminate rostrally in 

both shell and core region, inside and outside enkephahn-staining patches In the caudal shell 
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Figure 4. Schematic representation of the connections between the striatal areas and the 

substantia nigra. 

region, fibers from the ventral subiculum preferentially project to the cell-poor area, avoiding 

the cell clusters (Groenewegen et al., 1987). Dopamine innervation appears to be associated 

with the caudomedial cell-poor region (Voorn et al., 1986). Also the efferente appear to 

originate from different compartments within the accumbens (Groenewegen et al., 1991). 

The dorsal striatum looks rather homogeneous cytoarchitectonically, but appears 

heterogeneous in the distribution of fibers and several neuroactive agents when 

immunohistochemical techniques are employed. 

A distinction has been made in so-called striosomes embedded in a matrix, based on the 

staining pattern of the enzyme acetylcholinesterase (AChE) (Graybiel and Ragsdale, 1983). 

The distribution of other neuroactive substances and of several types of receptors (e.g. 

enkephalin, somatostatin, substance Ρ and the opioid, cholinergic and dopaminergic receptor) 

also shows a heterogeneous pattern, that corresponds more or less to the above mentioned 

distribution in AChE-poor striosomes and an AChE-rich matrix. Such a compartmentalization 

can be found in the dorsal striatum (nucleus caudatus) of several species (see Graybiel et al., 

1981; Gerten, 1985; Nastuk and Graybiel, 1988). 

Both dopaminergic and cortical afférents have been found to terminate in so-called islands or 

patches (Olson et al., 1972; Goldman and Nauta, 1977). In subsequent studies specific 

relations between the termination pattern of corticostriatal fibers and the diverse striatal 

compartments have been demonstrated, depending on the (layer of the) cortical area of origin, 

the striatal region and the animal species involved (Gerten, 1989; Gerten, 1992). 

Nigrostnatal connections are also compartmentally organized. For example, dopaminergic 

cells in the dorsal part of the SNpc (A9) have been shown to project to the striatal matrix, 

whereas projections from DA neurons in the ventral SNpc and from scattered DA cells within 

the ventral SNpr have been found to terminate in the striatal patches (Gerten et al., 1987; 
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Gerten, 1988, Gerten, 1992) Reversely, neurons in the matnx return projections to (non-

dopaminergic) cells in the SNpr, whereas neurons in the patches send axons to the DA cells in 

the SNpc and ventral SNpr (Gerten, 1985, Gerten et al, 1987, see figure 4) 

In conclusion, diverse patterns of connections, neurons and (transmitter-)activity are present in 

both striatal areas As yet, there is no consensus as whether the structure of the striatum is 

basically bicompartmental or more complex (see Groenewegen et a l , 1991) 

Dopamine receptor-systems 

Several dopamine receptor subsystems can be distinguished 

On the basis of electrophysiological and behavioural studies a distinction between the so-

called DAe and DA, receptors has been made (Cools and van Rossum, 1980) Stimulation of 

the former kind (by means of dopamine or apomorphine or the indirect acting amphetamine) 

leads to excitation of neuronal activity and to a short-term increase in locomotor activity in the 

rat Haloperidol antagonizes this receptor subtype Stimulation of the latter (with dopamine or 

DPI (3,4-dihydroxy-phenylamino-2-imidazoline) leads to inhibition of neuronal activity and to a 

long-term suppression of locomotor activity in rats The DA, receptor can be inhibited by 

means of ergometrine, which produces its effect only after a latency of 30 to 60 minutes The 

DAe- a r |d DA,-receptors appear to be primarily present within the dorsal and the ventral 

striatum, respectively (Cools and van Rossum, 1980) 

A second concept on dopaminergic receptor subtypes has emerged from biochemical 

analyses Some receptors were found to be positively coupled to a cAMP generating system 

the so-called D1 receptor Others were negatively or not coupled the D2 receptor (Stoof and 

Kebabian, 1984) Recently, in molecular biological studies a dopamine D3, D4 and D5 

receptor have been characterized, apparently constituting a D1-like receptor subgroup (D1, 

D3, D5) and a D2-hke receptor subgroup (D2, D4) (Seeman and Gngonadis, 19987, Tol et a l , 

1991, Sokoloff et a l , 1990) Several selective agents for D1 and D2 receptors have been 

developed, such as the D1 agonist SKF 38393, the D1 antagonist SCH 23390, the D2 agonist 

LY 171555 and the D2 antagonists sulpiride and raclopnde Both D1 and D2 receptors have 

been found in both striatal areas (White and Wang, 1986, Richfield et a l , 1989) and have 

been related to a diversity of behaviours (Benmger et a l , 1989, Bordi and Meiler, 1989, 

Fletcher and Starr, 1987, Spealman et a l , 1992) 

1.4 A DIFFERENTIAL ROLE FOR DOPAMINE IN THE VENTRAL AND DORSAL STRIATUM 
IN BEHAVIOUR 

Dopamine has been implicated in a diversity of behaviours, such as locomotor behaviour, 

sniffing, rearing and stereotypies (Ungerstedt, 1979, Costali and Naylor, 1979, Benmger, 1983, 

Bos et a l , 1988, Kuczenski et a l , 1991, Yim and Mogenson, 1989), feeding and sexual 

behaviour (Pfaus and Phillips, 1989, see review of Blackburn et a l , 1992) Especially its role in 

locomotor and general motor activity is well-known In general, stimulating the dopaminergic 

activity induces enhanced locomotion or stereotypy, while inhibition of the dopaminergic 
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activity, e g by means of application of the neurolepticum halopendol (DA antagonist), results 

in reduction of locomotor activity and sedation (see Beninger, 1983, Ploeger et a l , 1992, 

Ungerstedt, 1979) 

Externally versus internally directed behaviour 

Recently, Oades (1985) proposed a general working principle for the action of dopamine 

Reviewing a large body of literature he hypothesized that increasing the activity of dopamine in 

a given dopaminergic brain region promotes the likelihood of switching between alternative 

sources of information to that region As a consequence of this switching, new input may get 

(higher) priority over the ongoing input (see figure 5) On a behavioural level the effect is likely 

to be seen in a change in the temporal patterning of a response sequence or in the initiation of 

new responses Thus, dopamine appears to be involved in allowing an animal to switch its 

ongoing behaviour 

Studies from our laboratory have established a differential role for dopamine in the two main 

dopaminergic brain areas, the ventral and dorsal striatum, with respect to its role in 

behavioural switching Dopamine in the dorsal striatum allows an animal to switch its 

behaviour arbitrarily, ι e enhanced dorsal striatal dopaminergic activity enables the animal to 

switch its ongoing behaviour without the help of currently available sensory information or 

stimuli (see review of Cools et a l , 1984) For example, the dopamine agonist apomorphme 

injected into the dorsal striatum enhanced the ability of rats to select the best (life-saving) 

strategy to cope with the stressfull situation of a one-trial forced-swimming test (Cools, 1980), 

without being directed by external stimuli Injection of the antagonist halopendol in the dorsal 

striatum in cats, trained to walk on a treadmill, decreased the number of motor patterns that 

were not directed by exteroceptive stimuli, while switching to exteroceptively directed 

behaviours was not reduced (Jaspers et a l , 1984) 

In contrast, dopamine in the ventral striatum is involved in the display of cue-directed 

behavioural items Enhanced 

ventral stnatal dopaminergic 

activity enables the animal to 

switch its ongoing behaviour 

with the help of external 

(exteroceptive) stimuli For 

example, the indirect 

dopamine agonist 

amphetamine and the 

selective D2 agonist LY 

171555 increased the number 

of different cue-directed 
Figure 5 Proposed working principle for the action of DA b e h a v i o u r s , n t h e a b o v e 

Increase of DA activity may lead to switching to alternative m e n t l o n e d forced-swimming 

source of information Adapted from Oades (1985) 
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test, without affecting the number of different non-cue directed behavioural items (Bos and 

Cools, 1989, Bos, 1991, Bos et al ,1991) 

Overall, these differential roles for ventral and dorsal striatal dopamine have been shown to 

apply to behaviours in social situations and motor tasks, in rats, cats and monkeys (and for 

several neurotransmitter-systems) (Cools, 1980, Vnjmoed-De Vnes and Cools, 1985, 

Vnjmoed-De Vnes and Cools, 1986, Jaspers et al , 1984, Jaspers et a l , 1990, Bereken and 

Cools, 1982) 

Externally versus internally structured learning and memory strategies 
In §2, we have seen that (striatal) dopamine affects many diverse learning and memory 

processes and the question arose whether some common pnnciple rules this involvement 

Clinical and experimental data have implicated the basal ganglia in procedural or implicit 

memory (characterized by unconscious recollection) (Phillips and Carr, 1987, Mishkm et a l , 

1984), as contrasted to declarative or explicit memory (characterized by conscious 

recollection) that is sustained by the frontal and medial temporal lobe (Squire, 1986, Squire, 

1992) However, close inspection of data concerning memory impairments in patients suffering 

from basal ganglia disorders (e g Parkinson's disease) have shown this distinction to be 

insufficient, such patients may, for instance, show deficits in explicit memory (see Buytenhuijs 

et a l , 1994) 

Salamone (1992) and Blackburn (Blackburn et al , 1992) hypothesized that telencephalic 

dopamine potentiates the ability of significant stimuli to induce the execution of (complex) 

motor responses in instrumental behaviour 

Following our hypothesis on a differential role for ventral versus dorsal striatal dopaminergic 

activity in motor and social behaviour, we further hypothesize a similar differential role for 

dopamine in the ventral and dorsal striatum in learning and memory Thus, dopamine in the 

ventral striatum may be involved in learning and memory retrieval processes directed by 

external cues, whereas dopamine in the dorsal stnatum may play a role in learning and 

memory retrieval processes that are not directed by external cues (internally directed or 

arbitrarily) 

Free recall versus recognition in humans constitute examples of this distinction between a 

memory retrieval strategy that is not directed by externally available cues and a memory 

retrieval strategy that is guided by external cues Literature on learning and memory deficits in 

Parkinson's patients (suffering from brain damage in the nigro-dorsal striatal axis) fairly 

consistently point to an impaired recall ability, in combination with intact recognition (see 

Buytenhuijs et a l , 1994) 

1.5 EMPLOYED LEARNING AND MEMORY TASKS 

We have chosen to examine a possible differential involvement of ventral and dorsal striatum 

in the following three animal tasks These experimental tests offer the possibility to consider 
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the involvement of ventral and dorsal striatal dopamine in specific cue- or non cue-directed 

aspects in learning and memory 

Social recognition 

Social memory concerns information on individual members of a group of organisms, that is 

important for recognition of and communication among each other This information may be of 

diverse nature, e g visual, auditory, tactile or olfactory 

In groups of rodents, olfactory messages play an important role For instance, rats of one 

social group excrete odors (so-called odor signatures), discnmmating themselves from other 

groups (Carr et a l , 1976, see Popik, 1991) Within groups, odors may involve further individual 

information on age, sex, position in the social hierarchy and emotional state (alarm 

pheromones) (see Popik, 1991) 

Two subcircuits for processing of olfactory information are recognized (Switzer et a l , 1985) 

First, the main olfactory system involves the pathway from the nasal olfactory receptors, via 

the mam olfactory bulb, through the lateral olfactory tract to the piriform cortex (PCx) The PCx 

(as the main part of the olfactory cortex) further receives inputs from neocortical areas, the 

basal forebrain, and from the hippocampus and amygdala Output fibers from the PCx run to 

areas like the neocortex, thalamus and hypothalamus, the basal ganglia (especially the ventral 

striatum) and the hippocampus This latter area also receives direct input from the olfactory 

bulb (Hunterand Murray, 1989) In addition, the so-called 'olfactory amygdala' (comprizing а о 

the nucleus of the lateral olfactory tract, the anterior amygdaloid area and the 

amygdalopinform transition area) receives innervation directly from the mam olfactory bulb as 

well as from the piriform cortex (Haberly and Bower, 1989, Olmos et a l , 1985) 

The second circuit is the accessory olfactory system, starting at the chemosensory epithelium 

in the vomeronasal organ in the nasal cavity Fibers project to the accessory olfactory bulb, 

which in turn innervates the medial amygdaloid group ('vomeronasal amygdala', including the 

bed nucleus of the accessory olfactory tract, the medial amygdala and the posteromedial 

cortical nucleus) (Olmos et a l , 1985, Switzer et a l , 1985) This latter circuit may be important 

for social recognition, as it has been reported that the vomeronasal olfactory circuit is involved 

in the action of pheromones (Segovia and Guillamón, 1993) 

Olfactory learning and memory (of social as well as non-social odors) can be tested in several 

kinds of experiments, like the habituation-discnmmation test (Hunter and Murray, 1989, see 

Popik, 1991) or the positive reinforcement experiment (see Popik, 1991) 

Odor-based social memory can be studied by exposing adult rats to juvenile conspecifics (thus 

avoiding the occurrence of aggressive and sexual behaviours) (Thor and Holloway, 1982) We 

have employed this paradigm, in which social recognition (SR) is defined as the decrease in 

social investigation time (SIT, in particular anogenital sniffing) on repeated exposure of the 

tested adult rat towards the juvenile A decrease in SIT only occurs at short inter-trial intervals 

(ITI) of about 40 minutes or less (Popik, 1991, Sekiguchi et a l , 1991), suggesting that it 

concerns a short-term, capacity-limited kind of memory A decrease in SIT does not occur 

27 



when a novel juvenile is presented at the second exposure (Thor and Holloway, 1982) 

Recognition appears to be based on olfactory cues emitted by the juvenile (Sawyer et a l , 

1984, Popik, 1991) Agents as neurohypophyseal peptides (Popik, 1991, Dantzer et a l , 1987) 

and nootropics (Peno et a l , 1989) have been reported to specifically affect SR Furthermore, 

the septum and the medial pre-optic area have been found to play a role in SR (Popik, 1991) 

In contrast, systemic amphetamine was not specifically effective (Peno et a l , 1989) 

Moms water maze 

The Morns water maze procedure has been developed by Richard Moms (Morris, 1981, 

Morns, 1984), as a tool to study spatial learning and memory 

In its standard version, the animal is required to locate a hidden platform to escape from a 

large swimming pool, which is rapidly learned during a series of training trials 

The ability of localizing an undetectable platform is assumed to depend on the animal's 

capacity of constructing a spatial map of the environment based on the relations among stimuli 

or cues, from outside the pool (extra-maze or distal cues) (Moms, 1981) It constitutes an 

example of O'Keefe and Nadéis locale strategy (1978) Spatial memory in the rat is shown to 

depend on the extent of the environment the animal can see and the length of time it is 

allowed to look (Mazmanian and Roberts, 1983) 

Retention of the location of the platform may be measured in a probe trial (platform removed 

from the pool), by the time spent in a small region (quadrant) enclosing the former location of 

the platform Furthermore, the platform may be repositioned, thus examining an animal's ability 

to abandon the previous learned response and acquire a new one 

In contrast, the platform may be 'cued' it may protrude just above the water surface, being 

clearly visible to the rat from all places within the pool and acting as an mtra-maze, proximal 

cue (a clear beacon) This task demonstrates non-spatial escape learning and controls for 

sufficient sensorimotor capacities and motivation of treated animals (Morris, 1981, 1984) 

Many studies have provided evidence that the hippocampus is particularly important for spatial 

learning and memory in the Morris water maze (Morris et a l , 1982, Sutherland and Rodriguez, 

1989, see Brandeis et a l , 1989) Acquisition of the cued, non-spatial response was not 

affected by hippocampal treatments (Morns et a l , 1982) Furthermore, the (medial) frontal 

cortex and the antenor thalamic area have been implicated in standard Morns maze learning 

(Sutherland et a l , 1982, Sutherland and Rodriguez, 1989) Manipulations of catecholammergic 

and cholinergic activity have also been found effective (Whishaw and Dunnett, 1985, Hagan et 

a l , 1983, Lindner and Schauert, 1988, Whishaw, 1989) 

Radial arm maze 

Radial arm mazes (RAM) can be employed to study spatial versus non-spatial learning 

(Mazmanian and Roberts, 1983, Toumane et a l , 1988) as well as working versus reference 

memory (Knowlton et a l , 1985, Buresová and Bures, 1982) 
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A varying number of arms can be used (4, 8 and 17 arm-mazes are common), radiating from a 

central platform 

In its most simple version, an animal is required to collect one food-pellet from the end of each 

arm in an efficient way (ι e without revisits) With the maze in a constant position and not 

covered to hide the environment, the animal is able to rely on extra-maze cues and spatial 

mapping abilities to solve the task 

When some of the arms are never baited, the animal needs to leam this trial-independent 

information (RM) Information on which of the baited arms has been visited within one trial 

refers to WM 

Furthermore, animals may acquire fixed and quick responses when collecting all the pellets, 

based on the use of egocentric localization (orienting from the animals own body axis) 

The hippocampus, the medial septal area and the nucleus basalis magnocellulans appear to 

play a role in the working memory component (Olton et a l , 1979, Knowlton et a l , 1985) 

Lesions of the mediodorsal thalamic nucleus impaired both RM and WM (Stokes and Best, 

1990) Furthermore, cholinergic and dopaminergic activity have been shown to be involved in 

RAM behaviour (Mundy and Iwamoto, 1988, McGurk et a l , 1989) 

We have employed a simple radial arm maze task, involving the collection of one food pellet 

from each of four radiating arms A clear stimulus was attached on the wall near each of the 

arms In this maze, behaviour includes externally guided aspects (for instance, remembering 

which arm already has been visited in relation to its nearby stimulus) as well as arbitrarily 

directed aspects (for instance, starting to visit arms or developing a fixed response pattern) 

1.6 AIM AND OUTLINE OF THE PRESENT THESIS 

A differential role for ventral versus dorsal striatal dopamine in behaviour has been put 

forward Dopaminergic activity in the former area has been linked to switching of behaviour 

directed by external stimuli or cues, whereas dopaminergic activity in the latter areas has been 

associated with arbitrarily directed behaviour, not guided by external cues 

Dopamine has been shown to affect learning and memory Its role has been related to the 

potentiation of the ability of significant stimuli to induce motor responses Others have implied 

a role for the basal ganglia in implicit or procedural learning and memory Based on previous 

work from our laboratory, a differential role for the dopaminergic activity in the ventral versus 

the dorsal stnatum in learning and memory is proposed the ventral striatum may be involved 

in learning and memory processes that are directed by external cues, whereas the dorsal 

striatum may play a role in learning and memory processes that are arbitrarily guided 

This thesis examines the hypothesis of that differential role of striatal dopamine in three 

different learning and memory tasks These three tasks are suitable for studying the effects of 

dopaminergic treatment in the ventral and dorsal striatum on cue-directed and non-cue 

directed aspects of learning and memory retrieval strategies 
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In chapter 2, the effects of post-training manipulation of the dopaminergic activity at the level of 

the DA receptor in the nucleus accumbens (ventral striatum) are studied in the social 

recognition task 

Chapters 3 to 5 describe studies on spatial learning in the Morris water maze First, the effects 

of systemic injections of a dopaminergic antagonist on spatial learning are regarded Second, 

it is investigated which of the striatal areas participate in the observed effects 

In chapters 6 and 7, radial arm maze behaviour is examined Both the involvement of 

dopamine in retention of a previously acquired maze response and the involvement of dorsal 

striatal dopamine in radial arm maze acquisition are considered 

Chapter 8 offers a general discussion of the main results and their interpretation A summary 

is finally presented with the mam conclusions from each chapter. 
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ABSTRACT 

Recognition of a juvenile conspecific by an adult male rat is known to be reflected by reduced 

anogenital investigation (A G I ) of this young individual by the adult, when the two animals are 

re-exposed to each other after some short delay As the delay is increased, the reduction in 

A G I is reduced This measure of social memory can be modulated by several drugs, among 

others cholinomimetic agents In this study, the effects of direct manipulation of the nucleus 

accumbens were studied Local administration of (3,4-dihydroxyphenylimmo)-2-imidazoline 

(DPI 0 1-15 цд) decreased investigatory behaviour at the second exposure after a long 

mterexposure-interval, while ergometrme (0 1 μg) counteracted this reduction by DPI These 

findings suggest a role for the nucleus accumbens in social recognition, in particular for the so-

called DAi receptors which are stimulated and inhibited by DPI and ergometrme respectively 



INTRODUCTION 

Adult male rats appear to be able to form a so-called social memory for juvenile conspecifics 

(17) Normally, an adult rat thoroughly investigates a novel young rat when exposed to it 

When re-exposed to this juvenile after a short interval, the adult rat shows much less 

investigatory behaviour With longer intervals, recognition vanishes and the juvenile is again 

thoroughly investigated (8,10) 

This social memory is based upon olfactory cues emitted by the stimulus animal (2,15), it is 

sensitive to retro-active facilitation and interference (8), and can be modulated by several 

drugs Peptides like vasopressin (8,10) as well as cholinomimetics, nootropic drugs and 

benzodiazepine inverse agonists (14) can influence the duration of investigation of the same 

young stimulus animal, while not affecting the investigation of a different young rat 

In studies on drug-induced changes in social memory, the drugs were applied either 

systemically or intracerebro-ventncularly So, little is known about the underlying mechanisms 

or brain regions involved in these memory processes In this study we investigated whether 

the nucleus accumbens plays a role in this kind of memory, for reasons outlined below 

First, the nucleus accumbens is known to link the hippocampus with the ventral 

pallidum/substantia mnominata-complex (19), viz regions which are known to be involved in 

different kinds of memory (9,11,16) Since, in addition, both structures are cholmoceptive, it is 

relevant to note that cholinomimetics can modulate social memory (14) Second, recent 

studies from our laboratory have shown that the nucleus accumbens is involved in switching 

behaviour with the help of available external cues (1) So, the question arose whether the 

nucleus accumbens also allows the organism to use cue-directed strategies to search for 

stored information In other words is the nucleus accumbens also involved in memory 

processes, in which recognition of some object takes place on basis of external cues? 

Therefore, we studied the effects of direct manipulation of the dopaminergic activity in the 

nucleus accumbens on social memory in rats 

We choose to use (3,4-dihydroxyphenylimino)-2-imidazolme (DPI) and ergometnne, because 

these agents have been found to be behaviourally effective in a highly specific manner when 

injected into the nucleus accumbens of well-habituated and well-handled rats (7) DPI and 

ergometnne are considered to be an agonist and an antagonist of the so-called DAi receptors 

respectively Activation of the DAi receptors in the nucleus accumbens by dopamine or DPI 

results in a long-term suppression of the locomotor activity in well-habituated rats, whereas an 

injection of ergometnne into the nucleus accumbens increases the locomotor activity in such 

rats This effect of ergometnne can be counteracted by DPI and dopamine, while 

noradrenergic agents are ineffective in this respect (see for more details ref 3, 5 and 6) Since 

neither intra-accumbens injections of selective D1 agents (SKF 38393 D1 agonist, SCH 

23390 D1 antagonist) nor such injections of selective D2 agents (LY 171555 D2 agonist, I-

sulpinde D2 antagonist) have been found to produce such changes (7), it was decided to 

disregard the use of these drugs, despite their known specificity as far as it concerns D1 and 

D2 receptors respectively 
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Figure 1. Representative series of injection sites in the nucleus accumbens. The planes are taken from 
the atlas of Paxinos and Watson (1982), the Α-coordinate is in mm from bregma. 

MATERIAL AND METHODS 

Animals and surgery 

The subjects were male Wistar rats, formerly used as breeders and about one year old 

(weight: 400-600 g). After the last time they have been used for breeding and just prior to the 

experiments, they were held together with the female and the newborn rats. So, they were 

familiar with juvenile rats. 

Thereafter, upon arrival at our laboratory, they were housed individually and kept at a reversed 

light/dark cycle (lights on at 19 00 h; lights off at 7.00 h). Water and food were available ad 

libitum. 

Per experiment 12 exbreeders and 72 juvenile conspecifics (24-27 days of age; housed in 

groups of six, in the same animal room) were used. 

For implantation of the cannulae the adult rats were anaesthetized with pentobarbital 

(Narcovet®; 60 mg/kg i.p.) and placed in a stereotaxic apparatus. Stainless steel cannulae 

(length: 6 mm; diameter. 0.5 mm) were bilaterally implanted, aiming at the nucleus accumbens 

(coordinates: A=bregma + 1.85, L=+/- 1.2, H=2.7 mm, based on the atlas of Paxinos and 

Watson (13)). The cannulae were brought in with a lateral angle of 10° and fixed onto the skull 

with dental acrylic cement (Paladur®) and stainless steel retaining screws (1). 

After surgery, the animals were allowed two weeks of recovery. On three days during the 

second week of recovery, each rat was handled for a few min between 10.00 h and 15.00 h. 

Then, after the recovery period, the experimental procedure started. 

Expérimental procedure 

For each group the following experimental procedure was carried out. First, each single adult 

rat was exposed twice (each time for 5 min) on one day to the same juvenile; this was done 

four times on four successive days (day 1-4) with increasing inter-exposure intervals (5, 10, 30 
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and 120 min) and with a new juvenile for each new interval Thus, it could be established 

whether they did show recognition for a young rat at short intervals and whether recognition 

was reduced at a longer interval Both recognition at a short delay and decreased recognition 

after a longer delay were prerequisites for continuing the expenment During these days they 

were also handled, and they received a sham injection on the fourth day So, the rats were 

well habituated to being handled as well as to the injection-procedure (see below) 

Next, the adult rats were again tested on day 9 and day 11 at an inter-exposure interval of 120 

mm On day 9 the animals received a control injection of the solvent (AD) in order to establish 

the baseline (see below), while an injection of a dopaminergic agent, viz DPI and ergometnne, 

was given on day 11 

Injections were given bilaterally, using a Hamilton syringe, with the needle extending 1 5 mm 

below the end of the cannula, thus reaching the nucleus accumbens The injected volume of 

0 5 μΙ per side was delivered over a period of 5 s, thereafter the injection needle was kept in 

place for another 5 s 

DPI and ergometnne were dissolved in distilled water (AD), per experimental group, one of the 

following doses was used on day 11 0, 0 1 and 0 5 цд for DPI, 0 1 цд for ergometnne, or DPI, 

0 5 μg, in combination with ergometnne, 0 1 μg Apart from ergometnne, all injections on day 9 

and 11 were given immediately after the first exposure Ergometnne was administered 1 h 

before DPI on day 11, this was done, because the inhibitory action of ergometnne at the level 

of the DAi receptor is known to start after a delay of 45 to 60 mm (4) 

Histological verification 

After the expenments the animals were sacrificed by an overdose of pentobarbital, the brains 

removed and fixated with 4% formaline, and the precise localization of the cannulae and 

injection sites were determined in serial sections using cresyl violet staining Only the animals 

with correctly placed injections were included in the statistical analysis 

Figure 2. Ratios of investigation duration 
(RID = duration of second exposure/ 
duration of first exposure black columns) 
for day 1-4 with increasing interexposure 
intervals from one experiment (n=10) 
Shown are median values The solid line 
represents performance dunng the first 
exposure (100% = ratio 1) 

day 1 2 3 4 

5 10 30 120 
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58 8 

36 9-68 4 

12 3** 

8 9-19 9 

45 5 

36 1-50 9 

15 5** 

10 3-27 5 

38 5 

20 6-65 6 

26 8* 

6 0-43 0 

48 8 

29 8-71 6 

34 5 

17 5-59 9 

Table 1 Raw data for the duration of investigation during the first and second exposure on four successive days 
with increasing inter-exposure intervals from one typical experiment Investigation at the second exposure was 
significantly shorter than at the first exposure after short intervals (5-30 min) while such a reduction was not 
anymore present at a longer interval (2h), shown are median values Note the same juvenile was presented 
during the first and second exposure on one day, while different juveniles were presented on different days 

DURATION ΟΓ INVESTIGATION 

INTER-EXPOSURE INTERVAL (min ) ON DAY 1-4 

DAY 1 2 3 4 
FXPOSURF INTERVAI 5 10 30 120 

1st median 
'range ' 

2nd median 
'range * 

Significances * p<0 02, ** p<0 01, Wilcoxon matched-pairs signed-rank test 
• An indication of the variation is given by the 'range' for each median the 25% and 75% values are given 

Behavioural analysis 

Social investigation was expressed in terms of duration (seconds) and frequency (number of 

'bouts') of anogenital sniffing per exposure Each time that anogenital investigation ( A G I ) 

occurred, separated by other behavioural items, this was counted as one 'bout', total duration 

and total number of A G I were calculated 

Per day and for each animal, the ratio of duration (resp frequency) of the second exposure to 

that of the first exposure was taken This was done in order to minimize (a) inter-individual 

vanations and (b) day-to-day vanations in baseline performance (first exposure) 

The computed ratio of day 9 (control day, effect of handling and injection) was taken as a 

baseline and the ratio of day 11 (drug day) was compared to this value the difference between 

these ratios was regarded as reflecting the effect of the drug itself 

Furthermore, the overall behaviour (duration and frequency) during the second exposure was 

compared between a DPI- and a control-day, using a standard list of behavioural items (18), 

these were chosen in such a way that occurrence of one item excluded the occurrence of any 

other one Dunng these two exposures, the adult rats exhibited an equal amount of anogenital 

investigation, so, it was possible to compare the remainder of the behaviour, shown by the rats 

in these exposures This analysis was done in order to check whether or not the DPI-induced 

changes in A G J were accompanied by additional changes in other behavioural items, for 

example locomotor activity 

Statistics 

A Wilcoxon matched-pairs signed-rank test was used to test mtra-individual differences 

between first and second exposure, while a Mann-Whitney U rank order test was used to test 

for significant differences between expenmental groups (both tests two-tailed) (12) 

46 



RESULTS 

A representative series of injection sites is shown in figure 1 Per experiment, 1-3 animals had 

to be discarded because of location of the injection sites outside the nucleus accumbens The 

remainder of the injections sites was found within the dorso-medial part of the nucleus 

accumbens (anterior coordinate 1 2-2 2 mm from bregma (13)) See for exact numbers of rats 

per experiment figure 3 

Raw data for the duration of investigation during the first and second exposure at different 

inter-exposure intervals (on day 1-4) for one typical experiment are shown in table 1 Only the 

data for the duration are given, since the frequency revealed the same picture 

There was no significant difference in anogenital investigation during the first exposures on 

day 1 to 4 At short intervals (5 to 30 mm), duration of investigation at the second exposure 

was significantly shorter than that of the first exposure (Wilcoxon, p<0 02 at ЗО'-interval, 

p<0 01 at 5'- or 10'-interval), while such a reduction was not anymore present at a longer 

interval (2h) 

Figure 2 shows the ratios of investigation duration (RID), computed from these raw data 

Performance dunng the first exposure is represented by the solid line (100% ratio 1), the 

columns represent the ratio of investigation duration of the second exposure to the first 

Plotted are the median values 

In figure 3, the ratio of day 11 (drug-injection) minus the ratio of day 9 (injection of solvent, viz 

the baseline, reflecting the effect of handling and injecting) is shown in order to illustrate the 

drug-induced effects 

DPI reduced the anogenital investigation at the second exposure at a 2h-interval, at a dose of 

0 5 μg/0 5 μΙ This figure also shows that the reduction by DPI could be antagonized by 

ergometnne at a dose of 0 1 цд/0 5 μΙ Ergo-metrine, in the dose mentioned, had no effect on 

its own, neither on the first exposure (not shown), nor on the second exposure (fig 3) 

RATI 
1 0" 

Figure 3. Effect of DPI (0, 0 1, 0 5 цд) 0 9. 
and of ergometnne (01 pg) on 
anogenital investigation in rats Along 
the y-axis the difference between the ° 
ratios of duration (second exposure to ° 6' 
first exposure) of day 11 (effect of 05 
drugmjection) and day 9 (effect of 0 4-
control injection and handling), per 0 3 

expenment is plotted (see also text) 
Shown are median values 
Significances * p<0 05, Mann- ° 1 

Whitney U test о 0 
-0 1 

0 OF DURATION IMPROVEMENT 

IN MEMORY 
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Table 2 Overall behavioural analysis frequencies and duration as a percentage of total frequenties resp of total 
observation time for several behavioural parameters during the second exposure of a control-day (no injection, 
second exposure after 30 minutes, n_12) and of a DPI-day (DPI 0 5 pg/0 5 μΙ, second exposure after 2h, n-11) 
Shown are mean values The behavioural items covered for the total observation time (after (18)) These two 
groups showed the same amount of anogenital investigation Investigation of the juvenile includes both sniffing 
and grooming of the body of the young rat, but not anogenital investigation' No significant differences were 
found 

B E H A V I O U R A L A N A L Y S I S 

BEHAVIOUR 

ANOGEN INV 

LOCOMOTION 

SNIFFING 

GROOMING 

BEING SNIFF 

INV JUV 
SCANNING 

D U R A T I O N 

DPI (0 5μ δ) 

mean ± sem 

13 1 

8 6 

23 2 

7 2 
6 7 

170 

24 0 

2 4 

12 

3 0 
2 4 

2 9 
3 5 

2 5 

CONTROL 

mean 

109 

7 5 
21 7 

5 8 

3 9 

104 

39 7 

ι + sem 

19 

12 

4 0 

2 1 

1 5 

2 5 

7 2 

DPI 

F R E Q U E N C Y 

(0 5μ 8 ) 
mean -t sem 

12 8 

189 

189 

3 6 

2 3 

13 1 

29 9 

17 

1 8 

2 0 

0 8 

10 
19 

16 

CONTROL 

mean 

105 

175 

137 

4 5 
4 2 

145 

34 9 

± sem 

1 2 

2 9 
2 4 

1 7 
2 2 

2 5 

5 6 

A lower dose of DPI did not yet produce an effect (fig 3), whereas higher doses (1 0-1 5 цд, 

not shown) produced lesser effect, possibly because these doses induced sedation, as has 

been reported earlier (5) 

The overall behavioural analyses (duration and frequency as percentage of total observation 

time resp of total frequen-cies, see table 2) revealed no statistically significant differences in 

any of the behavioural parameters, although there was both a slight reduction of scanning and 

a small increase in the other behaviours in the DPI-group (duration) 

DISCUSSION 

The present data confirm the results from previous studies that adult male rats are able to 

recognize juvenile conspecifics This is indicated by reduced anogenital investigation of the 

juvenile by the adult, during the second exposure after short intervals Though not controlled 

for in our experiments, Thor and Holloway (17) have shown that such a reduction does not 

occur when the adult rat is re-exposed to a different juvenile So, it appears that forming a 

short-lasting memory for an individual juvenile is a specific effect 

In contrast to the solvent given on day 11, which did not alter the amount of A G I (fig 3 0 цд 

DPI), 0 5 цд DPI significantly decreased duration and frequency of social investigation at the 

second exposure after a long inter-exposure interval (2h) This reflects an improvement in 

recognition and is taken as an indication that the nucleus accumbens can modulate this social 

memory 

The DPI-mduced modulation seemed to be a specific effect of a particular subtype of 

dopaminergic receptors, the so-called DAi receptors, within the nucleus accumbens as 

ergometnne could antagonize the DPI-mduced reduction of anogenital investigation 

Ergometnne had no effect on its own upon the duration of anogenital investigation at the 

second exposure In addition, while injected 1 h before DPI and thus before the first exposure, 
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ergometnne also had no effect on the duration of investigation at the first exposure (not 

shown) 

The effect of DPI cannot be attnbuted to aspecific or indirect effects For, animals showing a 

DPI-induced decrease in anogenital investigation displayed a behavioural palette, that was 

more or less similar to that of a group of animals re-exposed to the juvenile after an interval of 

30 mm and showing a comparable degree of anogenital investigation 

Although a more extensive dose-effect analysis has to be made in order to prove that 

especially DAi receptors are involved, the present data are sufficient to conclude that the 

nucleus accumbens plays a role in the noted effects Given the role of the nucleus accumbens 

in enhancing the ability to switch to cue-directed behaviours (1), it is attractive to postulate that 

DPI improves social memory, because it facilitates the animal's ability to switch to cue-directed 

strategies in order to search for stored information This hypothesis needs to be validated in 

future research It also remains to be investigated whether other neurotransmitters and/or 

receptor mechanisms within the nucleus accumbens are involved in regulation of social 

memory 

In conclusion, the present results indicate that the nucleus accumbens clearly plays a role in 

social memory 
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ABSTRACT 

The effects of systemic injections of the dopaminergic antagonist halopendol on the acquisition 

of the Moms water maze with a visible resp invisible platform (non-spatial vs spatial learning) 

were investigated An open field test was used for selecting a dosage (ъО 1 mg/kg), that would 

not (or hardly) affect locomotor behaviour Differential effects were found At 0 1 mg/kg, 

halopendol both reduced locomotion in the open field and impaired resp blocked acquisition in 

the Morns maze with a visible resp invisible platform Even though 0 07 mg/kg halopendol 

reduced locomotion, both 0 04 and 0 07 mg/kg only impaired Morris maze performance in the 

spatial version A large effect was found in the first trial of every day's training block These 

results indicate that halopendol at low doses can lead to a moderate but significant impairment 

of spatial learning It is suggested that the effects found are related to the function of the 

striatal areas in cue- and non cue-directed behaviour 



INTRODUCTION 

Dopamine (DA) is known to be involved in various kinds of behaviour Most prominent is its 

role in (loco)motor behaviour [2, 10, 11, 14] Dopamine has also been implicated in more 

cognitive functions, among which learning and memory [2, 16, 19] For example, it has been 

demonstrated that amphetamine (an indirect DA-agonist) has memory-improving effects [17, 

18], neuroleptics, as potent dopamme-antagonists, strongly disrupt the acquisition of 

conditioned avoidance responding [5], and there is good evidence that DA plays a role in 

reward-related incentive learning [2, 3] 

Animal studies from our laboratory have investigated the possible involvement of dopamine in 

allowing an animal to switch behaviour A differential role has been established for the two 

main dopaminergic structures, ι e the neo- or dorsal stnatum and the nucleus accumbens 

(ventral striatum) Neostnatal dopaminergic activity appears to affect switching of behaviour 

directed by factors intrinsic to the animal (non cue-directed or arbitrarily) This is shown for 

both motor and social behaviour, in rats and cats as well as in monkeys [4, 9, 25, 26, 27] 

Mesohmbic dopamine affects switching motor behaviour aided by external available cues (cue-

directed) [6, 7, 8] 

It is hypothesized that this differential function of dopamine via specific brain areas underlies 

the efficacy of dopaminergic agents to affect different learning tasks 

For several reasons we choose to use the Morns water maze to study the dopaminergic 

influence on cue-directed learning First, this is a task in which animals heavily depend upon 

external (distal) cues in learning to locate a hidden platform (spatial learning) Second, there is 

evidence that the dopaminergic striatal areas are linked to brain areas, like the hippocampus 

and the ventral pallidum/substantia innommata-complex [30], that are implicated in mnemonic 

processes, among which spatial learning in the Morris watermaze [12, 13, 15, 23] Third, 

several reports (which either used a lesionmg technique or rather high doses of dopaminergic 

agents) have already pointed out that dopamine and the dopaminergic brain areas mentioned 

above, play a role in the acquisition and retention of the watermaze task ([1, 28, 29], see 

discussion) 

In those studies however, it was not clearly shown that the applied dopaminergic 

manipulations specifically affected the behaviour at the cognitive level This study investigated 

the effects of low doses of the potent dopaminergic antagonist halopendol (systemically 

injected, to start with), in the training phase of the Morns maze task The performance of rats 

both in the spatial task with a hidden platform and in a version with a visible one (to check for 

sensonmotor abilities) was compared The dosage of halopendol used was based upon 

previous experiments from our laboratory [9] and tested in a simple open field test in order to 

avoid difficulties in the interpretation of the results because of the possible occurrence of motor 

disturbances 
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M A T E R I A L S & M E T H O D S 

Animals 

Male Wistar rats, weighing 250-300 g at the time of testing, were housed in groups of 3 and 

kept in a temperature and light-controlled room at a reversed light/dark cycle (lights on 

between 20 00 and 08 00 h), all experiments were carried out between 09 00 and 17 00 h 

Water and food were available ad lib 

Per experiment a group of 8 animals was used 

Haloperidol 

The dopaminergic antagonist halopendol (Janssen Pharmaceutica, The Netherlands), 

dissolved in saline, was used in the following doses 0, 0 01, 0 04, 0 07 and 0 1 mg/kg It was 

injected intraperitoneal^, 30 mm prior to the testing 

Experimental tests and procedures 

Open field 
To test for the effects of halopendol on locomotor behaviour and exploration, the rats were 

subjected to an open field test The apparatus consisted of a circular box, 75 cm in diameter 

and surrounded by a 40 cm high dark wall A 12 cm high steel object was placed in the center 

of the box 

The rats were allowed to move freely and to explore the environment and the object for 10 

mm The drug (or its solvent) was administered 30 mm prior to the test Between injection and 

the test the animal was brought back into its homecage 

For three doses (0, 0 04 and 0 1 mg/kg) the animals were tested in the open field for three 

consecutive days in order to see whether the animals showed habituation to the drug 

During testing the path of each animal was automatically recorded and later analysed (see 

below) For the analysis three areas were defined one along the edge (border-zone), a 

second area in which the object was located (object-zone) and a third one in between (rest-

zone) 

Morns water maze 

The apparatus was a black circular pool, 230 cm in diameter and 35 cm deep It was located in 

a large observation room External cues, that were kept constant, surrounded the pool 

The pool was filled with water of 26±1 °C to a depth of 23 cm Behavioural testing was 

performed under dim red light conditions, with one small light on near the computerized 

observation system for use of the expenmenter 

Both a visible white platform, protruding just above the water surface (for the proximal cue 

task), and an invisible transparent perspex one, hidden below the surface (for the distal cue 

task), were used The platform, whether visible or invisible, was placed in a constant location 
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in the center of quadrant 1 Four equally spaced points around the wall of the pool were used 

as starting points 

For each dose one group of rats was trained on the visible task and another on the invisible 

version Each day the animals were given a block of four tnals with an interinai interval of ± 10 

minutes The drug (or its solvent) was injected every day, always 30 mm before the start of the 

first tnal Each animal started at a different point each trial The animal was gently placed into 

the water, facing the wall It was allowed to swim around until it located the platform, or, when 

it did not find it within 120 s, it was placed on it The rat was left on the platform for 30 s For 

the visible task, the animals were trained for 3 days, while for the invisible task, the animals 

were given 4 days of training 

In one additional experiment, the effect of removal of some prominent cues from the 

surroundings on learning the location of a hidden platform was examined and the performance 

of this group was compared to that of the above mentioned control group on the invisible task 

that was trained with these cues 

As with the open field tests, the path of each animal on each trial was recorded and later 

analysed (see below) 

Behavioural recording and analysis 

For both the open field test and the Morns water maze task the path of the animal was 

automatically registered by a computerized image analysis system The hardware consisted of 

an IBM AT computer combined with a video digitizer PV VISION PLUS board (Imaging 

Technology Ine U S A ) and а С С D video camera For a detailed description of the software, 

used for data acquisition and analysis, see Spruijt et al [22] 

In short, with a sampling method a picture of the animal was taken and the coordinates of the 

position of the rat determined These coordinates were then stored into the computer (raw 
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Figure 1.a Total travelled distance (in m) in the 
open field for increasing doses of halopendol 
Shown are mean values±s e m , n= θ per group 
Significant differences were found between control 
(saline) and halopendol 0 07 and 0 1 mg/kg * 
p<0 05, *** p « 0 02 (ANOVA and post hoc the control group 
analysis) hoc analysis) 

d a y 

Figure 1.b Mean total travelled distance (in m) in 
the open field for two doses of halopendol on three 
consecutive days ( · control, О halopendol 0 04 
mg/kg, Ahalopendol 0 1 mg/kg) The halopendol 
group of 0 1 mg/kg differed on all three days from 

p«0 01 (ANOVA and post 
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Figure 2 Mean latencies (m s ) per group and 
per block of 4 trials, in the Morns water maze 
with an invisible platform In one group ( 5 ) some 
prominent cues were removed from the 
environment during training, whereas in the other 
group ( · ) these particular cues were present 

1 2 3 4 

ы о с к 
data). 

Afterwards the raw data were analysed and various computations made So, several 

parameters, e g latency, travelled distance and time spent within a certain region, were 

automatically calculated for each animal and per group (means and standard errors) The 

individual values could then be imported into the statistical package SYSTAT (Wilkinson, 

Leland, SYSTAT The system for Statistics, Evanston IL SYSTAT, Ine , 1990) 

For analysing the effects of the drug an analysis of variance (ANOVA) was used for the effects 

on one day (open field) For the effects over days (open field and Morris maze) an analysis of 

variance on one factor for repeated measures was applied Several parameters were regarded 

(see the results below) The ANOVA for repeated measures was followed by ANOVAs per 

day, while these were followed by a Tukey HSD procedure for assessing differences between 

group means per day 

RESULTS 

Open field 

In figure 1 a the total travelled distance per group is shown A significant reduction in travelled 

distance with increasing doses of halopendol was observed (F(4,35)=9 8, p « 0 01) 

Other parameters, like the distribution of time spent and distance travelled over the three 

areas, or the latency until the animals entered the object zone in the middle of the box, did not 

show significant changes between any of the groups (not depicted) Also an analysis on the 

distance travelled per time-period (of 1 mm each) within the open field-test (total test time 10 

mm) did not reveal different activity patterns each group showed the same gradual decline in 

travelled distance over time within the test session 

In panel b of figure 1 the total travelled distance for the three groups, that were tested for three 

consecutive days, is depicted Analysis of variance revealed an effect between groups 

(F(2,18)= 18 4, p « 0 01) as well as an effect of days (F(2,36)=19 2, p « 0 01) No interaction 

between groups and days was found (F(4,36)=0 19) Post hoc analysis showed that 

halopendol 0 1 mg/kg differed significantly from the other two groups No other parameters 

revealed important differences between the three groups 
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Figure Э.а Latencies (m s ) per 
group and per block of 4 trials in 
the Morns water maze with a 
visible platform Shown are mean 
values ± s e m · control, O hal 
О 04 mg/kg, Δ hal 0 07 mg/kg, 
D hal 0 1 mg/kg 

Figure 3.b Mean latencies (m s, 
± s m ) per group and per block 
in the Morris water maze with an 
invisible platform An ANOVA 
yielded a clear group effect, see 
text For explanation of the 
symbols, see figure 3 a 

b l o c k 

> 
υ 
с 

b l o c k 

Morns water maze 

One group of animals was trained to locate the platform without the use of some prominent 

cues, normally present in the environment As shown in figure 2, these rats have significantly 

increased latencies throughout all training blocks as compared to the animals that can use 

these cues for localization (F(1,18)=12 2, p<0 01). 

Figure 3 presents the latencies per block for the task with the visible platform as well as with 

the invisible one As the distance swum gave similar results, this parameter is not shown here 

In case of a visible platform all groups showed improvement over the days (F(2,56)=163 5, 

p « 0 01) Analysis of variance with repeated measures yielded an overall significant effect 

between groups (F(3,28)=2 9, p=0 05) Posthoc analysis showed that the group of 0 1 mg/kg 
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haloperidol differed significantly from all three others (p-values <0 02) on day 1 and 2 

Nonetheless all groups reached the same performance level within the same time 

For the task with the invisible platform however, the group with the highest dose of haloperidol 

hardly showed any improvement over the days (fig 3 b) The overall ANOVA with repeated 

measures yielded a highly significant effect between groups (F(3,28)=14 4, p « 0 01), while 

also an interaction-effect (group χ block) was found (F(9,84)=2,4, p=0 01) A Tukey HSD test 

revealed that the 0 1 mg/kg haldol-group differed on all days from the three others Examining 

the performance of this group per tnal, they showed a slight improvement only over the first 

four trials, but from the second day on no further improvement occured The animals from the 

0 04 and 0 07 mg/kg haldol-groups remained slower in finding the platform up to day 4 

(F(1,14)=5 1 resp 4 3, p=0 04 resp 0 057) It is important to note that the effect found is 

mainly present in the first trial of every new training day Leaving these trials out of the overall 

ANOVA, no significant differences were found anymore Testing the performance of these 

groups on every day's first trial, they differed significantly from controls (F(1,14)=6, p= 0 03, 

see figure 4) 

DISCUSSION 

When tested in the open field, provided with an object, haloperidol only showed a reduction in 

travelled distance at a dose of 0 07 and 0 1 mg/kg Other parameters were not affected nor did 

the doses of 0 01-0 04 mg/kg gave any changes in motor activity in all parameters measured 

Haloperidol given three times on consecutive days did not induce tolerance to the drug So, we 

considered this range of doses appropriate in order to dissociate possible cognitive effects 

from sensorimotor effects of haloperidol in the Morris maze 

Performance in the Morns maze with the visible platform revealed that this task is less 

sensitive to motor disturbances than the open field test haloperidol increased latencies only at 

the highest dose, on day 1 and 2 The groups of 0 04 and 0 07 mg/kg haloperidol showed 

excellent performance So, for these last two doses sensonmotor capacities are sufficient 

In the task with the invisible platform, it is evident that the animals indeed do depend upon 

external available cues to direct them to the proper location Considering the effects of 

haloperidol in spatial localization, a dissociation emerged 

Halopendol at the two lowest doses, while leaving the sensonmotor coordination intact, 

impaired the acquisition of spatial learning For both dosages there was a large effect on the 

first trial of every day's new training block, haloperidol 0 07 mg/kg also affected the other tnals 

to some extent So, it appeared that these halopendol-treated animals have more difficulty in 

remembering the right location over a long period (1 day) At the highest dose, halopendol 

almost completely inhibited the animals from escaping onto the platform This latter dose 

clearly reduced locomotion in the open field and induced a small but significant deficit in the 

visible version of the Morns maze, this inhibition therefore can be due to a motor 

dysfunctioning, superimposed on the learning impairment found at the lower doses 

Nonetheless, they did learn to switch to energy saving behaviour, meaning that they ceased to 
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Figure 4. Mean latencies (m s ) for every day's 
first trial (that is for trial 1, 5, 9 and 13) in the Morns 
water maze with the invisible platform • control, 
D hal 0 04 mg/kg, И hal 0 07 mg/kg 

swim actively, that they sometimes were treading the water or were either floating around in a 

horizontal position or lying vertically deep into the water At the end of the trial however, they 

immediately reacted to the approach of the experimenter 

So, our results reveal clearly that manipulation with dopaminergic activity by means of low 

doses of the DA antagonist halopendol can lead to a moderate but significant impairment in 

spatial learning and that on top of this cognitive effect, motor disturbances can affect the 

performance, leading to a complete inhibition of spatial learning These results are in 

agreement with several earlier reports, even though in these studies cognitive and motor 

effects were not equally well separated 

In these studies mainly the method of lesioning dopamine pathways or brain areas was 

applied Lesions with 6-hydroxydopamine (injected either into the ventricle or directly into the 

nigrostnatal bundle [28]) or with ibotenic acid (injected into the neostriatum [29] or into the 

accumbens [1]) produced severe resp moderate impairments in the acquisition of the 

watermaze task with an invisible platform But also in the version with a visible one acquisition 

was blocked (after 6-OHDA) or impaired (after neostnatal ibotenic-acid lesion) Some authors 

have reported effects of dopaminergic agents on the performance in the Morns maze with an 

invisible platform So, Taghzouti et al [24] showed an impairment in the acquisition of spatial 

learning after a long lasting blockade of dopamine receptor activity within the accumbens And 

likewise, deficits were reported after systemic or local injections with dopaminergic antagonists 

by Scheel-Kruger et al [20, 21] These latter authors e g mentioned to have found 

impairments after halopendol in the range of 0 1 to 0 5 mg/kg The subtle differences at lower 

doses found in our study can be due to the use of a larger pool 

In describing and discussing their results, the above mentioned authors all suggested that not 

the spatial abilities per se were abolished but rather that the capacity of the animal to use 

distal cues for guidance or to select alternative strategies was diminished In our experiments, 

the large effect of halopendol on every block's first tnal, especially at the dose of 0 04 mg/kg, 

might be due to a diminished ability of the animals to select arbitrarily the best strategy for 

searching for the invisible platform, as a consequence of an impaired neostnatal functioning 

This explanation is in accordance with the findings of Cools [9] that both halopendol at the 

dose of 0 04 mg/kg and neostnatally applied halopendol reduced the ability to select the best 
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strategy in a stressful situation At a dose of 0 07 mg/kg, an impaired capacity to make use of 

(distal) cues for guidance to the platform throughout all trials might be added, due to a 

diminished functioning of the nucleus accumbens 

In conclusion, halopendol at low doses specifically impaired the acquisition of spatial learning 

In future research, it remains to be investigated whether we can establish a differential role for 

either one or both the striatal areas in this version of Morns water maze learning 
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ABSTRACT 

Previous studies (Ploeger et a l , 1992) showed that low doses of systemically injected 

halopendol affected spatial learning in the Moms water maze This study investigated effects 

of mtra-accumbens injections of halopendol on spatial learning To control for motivation and 

sensorimotor coordination, rats were trained to escape onto a visible platform Low doses (50-

100 ng) of halopendol impaired spatial learning, whereas escaping on a visible platform was 

undisturbed Haloperidol 500 ng completely blocked acquisition, because of combined learning 

and motor-impairments Retrieval of an acquired escape response was unaffected by 

halopendol 500 ng The data show that mesohmbic dopaminergic activity is involved in the 

acquisition of spatial localization The results are related to studies demonstrating the 

involvement of the nucleus accumbens in cue-directed behaviours 



INTRODUCTION 

Recently we demonstrated that the dopaminergic antagonist halopendol impairs spatial 

learning (Ploeger, Spruijt, & Cools, 1992) Haloperidol, applied systemically in low doses, 

caused deterioration in performance in the Moms water maze with an invisible platform, 

whereas performance in a water maze with a visible platform was not influenced Higher doses 

induced motor disturbances, which interfered with performance in the spatial task Because of 

the systemic injections, it could not be assessed which of two main dopaminergic brain areas, 

namely the ventral (nucleus accumbens) or the dorsal (nucleus caudatus) stnatum, mediated 

the observed effects 

Both striatal areas have been implicated in motor behaviour as well as more cognitive 

functions (Beninger, 1983, Cools & Jongen-Relo, 1991, Divac & Òberg, 1979, Salamone, 

1992, Solomon & Staton, 1982) In a review Oades (1985) proposed that dopamine plays a 

role in the ability of an animal to switch behaviour Previous studies from our laboratory have 

established differential effects of dorsal and ventral striatal dopamine on this ability Dorsal 

striatal dopaminergic activity appears to affect switching of behaviour directed by factors 

intrinsic to the animal (non cue- directed) (Bereken & Cools, 1982, Vnjmoed-De Vries & Cools, 

1986) On the other hand, increased dopaminergic activity in the nucleus accumbens 

enhances the display of different behavioural items guided by external cues in a (one-trial) 

swimming test (Bos, 1991, Bos, Chama Ortiz, Bergmans, & Cools, 1991) 

Morns (1981, 1984) suggested that spatial learning of rats in the water maze depends on the 

presence of environmental cues Ploeger, Spruijt & Cools (1992) demonstrated that reducing 

the availability of extra-maze cues interfered with spatial navigation, causing rats to have more 

difficulty in finding the platform O'Keefe and Nadel, elaborating a theory on spatial navigation 

(1978), argued that it represents a specific ability, which involves learning to identify places 

using a mapping system based on information provided by objects in the environment and 

their spatial relationship Such a mapping system enables an animal to navigate from different 

starting points directly to a location relative to environmental cues (allocentnc spatial 

navigation) O'Keefe and Nadel (1978) suggested that the hippocampus is responsible for this 

so-called locale system There is now a large body of evidence supporting the involvement of 

the hippocampus in both the acquisition and retention of allocentnc spatial localization, in the 

Morris water maze (Morris, 1984, see Brandeis, Brandys, & Yehuda, 1989, Morris, Garrud, 

Rawlins, & O'Keefe, 1982, Morns, Hagan, & Rawlins, 1986, Sutherland, Kolb, & Whishaw, 

1982, Sutherland, & McDonald, 1990, Sutherland, & Rodriguez, 1989) On the other hand, the 

hippocampus is not involved in escaping onto a platform protruding just above the water 

(Morns, Garrud, Rawlins, & O'Keefe, 1982) Learning to escape on such a visible platform is 

straightforward, because the rat can escape by simply heading toward and climbing onto this 

beacon (an example of the taxon-strategies (O'Keefe and Nadel, 1978), also called proximal 

cue-learning, (Morris, 1981)) 

The nucleus accumbens is known to receive glutamatergic afférents from the hippocampus 

(subicular and CA1 regions) in a topographic manner, as evidenced by anatomical (Groen & 
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Wyss, 1990, Groenewegen, Vermeulen-VanderZee, Tekortschot, & Witter, 1987, Kelley & 

Domesick, 1982, Phillipson & Griffiths, 85, Sesack & Pickel, 1990, Totterdell & Smith, 1989), 

biochemical (Walaas & Fonnum, 1979) and electrophysiological (DeFrance, Marchand, Sikes, 

Stanley, & Chronister, 1980, Yang & Mogenson, 1984, 1985 and 1986) studies Also 

behavioural relations have been found hyperactivity effects induced by different kinds of 

hippocampal treatment can be modified by mtra-accumbens manipulation of dopaminergic or 

glutamatergic neurotransmission (Emench & Walsh, 1990, Imperato, Honoré, & Jensen, 1990, 

Mogenson & Nielsen, 1984) In general, it has been suggested that the accumbens can act as 

an interface between limbic and motor systems as it receives input from limbic structures such 

as the hippocampus, and projects to motor-output structures (subpallidal and nigral areas) 

(Cools, 1988, Cools, Dierx, Coenders, Heeren, Ried, Jenks, & Ellenbroek, 1993, Mogenson, 

Jones, & Yim, 1980, see also Cools, Bos, Ploeger, & Ellenbroek, 1991) 

Based on the above-mentioned evidence from the literature, we hypothesized that the effects 

of systemically injected halopendol on spatial learning in the Morris water maze (Ploeger, 

Spruijt & Cools, 1992) were mainly mediated via the nucleus accumbens It has already been 

shown that nucleus accumbens lesions impair spatial learning in the Morris maze (Annett, 

McGregor, & Robbms, 1989, Sutherland, & Rodriguez, 1989) In the present study, we 

investigated the effects of more subtle manipulation of the dopaminergic activity in the nucleus 

accumbens, by means of local application of the non-selective antagonist halopendol, on 

allocentnc spatial navigation Both acquisition and retention were examined and experiments 

testing the effects on locomotor behaviour (open field, see Benmger, 1983 and 1989) and on 

motivation and sensorimotor coordination (Morns maze with visible platform, see Moms, 1981 

and 1984) were carried out 

GENERAL METHOD 

Animals and surgery 

Male Wistar rats, weighing 200-230 g at the time of surgery, were used in all experiments 

They were housed in groups of 3 and kept in a temperature- and light-controlled room 

(reversed light/dark cycle lights on between 20 00 and 08 00 h) Water and food were 

available ad lib All experiments were carried out between 09 00 and 17 00 h 

For implantation of the cannulas the rats were anaesthetized with pentobarbital (Narcovet®, 60 

mg/kg ι ρ ) and placed in a stereotaxic apparatus Stainless steel cannulas (length 5 mm, 

diameter 0 5 mm) were bilaterally implanted, aiming at the nucleus accumbens (coordinates 

A=bregma + 1 6, L=+/- 0 9, H=-0 4 mm, based on the atlas of König and Klippel (1963)) The 

cannulas were inserted under a lateral angle of 10° and fixed onto the skull with stainless steel 

retaining screws and dental cement (Paladur® and Durelon®) (Bos & Cools, 1989) 

One control group was implanted with cannulas, aiming at the dorsal stnatum Coordinates for 

implantation were A=bregma + 1 3, L=+/-2 2 (based on the atlas of König and Klippel (1963)), 

while the length of the cannulas was 4 mm 
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Figure 1. Representative senes of injection sites in the nucleus accumbens and the dorsal stnatum 
(lower picture). The planes are taken from König and Klippel, 1963. The A-coordínate is in μτη from the 
mteraural line, ranging from 9650 to 8920 for the nucleus accumbens and from 9410 to 8620 for the 
dorsal striatum. 

After surgery, the animals were allowed to recover for at least 10 days. Before starting the 

experiment the rats were handled on three consecutive days, during which they were 

habituated to the injection procedure and received a sham injection (on the third day: an 

injection needle brought in position, no solution injected). 

Treatments 

Rats were subjected to one of the following treatments: (1) injection with haloperidol in 

dosages of either 50, 100 or 500 ng per injection-volume (0.5 μΙ) ¡η the nucleus accumbens; 

(2) injection with saline into the nucleus accumbens (haloperidol-control); (3) injection with 

haloperidol 250 ng per injection-volume in the dorsal striatum (control of region) Doses were 

based on experience from previous experiments at our laboratory. In addition, a non-operated 

and non-treated group of rats was tested. 

For each treatment and for each platform condition, a different group of animals was used and 

each group consisted of 8-10 rats. 

Drug-solution and injection procedure 

Haloperidol (stock solution of 5 mg/ml from Janssen Pharmaceutica, The Netherlands) was 

dissolved in saline. 

Injections were given bilaterally, using a Hamilton syringe, with the needle extending 2 mm 

below the tip of the cannula, thus reaching the nucleus accumbens, or 1.5 mm in the case of 

the dorsal striatum. One injection-volume of 0.5 μΙ per side was delivered over a 5 s-period 

whereafter the needle was kept in place for another 5 s. 
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Histological verification 

After the experiments the animals were sacrificed and the brains removed and fixated with 4% 

formalin The precise location of the injection sites were determined in senal sections Only the 

animals with injection sites within the boundanes of the nucleus accumbens (specifically the 

dorso-medial part), or dorsal striatum (specifically the rostro-dorsal part) were included in the 

statistical analysis 

Figure 1 shows a representative series of injection sites for both the nucleus accumbens and 

dorsal striatum The legends at the figures 3 and 4 show the exact number of animals per 

group 

Experimental tests and procedures 

Open field To test for the effects of halopendol on locomotor behaviour, the rats were 

subjected to an open field test The apparatus consisted of a circular box, 75 cm in diameter 

and surrounded by a 40 cm high dark wall A 12 cm high steel object was placed in the center 

of the box 

The drug (or its solvent) was administered 15 mm prior to the test Between injection and 

testing, the animal remained in its homecage During the test, the rats were allowed to move 

freely around the open field and to explore the environment and the object for 10 mm The 

path of each animal was automatically recorded and recordings were analysed afterwards 

(see below) 

Moms water maze The apparatus was a black circular pool, 230 cm in diameter and 35 cm 

deep The pool, filled with water of 26±1 °C to a depth of 23 cm, was located in a large 

observation room External cues, which were kept constant, surrounded the pool Tests were 

performed under dim red light conditions One small light near the computerized observation 

system, necessary for the experimenter, was visible for the swimming animal A radio was on 

during testing 

A small circular escape platform (either a transparent perspex one, located invisibly just below 

the water surface, or a white one, protruding just above the water, see at Experiment 2) was 

placed in a constant location in the center of quadrant 1 Four equally spaced points around 

the wall of the pool were used as starting points 

The procedure has been described elsewhere in detail (Ploeger, Spruijt, & Cools, 1992) In 

short, the rats were given one block of four trials each day, with an interinai interval of 5-10 

mm Each trial started from one of four different points, in a semi-random order The drug (or 

its solvent) was injected every day, always 15 mm before the first trial The rat was allowed to 

swim around until it located the platform, or, when the animal did not find it within 120 s, the rat 

was placed on the platform by the experimenter The rat was allowed to stay on the platform 

for 30 s The path of each rat on each trial was automatically recorded and analysed 

afterwards (see below) 
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Behavioural recording and statistical analysis 

For both the open field test and the Morns water maze task, the path of the animal was 

automatically registered by a computerized image analysis system Hardware consisted of an 

IBM AT computer combined with a video digitizer PV VISION PLUS board (Imaging 

Technology Ine U S A ) and а С С D video camera For a detailed description of the software 

(Noldus Inf Technology В V , Wageningen, The Netherlands), used for data acquisition and 

analysis, see Spruijt, Hoi, & Rousseau, (1992) 

In short, a picture of the animal was taken with a sampling method and the coordinates of the 

position of the rat were determined These coordinates were then stored into the computer 

(raw data) 

Afterwards, the raw data were analysed by computing several parameters, e g latency and 

travelled distance, for each animal and per group (means and standard errors) Individual 

values were imported into the statistical package SYSTAT (Wilkinson, Leland, SYSTAT The 

system for Statistics, Evanston IL SYSTAT, Ine , 1990) 

The results of the open field test were statistically analysed by means of an analysis of 

variance (ANOVA) on one factor For the effect of halopendol on water maze performance an 

analysis of vanance on one factor for repeated measures was applied When the overall test 

showed significancy, it was followed by post hoc analysis, Tukey's honestly significant 

difference (HSD), for assessing differences between specific groups (Pagano, 1986) 

EXPERIMENT 1 : OPEN FIELD - LOCOMOTION 

Method 

Four groups of rats were tested one non-cannulated and non-treated control group and three 

groups with injections into the nucleus accumbens, receiving either saline, halopendol 100 ng 

or halopendol 500 ng 
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Figure 3. Mean latencies (m s) ± s e m per group 
and per block of 4 trials, in the Morns maze with a 
visible platform Control ( · , n=9) vs halopendol 
50,100 and 500 ng (O , n= 7,Δ , n=10,D , n=8) 
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Results 

Open field data Figure 2 represents the total travelled distance dunng the 10 mm in the open 

field for each group A significant effect of groups was found, ANOVA F(3,18)= 34 67, 

p « 0 01 A post hoc Tukey test showed that halopendol 500 ng significantly differed from the 

other three groups (p<0 01 ) 

EXPERIMENT 2: MORRIS MAZE - ACQUISITION 

The effects of mtra-accumbens dopaminergic manipulation with the antagonist halopendol on 

the acquisition of spatial learning were investigated The test was also carried out with a visible 

platform, examining motivation and sensonmotor coordination 

Method 

Apparatus and procedure Both a white and visibly located platform and an invisibly located 

platform from transparent perspex were used Rats were trained for 3 days in the case of the 

visible task or for 4 days in the case of the invisible task In both platform conditions three 

doses of halopendol were tested 50, 100 and 500 ng One non-operated and non-treated 

control group and one group with cannulas in the dorsal striatum, receiving an injection of 

halopendol 250 ng, were trained on the invisible platform condition Training procedure further 

followed the above given description in the general method 
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120 Figure 4. The upper part shows the mean 
latencies (m s) ± s e m. per group and per 
block of 4 tnals over 4 days, in the Morns 
maze with an invisible platform, for the 
nucleus accumbens 5 Groups were tested 
control without cannulas and no treatment 
(A, n=13), cannulated control with saline ( · , 
n=13), and halopendol 50, 100 and 500 ng 
(Ο, η 10, Δ, n=9, D, n=7) An ANOVA 
yielded a highly significant overall 
groupseffect, p«0 01, see text In the lower 
part latency per block is given for the group 
with injections in the dorsal stnatum 
(halopendol 250 ng,A, n=9) in comparison to 
the group with saline-injections in the nucleus 
accumbens ( · , n=13) 
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Results 

Morris maze data Figures 3 and 4 show the performance of differently treated groups of rats 

in the Morris water maze with a visible platform or an invisible platform. In both figures 

latencies to find the platform during acquisition are depicted. 

With the platform visibly present, all groups showed improvement over days, F(2,58)= 223.0, 

p « 0 01. With respect to treatment, an overall effect of groups was apparent: F(3,29)= 3.73, 

p=0.022. Post hoc analysis showed that halopendol 500 ng significantly differed from saline 

(Tukey HSD: p=0.028) only in the second block. In the same block a tendency to differ from 

saline was found for haloperidol 100 ng (Tukey HSD: p=0.080). 

In the task with the invisibly located platform, all groups showed decreasing latencies with time 

(ANOVA: F(3,141)= 58.74, p«0.01), except for the group treated with the highest dose of 

haloperidol. This latter group hardly showed any improvement over days (figure 4.a). Highly 

significant differences in the improvement of performance were found between groups 

(F(4,47)= 17.32, p«0.01) and a significant interaction between group and time (F(12,141)= 
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2 14, p=0 018), mainly due to the absence of improvement in performance in the group treated 

with 500 ng halopendol An effect of implantation and injection was present control animals 

without any treatment showed significantly lower latencies up to block 3 compared with control 

animals with implanted cannulas and subject to saline injection (F(1,24)= 10 36, p<0 01) Both 

groups treated with 50 ng or 100 ng halopendol significantly differed from the saline-treated 

group (F(1,21)= 4 60, p=0 044 for halopendol 50 ng and F(1,20)= 13 39, p<0 01 for halopendol 

100 ng) 

The effects of halopendol on performance in the maze with the visible platform significantly 

differed from those on performance in the maze with the invisible platform (F(9,195)= 2 71, 

p<0 01, interaction of halopendol-visible platform and halopendol-invisible platform) 

Figure 4 b compares the effect of 250 ng halopendol injected in the dorsal striatum with a 

saline injection in the nucleus accumbens The improvement in performance over time was 

very similar for both groups of rats 

EXPERIMENT 3: MORRIS MAZE - WITHDRAWAL AND RETENTION 

In this experiment, we studied the effect of withdrawal of halopendol and the effect of 

halopendol on retrieval of an acquired escape response 

Method 

Subjects and procedure The group trained on the invisible platform-condition and treated with 

halopendol 500 ng during 4 days (from experiment 2, n=7) received 2 extra blocks of training 

(day 5 and 6) First, no halopendol was given on day 5 On day 6 (after the animals had 

acquired the escape response) application of halopendol 500 ng was reinstated 

Results 

Figure 5 shows the effect of withholding halopendol in the fifth block after 4 days of injection 

with 500 ng halopendol Once halopendol was no longer injected, latencies decreased 

significantly during the trials of day 5 (F(1,12)= 5 40, p=0 038) The low latencies in trial 19 and 

20 (fig 5 b) indicate that the animals learned to locate the hidden platform 

Subsequently, a new injection of 500 ng halopendol prior to block 6 did not alter the acquired 

escape response latencies on day 6 did not significantly differ from latencies during trial 19 

and 20 on day 5 (see fig 5 b) 
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Figure 5. Effect of withdrawal (W) from drug-treatment and the effect of haloperidol on retneval of 
information (H). Animals (n=7) were treated with haloperidol 500 ng during block 1-4. No drug-injection 
was given prior to block 5 (trial 17-20, right panel), while an injection of haloperidol 500 ng was again 
applied pnor to block 6 (trial 21-24, right panel). 

GENERAL DISCUSSION 

Our objective was to establish by which of the main dopaminergic areas the effects of 

systemically applied haloperidol on Morris maze behaviour (Ploeger, Spruijt, & Cools, 1992) 

are mediated. In this study we investigated a possible role for the nucleus accumbens in 

spatial learning. 

The open field experiment showed that haloperidol 100 ng did not significantly decrease 

locomotor activity, in contrast to the clear motor effect of haloperidol 500 ng. So, we 

considered the range of doses from 0 to 500 ng of haloperidol appropriate in order to 

dissociate possible cognitive effects from motivational and sensorimotor effects of haloperidol 

in the Morris maze. 

Cannulation and injection procedure influenced the performance of the rats in the Morris maze 

with an invisible platform. Cannula and injection needle, running through cortical and striatal 

areas, cause some damage. Without additional control experiments, we can only speculate 

about the precise relation between the location and extent of the damage and the effect on 

spatial learning. The damage caused in the striatum may have been largely responsible for the 

observed 'procedural' effects. However, the procedural effects were significantly smaller than 

those observed after injections with haloperidol. 

Haloperidol dose-dependently impaired acquisition of spatial localization of the hidden 

platform. The highest dose (500 ng) induced a blockade of acquisition, whereas disturbances 

of the swimming behaviour appeared in the course of training (reduction of swimming speed, 

floating and treading the water). However, at the same doses, the animals were at most only 

mildly and transiently impaired in the task with the visible platform. The similarity of response 

requirements and motivation in the two Morris maze tasks and the mild and transient effects in 

the visible platform task imply that the effects on spatial learning after haloperidol (even after 

500 ng) were primarily due to an effect on spatial learning. 
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Well-trained animals could no longer be influenced by dopaminergic manipulation (see 

experiment 3) This is in agreement with results obtained earlier with systemic injection of 

halopendol (unpublished personal observations) It is also in line with a study from by 

Sutherland and Rodriguez (1989), reporting that electrolytic lesions have no deteriorating 

effect on performance in animals trained prior to surgery Thus, intra-accumbens dopaminergic 

activity does not play a role in the process of retention and/or retrieval of information This 

observation further supports that the effect of a high dose of halopendol on the acquisition of 

spatial learning is mainly related to spatial learning and not to other possible effects 

A dose of 250 ng of halopendol injected in the dorsal stnatum (into the dopaminergic region, 

see Vnjmoed-de Vries & Cools, 1986) did not impair localization of the invisible platform, 

indicating that the effects of intra-accumbens injections of halopendol were indeed mediated 

by this nucleus In the previous study (Ploeger, Spruijt, & Cools, 1992), we speculated about a 

combined influence of both the nucleus accumbens and dorsal stnatum The similarities 

between the effects of systemic and intra-accumbens injections of halopendol point to an 

important role for the accumbens in mediating the effects of halopendol 

This does not yet exclude the possibility that the dorsal striatum plays a role in spatial learning 

The effects of a wider range of doses of halopendol, injected in the dorsal striatum, were 

examined in a follow-up study and discussed separately (Ploeger et a l , 1994) 

The present results are in agreement with those from lesion experiments Bilateral electrolytic 

lesions in the accumbens impaired place learning over many tnals (Sutherland, & Rodriguez, 

1989) In contrast, lesioned animals were capable of escaping onto a visible platform Post-

training lesionmg affected performance only on the first trial The deficit in acquisition was 

rather similar to that of animals with fimbria/fornix lesions Sutherland and Rodriguez 

concluded that place learning required both an intact hippocampal circuit as well as a normally 

functioning accumbens Also animals with ibotenic acid lesions in the nucleus accumbens 

showed impaired spatial learning, although in this case the impairment was less severe and 

less persistent (Annett, McGregor, & Robbms, 1989) The effects of halopendol in our study 

are more similar to the effects of the ibotenic acid lesions Electrolytic lesionmg of the 

accumbens led to a more pronounced deterioration, possibly because electrolytic lesions have 

a stronger damaging effect (Sutherland, & Rodriguez, 1989) Furthermore, the animals in our 

study were monitored for only four blocks (in which penod non-treated controls can reach 

asymptotic performance), whereas the animals in the above cited lesion studies were trained 

for ten blocks Therefore, we cannot tell whether or not our halopendol-treated animals 

eventually would have reached control level, as the animals in the study of Annett et al did 

The present results indicate that in addition to the involvement of the nucleus accumbens in 

spatial learning, more specifically the dopaminergic activity in the accumbens is involved 

Previous studies at our laboratory demonstrated effectiveness of both the non-selective 

antagonist halopendol and the D2-antagonist raclopnde in the display of cue-directed 

behaviours in a one-trial swimming test (Bos, 1991) Further studies are required to 
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investigate the roles of specific dopaminergic receptor-systems in the ventral stnatum in spatial 

learning By means of systemic application D1 (SCH 23390) and D2 (raclopride) antagonists 

have already been demonstrated to be effective in the Moms water maze (Scheel-Kruger, 

Widy-Tyszkiewicz, & Krieger, 1990) Additional experiments are also needed to relate the 

effects of intra-accumbens dopaminergic manipulation on spatial learning more stnctly to its 

role in the display of cue-directed behaviours Expenments in which specific cues control 

spatial localization as well as in which localization would be based on fixed routes (no cues 

present in the environment) could be conducted In the latter case it is expected that intra-

accumbens manipulation of the dopaminergic activity has no effect on performance 

In conclusion, low doses of the dopaminergic antagonist halopendol applied into the nucleus 

accumbens specifically impaired the acquisition and not retention of spatial navigation It is 

suggested that the involvement of ventral stnatal dopaminergic activity in spatial learning is 

associated with its involvement in displaying behaviour directed by external cues 

ACKNOWLEDGEMENTS 

I am grateful to dr ir H W Ploeger for assistance in the preparation of the manuscript 

REFERENCES 

Annett, L E , McGregor, A, & Robbins, TW (1989) The effects of ibotenic acid lesions of the nucleus 
accumbens on spatial learning and extinction in the rat Behavioural Brain Research 31 231-242 

Beninger, R J (1983) The role of dopamine in locomotor activity and learning Brain Research Review, 
6, 173-196 

Beninger, R J (1989) Dissociating the effects of altered dopaminergic function on performance and 
learning Brain Research Bulletin 23, 365-371 

Bereken, J H L ν d , & Cools, A R (1982) Evidence for a role of the caudate nucleus in the sequential 
organization of behaviour Behavioural Brain Research, 4, 319-337 

Bos, R ν d (1991) The nucleus accumbens and subpallidal areas a study on their role in behaviour in 
rats Ph D Thesis, Catholic University, Nijmegen, The Netherlands 

Bos, R ν d , Charria Ortiz, G A, Bergmans, А С , & Cools, A R (1991) Evidence that dopamine in the 
nucleus accumbens is involved in the ability of rats to switch to cue-directed behaviours Behavioural 
Brain Research, 42, 107-114 

Bos, Rvd , & Cools, AR (1989) The involvement of the nucleus accumbens in the ability of rats to 
switch to cue-directed behaviours Life Science, 44, 1697-1704 

Brandeis, R, Brandys, Y, & Yehuda, S (1989) The use of the Morris water maze in the study of 
memory and learning International Journal of Neuroscience, 48,29-69 

Cools, AR (1988) Transformation of emotion into motion role of mesolimbic noradrenaline and 
neostnatal dopamine In Neurobiological Approach to Human Disease Neural control of body function 
basic and clinical aspects D Hellhammer, I FlonnandH Wemer (eds ), vol 2,15-28 

Cools, A R , Bos, R v d , Ploeger, G , & Ellenbroek, В A (1991) Gating function of noradrenaline in the 
ventral stnatum its role in behavioural responses to environmental and pharmacological challenges In 
The mesolimbic dopamine system from motivation to action Ρ Willner & J Scheel-Kruger (eds ), Wiley 
&Sons, England, 141-174 

Cools, AR, Dierx, J , Coenders, C, Heeren, D, Ried, S, Jenks, B G , & Ellenbroek, В A (1993) 
Apomorphme-susceptible and apomorphine-unsusceptible Wistar rats differ in novelty-induced changes 
in hippocampal dynorphin В expression and two-way avoidance a new key in the search for the role of 
the hippocampal-accumbens axis Behavioural Brain Research, 55(2), 213-221 

77 



Cools, A R , & Jongen-Relo, A L (1991) Role of neostriatum and nucleus accumbens in stepping 
induced by apomorphine and dexamphetamme Brain Research Bulletin, 26, 909-917 

DeFrance, J F , Marchand, J E , Sikes, R W , Stanley, J С , & Chronister, R В (1980) Convergence of 
amygdaloid and hippocampal input in the nucleus accumbens septi Brain Research, 185,183-186 

Divac, I, & Oberg, R G E (1979) Current conceptions of neostriatal functions History and an evaluation 
In The neostriatum I Divac and R G E Öberg (eds ), Pergamon Press, 215-230 

Ellenbroek, В A , Hoven, J v d , & Cools, A R (1988) The nucleus accumbens and forelimb muscular 
ngidity in rats Exp Brain Res 72 299-304 

Emerich, D F , & Walsh, Τ J (1990) Hyperactivity following intradentate injection of colchicine a role for 
dopamine systems in the nucleus accumbens Pharmacology Biochemistry and Behavior, 37, 149-154, 
1990 

Groen, J ν , & Wyss, J M (1990) Extrinsic projections from area CA1 of the rat hippocampus olfactory, 
cortical, subcortical, and bilateral hippocampal formation projections Journal of Comparative Neurology, 
302, 515-528 

Groenewegen, H J , Vermeulen-VanderZee, E , Tekortschot, A, & Witter, Μ Ρ (1987) Organization of 
the projections from the subiculum to the ventral striatum in the rat A study using anterograde transport 
of phaseols vulgaris leucoagglutinm Neuroscience, 23,103-120 

Imperato, A , Honoré, Τ , & Jensen, L Η (1990) Dopamine release in the nucleus caudatus and in the 
nucleus accumbens is under glutamatergic control through non-NMDA receptors a study in freely-
moving rats Brain Research, 530, 223-228 

Kelley, A E , & Domesick, V В (1982) The distribution of the projection from the hippocampal formation 
to the nucleus accumbens in the rat an anterograde- and retrograde-horseradish peroxidase study 
Neuroscience, 7, 2321-2335 

König, J F R , & Klippel, R A (1963) The rat brain, a stereotaxic atlas of the forebrain and lower parts of 
the brain stem Williams and Wilkins, Baltimore 

Mogenson, G J , Jones, D L , & Yim, С Y (1980) From motivation to action functional interface between 
the limbic and the motor system Progress in Neurobiology, 14, 69-97 

Mogenson, G J , & Nielsen, M (1984) A study of the contribution of hippocampal-accumbens-subpalhdal 
projections to locomotor activity Behavioral and Neural Biology, 42, 38-51 

Morris, R G M (1981) Spatial localization does not require the presence of local cues Learning and 
Motivation, 12, 239-260 

Moms, R G M (1984) Developments of a water-maze procedure for studying spatial learning in the rat 
Journal of Neuroscience Methods, 11,47-60 

Morris, R G M , Garrud, Ρ , Rawlins, J Ν Ρ , & O'Keefe, J (1982) Place navigation impaired in rats with 
hippocampal lesions Nature, 297, 681-683 

Morris, R G Μ , Hagan, J J , & Rawlins, J Ν Ρ (1986) Allocentric spatial learning in hippocampectomised 
rats a further test of the "spatial mapping" and "working memory" theories of hippocampal functions 
Quarterly Journal of Expenmental Psychology, 38B, 365-395 

Oades, R D (1985) The role of noradrenaline in tuning and dopamine in switching between signals in the 
CNS Neuroscience and Biobehavioral Reviews, 9,261-282 

O'Keefe, J , & Nadel, L (1978) The hippocampus as a cognitive map Clarendon Press, Oxford 

Pagano, R R (1986) Understanding statistics in the behavioral sciences West Publishing Company, St 
Paul 

Phillipson, Ο Τ , & Griffiths, А С (1985) The topographic order of inputs to nucleus accumbens in the rat 
Neuroscience, 16(2), 275-296 

Ploeger, G E , Spruijt, Β Μ , & Cools, A R (1992) Effects of halopendol on the acquisition of a spatial 
learning task Physiology and Behavior, 52(5), 979-983 

78 



Ploeger, G E , Spruijt, Β M , & Cools, A R Striatally administered halopendol does not specifically affect 
alio- or egocentric spatial localization in water mazes Submitted to Behavioural Brain Research 

Salamone, J D (1992) Complex motor and sensonmotor functions of stnatal and accumbens dopamine 
involvement in instrumental behavior processes Psychopharmacology, 107,160-174 

Scheel-Krüger, J , Widy-Tysszkiewicz, E, & Krieger, R (1990) Effects of drugs on acquisition and 
performance in the Morris water maze Psychopharmacology, 101(S), S51 

Sesack, SR, & Pickel, VM (1990) In the rat medial nucleus accumbens, hippocampal and 
catecholaminergic terminals converge on spiny neurons and are in apposition to each other Brain 
Research, 527, 266-279 

Solomon, Ρ R , & Staton, D M (1982) Differential effects of micro-injections of d-amphetamme into the 
nucleus accumbens or the caudate putamen on the rat's ability to ignore an irrelevant stimulus Biological 
Psychiatry, 17, 743-765 

Spruijt, Β M , Hol, Τ, & Rousseau, J (1992) Approach, avoidance and contact behaviour of individually 
recognized animals automatically quantified with an imaging technique Physiology and Behavior, 51, 
747-752 

Sutherland, R J , Kolb, В , & Whishaw, I Q (1982) Spatial mapping definitive disruption by hippocampal 
or frontal cortical damage in the rat Neuroscience Letters, 31, 271-276 

Sutherland, R J , & McDonald, RJ (1990) Hippocampus, amygdala, and memory deficits in rats 
Behavioural Brain Research, 37, 57-79 

Sutherland, R J , & Rodnguez, A J (1989) The role of the fornix/fimbria and some related subcortical 
structures in place learning Behavioural Brain Research, 32, 265-277 

Totterdell, S, & Smith, A D (1989) Convergence of hippocampal and dopaminergic input onto identified 
neurons in the nucleus accumbens of the rat Journal of Comparative Neurology, 2,285-298 

Vnjmoed-De Vries, M С, & Cools, A R (1986) Differential effects of stnatal injections of dopaminergic, 
cholinergic and GABAergic drugs upon swimming behaviour in rats Brain Research, 364, 77-90 

Walaas, I, & Fonnum, F (1979) The effects of surgical and chemical lesions on neurotransmitter 
candidates in the nucleus accumbens of the rat Neuroscience, 4, 209-216 

Whishaw, I Q , Mittleman, G, Bunch, ST, & Dunnett, SB (1987) Impairments in the acquisition, 
retention and selection of spatial navigation strategies after medial caudate-putamen lesions in rats 
Behavioural Brain Research, 24,125-138 

Yang, CR, & Mogenson, G J (1984) Electrophysiological responses of neurons in the nucleus 
accumbens to hippocampal stimulation and attenuation of the excitatory responses by the mesolimbic 
dopaminergic system Brain Research, 324,69-84 

Yang, С R , & Mogenson, G J (1985) An electrophysiological study of the neural projections from the 
hippocampus to the ventral pallidum and the subpalhdal areas by way of the nucleus accumbens 
Neuroscience, 15, 1015-1024 

Yang, CR, & Mogenson, G J (1986) Dopamine enhances terminal excitability of hippocampal-
accumbens neurons via D2 receptor role for dopamine in presynaptic inhibition Journal of 
Neuroscience, 6(8), 2470-2478 

79 



,-ο**- HFM 

80 



C H A P T E R 5. 

S T R I A T A L L Y A D M I N I S T E R E D H A L O P E R I D O L 

D O E S N O T S P E C I F I C A L L Y A F F E C T 

A L L O - OR E G O C E N T R I C S P A T I A L L O C A L I Z A T I O N 

IN W A T E R M A Z E S 

G.E. Ploeger, B.M. Spruijt, Ν Μ. van Duursen and A.R. Cools 

Submitted 



ABSTRACT 

Systemic or intra-accumbens administration of the dopaminergic antagonist halopendol has 

been found to impair spatial learning in the Moms maze task1819 The present study 

investigates the extent to which administration of halopendol into the dorsal striatum affects 

allocentnc and egocentric spatial behaviour in the Moms maze task and a water T-maze 

respectively A disrupting effect of cannulation and the injection-procedure was found A low 

dose of 250 ng did not further disturb localization of a hidden platform as compared to 

operated controls, while higher doses (> 375 ng) impaired this, but not in a dose-dependent 

manner Furthermore, also escaping onto a clearly visible platform was deteriorated at these 

latter doses, indicating sensorimotor disturbances Egocentnc localization in a simple water T-

maze was unaffected at doses of 250-325 ng In conclusion, this study shows that 

administration of the dopaminergic antagonist halopendol in the chosen doses in the dorsal 

striatum does not specifically affect alio- and egocentnc localization in spatial water-tasks 

where impairments were produced, they were dose-independent and co-occured with 

sensorimotor deficiencies 



INTRODUCTION 

Animals can use different strategies for localizing important places Allocentnc spatial 

localization is thought to involve the construction of a map of the environment, containing 

information about places in relation to externally available objects or cues ('locale strategy', 

see 14) Performance in the classic Morris water maze constitutes a clear example of 

allocentnc spatial behaviour in finding a hidden platform animals rely on the presence of 

environmental (distal) cues1416 

Egocentric spatial localization makes use of a sequence of changes in the orientation of the 

body axis to lead the animal to its goal (one form of a 'taxon strategy'14, also called position-

response) In a radial or T-maze an animal can be forced to acquire a position-response to 

find food on a location that is always within a fixed distance and direction in relation to the 

animal's own body (at the start of the test), it will have to execute a specific set of responses 

Such a position-response is not controlled by external cues, but is assumed to be based on 

factors intrinsic to the animal 

We have demonstrated that systemically applied halopendol induces a learning deficit in the 

Morris water maze task18 Low doses of this dopaminergic antagonist attenuate performance 

in the spatial version (invisible platform), while leaving performance in the non-spatial form of 

this task (visible platform) intact With higher doses motor disturbances appear, mterfenng with 

the learning impairment and leading to further deterioration 

In order to determine the respective contribution of the two main dopaminergic brain areas 

(ventral versus dorsal striatum), effects of manipulation of these two areas are examined 

separately The present study deals with the role of the dorsal stnatum 

The ventral striatum, especially the nucleus accumbens, has been shown to play a role in the 

acquisition of allocentnc spatial localization in the Morns maze both lesions of the 

accumbens125 and intra-accumbens injections with the dopaminergic antagonist halopendol19 

impair allocentnc spatial learning in the Moms maze This involvement of the nucleus 

accumbens becomes understandable in the light of its postulated role in the display of cue-

directed behavioural items245 (see also 1011) For example, enhancement of the dopaminergic 

activity within the nucleus accumbens leads to an enhancement of the number of different cue-

directed behaviours in a one-trial, forced-swimming task5 

In contrast, the dorsal striatal dopaminergic activity has been implicated in switching to 

behaviour controlled by factors intrinsic to the animal (arbitrarily)72627 An injection of a 

dopamine agonist into the dorsal striatum enhances the animal's ability to select arbitrarily 

(that is, not directed by external stimuli) the best (life-saving) strategy to cope with the 

stressfull situation of the above mentioned forced-swimming test7 In view of this opposite 

function, no active role in allocentnc spatial navigation in the Morns water maze is expected for 

the dorsal striatum This inference is examined in the first part of this study 

On the other hand, the dorsal stnatum might be expected to contribute to the acquisition of 

position-responses First, a position-response requires to be carried out without the help of 

externally present cues and is assumed to be based on intrinsic factors (see 21) Second, 
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previous reports from the literature indicate that lesions of the dorsal striatum impair the 

acquisition of egocentric position responses6 1 5 2 0 2 1 Moreover, adding salient visible intra-

maze or distal, external stimuli to the egocentric response task, diminishes this impairment15 

So, examination of the hypothesized involvement of dopamine in the dorsal stnatum in the 

acquisition of egocentric spatial localization is carried out in the second part of this study This 

latter is done in a water T-maze to motivate the animals in both paradigms in a similar way As 

in our previous study on the nucleus accumbens, we manipulate the dopaminergic activity by 

employing local injections of the dopaminergic antagonist halopendol 

A Moms water maze with a visible platform is used as a control-task Such a task constitutes 

another example of taxon-strategies (guidance-strategy, see 14) the visible platform acts as a 

clearly visible stimulus and the goal-object at the same time and the animal is able to approach 

this obvious object by any particular behaviour This task is applied here to check whether the 

animal has sufficient sensorimotor capacities at its disposal17 

MATERIALS AND METHODS 

Animals and surgery 

Male Wistar rats, housed in groups of 3 and kept in a temperature and light-controlled room at 

a reversed light/dark cycle (lights on between 20 00 and 08 00 h), were used All experiments 

were carried out between 09 00 and 17 00 h Water and food were available ad lib Per 

treatment, a group of 8-10 animals was used 

For implantation of the cannulas, the rats (weighing 200-230 g) were anaesthetized with 

pentobarbital (Narcovet®, 60 mg/kg ι ρ ) In the case of the T-maze experiments, a neurolept-

analgeticum (Hypnorm® 0 8 ml/kg ι m + Stesolid®, 0 1 ml/kg) was applied, for practical 

reasons The rat was then placed in a stereotaxic apparatus Stainless steel cannulas (length 

4 mm, diameter 0 5 mm) were bilaterally implanted, aiming at the dorsal striatum 

(coordinates A=bregma + 1 3, L= +1-2 1, based on the atlas of König and Klippel13) The 

cannulas were fixed onto the skull with stainless steel retaining screws and dental cement 

(Paladur® and Durelon®)3 

After surgery, the animals were allowed to recover for a period of at least 10 days Before 

starting the experiment the rats were handled on three consecutive days, during which they 

were habituated to the injection procedure and received a sham injection (an injection needle 

brought in position, no solution injected) 

Injection procedure, drug-solution and histological verification 
Injections were given bilaterally, using a Hamilton synnge, with the needle extending 1 4 mm 

below the tip of the cannula, thus reaching the dorsal striatum A volume of 0 5 μΙ per side was 

delivered over a 5 s-penod whereafter the needle was kept in place for another 5 s Injection 

was given each day, 15 mm before the first trial (see below) 
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Figure 1 Representative series of injection sites in the neostnatum The planes are taken from König 
and Klippel [1] The A-coordmate is in μιτι from the mteraural line 

The dopamine D2 antagonist halopendol (using a stock solution (5 mg/ml) from Janssen 

Pharmaceutica, The Netherlands) was dissolved in saline The doses ranged from 250 to 500 

ng (see below) per injection-volume of 0 5 μΙ per side A saline injection served as control 

After the experiments, the animals were sacrificed and the brains removed and fixated with 4% 

formalin The precise location of the cannulas and injection sites were determined in serial 

sections Only the animals with injection sites within the rostral part of the dorsal stnatum were 

included in the statistical analysis 

Apparatus and experimental procedures 

Experiment 1: Moms water maze 

The apparatus was a black circular pool, 230 cm in diameter and 35 cm deep The pool, filled 

with water of 26 ± 1 °C to a depth of 23 cm, was located in a large observation room 

External cues, that were kept constant, surrounded the pool Behavioural testing was 

performed under dim red light conditions, with one small light on near the computerized 

observation system for use of the experimenter 

Both a visible white platform, protruding just above the water surface (non-spatial task), and an 

invisible transparent perspex one, hidden below the surface (for the 'distal cue' or spatial task), 

were used The platform, whether visible or invisible, was placed in a constant location in the 

center of quadrant 1 Four equally spaced points around the wall of the pool were used as 

starting points 

The procedure has been described elsewhere in detail18 In short, animals in groups of four 

were given a block of four trials each day, with an intertrial interval of 5-10 mm Each trial 

started from one of four different points, in a semi-random order The drug (or its solvent) was 

injected every day, always 15 mm before the first trial The animal was allowed to swim around 

until it located the platform, or, when the rat did not find it within 120 s, it was placed on the 
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platform and left there for 30 s The animals were trained for 3 days on the visible task, while 

for the invisible task, they were given 4 days of training Apart from saline, halopendol 250 ng 

(spatial task only), 375 and 500 ng was examined Performance was compared to that of a 

non-operated, non-treated group 

Furthermore, the effect of halopendol injections into the dorsal striatum on performance of 

well-trained animals was studied Therefore, 8 animals that were used as controls dunng 

acquisition (block 1-4) and had received saline-injections, were used for three more blocks 

These blocks were given 2 weeks after the acquisition-training and consisted of 3 trials each 

First they were again trained on the task with the invisible platform on block 5 and 6, in order to 

obtain stabilized performance Then, on the next day, the animals received an injection of 

halopendol 500 ng into the dorsal striatum 15 mm pnor to testing on the 7th block 

Experiment 2 water T-maze 

A grey plastic T-maze was positioned within the above-described circular pool The T-maze 

was 40 cm high, thus extending 15 cm above the waterlevel, 20 cm wide and consisted of one, 

90 cm long start-arm and two, 80 cm long goal-arms A black piece of plastic was put on top of 

the walls (but leaving open all three arm-endings) Furthermore, the T-maze was rotated 

throughout the experiments, so that there was no constant relation between the position of the 

maze and external stimuli Behavioural testing was performed under dim red light conditions, 

and recording of the paramaters was done by hand 

An invisible platform was placed at the end of one of the goal-arms, for the animal to escape 

onto In order to find this platform the animal had to turn always either left or right, when 

coming out of the start-arm Thus, the animal had to learn the location of this place of escape 

in relation to its own body-axis (egocentric) 

The animals were given 1 block of 5 trials each day The drug (or its solvent) was injected 

every day, always 15 mm before the first trial The animal was gently put into the water, at the 

beginning of the start-arm and facing the wall of the pool On the first day, tnal 1 was used to 

determine the preference side of each rat In the next trials the platform was always put at the 

end of the opposite goal-arm In the second trial (day 1) the animal was forced to 'choose' the 

correct arm, because the other (preference arm) was closed on forehand From then on, a 

non-correction, choice procedure was applied The animal was allowed to swim through the 

arm and to choose to enter one of the goal-arms When the animal chose the correct one 

(always the same direction for the same animal) and escaped onto the platform, it was 

immediately taken out When it swam into the incorrect arm, a door was put into the water (by 

hand) behind the animal to close the alley The rat was forced to swim around for 30 s in this 

arm without platform, before it was relieved from the water Animals were tested in groups of 

four, when all four rats had received trial 1, the T-maze was rotated and tnal 2 was given, and 

so on The rats were trained until they had reached a criterion of at least 4 correct choices out 

of 5 trials (> 80%) on 2 consecutive days 
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Figure 2. Mean latencies (m s) ± s e m per group 
and per block of 4 trials, in the Morris maze with a 
visible platform Three groups are depicted control 
(·), halopendol 375 (Δ) and halopendol 500 ng 
(•), n= 8 per group 

1 2 3 

b l o c k 

Both saline and halopendol, 250 and 325 ng, were tested These doses were based on the 

results in the Morris maze with visible and invisible platform (see below, at the results) 

Furthermore, a non-operated and non-treated group was used 

Behavioural recording and analysis 

In the case of computerized recording (only used in the Morris maze experiments), the path of 

the animal was automatically registered by an image analysis system Hardware consisted of 

an IBM AT computer combined with a video digitizer PV VISION PLUS board (Imaging 

Technology Ine U S A ) and а С С D video camera See Spruijt et a l 2 3 for a detailed 

description of the software (Noldus Inf Technology В V, Wageningen, The Netherlands), used 

for data acquisition and analysis 

In short, a picture of the animal was taken with a sampling method and the coordinates of the 

position of the rat were determined These coordinates were then stored into the computer 

(raw data) 

The raw data were analysed afterwards and various computations were made So, latency 

was calculated for each animal and per group (means and standard errors) Individual values 

were then imported into the statistical package SYSTAT (Wilkinson, Leland, SYSTAT The 

system for Statistics, Evanston IL SYSTAT, Ine , 1990) 

For analysing the effect of halopendol on water maze performance, an analysis of variance on 

one factor for repeated measures was applied When the overall test showed significance, it 

was followed by post hoc analysis (Tukey HSD) for assessing differences between specific 

groups 

In the T-maze expenments, scoring was done by hand Latency to escape onto the platform 

was measured and errors (entering the incorrect arm) were counted The percentage of 

correct responses as well as the number of blocks needed to reach criterion were calculated 

Statistically, the results were analysed by means of an ANOVA, where appropriate, the option 

of repeated measures was applied or post hoc analysis was performed 
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RESULTS 

Histology 

A representative series of injection sites is shown in figure 1 Only animals with injections that 

were confined to the rostral part of the dorsal striatum, were included for further analysis See 

the legends from the figures for the exact number of animals per experimental group 

Experiment 1. Morns water maze 

Figures 2 and 3 show the performance of differently treated groups of animals in the Morns 

water maze with the visible platform (fig 2) and with the invisible one (spatial version, fig 3) In 

both figures latencies to find the platform during acquisition are depicted 

In the case of the Morns maze with the visible platform, saline and two doses of halopendol 

(375 and 500 ng) were tested All groups showed improvement over days, F(2,42)= 89 263, 

p « 0 01 An overall ANOVA with repeated measurements yielded a near significant effect of 

groups F(2,21)=3 349, p=0 055 Both groups differed significantly from the control 

F(1,14)=4 673, p=0 048 for halopendol 375 ng and F(1,14)=6 517, p=0 023 for halopendol 500 

ng, but the graphs of the halopendol-groups did not reveal a dose-dependent relationship 

For the task with the invisible platform (spatial learning), five groups were compared two 

controls either without cannulas and non-treated or with cannulas and saline-injected, and 

three halopendol-groups treated with increasing doses of 250, 375 and 500 ng/side For all 

groups, latencies clearly decreased with time (ANOVA F(3144)=76 636, p « 0 01) 

Furthermore, a highly significant group-effect was demonstrated by an overall ANOVA, 

F(4,48)=20 082, p « 0 01, no interaction-term was found 

Examining the performance of the different groups in more detail, an effect of the cannulas 

and injection procedure appeared the cannulated and saline-treated group differed 

significantly from the non-treated one (F(1,24)=15 807, p<0 01) It is noted here that in the 

120 
Figure 3 Mean latencies (in s) ± s e m per group 
and per block of 4 trials over 4 days, in the Morris 
maze with an invisible platform Five groups were 
tested control without cannulas and no treatment 
(n=13, A), cannulated control with saline 
(n=13, · ) , and halopendol 250, 375 and 500 ng 
(n= 9, O, n=9, Δ, n=10, D) An ANOVA yielded a 
clear groupseffect, see text 
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case of the visible platform no effect of surgery and injection was seen (data not shown) 

Furthermore, analysis showed that whereas halopendol 250 ng did not impair maze 

performance as compared to the saline-group (F(1,19)=0 365, p=0 553), halopendol 375 and 

500 ng enhanced latencies to escape onto the platform (F(1,20)=12 428, p<0 01 respectively 

F(1,21)=12 656, p<0 01), but also in this case there was no dose-dependent relationship 

The effect of halopendol on retention in well-trained animals is presented in figure 4 After the 

animals had achieved good performance (block 6), halopendol 500 ng did not affect escaping 

onto the platform as the mean latency of block 7 (trial 23-25) shows 

Experiment 2: water T-maze 

In the egocentric localization task within the water T-maze, four groups were examined a non-

operated control, a cannulated and saline-injected group and two halopendol-groups (250 and 

325 ng) We chose to apply these doses of halopendol, because higher doses of halopendol 

impaired escaping onto the visible platform in the Morris maze, indicating the presence of 

sensorimotor disturbances (see discussion) 

As it was less difficult to find the platform in the T-maze, latencies to escape were significantly 

lower than in the Morns water maze, from the first trial on They decreased from around 20 s in 

block 1 to about 10 s in the last block 

Two other parameters are represented in figure 5 and 6 

First, the mean percentage correct responses per block for all four groups is depicted in fig 5 

An overall ANOVA showed a significant effect of groups (F(3,229)=3 081, p=0 043), but post 

hoc analysis demonstrated a difference only between the non-operated group and halopendol 

325 ng on block 2 (Tukey test p=0 047) Significancy was further found between the non-
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Figure 4 Effect of halopendol 500 ng, injected into the neostriatum, in pretrained animals (for training-
schedule see text) In the left graph latencies per block are depicted, while in the right part the results for 
block 5, 6 and 7 are shown in more detail (latencies per tnal (17-25)) Number of animals in this group 
was 8 Halopendol is given just before the 7th block (H), that is before tnal 23 (h, see arrows) 
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Figure 5. Mean percentage correct responses 
(± s e m ) per group per block in the T-maze A 
non-treated control-group (n=6 O), a sahne-
mjected one (n=10, · ) and two halopendol 
groups 250 ng (n=9, Δ) and 325 ng (n=8, D) 
were tested 

operated animals and the saline-treated rats in a separate ANOVA F(1,14)=6 726, p=0 021 

The mean total number of errors made until the criterion was reached is demonstrated in fig 6 

An effect of groups was found ANOVA F(3,29)=2 867, p=0 054 A post hoc Tukey test yielded 

a difference between the non-operated animals and halopendol 325 ng (Tukey test p=0 032) 

Furthermore, a separate ANOVA stressed the difference between the non-operated and the 

saline-treated animals F(1,14)=6 724, p=0 021 

However, all groups required the same number of blocks (days) to attain good performance 

(see block 4 in fig 5) In this experiment too, the effects of halopendol 250 ng did not differ 

from those of the cannulated and saline-injected group 

DISCUSSION 

With regard to the performance in the Moms water maze with the visible platform (non-spatial), 

both halopendol 375 and 500 ng were effective latencies to find and climb onto the platform 

were enhanced as compared to those of control (saline-injected) animals However, both 

doses of halopendol impaired performance in this task to the same extent (no dose-dependent 

relationship) Furthermore, starting with enhanced latencies at the first block, the halopendol-

groups improved over time (ι e learned) in a similar way as the saline-group Saline-injected 

animals performed similar to non-treated animals 

Haloperidol 375 and 500 ng also affected latencies to escape onto a hidden platform (spatial 

learning) In this case too, the enhancement of the latencies was comparable for both doses 

On the other hand, spatial learning in the group tested with the lower dose of 250 ng did not 

differ from that shown by the saline-injected animals These operated and saline-injected 

animals, however, did differ in performance from non-operated and non-treated rats A similar 

cannulation/mjection-procedure effect has been found earlier7 

Taken together, this means that damage of the dorsal striatum as a consequence of just the 

cannulation/mjection-procedure impairs performance in the spatial Morns maze task 

Halopendol 250 ng does not give further impairment Stronger inhibition of the striatal 
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dopaminergic activity by means of higher doses of the antagonist leads to disturbances in both 

tasks to a similar extent and in a non dose-dependent way This latter finding indicates that 

effects of dopaminergic manipulation on spatial localization per se cannot be distinguished 

from effects on sensorimotor abilities17 

In our study on the nucleus accumbens19, these effects could be separated low doses of 

halopendol specifically affected spatial learning, leaving non-spatial learning intact, whereas a 

higher dose, in addition, elicited sensorimotor deficiencies Two additional differences between 

the results of the studies on the nucleus accumbens and the dorsal strtiatum are noteworthy 

First, while in the nucleus accumbens doses of about 100 ng of halopendol were effective in 

attenuating spatial learning, only doses higher than 250 ng were effective in the dorsal 

striatum Second, the halopendol effects were dose-dependent in the case of the nucleus 

accumbens, whereas they were dose-independent in the present study Together, these 

differences point out that mesolimbic dopaminergic activity is more specifically involved in 

allocentnc (cue-dependent) spatial learning than the dorsal striatum, as was expected from the 

functional difference between these brain areas (see Introduction) 

Nevertheless, manipulations of the dorsal striatum did have effects in the acquisition-phase of 

non-spatial and spatial navigation (in contrast to the retrieval-phase, see below), these need to 

be considered more closely Both the effects of halopendol 375 and 500 ng and of the damage 

due to cannulation and injection (only present in the spatial learning task) indicate that, dunng 

the acquisition, the dorsal striatum plays somehow a role in the displayed behaviour 

According to our hypothesis (see the introduction and 7 2 6 2 7 ) , the dorsal stnatum is presumed 

to allow an animal to switch arbitrarily (that is, not directed by external factors) its behaviour 

Thus, the dorsal striatum might be active in order to facilitate the arbitrarily selection of 

appropnate behaviour to cope with the stressfull situation in the Morns maze (as was 

demonstrated before, in a one-trial forced-swimming test7) This will be so, at least, as long as 

found in the legend of figure 5 
con sal h a I 

250 325 
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external cues will not yet have gained control over the animal's behaviour in the Morns water 

maze It is suggested that the cannulation/injection damage affects this function of the dorsal 

striatum, leading to a less efficient performance in the spatial learning task, while leaving 

sensorimotor capacities still intact Earlier, Whishaw et a l 2 8 have also suggested that the 

dorsal striatum is more likely to be involved in the selection between alternative strategies than 

in navigating per se More precise analysis of swimming patterns should be earned out in order 

to strenghten this idea 

Halopendol 250 ng did not further affect spatial navigation as compared to the saline-injected 

group (fig 3, no overall significant difference between the two groups) However, some 

attention needs to be paid to the result of the third block (see fig 7, panel b) To discuss this 

effect, the outcome of our study on the nucleus accumbens, in which the procedure was 

identical to that in the present one, has to be recalled 

Figure 7 (panel a) shows that mtra-accumbens halopendol (100 ng) had its largest inhibiting 

effect on the third and fourth day (Tukey test p<0 01 on both blocks, from 19) So, given the 

postulated function of the nucleus accumbens in switching to cue-directed behaviours, this 

means that external cues strongly controlled the animal's behaviour (directing it to the hidden 

platform) at this time and that the animal heavily relied on an activated accumbens At the 

same point of time, halopendol in the dorsal striatum tended to improve the performance in 

comparison to the saline-group (fig 7 b, Tukey test p=0 098) Such a behavioural 

improvement becomes understandable in view of the fact that dopaminergic antagonists 

applied to the dorsal striatum are known to be accompanied by a relative dopaminergic 

hyperactivity in the nucleus accumbens8 This latter relative hyperactivity would then be 

responsible for the behavioural facilitation seen after halopendol in the dorsal striatum in the 

third block A similar phenomenon was seen in a study by Jaspers et a l 1 2 The opposite 

effects of halopendol in the accumbens and dorsal striatum respectively on performance in the 

Moms water maze, at the same point of training, underline the differential behavioural 

functions of dopamine in these brain areas 

As mentioned above, higher doses of halopendol (375 and 500 ng) affect performance in both 

the non-spatial and spatial version of the Morris water maze Lesions of the dorsal striatum 

produce similar effects28 Apparently, neither the effects of high doses of halopendol nor those 

of lesions can be separated into effects on spatial localization abilities and effects on 

sensorimotor capacities One explanation might be that these treatments also affect the first 

order output station of the dorsal striatum, ι e the substantia nigra (pars reticulata) This region 

is shown to play a role in the processing of intnnsic, proprioceptive stimuli9, disturbed 

processing of these stimuli will lead to impairments in motonc behaviour 

In well-trained animals inhibition of dopaminergic activity in the dorsal striatum did not disturb 

spatial navigation We conclude that the dorsal striatum is not active anymore during retrieval, 

because disturbances of its functions by means of an antagonist were no longer effective A 

similar phenomenon was found in the case of mtra-accumbens manipulations19 
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Figure 7 Comparison among the effects of halopendol into the nucleus accumbens (left panel, non-
treated group О saline-injected · , halopendol 100 ng •) and into the neostriatum respectively (right 
panel, non-treated group O, saline-injected · , halopendol 250 ng V) Attention should be paid to the 
third block after halopendol 100 ng in the nucleus accumbens an enhancement in latency is seen while 
after halopendol 250 ng in the dorsal stnatum latency is decreased (see text) 

In the egocentric localization task, performance was tested at doses below the ones that affect 

escaping onto a visible platform in the Morris maze Also in this paradigm, an effect of 

cannulation and injection was found Haloperidol 250 ng did not further impair performance 

This is similar to the findings in the Morns water maze (invisible platform, see above) The 

same explanation as given above applies here A slight, but not significant, effect was seen 

after halopendol 325 ng A clearer effect might be expected at higher doses but in that case 

we would ascribe this at least in part to impaired sensorimotor abilities Thus, in the T-maze 

test used here, no specific effect of a reduced dopaminergic activity in the dorsal stnatum 

could be established 

Previous studies 6 1 5 2 0 2 1 have shown impairment of egocentric behaviour in radial or T-mazes 

after dorsal striatal lesions, but also in these studies the large lesions could have induced 

inhibition of the first order output station of the dorsal stnatum, leading to the impairments 

found Furthermore, it might be that a non-dopammergic neurotransmitter-system is taking part 

in the egocentric localization of a distinct goal Finally, it cannot be excluded that dopamine is 

active in egocentric localization in a more complex task (eg in a radial arm maze, with more 

choice arms6, see also и ) 

In summary, this study shows that blockade of the dopaminergic transmission in the dorsal 

striatum produces only deficits in allocentnc spatial localization, when sensonmotor deficits co-

occur No deficits were seen in egocentric spatial localization, in a simple water T-maze 

93 



REFERENCES 
1 Annett, L E , McGregor, A and Robbms, Τ W , The effects of ibotenic acid lesions of the nucleus 

accumbens on spatial learning and extinction in the rat, Behav Brain Res, 31 (1989) 231-242 

2 Bos, R ν d , The nucleus accumbens and subpallidal areas a study on their mie in behaviour in rats, 
Ph D Thesis, Catholic University, Nijmegen, The Netherlands, 1991 

3 Bos, R ν d and Cools, A R, The involvement of the nucleus accumbens in the ability of rats to switch 
to cue-directed behaviours, Life Sci, 44 (1989) 1697-1704 

* Bos, R ν d and Cools, A R , The involvement of the nucleus accumbens in the ability of rats to switch 
to cue-directed behaviours, Ufe Sci, 44 (1989) 1697-1704 

5 Bos, R ν d , Charria Ortiz, G A , Bergmans, А С and Cools, A R, Evidence that dopamine in the 
nucleus accumbens is involved in the ability of rats to switch to cue-directed behaviours, Behav 
Brain Res, 42 (1991) 107-114 

6 Cook, D and Kesner, R Ρ, Caudate nucleus and memory for egocentnc localization, Behav Neural 
S/o/, 49 (1988) 332-343 

7 Cools, A R, Role of the neostnatal dopaminergic activity in sequencing and selecting behavioural 
strategies facihtatin of processes involved in selecting the best strategy in a stressful situation, 
Behav Brain Res , 1 (1980) 361-378 

8 Cools, A R , Mesolimbic system and tardive dyskinesia new perspectives for therapy, Mod Probi 
Pharm, 21 (1983)111-123 

9 Cools, A R , Jaspers, R, Schwarz, M, Sontag, К -H , Vnjmoed-de Vries, M and Bereken, J ν d , 
Basal ganglia and switching motor programs in J S McKenzie, R E Kemm and L N Wilcock (eds ), 
The Basal Ganglia, Plenum Publishing Corporation, 1984, ρ 513-544 

10 Cools, A R , Ellenbroek, В , Heeren, D and Lubbers, L , Use of high and low responders to novelty in 
rat studies on the role of the ventral stnatum in radial maze performance effects of mtra-accumbens 
injections of sulpiride, Can J Physiol Pharmacol, in press, 1993 

11 Cools, A R , Rots, N Y , Ellenbroek, В and De Kloet, E R , Bimodal shape of individual variability in 
behaviour of Wistar rats the overall outcome of a fundamentally different make-up and reactivity of 
the brain, endocrinological and immunological system, Neuropsychobiol, in press, 1993 

12 Jaspers, R, Schwartz, M , Sontag, Κ -H and Cools A R, Caudate nucleus and programming 
behaviour in cats role of dopamine in switching motor patterns, Behav Brain Res, 14 (1984) 17-28 

13 König, J F R and Klippel, R A , The rat brain, a stereotaxic atlas of the forebram and lower parts of 
the brain stem, Williams and Wilkins, Baltimore, 1963 

14 O'Keefe, J and Nadel, L , The hippocampus as a cognitive map, Clarendon, Oxford, 1978 
15 Mitchell, J A and Hall, G , Caudate-putamen lesions in the rat may Impair or potentiate maze 

learning depending upon availability of stimulus cues and relevance of response cues, J Quart Exp 
Psychol, 40B(3) (1988) 243-258 

16 Moms, R G M , Spatial localization does not require the presence of local cues, Learn Motiv 12 
(1981)239-260 

Moms, R G M , Garrud, Ρ , Rawlins, J Ν Ρ and O'Keefe, J , Place navigation impaired in rats with 
hippocampal lesions, Nature (London), 297 (1982) 681-683 

Ploeger, G E , Spruijt, Β M and Cools, A R , Effects of halopendol on the acquisition of a spatial 
learning task, Physiol Behav, 52(5) (1992) 979-983 

Ploeger, G E , Spruijt, Β M and Cools, A R , Spatial learning in the Morris water maze acquisition is 
affected by mtra-accumbens injections of the dopaminergic antagonist halopendol, submitted to 
Behav Neurosci 

Potegal, M Role of the caudate nucleus in spatial orientation of rats, J Comp Physiol Psychol, 
69(4) (1969) 756-764 

94 



2 1 Potegal, M , The caudate nucleus egocentric localization system, Acta Neurobiol Exp, 32 (1972) 
479^194 

2 2 Salamone, J D, Complex motor and sensonmotor functions of stnatal and accumbens dopamine 
involvement in instrumental behavior processes, Psychopharmacology, 107 (1992) 160-174 

2 3 Spruijt, Β M , Hol, Τ and Rousseau, J , Approach, avoidance and contact behaviour of individually 
recognized animals automatically quantified with an imaging technique, Physiol Behav, 51 (1992) 
747-752 

2 4 Sutherland, N S and Mackintosh, N J , Mechanisms of animal discnminahon learning. New York 
Academic Press, 1971 

2 5 Sutherland, R J and Rodnguez, A J , The role of the fornix/fimbria and some related subcortical 
structures in place learning, Behav Brain Res, 32 (1989) 265-277 

2 6 Vnjmoed-de Vnes, M С and Cools, A R, Further evidence for the role of the caudate nucleus in 
programming motor and non-motor behaviour in Java monkeys, Exp Neurol, 87 (1985) 58-75 

2 7 Vnjmoed-de Vnes, M С and Cools, A R , Differential effects of stnatal injections of dopaminergic, 
cholinergic and GABA-ergic drugs upon swimming behaviour in rats, Brain Res , 364 (1986) 77-90 

2 8 Whishaw, I Q, Mittleman, G, Bunch, S Τ and Dunnett, S В, Impairments in the acquisition, 
retention and selection of spatial navigation strategies after medial caudate-putamen lesions in the 
rat, Behav Brain Res , 24 (1987) 125-138 

95 





PART III: SPATIAL LOCALIZATION: 
RADIAL ARM MAZE 





C H A I 

P E R F O R M A N C E OF 

IN A S I M P L E Ri 

L A C K OF E F F E C T S 

M A N I P U L A T I O N OF T H E 

IN T H E V E N T R A L О 

G E Ploeger, L Lubbers, В M Spruijt and A F 

' T E R 6. 

W E L L - T R A I N E D R A T S 

\ D I A L A R M M A Z E : 

ON R E T R I E V A L A F T E R 

D O P A M I N E R G I C A C T I V I T Y 

R D O R S A L S T R I A T U M 

! Cools 

Submitted 

file:///DIAL


ABSTRACT 

The involvement of the dopaminergic activity in the ventral and dorsal striatum on the retrieval 

of a learned response in a simple radial arm maze was investigated Animals first received 

sufficient training in collecting a food pellet from each of four arms Thereafter and prior to the 

test trial, dopaminergic agonists and antagonists of two types of dopamine receptors (D2 and 

DA, respectively) were locally applied into these structures Only doses which are known to 

produce behavioural changes without inducing alterations in motor behaviour, were tested To 

stimulate and inhibit respectively the dopaminergic activity in both structures simultaneously, 

combined systemic and intracerebral injections were given None of these manipulations 

significantly altered the learned behaviour This indicates that the dopaminergic activity in 

these stnatal areas is not involved in the retneval of information necessary for good 

performance in a simple radial maze task 



INTRODUCTION 

Many studies report that the acquisition of various tasks is affected by manipulation of the 

dopaminergic (DAergic) activity For example, it has been demonstrated that systemic 

administration of DAergic agents affects the development of conditioned reward (Beninger, 

1989, Hoffman and Beninger, 1985) Furthermore, the main DAergic structures, ι e the ventral 

striatum, especially the nucleus accumbens, and the dorsal striatum, have been shown to be 

involved in learning behaviour in e g the Morns water maze (Ploeger et al, 1994a, Sutherland 

and Rodriguez, 1989) and in conditioned avoidance responding (Blackburn and Phillips, 1989, 

Winocur, 1974) respectively (see further for surveys Beninger, 1983, Beninger, 1989, Divac 

and Öberg, 1979, Phillips and Carr, 1987, Salamone, 1992) 

In a previous study we have reported about the role of the DAergic activity in the ventral 

striatum in the acquisition of a simple radial arm maze (Cools ef a/, 1993) Animals were 

trained to collect a food pellet from one of four radiating arms, the DA D2-antagonist sulpinde, 

injected in the ventral striatum, attenuated learning of this task Likewise, DA in the dorsal 

striatum appeared to be active during this learning task (Ploeger ef a/, 1994c) Besides the 

apparent involvement in acquisition, it is questioned whether DA also plays a role in processes 

like retention and retrieval of information 

Thus, we investigated a possible role for DA in the retrieval of information in animals, 

pretramed in the above mentioned radial maze, during one test trial Different DA-receptor 

subtypes were regarded in the ventral as well as the dorsal striatum 

First, within the ventral striatum the presence of the so-called DA,- (Cools, 1978, Cools, 1986) 

and the D2-receptors (White and Wang, 1986, Yang and Mogenson, 1987) has been 

demonstrated The activity at each of these receptors was manipulated by means of local 

application of the following DAergic agents With respect to the DA-receptor the agonist (3,4-

dihydroxyphenylimino)-2-imidazohne (DPI) and the antagonist ergometnne (Cools, 1978, 

Cools and Oosterloo, 1983) were used Earlier, these agents have been found to specifically 

affect behaviour when injected in the ventral striatum (Cools ef al, 1988, Ploeger ef al, 1991) 

For manipulation of the D2-receptor, the D2-antagonist sulpinde was chosen We decided to 

disregard the use of specific D1-agents in the ventral striatum, because such agents (SKF 

38393 D1 agonist, SCH 23390 D1 antagonist) have not been found to be behaviourally 

effective in a specific manner when injected into the ventral striatum (see Cools ef al, 1988) 

In the case of the dorsal striatum DA D1/D2-activity was affected by means of local injection of 

the well-known DAergic agonist apomorphme and antagonist halopendol 

Last, since it has been suggested that changes in the DAergic activity in the ventral striatum 

have consequences for the DAergic activity in the dorsal striatum and vice versa (Cools, 

1980b, see also Cools and van Rossum, 1980), it was decided to study the effects of 

simultaneous stimulation respectively inhibition of the DAergic activity in these structures 

Instead of equipping the animals with four cannulas, which might have produced too much 

brain damage, the DAergic activity in the dorsal striatum was manipulated systemically (with 

apomorphme and halopendol), whereas the DAergic activity in the ventral stnatum was 
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manipulated by local administration (with DPI and ergometrme) (see further at the Methods) 

The systemically administered doses were based on previous studies In these studies, doses 

have been found that selectively affect the DAergic activity in the dorsal striatum (Cools, 

1980a) 

All of the above mentioned drugs have been shown to be behaviourally active in their 

respective target areas and the doses used (see below) are based on information from 

previous studies (Cools, 1980a, Cools and Jongen-Relo, 1991, Ploeger eí al, 1991) Animals 

were trained to efficiently collect one food pellet from each of four radiating arms, then, they 

received an injection of one of the above dopaminergic agents, just prior to the test trial 

MATERIALS & METHODS 

Animals and surgery 

Male Wistar rats, bred and reared in the Central Animal Laboratory, University of Nijmegen, 

The Netherlands, were used, weighing 180-220 g at the time of surgery After the operation, 

they were housed individually and maintained in a temperature and light-controlled room 

(lights on between 08 00-20 00 h) 

For implantation of the cannulas the rats were anaesthetized with pentobarbital (Narcovet®, 60 

mg/kg ι ρ ) and placed in a stereotaxic apparatus Stainless steel cannulas were bilaterally 

implanted, aiming at the ventral or dorsal striatum Coordinates for the ventral striatum were 

A= 9 8, L= +/-1 2, H=2 7, and the cannulas (length 5 mm) were inserted under a lateral angle 

of 10° For the dorsal stnatum cannulas with a length of 4 mm were used, at the coordinates 

A=9 4, L= ±2 5 Locations were based on the atlas of König and Klippel (1963) The cannulas 

were then fixed onto the skull with stainless steel retaining screws and dental cement 

(Durelon®, Espe, Germany) (Bos and Cools, 1989) After surgery, the animals were allowed to 

recover for a period of at least 10 days 

Three days before starting the experiment, the animals were deprived of food while water was 

available ad libitum During the experiment, body weight was kept constant at 75-80% of the 

pre-test value All experiments were carried out between 09 00 and 17 00 h Per treatment, a 

group of 8-10 animals was used 

After finishing the experiments, the animals were sacrificed and the brains were removed and 

fixated with 4% formalin The precise location of the cannulas and injection sites were 

determined in serial sections Only the animals with injection sites within the target areas were 

included in the data analysis 

Injection procedure and drugs 

Injections were given bilaterally (as has been described elsewhere (Cools ef a/, 1993)), using 

a Hamilton syringe, with the needle extending 1 5 mm below the tip of the cannula for reaching 

the dorsal striatum or 2 mm for injecting into the ventral stnatum A volume of 0 5 μΙ per side 

was delivered over a period of 10 s whereafter the needle was kept in place for another 10 s 
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Injection was given once, in well-trained animals, either 1, 15 or 60 mm (depending on the 

drug injected) before the test tnal (see below, experimental procedure) 

In four groups the activity in the two areas was altered simultaneously by means of an intra­

cerebral injection in the ventral striatum combined with a systemic injection of a dopaminergic 

agent in a dose that specifically altered the dopaminergic activity in the dorsal striatum (see 

Cools, 1980a) The systemic injection was applied either 30 or 3 mm prior to the test trial 

(depending on the drug injected) 

The following drugs were tested the DA, agonist DPI (Boehnnger Ingelheim) and the DA, 

antagonist ergometnne (Sigma), the dopaminergic D2 antagonist (±) sulpiride (Sigma), the 

dopaminergic agonist apomorphine (ACF chemiefarma, The Netherlands) and the 

dopaminergic antagonist halopendol (Janssen Pharmaceutica, The Netherlands) The drugs 

were dissolved in distilled water, except for sulpiride Sulpiride was dissolved in 1 25 acetic 

acid and the pH was adjusted with NaHC03 to pH=6-7 Injections with the solvent alone 

served as controls 

Table 1 Summary of all the given treatments ( 12 in total) 

TREATMENT 

ACCUMBENS 
no 1 

2 
3 

4 

5 

NEOSTRIATUM 
6 
7 
g 

ACCUMBENS 
AND NEO­
STRIATUM 

9 

10 

11 

12 

AGENT AND DOSE 

aqua dest 

sulpiride 1 ng 
aqua dest 

(2 injections) 
ergometnne 100 ng 
DPI 500 ng 

aqua dest 
halopendol 250 ng 
apomorphine 300 ng 

aqua dest + 
apomorphine 0 05 mg/kg 

DPI500ng + 

apomorphine 0 05 mg/kg 

aqua dest + 

halopendol 0 05 mg/kg 

ergometnne 100 ng + 
halopendol 0 05 mg/kg 

INJECTION 
-TIME 

-15 
-15 
-60 

- 1 
-60 

-1 

-1 

-15 
-1 

-15 
-3 

-15 

-3 

-60 
-30 

-60 
-30 

η 

10 
8 

10 

10 

10 

9 
9 

10 

10 

10 

10 

10 

Footnotes to table 1 
' Treatment 3 (2 control-injections on 60 respectively 1 mmute(s) before test trial) simultaneously serves as a 
control for treatment 4 and 5 
2 Treatments 9-12 each consist of two injections one systemic, acting predominantly on the neostnatal 
dopaminergic activity and one local, into the nucleus accumbens (of the ventral stratum) (see text) 
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Table 2 Mean numbers of errors (± s e m ) m the test mal m well-trained animals after each of 12 diffcren 
treatments (see table 1) 

TREATMENT NUMBER O F — 
ERRORS 

mean ± s e m 

ACCUMBENS 
no 1 0 1 0 1 

2 0 1 0 1 
3 03 01 
4 02 01 
5 0 1 0 1 

NEOSTRIATUM 
no 6 1 1 1 1 

7 0 1 0 1 
8 07 05 

ACCUMBENS AND 
NEOSTRIATUM 
no 9 03 02 

10 0 
11 0 
12 01 0 1 

Radial arm maze: apparatus and procedure 

A four-arm radial maze was used, which has been described in detail elsewhere (Cools et al, 

1993) In short, the maze consisted of a central hube, 34 cm in diameter, with four arms (86 

cm χ 9 cm) radiating from it A plastic foodwell, 1 5 cm deep and 1 cm in diameter, was located 

at the end of each arm The maze was constructed pnmarly of black plexiglass The sidewalls 

of the arms sloped from a height of 10 cm at the center of the maze to a height of 6 cm at the 

distal end of each arm Pieces of clear plexiglass extended the height of the walls to 20 cm 

The maze was kept in a constant position The environment could be perceived from the 

apparatus by the animals and contained four specific cues, one at each wall of the room in a 

direct line with each one of the arms of the maze 

In the expenments all arms were baited with a 45 mg food pellet (Campdon Instrumental Ltd ) 

in each trial and the animals were trained to collect all four pellets Per day they received 2 

blocks, each consisting of 3 trials (one morning and one afternoon session) The rat was 

placed in the central hube with its head always oriented in the same direction Each trial was 

terminated after 10 mm or after the rat had eaten all four rewards Between trials animals 

remained in their homecages Before each trial the maze was cleaned, the arms rebaited and 

then the next rat was put in the central hube When all animals had received trial 1, the second 

trial was given (and so on) 

Each animal was trained for 6 consecutive days On the morning of the 7th day 3 criterion-

trials were given only the animals that succesfully and without errors (see below for definition) 

completed these trials, were included in the test trial during the afternoon session Thus, in the 

test trial, the effects of manipulation of the dopaminergic activity on radial maze performance in 

well-trained animals were investigated For this purpose animals received injection(s), a 
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(drug)specific period of time before the test trial. Ten animals per group and twelve groups 

were used in total. Each of these groups received one of twelve treatments, as scheduled in 

table 1. Per area the applied drugs together with dosage and injection time (in min; test trial is 

on t=0) are stated. The control is always presented first, followed by the appropriate 

experimental agent(s). Furthermore, the number of animals per group is given. 

First, activity in either the ventral striatum or the dorsal striatum was altered by local application 

of an agonist or an antagonist. Second, experiments were performed in which dopaminergic 

activity was either stimulated or inhibited in both areas simultaneously. Therefore, the 

dopaminergic agents apomorphine and haloperidol were systemically (s.c. and i.p. 

respectively) injected, in doses that specifically stimulated or inhibited respectively the 

dopaminergic activity in the dorsal striatum (see Cools, 1980a), whereas the ventral striatal 

dopaminergic activity was manipulated simultaneously and in the same direction by means of 

a local injection. 

As already stated, each drug was applicated a specific period of time before the test trial. So, 

ergometrine was administered 1 h before the test trial because the inhibitory action of 

ergometrine at the level of the DA¡ receptor is known to start after a delay of 45-60 min (Cools, 

1978), whereas DPI was administered 1 min before the test because of its immediate effect 

(Cools, 1978). In the case of sulpiride a periode of 15 min was taken (Cools and Jongen-Relo, 

1991). Last, haloperidol and apomorphine were applied 15 and 1 min respectively in the case 

of local application whereas they were administered 30 and 3 min respectively in the case of 

systemic application, all prior to the test trial. In the used doses they all are behaviourally 

effective without inducing alterations in motor behaviour (see Cools, 1978; Cools, 1980a; 

Cools and Jongen-Relo, 1991; Coolsera/., 1993; Ploeger ef a/., 1991). 

Four parameters were scored. First, total time, that is the time from start to end of the trial (at 

maximum 10 min), was recorded. Furthermore, the collecting time was measured, being the 

time between eating the first and the last (fourth) food pellet. Time from the start of the trial 
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Figure 1. Collecting time (mean ± s.e.m.) on 
the test trial after injection of one of the 
dopaminergic agents sulpiride, ergometrine and 
DPI in the ventral striatum (nucleus 
accumbens) in well-trained rats. See table 1 for 
doses of the drugs and the number of animals 
per group. 

aulp - AD ergo DPI 

NUCLEUS ACCUMBENS 
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Figure2. Collecting time (mean ± s e m ) on 
the test trial after injection of halopendol or 
apomorphme in the dorsal (or neo-) striatum in 
well-trained rats See further table 1 

AD h a l d o l шро 

HEOSTRIATUH 

until eating the first pellet was called \atency (summation of latency and collecting time gives 

total time) Last, the number of errors were counted visiting an arm without eating the pellet or 

revisiting an originally baited but emptied arm were scored as errors 

Per group means ± s e m were calculated over these values For statistical analysis the non-

parametric test Mann-Whitney U rank order test was used to compare the effect of the 

experimental drug with the effect of its solvent 

RESULTS 

All animals were checked for correct placement of the injections Four animals in total had to 

be excluded, in table 1 the final number of animals per experimental group is represented For 

an overview of the boundaries of the two target areas, the reader is referred to previous 

publications (e g Cools and Jongen-Relo, 1991) 

During the training period of 6 days the animals acquired good and stable performance To 

reach the cntenum, by which an animal was included in the test trial, it had to perform the last 

3 trials (before testing) without errors Only one animal had to be excluded because it did not 

meet this cntenum In an earlier study an example of performance during learning can be 

found (fig 1 in Cools ef al, 1993) 

In table 2 and figures 1-3 results of the post-training tests are represented 

Table 2 enumerates the mean number of errors (± s e m ) as displayed by each group Very 

few errors were made at the test trial by all groups and no differences were found between the 

several control and their respective expenmental groups 

Figures 1, 2 and 3 show the collecting time (mean ± s e m ) for the different experiments Also 

with respect to this parameter statistical analysis showed that control values were not changed 

by the dopaminergic manipulation For example, in the case of injections in the ventral 

striatum, ergometnne did not significantly enhance the collecting time as compared to the 

solvent (fig 1, MWL/ test p=0 235) Likewise, in the case of simultaneous manipulation of the 
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ventral and dorsal striatum (fig. 3), the control groups did not differ from each other 

(AD/apomorphine versus AD/haloperidol, MW1/ test: η s.) and the drugs injected in the ventral 

striatum had no effect on performance in comparison to these control groups. 

Last, the remaining two parameters (total time and latency) revealed a similar picture and did 

not show any significant differences either (data not shown). 

DISCUSSION 

The present data clearly show that neither stimulation nor inhibition of the dopaminergic 

activity in either the ventral or dorsal striatum altered radial arm maze performance in well-

trained animals in a one-trial test. Also the simultaneous stimulation or inhibition of both 

structures did not change the animal's behaviour. Thus, striatal dopamine is not essential 

anymore for the retrieval of learned information in a simple radial maze task. 

These results are in line with the results from our previous experiments on the role of striatal 

dopaminergic activity in spatial localization in the Morris water maze (Ploeger et al., 1994a; 

Ploeger et al., 1994b). The escape behaviour of pretrained animals was not affected by a 

rather high dose of the dopaminergic antagonist haloperidol, injected either in the ventral or 

dorsal striatum, over three consecutive test trials. So, in both tests striatal manipulation of the 

dopaminergic activity only affects performance in the initial, acquisition phase (Cools et al., 

1993; Ploeger ef al., 1991). 

These results are also in line with studies from the literature, reporting that dopamine does not 

affect retention performance of a learned response. For example, previous studies have 

shown that systemic and local injections of DAergic agents do not affect Morris water maze 

behaviour in well-trained animals (Scheel-Krijger 1992; Scheel-Krüger et al 1990). 

Furthermore, it has been shown that the neurolepticum pimozide in a dose that blocks the 

acquisition of a conditioned, environment-specific locomotor response, is unable to disrupt the 

expression of this conditioned response (Beninger and Hahn, 1983). Pimozide does also not 

' , I 

ароаюгрЪіпе 

ACCUMBENS к NEOSTRIATUM 

AD ergo 
+ + 

haloperidol 

Figure 3. Collecting time (mean ± s.e.m.) on 
the test trial after simultaneous manipulation of 
the ventral and dorsal striatum (see also table 1 
and text for more information on the 
treatments). 
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reduce lever press responding on a DRL-schedule over several test tnals (Mason et al, 1980) 

Finally, neuroleptics do not disturb the expression of avoidance behaviour on the first test day 

(of 10 test trials) (Blackburn and Phillips, 1989) (but see also below) On the other hand 

however, it also appears that in certain cases dopamine is needed to maintain a learned 

response over a longer period of time (several trials or several days) For example, avoidance 

responding (Benmger ef a/, 1983, Blackburn and Phillips, 1989) as well as responding for drug 

self-administration (Wise and Bozarth, 1981) are inhibited by dopaminergic blockade over 

several test days Animals, well-trained on positively-reinforced lever press responding (CR-

schedule), show a progressive decline in responding when given a neuroleptic drug (Mason ef 

al, 1980, Wise and Schwartz, 1981, Wise ef al, 1978) 

Thus, it is claimed by some authors that the mtegnty of basal forebram dopamine is required 

for the maintenance of learned responses over a longer penod of time, even though some of 

these responses can be well-performed for some time in spite of low dopaminergic activity 

(see Benmger, 1983, Blackburn ef al, 1992) For diverse experimental situations then, it needs 

to be examined separately to what extent dopamine function is contributing to the retention 

and retrieval of the learned response in question and its maintenance over a longer period of 

time 

In conclusion, this study shows that retrieval in a one-tnal test does not depend on normal 

dopaminergic activity, neither mesohmbic nor nigrostnatal Whether or not this independency 

will extend over a longer period of time is subject for further investigation 
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ABSTRACT 

The effects of the dopaminergic antagonist halopendol, injected in the dorsal striatum, on the 

acquisition of a simple radial maze task were investigated Animals were trained to collect a 

food pellet from each of four arms Several specific environmental cues were clearly visible 

from the maze Prior to every day's training block they were locally injected with halopendol, in 

a dose of 100 or 200 ng per side Halopendol dose-dependently affected some of the 

parameters measuring acquisition, while it neither impaired motor behaviour nor increased the 

number of errors made The results are discussed in relation to the function of the dorsal 

striatum in non-cue directed (arbitrarily) switching of ongoing behaviour 



INTRODUCTION 

Recently it has been proposed (see Oades, 1985) that striatal dopamine plays a role in the 

ability of an animal to switch its ongoing behaviour Previous studies from our laboratory have 

established differential effects of dorsal and ventral striatal dopamine on this ability 

Dopaminergic activity in the dorsal striatum appears to affect switching of behaviour directed 

by factors intrinsic to the animal (non-cue directed) (Bereken and Cools, 19Θ2, Vnjmoed-De 

Vries and Cools, 1986) On the other hand, increased dopaminergic activity in the ventral 

striatum (especially the nucleus accumbens) enhances the display of different behavioural 

items guided by external available cues (Bos, 1991, Bos ef al ,1991) 

These differential roles apply to motor and social behaviour, in rats, cats and monkeys (and for 

several neurotransmitter-systems) (Bereken and Cools, 1982, Cools, 1980, Jaspers ef a/, 

1984, Jaspers et al, 1990, Vnjmoed-De Vries, 1985, Vnjmoed-De Vnes, 1986) As also effects 

of stnatal dopamine on learning and memory have been reported (see for reviews а о 

Benmger, 1983, Phillips and Carr, 1987, Salamone, 1992), we questioned whether this 

distinction is also applicable for the involvement of the striatal areas in learning and memory 

processes 

Previous studies have provided evidence that radial arm maze performance can be altered by 

manipulations of the ventral (Schacter ef al, 1989) or dorsal striatum (Colombo ef al, 1989) 

Thus, we have chosen to examine a possible differential function of the striatal areas in 

learning and memory in a simple, basic radial arm maze procedure The rat is expected to 

collect one food pellet from each of four arms Several environmental cues are clearly visible 

for the animal in the maze 

In this paradigm we may differentiate between externally structured behaviours (directed by 

environmental cues) and self-generated behaviours in the performance of the rat 

Environmental cues indeed guide the animals, as indicated by the finding that reducing the 

salience of cues around the maze can change performance substantially (Mazmanian and 

Roberts, 1983) So, animals often re-enter previously visited arms under the condition of 

restricted viewing of the environment, whereas they perform more accurately when allowed to 

have a good look 

However, only factors intrinsic to the animal determine the appearance of several other 

behaviours These include starting to visit arms and collect food pellets and developing a 

consistent way of collecting all the pellets 

In view of the above mentioned differential functions of striatal dopamine, we propose that 

dopamine in the ventral striatum mediates the display of the externally structured strategies, 

while dopamine in the dorsal stnatum mediates the display of internally structured (self-

generated) strategies 

Expenments from our laboratory (Cools ef a/, 1993) have demonstrated that dopamine in the 

ventral striatum, especially the nucleus accumbens, is indeed involved in the acquisition of this 

task Since local injection of the dopaminergic D2 antagonist sulpiride significantly attenuated 

radial maze learning by enhancing specifically the number of revisits, it appeared that 
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especially the ability to display externally structured learning strategies was affected This 

notion is underscored by the previous finding that the nucleus accumbens is involved in the 

acquisition of allocentnc spatial localization in the Morns water maze (Ploeger et al, 1994a), in 

which animals solely depend on external cues to learn the task 

The present study analyses the role of dopamine in the dorsal striatum in the above mentioned 

radial arm maze task The procedure was similar to that used in the study on the role of 

dopamine in the ventral striatum (Cools et al, 1993) Local application of the well-known 

dopaminergic antagonist halopendol was used to reduce dorsal striatal dopaminergic activity 

MATERIALS AND METHODS 

Animals and surgery 

Male Wistar rats, bred and reared in the Central Animal Laboratory, University of Nijmegen, 

The Netherlands, were used, weighing 180-220 g at the time of surgery After the operation, 

they were housed individually and maintained in a temperature and light-controlled room 

(lights on between 08 00-20 00 h) 

For implantation of the cannulas the rats were anaesthetized with pentobarbital (Narcovet®, 60 

mg/kg ι ρ ) and placed in a stereotaxic apparatus Stainless steel cannulas were bilaterally 

implanted, aiming at the neostriatum Cannulas with a length of 4 mm were implanted at the 

coordinates A=9 4, L= ±2 5 Location was based on the atlas of König and Klippel (1963) The 

cannulas were fixed onto the skull with stainless steel retaining screws and dental cement 

(Durelon®, Espe, Germany) (Bos and Cools, 1989) After surgery, the animals were allowed to 

recover for a period of at least 10 days 

Three days before starting the experiment the animals were deprived of food while water was 

available ad libitum During the experiment, body weight was kept constant at 75-80% of the 

pre-test value All experiments were carried out between 09 00 and 17 00 h A group of 10 

animals was used per treatment 

After finishing the experiments the animals were sacrificed and the brains were removed and 

fixated with 4% formalin The precise location of the cannulas and injection sites were 

determined in serial sections Only the animals with injection sites within the target areas were 

included in the data analysis 

Injection procedure and drugs 

Injections were given bilaterally (as has been described in detail previously by Cools et al, 

1993), using a Hamilton syringe, with the needle extending 1 5 mm below the tip of the 

cannula A volume of 0 5 μΙ per side was delivered over a 10 s-penod whereafter the needle 

was kept in place for another 10 s Injections were given daily, 15 mm before the first trial 

The dopaminergic antagonist halopendol (using a stock solution (5 mg/ml) from Janssen 

Pharmaceutica, The Netherlands) was dissolved in distilled water An injection with the solvent 

alone served as a control 
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Table 1 Total number of animals and the number of rats that met the first criterion (of good performance, se 

text) per group * pSO 05, Chi-square test 

group 

control (AD) 

haloperidol 100 ng 

halopendol200ng 

number ot animals 
total 

9 

8 

10 

criterion 

9 

6 

6 * 

Radial arm maze: apparatus and procedure 

A four-arm radial maze was used, which has been described in detail elsewhere (Cools et al, 

1993) In short, the maze consisted of a central hube, 34 cm in diameter, with four arms (86 

cm χ 9 cm) radiating from it A plastic foodwell, 1 5 cm deep and 1 cm in diameter, was located 

at the end of each arm The maze was constructed pnmarly of black plexiglass The sidewalls 

of the arm sloped from a height of 10 cm at the center of the maze to a height of 6 cm at the 

distal end of each arm Pieces of clear plexiglass extended the height of the walls to 20 cm 

The maze was kept in a constant position The environment could be perceived from the 

apparatus by the animals and consisted of four specific cues, one at each wall of the room in a 

direct line with each one of the arms of the maze 

In the expenments all arms were baited with a 45 mg food pellet (Campdon Instrumental Ltd ) 

in each trial and the animals were trained to collect all four pellets Per day each animal 

received 1 block of 3 trials The rat was placed in the central hube with its head always 

onented in the same direction Each trial was terminated after 10 mm or after the rat had eaten 

all four rewards During the intertrial interval of 2 mm the animal stayed in its homecage 

Before each trial the maze was cleaned, the arms rebaited, and then the animal was put in the 

central hube for the second trial When the animal had received all three trials, the next animal 

was injected and trained (and so on) 

100 
Figure 1. Mean percentage (± s e m ) of 
successful trials without errors for water-
and halopendol-treated animals Haloperidol 
significantly decreased the percentage 
STWE, see text · control, V haloperidol 
100 ng, Dhalopendol 200 ng 

115 



0 
- 3 

2 

ja 

E 
3 1 

1 2 3 4 5 
b l o c k 

100 

80 

60 

40 

20 

I 
К т 
г\\ 

• 4 1 т т w 
V ~~^ 
\ V \ 

2 3 4 5 . 

b l o c k 

Figure 2 In the left panel (a) mean total number of visits over all trials per group is depicted, while in the 
right one (b) the percentage of revisits over all trials per group is shown Both parameters were 
significantly altered by halopendol For both graphs »control, n=9, V halopendol 100 ng n=8, 
D halopendol 200 ng, n=10 

Each animal was trained for 5 days It received an injection with halopendol, always 15 mm 

before the first trial Two doses were tested 100 and 200 ng 

Parameters and statistics 

Several parameters were scored First total time, that is the time from start to end of the trial 

(at maximum 10 mm), was recorded Furthermore, the collecting time was measured, being 

the time between eating the first and the last (fourth) food pellet Time from the start of the trial 

until eating the first pellet was called latency (summation of latency and collecting time gives, 

naturally, total time) 

In order to have an arm entry scored, all four paws had to be placed into the arm Entering a 

baited arm and eating the food pellet from it was called a visit, while a revisit meant re-entering 

an emptied arm When the rat had entered a baited arm and had left it without eating the 

pellet, an eating error was recorded Numbers of eating errors, visits and revisits were 

regarded 

A trial was successful in case the animal had collected all four food pellets, a trial in which the 

rat had made no revisits, was classified as successful without errors Both kinds of trials were 

counted separately ("successful trial'- ST and "successful trial without errors'- STWE) 

Per treatment and per block (day) means ± s e m were calculated, for each of these recorded 

values This was done for all given tnals, but also separately for ST respectively STWE (where 

appropriate) 

Furthermore, two entena were applied in order to evaluate the performance of the animals 

First, an animal was considered to perform well in the case it reached the criterion of solving 

three consecutive trials successfully and without errors Second, performance of the animals 
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Table 2 Mean number of revisits and visits per group Two animate are disregarded in the group of haloperidol 
200 ng (see text) 

group 

control (AD) 

haloperidol 100 ng 

haloperidol 200 ng 

π 

9 

S 

8 

revisits 

6 0 

52 

6 5 

1 0 

1 2 

0 9 

visits 

56 0 

49 0 

42 5 

19 

4 3 

2 8 * 

was described in terms of the order of arm choices In particular, the number of trials was 

counted in which an animal, starting at one arm, consistently moved to the adjacent arm 

(turning consistently either left or right), collecting all food pellets without making errors An 

animal was regarded as having a fixed response pattern of adjacent arm choices (FRP-AAC) 

in the case it solved at least 5 out of 6 trials, in block 4 and 5, in such a way 

To evaluate the significance of differences between the test groups, most of the data was 

subjected to an univariate analysis of variance (ANOVA, using the GLM procedure of the 

statistical SAS package) A Student's t-test or a Chi-square test was applied to analyse the 

differences between two successive days within one test group or to evaluate the number of 

animals per group reaching a criterion 

RESULTS 

All animals were checked for correct placement of the injections In total 3 animals had to be 

excluded, see table 1 for the exact number of animals per group For the precise location of 

the injection-sites within the target area of the neostriatum, the reader is referred to a previous 

study (Ploeger ef al, 1994b) 

Figure 1 shows the percentage of successful trials without errors (STWE) for the control and 

the two haloperidol groups Water-treated animals improved rapidly within three days more 

than 80% of all trials (in block 3-5) were successful and without errors Also the two 

halopendol-groups showed improvement over time (overall effect of time F(4,96)=15 332, 

p « 0 01) However, the two experimental groups were less successful in a dose-dependent 

Table 3 Latencies for the unsuccessful trials, η represents the total number of unsuccessful trials per day for eac 
group 

D A Y 

1 

2 

3 

4 

5 

C O N T R O L 

η mearttsem 

9 573 20 

1 12 

H A L D O L 
100 ng 

η meanisem 

12 573 27 

11 493 72 

2 31 19 

H A L D O L 

200 ng 

η mearttsem 

20 432 55 

19 413 58 

18 254 67 

13 362 77 

7 124 81 
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Figure 3. In these graphs latency (ι e time from the start of the tnal until eating the first pellet) is 
presented, in the left panel (a) over all trials and in the right panel (b) over the successfully finished trials 
For animals that successfully ended the tnals, halopendol hardly affected latency anymore · control, 
V halopendol 100 ng, D halopendol 200 ng 

manner (see figure 1), as pointed out by the significant differences in comparison to the control 

group (F(2,24)=7 51, p<0 01 overall effect of groups, F(1,15)=3 46, p=0 076 for halopendol 

100 ng and F(1,17)=17 24, p « 0 01 for halopendol 200 ng) 

In table 1, the number of animals per group that reached the criterion of good perforrr\ance 

(three consecutive STWE), are represented In comparison to the water-treated group, fewer 

animals reached this cntenon after halopendol For halopendol 200 ng this difference was 

significant Chi-square=4 29, p<0 05 

Performance improved also with respect to the number of visits This parameter is depicted in 

figure 2 (calculated over all trials) For all groups the number of visits increased over the days 

(F(4,96)=13 9, p « 0 01) The control rats visited the maximum number of arms already from 

day 3 on Both halopendol 100 ng and 200 ng significantly decreased the number of visits as 

compared to the control group F(1,245)= 12 07, p « 0 01 and F(1, 275)=75 36, p « 0 01 

respectively 

In table 2, a summary is given of the total mean number of visits and revisits made by the 

different groups This table is a clear indication that halopendol did not increase the number of 

revisits (errors), but decreased the number of visits For halopendol 200 ng, this difference 

appeared statistically significant (Student's t-test t=2 491, p=0 025) Two animals were 

excluded from this latter group in this table, because these rats did not make any visit at all in 

about 12 out of the 15 trials and so naturally, they could not make any revisit, it is noted 

however that these animals made many eating errors 

Latency (ι e time until the animal starts to eat the first pellet) is demonstrated in figure 3 in 

panel a this parameter is depicted for all given trials, while in panel b only the successful tnals 

are considered Latency decreased for all three groups, but most rapidly and to a very low 

level for the water-treated control group In the case latency is regarded over all trials, 
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Table 4 Number of animals per group with a fixed response partem of adjacent arm choices (FRP-AAC) Thi 
number is significantly lowered after halopendol 200 ng (Chi-square test, ** p<0 02) 

group 

control (AD) 

halopendol 100 ng 

haloperido! 200 ng 

total 
number 

9 

8 

10 

number ot 
FRP-AAC 

7 

3 

2 * . 

halopendol significantly enhanced this parameter in a dose-dependent manner, 

F(1,245)=12 45, p « 0 01 for halopendol 100 ng and F(1,275)=38 98, p « 0 01 for halopendol 

200 ng Considenng the successfull tnals, latency was enhanced only in the first block after 

halopendol 200 ng Statistical analysis revealed for this dose a significant effect of groups, 

F(1,188)=6 78, p=0 01 This differential effect of halopendol on latency means that only in the 

unsuccessful tnals latencies remained high (see table 3) 

Figure 4 shows the collecting time for the control and halopendol groups in the successful 

trials without errors Time needed to collect all four food pellets decreased over the blocks for 

all groups (F(4,142)=10 67, p « 0 01 for halopendol 100 ng and F(4,130)=4 11, p<0 01 for 

halopendol 200 ng) An effect of groups was apparent halopendol increased the collecting 

time, in a dose-dependent manner (F(1,142)=22 71, p « 0 01 for halopendol 100 ng and 

F(1,130)=51 66, p « 0 01 for halopendol 200 ng) 

Last, it was examined whether the animals acquired fixed response patterns while collecting 

the food pellets It showed that most of the water-treated rats consistently moved from one 

arm to the adjacent arm at the end of the training, thereby always turning one way around 

(either left or nght) The number of animals showing such a fixed pattern (definition of the 

criterion see Methods) is presented in table 4 for all three groups It is clear from this table that 

halopendol decreased the number of rats with a fixed response pattern of adjacent arm 

choices (FRP-AAC, Chi-square=6 17, p<0 02 for halopendol 200 ng) 

DISCUSSION 

Although the time until eating the first food pellet (latency) was enhanced by halopendol when 

all trials were counted, it appeared that latency was not enhanced in those tnals that were 

successfully finished (fig 3 a and b) Only in the unsuccessful trials rats remained slow in 

starting to collect (table 3) Thus, the applied doses of halopendol did not induce a general 

motor deficit (sedation), because such a motor disturbance would be expected to affect all 

trials equally 
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Haloperidol did also not alter the mean total number of revisits (taken over all 15 trials, see 

table 2), so, the experimental rats did not make more errors as compared to the control rats 

This finding means that an animal (regardless of its treatment), after having visited one arm, 

appears to be capable of remembering its visit to this arm, possibly because of good 

association with the cue nearby this specific arm This aspect of the acquisition of radial maze 

performance is thought to be mediated via the nucleus accumbens (see Introduction) and as 

the activity in this structure is not inhibited, it is understandable that this aspect is left intact 

However, halopendol affected other parameters measuring the acquisition of radial arm maze 

performance 

After treatment with the relatively low doses of 100 and 200 ng halopendol, animals finished 

fewer trials successfully and without errors (fig 1 ) and visited fewer arms (fig 2, table 2) as 

compared to control animals The effects were larger for halopendol 200 ng than for 

halopendol 100 ng (dose-dependency) Haloperidol 200 ng significantly reduced the number of 

animals that reached the arbitrarily chosen cntenon of good performance (three consecutive 

successful trials without errors, table 1) 

Haloperidol also increased the time needed to collect all food pellets (fig 4) and again the 

effect was larger for the higher dose 

Furthermore, close analysis of the data considering the order of arm entnes revealed that the 

halopendol-treated animals failed to develop a simple and effective strategy Animals in the 

control group appeared to acquire a fixed and efficient way of collecting the food pellets 

seven out of nine water-treated animals consistently moved to the next adjacent arm, turning 

either left or right, at the end of the training period (criterion of FRP-AAC, see the Methods-

section) This suggests that rats can, and normally will, acquire a response strategy to solve 

the task Most of the animals treated with halopendol did not reach this phase (table 4) 

Overall, halopendol increased latencies in unsuccessful trials, it decreased the number of 

visits, it increased time needed to collect all food pellets and it prevented the development of a 

Ш 

σι 
с 

400 

300 

200 

100 Figure 4. Mean collecting time (± s e m ) over 
STWE per group, halopendol enhanced this 
parameter · control, V halopendol 100 ng, 
D halopendol 200 ng 
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consistent way of collecting all the pellets These specific effects of halopendol, all dose-

dependent, show that halopendol-treated animals have difficulties with the arbitrarily initiation 

of appropnate behaviour at distinct points of time (not due to motor disturbances, see above) 

starting to collect, visiting a next arm or developing an effective way of collecting Only factors 

intrinsic to the animal determine the display of these behavioural items Thus, it is concluded 

that halopendol injected in the dorsal striatum interferes with the performance in a simple 

radial arm maze, because it interferes with the function of the dorsal stnatum in switching to 

non-cue directed behaviours 

Altogether, we have now provided evidence that both the ventral (Cools et al, 1993) and 

dorsal (this study) stnatum play their own specific role in the acquisition of simple and classic 

radial maze performance inhibition of ventral striatal activity attenuates the acquisition 

because it impairs the ability of the organism to display externally structured learning 

strategies, whereas inhibition of dorsal striatal activity attenuates the acquisition because it 

impairs the ability of the organism to display internally directed or self-generated learning 

strategies 
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C H A P T E R 8. 

G E N E R A L D I S C U S S I O N 





In the studies described in this thesis we aimed to examine a possible differential role of 

ventral and dorsal striatal dopamine in cue- and non cue-directed aspects of learning and 

memory, respectively For that purpose, we employed three different learning and memory 

tasks, that enabled us to investigate the effects of specific dopaminergic agents on these 

different aspects 

Comprehension of the role of dopamine in diverse behavioural functions is important, among 

others, for understanding the consequences (symptoms) of dopaminergic dysfunctionmg in 

several human diseases involving basal ganglia disorders, such as Parkinson's disease, 

Huntington's chorea or schizophrenia These symptoms may include disturbances in motoric 

behaviour as well as in cognition (including learning and memory), depending on the kind 

and/or magnitude of the neuronal damage 

A great deal of research is directed towards collecting clinical data concerning these diseases 

(describing symptoms and trying to classify them, testing preserved abilities, interpreting the 

obtained data) Although it is beyond the scope of the present thesis to deal with that research, 

awareness of the clinical practice may help to determine the direction of animal research 

concerning basic questions on the working mechanisms of brain areas and the involvement of 

neurotransmitters 

As one result of the clinical research, hypotheses on the role of the basal ganglia as being 

involved in procedural or implicit learning and memory have been put forward (Phillips and 

Carr, 1987, Knopman and Nissen, 1991) However, as mentioned before in § 1 4, such 

distinctions appear to be insufficient in explaining all the observed deficits and preserved 

abilities 

Thus, we have proposed an alternative view, involving a differential role for the ventral and 

dorsal striatal areas in externally and internally structured learning and memory, respectively, 

for several reasons Anatomically, the ventral and dorsal stnatum appear to be part of 

separate neuronal circuits (roughly VS <-> limbic cortex, DS <-> neocortex, respectively, see 

§ 1 3) Cognitive deficits following damage in each of these areas can be grouped accordingly 

(e g Pianili et a l , 1989) Furthermore, studies from our laboratory have already demonstrated 

a differential role for the ventral and dorsal striatum in externally and internally guided aspects 

of swimming behaviour (§ 1 4) 

So, in this thesis basic animal (rat) studies were carried out to investigate whether the 

hypothesized distinction also applies to learning and memory processes Eventually, growing 

insight in the specific roles of the striatal areas in behaviour of all kinds may be useful in the 

description and explanation of human basal ganglia pathology 

This general discussion will not focus on specific outcomes of each experiment Those 

outcomes are described and discussed in the previous chapters (2-7) and enumerated in the 

Summary The present chapter will focus on whether or not the results from the expenments 
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support the hypothesis on a differential role for ventral and dorsal stnatal dopamine in learning 

and memory 

Before doing so, attention is first paid to when dopaminergic treatment is most effective during 

the course of the learning and memory process, and second, to the choice of the applied 

dopaminergic agents and its implications 

EFFECT OF DOPAMINERGIC TREATMENT ON DIFFERENT LEARNING AND MEMORY 

PHASES 

In the studies in the present thesis, dopaminergic agents have been applicated at different 

points of time dunng the learning and memory process pre-training (Moms water maze 

(MWM), T-maze (TM) and radial arm maze (RAM), pnor to a block of 3 or 4 training trials), 

post-training (social memory, immediately after a one-trial training), and pre-retneval test 

(MWM and RAM, prior to a block of 3 or 4 trials or to one test trial, respectively) 

In the Morns water maze and the radial arm maze dopaminergic treatment clearly affected 

performance during the acquisition, while leaving the responding during the retrieval test(s) 

intact Furthermore, the early application of DPI in the social memory task, immediately after 

the training trial, was also found to be effective In this latter case, the agents DPI and 

ergometnne are assumed to influence consolidation of the information, but influence on the 

retneval of stored information cannot be excluded Additional experiments are required to 

distinguish between these two possibilities 

Thus, our data point to dopamine mainly being effective in the early phases of the learning and 

memory process In literature, effects of dopaminergic treatment on the acquisition phase or at 

immediate post-training manipulation also have been reported (for instance, in avoidance 

responding or in lever pressing for food, see § 1 2) However, the data are not unambiguous 

with respect to effects on retention of acquired information or responding Inhibition of 

dopaminergic activity may soon interfere with the learned performance or it may take a large 

number of trials before the response is finally diminished under the influence of prolonged 

dopaminergic inhibition (Blackburn and Phillips, 1989, Wise et a l , 1978, Sanger, 1986, see 

Blackburn et a l , 1992) Overall, several authors concluded that dopamine is involved in the 

acquisition of specific information or responses but may also be needed to maintain the 

learned information over a longer period of time (see Benmger, 1983, Blackburn et a l , 1992) 

Generally speaking, a particular dopaminergic brain structure may seem no longer to be 

involved in the retention of information or the execution of a well-learned response, when 

inhibition of the dopaminergic activity in that area initially appears not to alter that information 

or response This finding may lead to the conclusion that the neuronal circuit maintaining the 

information or the response resides outside the dopaminergic structure However, when 

prolonged inhibition of the dopaminergic activity ultimately appears to result in some kind of 

extinction of the performance, this finding (when not due to mere motoric deficits) implicates 

that the neurotransmitter activity in the dopaminergic structure apparently continues to exert 
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influence on the neuronal circuit sustaining the information or well-learned response, either 

directly or indirectly 

In our experiments no prolonged retention testing was performed, as only one (RAM) or 3-4 

(MWM) retrieval test trials were carried out In these instances, inhibition of the dopaminergic 

activity did not interfere with retrieval of the learned information or the execution of the 

acquired response This resistance against dopaminergic interference might hold for a longer 

penod of time, because the MWM task is a rather coercive event and because in the RAM the 

animals were trained for a relatively large number of trials Both these factors may strengthen 

the memory function, making it more resistant to decreased dopaminergic function, similar to 

the finding that the intensity of an applied shock in avoidance responding can protect memory 

function against memory impairing treatments (Pérez-Ruiz and Prado-Alcalá, 1989) 

Overall, the data from our expenments showed that dopaminergic manipulation exerts its 

greatest influence in the early stages of the learning and memory processes Prolonged 

testing of well-trained animals under influence of dopaminergic agents is required to determine 

how long the acquired responses will resist dopaminergic treatments 

USE OF DIFFERENT DOPAMINERGIC AGENTS 

Several dopaminergic agents were used, acting on different dopamine receptor sub-types 

halopendol and apomorphine, DPI and ergometnne, and sulpiride 

In many of the experiments only halopendol was applied This agent is well-known for being a 

dopaminergic (mixed D1/D2) antagonist, but is also known to act on α-noradrenergic receptors 

and, although to a much lesser extent, on serotonergic receptors (Burki, 1986, Richelson and 

Nelson, 1984) 

In the dorsal striatum, use of halopendol in the Morns water maze and the radial arm maze 

(and of the dopamine mixed D1/D2 agonist apomorphine in the RAM retrieval test) was meant 

to influence the dopaminergic receptors, since halopendol (and apomorphine) was injected 

into the so-called dopaminergic region of the dorsal striatum (Vnjmoed-de Vries and Cools, 

1986) Further experiments showing that a dopaminergic agonist (apomorphine) can attenuate 

the effect of halopendol are needed to demonstrate dopaminergic specificity of the observed 

effects in the acquisition of the RAM, whereas application of more specific dopaminergic 

agents are needed to establish whether the involvement of dopamine is mediated via the D1-

hke or D2-hke receptor subtypes (Sibley et al ,1991) 

In the nucleus accumbens, the following neurotransmitter systems may be of importance the 

dopaminergic D2 and DA as well as the noradrenergic receptors More precisely, reports from 

literature indicate the presence of two separate pathways The first one encloses 

noradrenergic afférents from the locus coeruleus to the accumbens that may control, via ß-

noradrenergic receptors, the dopaminergic D2 activity, which in tum appears to modulate the 

incoming signals from the hippocampus to the nucleus accumbens (see Cools et a l , 1991 and 

cited references therein) The second pathway involves noradrenergic afférents from the 

ventral noradrenergic bundle to the nucleus accumbens that may control, via α-noradrenergic 
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receptors, the dopaminergic activity at the DA, receptor level, which in turn appears to 

modulate the incoming signals from the basolateral amygdala (see Cools et al , 1991) So, 

depending on the applied dopaminergic agent, different effects may be achieved 

It may now become conceivable that intra-accumbens injections of halopendol, supposed to 

act on the dopamine D2 receptors controlling the input from the hippocampus, are effective in 

spatial learning First, dopamine D2 has been demonstrated to be involved in the display of 

cue-directed behaviour the D2 agonist LY 171555 enhanced the number of cue-directed 

behavioural items in the one trial swimming task, whereas a by itself ineffective dose of the D2 

antagonist raclopride was able to attenuate the effect of LY 171555 (Bos et a l , 1991) Second, 

the hippocampus is known to be important for the acquisition and retention of allocentnc 

spatial localization (see § 1 5) So, the effect of halopendol injected into the nucleus 

accumbens on the localization of the hidden platform in the Morns water maze by use of 

external cues may be mediated via the dopamine D2 receptors acting on the hippocampal 

afférents 

However, a major problem arises when data from electrophysiological studies are taken into 

account Enhanced dopaminergic activity at the D2 receptors is said to inhibit the hippocampal 

incoming signals and vice versa (Yang and Mogenson, 1986) If so, inhibition by halopendol 

would enhance the incoming signals from the hippocampus, which then might be expected to 

result in an enhanced performance in the Morns maze This outcome is opposite to the 

observed effects and their explanation along the above given reasoning Assuming that 

halopendol is acting on the α-noradrenergic receptors will not resolve this problem Inhibition 

of the noradrenergic activity is assumed to enhance the dopaminergic activity at the level of 

the DA, receptor, which in turn inhibits the signals from the amygdala As extensively 

discussed elsewhere, attenuated input from the amygdala is suggested to coincide with 

enhanced input from the hippocampus (see Cools et a l , 1991) If so, this would constitute a 

similar situation as compared to action of halopendol on the D2 receptor on the hippocampus 

afférents 

Several solutions or explanations may be put forward to resolve the problem One likely 

possibility is the following, which was earlier proposed by Bos (see Bos, 1991) Electro­

physiological experiments have shown that dopamine is able to influence the excitation of 

nucleus accumbens neurons induced by hippocampal stimulation, probably via the dopamine 

D2 receptor (De France et a l , 1981 and 1985, Yang and Mogenson, 1984 and 1986) 

Mogenson and coworkers, applying low frequency stimulation (0 5-1 5 Hz) of the 

hippocampus, reported an inhibitory action of enhanced dopaminergic activity on the input 

from the hippocampus However, De France and coworkers demonstrated a frequency 

dependent effect of dopamine Dopamine inhibited hippocampus excitation of the accumbens 

neurons when low frequency stimulation (0 5 Hz) of the hippocampus was applied, while 

dopamine was ineffective at higher frequency stimulation (6 0 Hz) of the hippocampus These 
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findings imply that input from the hippocampus is selectively transferred to the nucleus 
accumbens under the influence of dopamine (De France et al, 1981 and 1985) The high 
frequency stimulation is within the range of the hippocampal theta rythm, an important firing 
pattern from the hippocampus that is related, among others, to the display of exploratory 
behaviour O'Keefe and Nadel (1978) hypothesized that also the construction of a spatial map 
is strongly related to the display of theta activity in the hippocampus 
Another explanation might be that an optimal level of dopaminergic activity at the dopamine D2 
receptors is needed for proper transfer of information from the hippocampus to the nucleus 
accumbens, which may be present in normal, untreated rats Any disturbance in this level, 
either by stimulation or inhibition, would then induce a disturbed performance in the Morns 
maze However, this reasoning would not be in agreement with the previous findings by Bos 
(1991) showing opposite effects of a dopaminergic D2 agonist and antagonist on the number 
of cue-directed behaviours in the one trial swimming test 
Finally, as the interactions between dopamine and glutamate (from the hippocampal afférents) 
are not yet fully understood (see § 1 3), halopendol (if mediated by dopamine D2 receptors) 
may be acting on D2 receptors located at different places in the local circuitry of the nucleus 
accumbens Future experiments will certainly have to consider questions on the specificity of 
the effects following halopendol treatment, the interactions between dopamine and glutamate 
in the nucleus accumbens (and the dorsal striatum as well) and existing inconsistencies at 
cellular versus behavioural levels 

The dopaminergic agents DPI and ergometnne in the social recognition task, injected into the 
nucleus accumbens, will be acting on the dopamine DA, receptors, that appear to control the 
amygdala input Enhancement of the dopaminergic activity at the level of the DA, receptor is 
assumed to inhibit the input from the amygdala to the accumbens, which is supposed to 
coincide with an enhanced input from the hippocampus (see Cools et al, 1991) 
Both the hippocampus and amygdala are part of at least one of the two circuits for processing 
olfactory information (the main olfactory system or the accessory olfactory system, see § 1 5) 
It is not yet known in what way each of these two areas contribute to the process of the 
recognition of a juvenile conspecific Treatments within the septum, a brain structure closely 
linked to the hippocampus, have been reported to alter social recognition (Popik, 1991), which 
might imply the hippocampus in this behaviour On the other hand, the accessory or 
'vomeronasal' olfactory system is known to contribute to the action of pheromones (see § 1 5), 
the 'vomeronasal amygdaloid structures' may thus be expected to play a role in social 
recognition Consideration of the anatomical basis, however, raises one problem the 
'vomeronasal function' of the amygdala is related to the medial amygdaloid group whereas the 
projections to the nucleus accumbens derive mainly from the basolateral amygdala (see § 1 3 
and Olmosetal, 1985) 

129 



Clearly, further experiments will have to consider in what way the drug-induced 

neurotransmitter status is related to the involvement of either of these two brain structures in 

social memory 

One last remark must be made on the question of the dopamine specificity of the observed 

effects In the present thesis no antagonism expenments in the MWM and RAM learning have 

been descnbed 

Pilot experiments with the dopaminergic agonist apomorphine (mixed D1/D2) sofar have not 

yet resulted in a clear attenuation of the effects of halopendol 

Several explanations may be given First, it is difficult to establish the appropriate dose to be 

used Second, any manipulation of the dopaminergic activity, irrespective of the direction, 

might induce deterioration of the maze behaviour, in comparison to the behaviour of an 

untreated control animal Third, the action of halopendol may be mediated via other 

neurotransmitter systems 

At present, we continue to ascribe the effects of halopendol to a dopaminergic (D2) effect, as 

this agent is indeed a well-known antagonist of the dopaminergic activity (also known in the 

clinical practice, where it is used as a neuroleptic drug) and it appears to bind relatively more 

strongly to dopaminergic D2 receptors than to noradrenergic or serotonergic receptors 

(Richelson and Nelson, 1984) However, unambiguous demonstration of a role for the 

dopaminergic activity in Morns maze and radial arm maze will have to be pursued 

STRIATAL DOPAMINE IN CUE-DIRECTED VERSUS NON-CUE DIRECTED LEARNING AND 

MEMORY STRATEGIES 

The main issue of this thesis is the examination of a possible differential role for ventral and 

dorsal striatal dopamine in cue-directed and non-cue directed aspects, respectively, of learning 

and memory Do the obtained data support such a differential role? 

We have employed two obviously cue-dependent tasks Social recognition is based on 

olfactory cues emitted by the younger animal (Sawyer et a l , 1984, Popik, 1991) and spatial 

localization of the hidden platform in the Morris maze appears to depend on extra-maze cues 

(Morris, 1981) The dependence on extra-maze cues in the MWM is confirmed in our control 

experiment in chapter 3, showing that removal of salient cues from the environment impairs 

spatial learning in non-treated animals 

Data from our experiments sofar have demonstrated an involvement of the nucleus 

accumbens in these two tasks Enhancement of the dopaminergic DA, activity in the 

accumbens enhanced the memory for the juvenile conspecific, the effect appeared indeed to 

be dopamine specific as ergometrme was able to attenuate this effect of DPI 

Inhibition of the dopaminergic activity in the accumbens induced a dose-dependent attenuation 

of the acquisition of the platform localization, without affecting locomotor behaviour, 

sensorimotor capacities needed in the MWM or the motivation to escape Although up to now 
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dopamine specificity has not unequivocally been established, these data point at least to an 

involvement for the nucleus accumbens 

In addition to the demonstration of a role for the accumbens in spatial localization, the dorsal 

striatum, with its proposed opposite behavioural function, was shown not to be specifically 

involved in Morris water maze behaviour Results from the dopaminergic manipulation in the 

dorsal striatum in the MWM differ from the results after dopaminergic treatment in the nucleus 

accumbens in several respects Impairments occurred only after much higher doses 

Haloperidol injections into the dorsal striatum seemed to affect localization of the hidden 

platform in an all-or-non manner (as compared to saline injections) In addition, impairment of 

spatial localization appeared only to co-occur with impairment in the non-spatial task, 

indicating sensorimotor deficiencies Performance in the task with the visible platform did not 

approach control levels at the end of training 

Taken together, the results from the MWM expenments with halopendol injections into the 

ventral and dorsal stnatum suggest, in line with our hypothesis, that the ventral striatum plays 

a specific role in spatial localization based on external cues, while the dorsal stnatum does not 

In the radial arm maze, animals can apply different strategies to solve the task They may 

associate each arm with its nearby cue on the wall or they may develop a specific fixed 

response pattern, unrelated to stimuli from the environment Normally, also spatial mapping 

abilities may be used However, the environment was almost empty in our experiments, except 

for the four specific cues on the wall, making this possibility less likely Radial arm maze 

behaviour can be divided into two classes Minimal one behavioural item is assumed to be 

directed by stimuli from the environment remembering which arm already has been visited by 

means of association with the nearby cue on the wall, preventing the animal from re-entering 

an already visited arm In contrast, only factors intrinsic to the animal may direct the animal to 

display several other behavioural items These include starting to visit the first arm and 

collecting food, visiting a next arm and developing an efficient fixed response pattern 

irrespective of the environment 

In the present thesis inhibition of the dopaminergic activity in the dorsal striatum was shown to 

affect specifically these latter kinds of behaviours In a previous study (Cools et a l , 1993), a 

role for ventral stnatal dopamine in remembering already visited arms has been established 

Together, the data from the RAM expenments also support a differential role for ventral and 

dorsal striatal dopamine in cue-directed and non-cue directed aspects of learning, respectively 

Nevertheless, some difficulties remain, two of which will be discussed here 

First, attention may be drawn to different effects of dopaminergic activity in different learning 

and memory tasks In our experiments, injections of halopendol, in the relatively low doses of 

100-200 ng into the dorsal striatum, were found to be effective in the radial arm maze Only 

higher doses induced effects in the spatial Morns water maze, which in addition appeared to 

be non-specific 
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It was concluded that halopendol in the RAM acted on those behaviours that were controlled 

by factors intrinsic to the animal In the MWM, we also might assume intrinsically structured 

behaviours to be present Since external cues only gradually gam control over the rat's 

behaviour in directing it to the hidden platform during the course of training, the rat must 

arbitrarily determine what to do, especially in the beginning of the training As the Moms maze 

task is more difficult than the radial maze task, it might be expected that a (slight) effect of a 

relatively low dose of halopendol was found on such an aspect in the MWM Different 

explanations may be raised for the apparent lack of a specific effect of halopendol in the dorsal 

striatum on MWM performance 

Latency, the only parameter reported in the studies of MWM behaviour, is probably inadequate 

to show a possible deficit in intrinsically structured behaviours in the MWM It may be that an 

effect of a relatively low dosis of halopendol can be found on non-cue directed behaviour(s) in 

the MWM, when regarding an appropnate parameter, for instance the time until an animal 

starts to swim away from the edge of the pool 

Besides, the importance of one kind of behaviour, and thus the effect of some treatment into a 

brain region involved in that behaviour, may naturally be greater in one experimental test than 

in another Furthermore, in a more coercive expenmental set-up an animal may overcome its 

behavioural deficits and perform relatively well In sum, the magnitude of effect of a particular 

treatment on some kind of behavioural function depends on the nature and degree of coercion 

by the task to perform a response, the degree of task difficulty and the importance of the brain 

area in the behavioural function under investigation 

It further remains difficult to explain why an effect of the cannulation and injection procedure 

was found in the spatial tasks and not in the non-spatial tasks, whereas an injection of 

halopendol 250 ng into the dorsal stnatum does not further attenuate spatial localization of the 

hidden platform The cannulation effect itself may be taken to indicate that the areas, through 

wich the cannulas are running, play a role in the observed behaviour 

Second, the notion of the term 'cue' may be subject of discussion Often, the terms stimulus 

and cue are used interchangeably among different authors, although they are not always 

meant to indicate the same 

In the spatial localization task, the external, distal cues may be regarded as a complex set of 

formerly neutral stimuli that gam meaning dunng the training period and acquire the ability to 

direct the animal to the hidden platform The nucleus accumbens is supposed to play a role in 

this process 

The nucleus accumbens is already known to be involved in the process of secondary 

reinforcement (Everitt et a l , 1989, Cador et a l , 1991), in which a previously neutral stimulus 

gains meaning via association with a primary (natural) remforcer, thus acquiring the ability to 

motivate the animal to respond in a particular way This process is proposed to enact within 
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the amygdala (known for processing distinct elements of a single stimulus (Scheel-Kruger and 

Willner, 1991)) and its connection to the accumbens (Cador et a l , 1991) 

In a similar way, we propose the nucleus accumbens to be involved in the process of encoding 

the meaning of a complex set of stimuli (the spatial relations between environmental stimuli) in 

association with an appropnate motor response (escaping), enacting within the neuronal 

pathway of (at least) the hippocampus and its connection to the accumbens The 

hippocampus has previously been demonstrated to process the relationships between external 

stimuli in constructing a spatial map of the environment (O'Keefe and Nadel, 1978) and, in a 

broader sense, to process complex sets of contextual stimuli (Sutherland et a l , 1989, 

Sutherland and Rudy, 1989) The dopaminergic activity in the nucleus accumbens might then 

strengthen the association between the information on the spatial relations among external 

cues and the appropriate responses of approaching and escaping onto the platform, possibly 

because of rewarding properties of the escape from the water 

In contrast, the visible platform is not regarded as a cue The visible platform acts as a clear 

beacon and learning to escape onto it is regarded as very straightforward the only 

requirement is heading towards the platform and climbing onto it The hippocampus is not 

involved in this response (Morns et al, 1982) Although, of course, there is a small learning 

component in this task (the rat has at least to learn about the procedure), it is mainly regarded 

as a control test for sufficient swimming abilities, detecting capacities and motivational drive to 

escape from the water (Morns, 1981 and 1984) The brainstem, including the colhculus 

superior and the basal ganglia (i), has been reported to sustain the response in the MWM with 

the visible platform (Whishaw and Kolb, 1984) However, more precise expenments are 

required to investigate which one or which part of these structures in particular is involved 

Nevertheless, it is difficult to appreciate the precise difference between the visible platform in 

the non-spatial MWM and the stimulus (the wall of the watertank) involved in directing the rat's 

behaviour in the one tnal swimming test, used to demonstrate a role for the accumbens in cue-

directed behaviour (Bos et a l , 1991, Bos, 1991) In fact, the wall-stimulus was even more 

proximal and may have had less meaning than the visible platform From this point of view, it is 

not easy to understand why the former is said to direct the animal's behaviour and the latter is 

not The difference may be that the former does not present the solution, whereas the latter 

does 

With respect to the proposed function of the dorsal striatum in non-cue directed behaviour, it is 

stressed that this area receives a huge amount of input from many cortical areas, among 

which sensory cortices This fact implies, as can be understood intuitively, that behaviour 

controlled by (dopaminergic activity from) the dorsal striatum is not said to be without any 

influence from external stimuli or cues It only means that the external information reaching the 

dorsal striatum via the cortical sensory, motor and association areas may be much more 

processed, in this way being part of a complex set of 'internal factors' (considerations, 

motivations, experiences, recollections, etc ) 
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OVERALL 

In conclusion, the results from the expenments presented in this thesis support the hypothesis 

of a differential role for striatal dopamine in learning and memory the dopaminergic activity in 

the ventral striatum appears to play a role in learning and memory tasks based on or directed 

by external cues, whereas the dopaminergic activity in the dorsal striatum appears to sustain 

internally structured behaviours in learning and memory tasks In addition, striatal 

dopaminergic activity appears to be most effective in the early stages of the learning and 

memory process 

Issues remaining to be investigated include the establishment of which of the (dopaminergic) 

transmitter sub-types are involved, the nature of the stimuli or cues that are capable of 

directing the animal's behaviour and the relationships of the nucleus accumbens with the 

hippocampus on the one hand and the amygdala on the other 
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SUMMARY 

The present thesis examined the hypothesis of a differential role for ventral and dorsal striatal 

dopamine in cue-directed and non cue-directed aspects of learning and memory, respectively, 

in three different learning and memory tasks The experiments (described in the chapters 2-7) 

enabled us to investigate the effects of specific dopaminergic treatments on the different 

aspects 

SOCIAL MEMORY (CHAPTER 2) 

The dopamine DA, agonist DPI, injected into the nucleus accumbens immediately after the 

training trial, significantly decreased the duration (and frequency) of social investigation of a 

conspecific juvenile by an adult male rat at the second exposure after a long intertrial interval 

This finding is interpreted as an improvement in recognition of the juvenile by the adult animal 

The dopamine DA antagonist ergometnne, injected into the nucleus accumbens in 

combination with DPI at the appropriate time, was able to attenuate the effect of DPI An 

injection of ergometnne alone was ineffective Thus, the memory improvement appears to be 

dopamine specific 

We have now provided evidence for a memory improving role of the dopaminergic activity at 

the DA, level within the nucleus accumbens 

SPATIAL MAPPING (CHAPTERS 3-5) 

An involvement of dopaminergic activity in allocentnc spatial localization was indicated by 

effects found in the standard Morris water maze task after pre-traming systemic injections of 

the dopaminergic antagonist halopendol in low doses These doses impaired neither 

locomotion in the open field test nor learning to escape onto a visible platform in the Morns 

maze 

Further investigations provided evidence for a specific role of the dopaminergic activity in the 

nucleus accumbens Acquisition of allocentnc spatial localization of the platform was similarly 

impaired after pre-trainmg intra-accumbens injections of halopendol at low doses in a dose-

dependent manner Again, these doses did not significantly impair locomotion in the open field 

or learning to escape onto a visible platform (non-spatial) 

In contrast, results from halopendol treatment in the dorsal striatum yielded a different picture 

Halopendol at a low dose did not affect allocentnc spatial learning, while two higher doses 

impaired escaping onto both the visible and invisible platform (without a dosis-response 

relationship in both situations) This finding suggests that dopaminergic activity in the dorsal 

stnatum is not specifically involved in spatial localization in the Moms water maze 

Good performance in the Morns water maze in well-trained rats did not deteriorate after high 

doses of halopendol injected into the accumbens or into the dorsal striatum, pnor to the 

retneval test (of 3 or 4 tnals) 
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The involvement of the dorsal striatum in egocentnc spatial localization has been regarded in a 

simple water T-maze In this task (not descnbed in the Introduction, but see chapter 5), the 

animal can leam to find the escape platform by consistently turning to one side, irrespective of 

the environment No significant effect of the chosen doses of halopendol in the dorsal striatum 

was found on egocentnc spatial localization in this simple T-maze 

Overall, the nucleus accumbens was demonstrated to play a specific role in the acquisition of 

allocentnc spatial learning, while the dorsal striatum only exerted a non-specific influence 

Whereas acquisition was affected, retrieval of the well-learned information and response was 

unaffected by striatal dopaminergic manipulation 

RADIAL ARM MAZE BEHAVIOUR (CHAPTERS 6 AND 7) 

One-tnal retrieval of acquired information in rats trained to solve a simple radial arm maze task 

is not affected by alterations in the dopaminergic activity in the ventral or the dorsal striatum 

In contrast, inhibition of dopaminergic activity in the dorsal striatum by means of pre-training 

injections of the antagonist halopendol dose-dependently impaired classic radial arm maze 

learning by impainng some specific aspects of the maze behaviour These aspects include 

starting to visit an arm and to collect a food pellet, visiting a next arm and the development of 

an effective response pattern while collecting the pellets, neither general motor activity nor the 

number of revisits was altered 

In sum, radial arm maze learning is partly sensitive to dorsal striatal dopaminergic inhibition 

A brief general discussion is given in chapter 8, addressing three issues First, attention is paid 

to when dopaminergic treatment is most effective during the course of the learning and 

memory process The choice of the applied dopaminergic agents and its implications are 

explained The third and main issue concerns the question whether the observed effects after 

dopaminergic treatment support our hypothesis 

Dopaminergic activity in the nucleus accumbens appears to play a specific role in the two 

tasks, in which external cues or stimuli are very important, namely social recognition of the 

juvenile based on olfactory stimuli from the anogenital region and spatial learning in the MWM 

based on relations between environmental stimuli, the dopaminergic activity in the dorsal 

striatum is not specifically involved in spatial learning in the MWM On the other hand, dorsal 

stnatal dopamine has been shown to affect aspects of radial arm maze behaviour, that are not 

directed by external stimuli but structured by internal (intnnsic) factors In conclusion, the data 

from our expenments support the hypothesis of a differential role for dopamine in the ventral 

striatum (especially the nucleus accumbens) and the dorsal striatum in externally directed and 

internally structured aspects of learning and memory processes, respectively 
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S A M E N V A T T I N G 

Dit proefschrift onderzocht de hypothese over een mogelijke differentiële rol voor dopamine in 

het ventrale versus het dorsale striatum in leer- en geheugenprocessen 

Deze hypothese veronderstelt dat ventraal stnataal dopamine betrokken is bij aspecten van 

leren en geheugen die gestuurd worden door extern (t o ν het organisme) aanwezige cues, 

terwijl dorsaal stnataal dopamine betrokken is bij aspecten van leren en geheugen die niet 

door externe cues, maar door interne factoren worden gestructureerd 

De hypothese werd onderzocht in drie verschillende leer- en geheugentaken in de rat De 

uitgevoerde experimenten, die beschreven staan in de hoofdstukken 2 t/m 7, boden de 

mogelijkheid om de effecten van specifieke dopammerge manipulatie op bovengenoemde 

aspecten te bestuderen 

SOCIAAL GEHEUGEN (HOOFDSTUK 2) 

De dopamine DA, agonist DPI werd geïnjecteerd in de nucleus accumbens direct na de eerste 

ontmoeting tussen een volwassen mannelijke rat en een jonge soortgenoot Dit verlaagde 

(ι ν m een controle injectie) significant de duur (en frequentie) van het sociaal besnuffelen van 

de jonge soortgenoot door de volwassen rat tijdens een tweede ontmoeting, nadat een relatief 

lang interval was verstreken tussen de eerste en tweede ontmoeting Dit gegeven wordt 

geïnterpreteerd als een verbetering van de herkenning van het jong ratje door de volwassen 

rat 

De dopamine ОД antagonist ergometrine, geïnjecteerd in de nucleus accumbens in 

combinatie met DPI op het juiste tijdstip, was in staat het effect van DPI te verlagen Een 

injectie van ergometnne alleen was ineffectief De verbetering van het geheugen door DPI 

blijkt dus dopamine specifiek te zijn 

Onze resultaten vormen een sterke aanwijzing voor een geheugen verbeterende rol van de 

dopammerge activiteit op het niveau van de DA, receptoren in de nucleus accumbens 

S P A T I E E L G E D R A G IN W A T E R - D O O L H O V E N (HOOFDSTUKKEN 3 T/M 5) 

Systemische injecties van de dopammerge antagonist halopendol in lage doseringen hadden 

effect op de prestatie van ratten in het standaard Morris waterbad (aan het water ontsnappen 

via een verborgen platform) Deze effecten wezen op een betrokkenheid van dopammerge 

activiteit in allocentnsche spatiele localisatie (localisatie van een object in de ruimte op grond 

van relaties tussen andere objecten in die ruimte) In de gebruikte lage doseringen 

verslechterde halopendol de locomotor activiteit in een open veld noch het vermogen om aan 

het water te ontsnappen via een goed zichtbaar platform (niet spatieel) 

Vervolgstudies verschaften aanwijzingen voor een specifieke betrokkenheid van de nucleus 

accumbens Injecties van halopendol in lage dosenngen in de accumbens verslechterde op 

eenzelfde, dosis-afhankelijke manier het aanleren van de allocentnsche spatiele localisatie van 
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het platform Ook nu gold weer dat de gekozen doseringen de locomotor activiteit in het open 

veld noch het leren te ontsnappen via een zichtbaar platform veranderden 

In contrast hiermee gaven de resultaten van behandeling met halopendol in het dorsale 

striatum een ander beeld te zien In een lage dosering had halopendol geen effect op het 

allocentnsch spatiele leren, terwijl twee hogere dosenngen het ontsnappen via zowel het 

onzichtbare als het zichtbare platform verslechterden (zonder een dosis-respons relatie in 

beide situaties) Dit gegeven suggereert dat de dopammerge activiteit in het dorsale striatum 

geen specifieke rol speelt bij de spatiele localisata in het Morris waterbad 

Een hoge dosering van halopendol, toegediend in de nucleus accumbens of in het dorsale 

striatum in goed getramde dieren, had geen effect op de goede prestatie van deze dieren in de 

test tnals 

De betrokkenheid van het dorsale striatum in egocentrische spatiele localisatie (localisatie van 

een object op basis van relaties tussen het object en het organisme zelf (afstand en richting)) 

werd bekeken in een simpele, water T-doolhof In deze taak (niet beschreven in de Introductie, 

maar zie hoofdstuk 5) moet een dier leren te ontsnappen op een platform, dat te vinden is 

door altijd eenzelfde draai te maken in de T-maze (óf altijd links, óf altijd rechts), onafhankelijk 

van de omgeving In deze eenvoudige taak werd geen specifiek effect gevonden van een 

gekozen dosenngen van halopendol in het dorsale striatum op egocentrische spatiele 

localisatie 

Samengevat toonden de resultaten een specifieke rol voor de nucleus accumbens in 

allocentnsch spatieel leren, terwijl het dorsale striatum alleen een niet-specifieke invloed 

uitoefende Terwijl de acquisitie wel beïnvloed kon worden, werd het terughalen van goed 

geleerde informatie en een goed getrainde response niet veranderd door striatale 

dopammerge manipulatie 

RADIAAL DOOLHOF GEDRAG (HOOFDSTUKKEN 6 EN 7) 

Veranderingen in de dopammerge activiteit in het ventrale of dorsale striatum hadden geen 

effect op de prestatie van dieren die goed getraind waren in het oplossen van een simpele 

radiaal doolhof-taak, tijdens één test-tnal 

Daarentegen verslechterde inhibitie van de dopammerge activiteit in het dorsale striatum, door 

locale toediening van de antagonist halopendol vooraf aan de trainmgsblokken, het leren van 

de oplossing van de klassieke vorm van de radiaal doolhof, door enkele aspecten van het 

gedrag in de doolhof te beïnvloeden Tot deze aspecten behoorden het starten met bezoeken 

van de eerste arm en beginnen met het verzamelen van de voedselbrokjes, het bezoeken van 

elke volgende arm en het ontwikkelen van een vast en effectief respons-patroon tijdens het 

verzamelen van het voer, de algehele motor activiteit was niet verminderd en het aantal 

bezoeken aan reeds bezochte armen was evenmin veranderd 

Concluderend is het leer-gedrag in de radiaal doolhof ten dele gevoelig voor verminderde 

dopammerge activiteit in het dorsale striatum 
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In hoofdstuk 8 staat een korte algemene discussie weergegeven, waann een drietal issues 

worden besproken Allereerst wordt onderzocht wanneer tijdens het leer- en geheugenproces 

behandeling met een dopaminerge stof het meest effectief is De keuze van de gebruikte 

dopaminerge stoffen en de implicatie daarvan worden toegelicht Het derde en voornaamste 

punt betreft de vraag of de geobserveerde effecten als gevolg van behandeling met 

dopaminerge stoffen in de gebruikte leer- en geheugentaken de voorgestelde hypothese 

ondersteunen 

In de twee leer- en geheugentaken, waann externe cues of stimuli een belangnjke rol spelen, 

nl de sociale herkenning van een jong ratje op basis van geurprikkels uit het anogenitale 

gebied en het spatieel leren in het Morns waterbad op grond van relaties tussen stimuli in de 

omgeving, blijkt de dopaminerge activiteit in de nucleus accumbens een specifieke rol te 

spelen, terwijl dopaminerge activiteit in het dorsale striatum geen specifieke invloed heeft op 

het spatieel leren Wel is gebleken dat dorsaal stnataal dopamine invloed heeft op aspecten 

van het leergedrag binnen de radiaal doolhof, die niet door externe stimuli maar door interne 

factoren gestuurd worden 

Concluderend ondersteunen de resultaten uit onze experimenten derhalve de hypothese 

aangaande een differentiële rol voor dopamine in het ventrale striatum (in het bijzonder de 

nucleus accumbens) en het dorsale stnatum in extern gestuurde respectievelijk intern 

gestructureerde aspecten van leer- en geheugenprocessen 
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NAWOORD 

Eindelijk is dit proefschrift nu gereed Op weg naar een dergelijk resultaat heeft menig 

promovendus wel eens het gevoel er helemaal alleen aan bezig te zijn Zo ook ik 

Toch zijn er uiteraard veel mensen die onderweg hun bijdrage leveren, steun geven en zo het 

mogelijk maken dat het proefschnft er komt Een aantal van die mensen wil ik hier met name 

noemen 

Allereerst heeft mijn promotor Lex Cools mij de mogelijkheid gegeven met het onderzoek te 

beginnen Geïnteresseerd in hersenen en gedrag ben ik op de afdeling binnengekomen als 

een leek op het terrein van de functies van dopamine en het striatale hersengebied In de loop 

der jaren heb ik over allerlei aspecten daarvan veel geleerd van mijn promotor, die op zijn voor 

mij onnavolgbare wijze gepoogd heeft mij te stimuleren De afdeling was altijd vol met 

mensen, met wie ik plezierig heb samengewerkt mijn mede-onderzoekers Bart Ellenbroek, 

Ruud van den Bos, Will Spooren, Ene Pnnssen en Nijnke Rots, de medewerkers Mia 

Smeekens, Annette Willemen, Harry van Aanholt, Dick Heeren, Walter Hoeboer en Luuk 

Lubbers, de studenten Annette, Petra, Manette, Helmy en veel anderen van wie ik helaas de 

naam kwijt ben (mijn geheugen is niet zo goed) Naast het werken herinner ik mij ook het 

kijken naar het Wimbledon toernooi en de Tour de France, leuke uitstapjes (met name het 

uitstapje dat ik mocht mee-organiseren maar waar ik door een motorongeluk maar voor een 

deel zelf aan mee kon doen) en goede voetbalpartijen Ik kan zeker zeggen dat ik in Nijmegen, 

in mijn eerste baan, veel heb geleerd over werken, samenwerken en het begeleiden van 

mensen 

Soms nopen omstandigheden je weleens een andere koers uit te zetten Op de 

gedragsafdeling van het 1MB aan de universiteit van Utrecht heb ik in de tweede helft van mijn 

project, niet geheel vrijwillig maar wel bewust, een tweede werkkring gezocht en gevonden Ik 

wil Berry graag bedanken voor de gelegenheid om bij hem te werken en voor alle 

ondersteuning die hij verleende bij de overgang Het was hier niet minder vol met mensen Ik 

noem en bedank mijn mede-gedragsonderzoekers Thorwald Hol, Enk van Doremalen, Hans 

Maaswinkel en Inge van Rijzingen, onze analiste Marlou Josephy en onze computerman 

Jacob Rousseau, de studenten bij Berry, waaronder Nicolette, en de grote chemiegroep van 

het 1MB (teveel om op te noemen) Ik heb met heel veel plezier de kamer mogen delen met 

Marlou, bedankt De zeiluitstapjes met de gedragsgroep en de neuro-zeildagen voor het hele 

1MB waren natuurlijk ongeëvenaarde evenementen Een andere omgeving geeft je overigens 

een nieuw zicht op de begrippen werken & samenwerken en het begeleiden van mensen 

Ik heb ook veel geleerd van de twee studenten die hun stage combineerden met mijn wens tot 

de uitvoering van een aantal experimenten Manette van Westerlaken in Nijmegen en 

Nicolette van Duursen in Utrecht Ik heb niet de illusie dat ik de stage van Manette goed heb 
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begeleid, ik denk wel dat de stage van Nicolette veel beter ging. Ik bedank Nico voor de 

gezelligheid en haar enthousiasme. 

Van de mensen op de achtergrond wil ik met name Angela en Erica van de stal noemen en 

Gerard Peek van de fotografie. 

Ik ben blij met mijn paranimfen Ruud en Marlou. 

Mijn vrienden wil ik bedanken voor de broodnodige aandacht en afleiding. Leny Lekkerkerk en 

Ruud hebben mij diverse malen de gelegenheid gegeven stoom af te blazen; bedankt. 

Pa en ma, ik dank jullie voor de vanzelfsprekendheid waarmee jullie mij door de jaren heen 

alle kans hebben geboden. Broer, met name heel erg bedankt voor je trekkersrol aan het 

einde van dit karwei en voor alle illustraties in dit boekje. Jan, ik dank je voor alle steun die je 

me hebt gegeven, hoewel mijn wispelturigheid het soms niet eenvoudig maakte daaraan vorm 

te geven, en voor alle inspanning die je hebt geleverd om de productie van dit proefschrift 

mogelijk te maken. Onze poezen ben ik dankbaar voor hun niet aflatende aanwezigheid 

tijdens het fysieke prepareren van dit werkje op de computer, hoewel ze vaak deden wat ik 

ook graag had willen doen: 
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Rijksuniversiteit van Utrecht. De resultaten van het uitgevoerde onderzoek staan 

beschreven in dit proefschrift. 
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