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of CO by hydrogen atoms

Lei Song,1 N. Balakrishnan,2 Ad van der Avoird,1 Tijs Karman,1
and Gerrit C. Groenenboom1,a)
1Theoretical Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135,
6525 AJ Nijmegen, The Netherlands
2Department of Chemistry, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas,
Nevada 89154-4003, USA

(Received 17 April 2015; accepted 12 May 2015; published online 26 May 2015)

We present quantum-mechanical scattering calculations for ro-vibrational relaxation of carbon mon-
oxide (CO) in collision with hydrogen atoms. Collisional cross sections of CO ro-vibrational transi-
tions from v = 1, j = 0 − 30 to v ′ = 0, j ′ are calculated using the close coupling method for collision
energies between 0.1 and 15 000 cm−1 based on the three-dimensional potential energy surface of
Song et al. [J. Phys. Chem. A 117, 7571 (2013)]. Cross sections of transitions from v = 1, j ≥ 3
to v ′ = 0, j ′ are reported for the first time at this level of theory. Also calculations by the more
approximate coupled states and infinite order sudden (IOS) methods are performed in order to test the
applicability of these methods to H–CO ro-vibrational inelastic scattering. Vibrational de-excitation
rate coefficients of CO (v = 1) are presented for the temperature range from 100 K to 3000 K and are
compared with the available experimental and theoretical data. All of these results and additional rate
coefficients reported in a forthcoming paper are important for including the effects of H–CO collisions
in astrophysical models. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4921520]

I. INTRODUCTION

Carbon monoxide (CO) is the second most abundant mole-
cule in the universe. Its |∆v | = 1 ro-vibrational bands around
4.7 µm are commonly observed in protoplanetary disks using
the CRyogenic high-resolution InfraRed Echelle Spectrograph
(CRIRES) on the Very Large Telescope (VLT).1,2 These CO
bands now rank among the best tracers of the physical condi-
tions in these disks, thus contributing to the understanding of
the gas kinematics. Most analyses of CO ro-vibrational bands
assume local thermodynamic equilibrium (LTE). However,
more accurate studies of CO emission lines, such as those
concerning the efficiency of IR/UV fluorescence, require non-
LTE methods.3 Accurate non-LTE modeling requires reliable
collision rate coefficients of CO with its dominant collision
partners H, He, and H2. These rate coefficients can be ob-
tained from scattering calculations based on the interaction
potentials of CO with its partners. Besides the accurate close
coupling (CC) method, more approximate quantum mechan-
ical approaches such as the coupled states (CS)4,5 and IOS6

methods are commonly used for such scattering calculations.
The H–CO collision dynamics has been studied in several

experiments7–9 and calculations.10–16 Until now, experimental
collision rate coefficients are available only for v = 1 → 0
transitions, without resolution of the transitions between
individual rotational levels. The majority of the calculations
focus on pure rotational or pure vibrational inelastic collision
processes. Progress in ro-vibrational cross section calculations
has been slow. The difficulty of reliable H–CO ro-vibrationally
inelastic scattering calculations is related to the fact that

a)Electronic mail: gerritg@theochem.ru.nl

HCO is a chemically bound species, in contrast with other
astrophysically important collision complexes such as He–CO
and H2–CO that are bound only by weak van der Waals
forces. This is illustrated by the depth of the well in the
three-dimensional (3D) H–CO potential energy surface (PES)
of Song et al.,17 which is 0.835 eV (6738 cm−1), whereas
He–CO and H2–CO are bound only by about 23 cm−1 and
94 cm−1, respectively.18–21 Another essential difference with
He–CO and H2-CO important for inelastic collision processes
is that the H–CO potential has a barrier for dissociation of
HCO into H + CO with a height of 0.141 eV (1138 cm−1)
above the H + CO limit, while He–CO and H2–CO have
no barriers. In principle, the strong interaction in H–CO
gives rise to strong vibrational coupling and highly efficient
translation-vibration (T-V) energy transfer, but in order to get
into the region of the deep well, the H atom approaching
the CO molecule must first pass over or tunnel through
the barrier. As one will see below, this leads to a steep
rise of the ro-vibrationally inelastic cross sections when
the collision energy surpasses the threshold of 1138 cm−1.
When the incoming CO molecule is in a rotationally excited
state, it may use some of its rotational energy in crossing
the barrier. This involves rotation-translation (R-T) coupling,
which depends sensitively on the anisotropy of the PES in
the long range region. Also pure rotationally inelastic cross
sections are mostly determined by the long range anisotropy,
while the ro-vibrationally inelastic transition cross sections are
sensitive to the long and short range anisotropy of the H–CO
potential, as well as to its dependence on the CO bond length.

A consequence of these complexities is that in H–CO
scattering calculations, a large basis set is required to converge
the cross sections. Green et al.13 verified this point in their
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scattering calculations for ro-vibrational excitation of CO
(v = 0, j = 0) by H atoms. The convergence of the cross
sections was tested in a series of CS calculations at a total
energy of 1 eV (8065 cm−1) with basis sets of increasing size.
For ro-vibrational transitions to v ′ = 1 and j ′ values up to 30 as
considered in the present paper, they found that convergence
of the cross sections to within about 10% requires basis
sets containing vibration functions up to v = 8 and rotation
functions up to j = 90. Even for qualitative results, converged
within a factor of 2, basis sets with two or more vibrational
levels above the level of interest should be included. In the full
quantum CC approach, the central processing unit (CPU) time
for the rate-limiting step scales roughly with the third power of
the basis size. Therefore, the required large basis sets result in
heavy computational efforts. An additional complication was
shown by Shepler et al.16 in their CC rigid-rotor calculations
for CO (v = 0, j = 0) excitation by H atoms based on four
different PESs. Their studies revealed that the long-range
behavior of the PES strongly affects the inelastic collision
cross sections. So it is necessary in the scattering calculations
to propagate to a relatively long distance to obtain reliable
inelastic cross sections, which increases the computational
effort as well.

The incomplete knowledge about ro-vibrational rate
coefficients for H–CO collisions obliges astronomers to use
scaling laws to fill the gaps. In a recent paper, Thi et al.3

modeled CO ro-vibrational emission from Herbig Ae discs
by using extrapolated rate coefficients for H–CO based on
the values reported by Balakrishnan et al.22 In the work
of Balakrishnan et al., pure rotational rates were calculated
for CO rotational levels up to j = 7 for a range of gas
temperatures of 5 K ≤ T ≤ 3000 K, while pure vibrational
transition rates were computed in the IOS approximation up to
v = 4 for a range of gas temperatures of 100 K ≤ T ≤ 3000 K.
The missing rotational rates for j values higher than 7 and
vibrational rates below 100 K result in large uncertainties in the
extrapolation with the scaling laws. Based on the information
from the present paper, we report in a forthcoming paper23 rate
coefficients for ro-vibrational v = 1, j = 0 − 30 → v ′ = 0, j ′

and v = 2, j = 0 − 30 → v ′ = 1, j ′ transitions and vibrational
rates up to v = 5 for a range of gas temperatures 10 K
≤ T ≤ 3000 K. Furthermore, we introduce a new, more
reliable method to extrapolate all ro-vibrational transition
rates for CO in initial states with v ≤ 5, j ≤ 30.

The accuracy of calculated inelastic cross sections
depends strongly on the quality of the PES used. The
3D BBH24 and WKS12 potentials were used in scattering
calculations in previous work. The BBH potential, however,
is insufficiently accurate to reproduce stimulated emission
pumping (SEP) spectra.12,25 This was the reason why Keller
et al.12 constructed the WKS potential, but they did not include
a sufficiently large number of ab initio data points at large
H–CO distances to make their potential accurate also in the
long range. It was demonstrated by Shepler et al.16 that this
seriously affects the accuracy of rotationally inelastic cross
sections. The 3D PES of Song et al.17 was constructed with a
focus on the long range behavior. In bound state calculations
of HCO, it reproduces multiple experimental data, which show
that it is accurate also in the well region. In the present work,

we adopt this (SAG) potential17 to calculate state-to-state
ro-vibrational de-excitation cross sections for initial states
with v = 1, j = 0 − 30 to final states v ′ = 0, j ′. In Sec. II, we
briefly describe the theoretical methods and computational
details. The different basis sets and approximation methods
are discussed in Sec. III. In the same section, we present
the calculated ro-vibrational (de-)excitation cross sections
and vibrational quenching rate coefficients. Our conclusions
follow in Sec. IV.

II. CALCULATIONS

A. Theoretical methods

The Hamiltonian in body-fixed (BF) coordinates for
H–CO(X 2

A′) can be written (in atomic units) as

Ĥ = − 1
2µR

∂2

∂R2 R +
Ĵ2 + ĵ2 − 2ĵ · Ĵ

2µR2

+Vint(r,R, θ) + ĤCO, (1)

where µ = mHmCO/(mH + mCO) is the reduced mass of the
H–CO complex. The vector R with length R, connecting the
CO center of mass with the H atom, is embedded along the
z axis. The vector r, with length r , points from C to O. The
angle θ is the angle between the vectors R and r. The operator
ĵ is the rotational angular momentum of the CO molecule,
while Ĵ is the total angular momentum operator of the H–CO
complex. The interaction energy between CO and H is written
as Vint(r,R, θ). The CO Hamiltonian ĤCO is given by

ĤCO = −
1

2µCOr
∂2

∂r2r +
ĵ2

2µCOr2 + VCO(r), (2)

where µCO is the reduced mass of CO and VCO(r) is the
potential of free CO.

To solve the time-independent Schrödinger equation with
the Hamiltonian of Eq. (1), the wave functions are expanded
as

Φ =
1
R


n

|n⟩ψn(R), (3)

where ψn(R) are functions of the radial coordinate, while the
channel basis functions |n⟩ are given by

|n⟩ = |v, j, J,K,M⟩ =
2J + 1

4π

1/2 1
r
χv, j(r)

×Yj,K(θ,φ)D(J )
M,K(α, β,0)∗. (4)

They consist of the j-dependent vibrational wave functions
χv, j(r) of free CO and a BF angular basis set. The spherical
harmonics Yj,K(θ,φ) and Wigner D-functions D(J )

M,K(α, β,0)∗
form the angular basis set, in which the angles (θ,φ) are the
polar angles of the CO axis with respect to the BF frame,
and the Euler angles (α, β,0) define the orientation of the BF
frame with respect to a space-fixed (SF) frame. The quantum
numbers v and j label the vibrations and rotations of CO.
Other quantum numbers are the total angular momentum J
of the H–CO complex and its projections K and M on the
BF and SF z-axes, respectively. Angular basis functions with
parity p = (−1)J+m symmetrized under inversion are given by



204303-3 Song et al. J. Chem. Phys. 142, 204303 (2015)

1
√

2


Yj,KD(J )∗

M,K + (−1)mYj,−KD(J )∗
M,−K


for m = 0,1 and K > 0

Yj,0D(J )∗
M,0 for m = 0 and K = 0

.

(5)

Substituting the expansion of Eq. (3) into the time-
independent Schrödinger equation and projecting with ⟨n′|
gives the coupled channel equation,

∂2

∂R2ψn′(R) =


n
⟨n′|Ŵ |n⟩ψn(R). (6)

The operator Ŵ is introduced as

Ŵ = −2µ

E − ĤCO −

Ĵ2 + ĵ2 − 2 ĵ · Ĵ
2µR2 − Vint(r,R, θ)


, (7)

where E is the total energy. The eigenvalues of the Hamiltonian
ĤCO are the asymptotic channel energies written as ϵ v, j. The
difference (E − ϵ v, j) is the collision energy Ev, j. Solving
the coupled channel equations with the appropriate boundary
conditions produces the scattering S matrix, which includes all
the information needed to deduce the state-to-state scattering
cross sections σv, j→ v′, j′(Ev, j). Computational details are given
in Sec. II B. This approach, with the channel basis chosen
sufficiently large to converge the solutions of the coupled
channel equations, is the accurate CC scattering method used
for most calculations in this article. If the off-diagonal part
of the Coriolis coupling is neglected, i.e., if the operator
ĵ · Ĵ is replaced by ĵz Ĵz so that K , the eigenvalue of both
ĵz and Ĵz, becomes a good quantum number, we obtain
the CS approximation. When the exact diagonal Coriolis
coupling term is retained, this approach is more accurate
than the commonly applied CS approximation4,5 in which
the centrifugal kinetic energy term ( Ĵ2 + ĵ2 − 2 ĵ · Ĵ)/2µR2 is
approximated by a term L(L + 1)/2µR2 with some effective
value of the quantum number L. When using the CS
approximation, the matrix ⟨n′|Ŵ |n⟩ becomes block-diagonal,
with a block for each K , and the coupled channel equations
of Eq. (6) can be separated into subsets for each K to
reduce the computational effort. Another method applied in
this article is the IOS approximation. In this method, which
ignores the rotational energy spacings in comparison with
the collision energy6 and neglects the CO rotational kinetic
energy term in the Hamiltonian, it is assumed that the angle
θ of the CO molecule remains fixed during the collision.
The IOS calculations were performed with the molecular
scattering program MOLSCAT26 to obtain the total vibrational
v = 1 → v ′ = 0 quenching cross section. Coupled channels
equations in a pure vibrational basis set are solved in the IOS
approximation for a fixed angle θ and the results are averaged
over 50 Gauss-Legendre quadrature points θi with the proper
weights. The basis set includes the lowest 15 vibrational levels,
which is sufficient to converge the v = 1 → v ′ = 0 vibrational
transition cross sections.

Rate coefficients for ro-vibrational energy transfer can be
obtained by integrating the corresponding state-to-state cross
sections over a Boltzmann distribution of collision energies at

a certain temperature T ,

rv, j→ v′, j′(T) =
(

8kBT
πµ

) 1
2 1

(kBT)2
 ∞

0
σv, j→ v′, j′(Ev, j)

× exp(− Ev, j

kBT
) Ev, j dEv, j, (8)

where kB is the Boltzmann constant. The state-to-state cross
sections σv, j→ v′, j′(Ev, j) can be obtained with the CC method
or the CS approximation. The total vibrational quenching
cross section from a specific ro-vibrational initial state v, j to
final state v ′ is the sum of cross sections over all final j ′ states
of the v ′ state, i.e.,

σv, j→ v′(Ev, j) =

j′
σv, j→ v′, j′(Ev, j). (9)

The corresponding rate coefficients are written as rv, j→ v′(T).
Then, by thermally averaging the rate coefficients over
different initial j states, we get the vibrational de-excitation
rate coefficients based on the CC method or the CS
approximation as follows:

rv→ v′(T) =


j gj exp(− ϵv, j
kBT

)rv, j→ v′(T)
j gj exp(− ϵv, j

kBT
) , (10)

where gj = 2 j + 1 is the degeneracy of the j rotational level.

B. Computational details

Having described the theoretical formalism, we turn to
the numerical details in the calculations of the integral cross
sections. The CC and CS calculations were performed with
our own scattering codes written in Fortran and Scilab,27

which include some features developed to save computational
resources. As usual in scattering calculations, we expand
the anisotropic interaction potential Vint(r,R, θ) in Legendre
polynomials Pl(cos θ) and calculate its matrix elements over
the angular basis of Eq. (4) analytically in terms of 3 j-
symbols.6 We prepare the angular integrals and R-dependent
angular expansion coefficients of the anisotropic potential in
advance and save them on disk. The coupled channel equations
are solved with the renormalized Numerov propagator.28,29

During the propagation, instead of keeping the W -matrices
in core, our program recomputes the W -matrix from the
prepared angular integrals and potential expansion coefficients
for every R point, which considerably saves memory. The
rate-limiting steps are matrix multiplications and inversions
in the renormalized Numerov algorithm; these are run on
several cores in parallel with optimized MKL LAPACK
library routines. Also the fact that the expression for the
W -matrix elements of the potential becomes simpler in the
BF angular basis than in the usual SF basis saves both
computer time and storage. Moreover, when applying the CS
approximation, we divide the problem into smaller blocks for
each K quantum number. At the end of the propagation, the
radial solutions ψn(R) associated with the BF angular basis
|n⟩ = |v, j, J,K,M⟩ are transformed into the corresponding
ones for the SF basis |v, j,L, J,M⟩ with the end-over-end
rotational quantum number L, in order to apply the scattering
boundary conditions formulated in the SF frame. The exact
solution of the space-fixed scattering Schrödinger equation at
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the outer boundary where the interaction energy Vint(r,R, θ)
has vanished is a linear combination of spherical Bessel
functions labeled with the quantum number L. The matching
of the propagated radial wave functions to spherical Bessel
functions was carried out at the boundary Rmax with values
of 40 to 18 a0 adapted to a range of collision energies from
Ev, j = 0.1 to 15 000 cm−1. The propagation step size varied
from 0.032 to 0.055 a0. The parallelization and memory
saving features of the code reduce the requirement on the
computational resources dramatically, which made it possible
to use hundreds of simple personal computers connected over
a regular ethernet network for a large number of small jobs.

As usual in scattering calculations, we exploit the property
that J, M , and the parity p are good quantum numbers and
we collect the corresponding contributions to the integral
cross sections from separate calculations. The maximum
value of J needed to converge the cross sections depends
on the collision energy and the initial j value; values of J
up to 100 were used. Using the CC method, we calculated
the state-to-state de-excitation cross sections from v = 1, j
= 0 − 30 to v ′ = 0, j ′. Initially, we adopted two basis sets
B3(61,52,40,22) and B9(79,70,59,45,45,30,30,25,25,25)
for the calculations with initial states v = 1, j = 0 − 10, where
the notation Bn( j0, j1, j2, . . . , jn) indicates a basis with the
highest vibrational level n and the highest rotational level
ji included for vibrational level v = i. We notice in Table I
that the number of channels in the B9 and B3 basis sets
increases dramatically with increasing J. The number of
channels for B3 is less than half of that for the B9 basis.
The third power of the ratio of the numbers of channels
for B9 and B3 is around 15 to 18, which implies that the
calculation with the B3 basis is 15-18 times faster than the
one with the B9 basis. To further reduce the computational
effort, we adapted the renormalized Numerov algorithm so
that we could gradually omit closed channels during the
propagation.30 This saved about 30% of CPU time and did not
deteriorate the accuracy of the results by more than 0.001%.
This truncation is based on the idea that the coupling with
higher energy levels diminishes when the potential becomes
smaller for larger R. The criterion used to truncate the channel
basis considers the channel energies and is an exponential
function of R dependent on the decay of the potential with
increasing R. The accuracy of the CS approximation is tested
by comparison with full CC calculations performed for the
initial states v = 1, j = 0 − 10 with basis B3(61,52,40,22).
The propagation was done separately for the different K
blocks of the W -matrix and the propagated results for all

TABLE I. Number of channels with the B3, B4, and B9 basis sets for total
J = 0 (parity p = 1) and J = 5,10,20,50,80 (parity p =−1).

J B3 B4 B9
(
B9
B3

)3 (
B9
B4

)3

0 179 235 443 15 7
5 1014 1335 2 508 15 7
10 1570 2075 3 880 15 7
20 2740 3660 6 760 15 6
50 4273 6061 10 700 16 6
80 4342 6326 11 390 18 6

K with −J ≤ K ≤ J were combined and transformed to the
SF basis when applying the L-dependent outer boundary
conditions.

III. RESULTS AND DISCUSSION

A. Convergence test

By comparison with the results from an even larger
basis set B9∗(84,75,64,50,50,35,35,30,30,30), we could
show that the B9(79,70,59,45,45,30,30,25,25,25) basis
yields cross sections of the transitions v = 1, j = 0 − 10
→ v ′ = 0, j ′ converged to within 10% at collision energies
Ev, j ≤ 5000 cm−1, which is in agreement with the results of
convergence tests by Green et al.13 An accuracy of 10% is
sufficient for the applications in astronomy that we are aiming
at. Even our B9 basis is still large, however, and produces
up to 11 000 scattering channels. In order to reduce our
computational efforts, we tested a smaller B3(61,52,40,22)
basis set for initial states with v = 1, j = 0 − 10. Figure 1
shows that the state-to-state cross sections from the B9 and B3
bases are similar, except that some fine resonance structures
are lost with the B3 basis set which may affect the rate
coefficients. The root mean square relative difference of the
rate coefficients from the two bases is less than 25%, which
makes the values from the B3 basis sufficiently accurate
for applications in astronomy. In addition, since resonances
become less important with increasing initial rotational
quantum number j—which will be illustrated in Sec. III C—
use of the smaller basis is expected to have a much smaller
influence on the rate coefficients for the transitions from initial
v = 1 states with j > 10. Our final choice was to employ a
B4(70,60,49,36,15) basis for the transitions from v = 1, j
= 11 − 30 and the B9(79,70,59,45,45,30,30,25,25,25) basis
for transitions from states with lower initial j values. Table I
shows that the use of CPU time with the B4(70,60,49,36,15)
basis is 6 or 7 times less than with the B9 basis.

B. Tests of the CS and IOS approximations

One of the options to calculate cross sections more
efficiently is the CS approximation. To test its accuracy,
we performed scattering calculations for initial states v = 1,
j = 0 − 10 with the B3(61,52,40,22) basis. Figure 2 shows a
comparison of total quenching cross sections from v = 1,
j = 0,5,10 to v ′ = 0 based on the CC method and the
CS approximation. The total quenching cross sections are
obtained by summation of the state-to-state cross sections
over all final rotational states, see Eq. (9). In comparison with
the accurate CC calculations, the CS approximation produces
reliable cross sections for collision energies above 1000 cm−1.
The deviation of the CS cross sections from the CC results at
lower energies becomes larger for higher quantum numbers
j. The CS approximation is obtained from the CC method
by neglecting the off-diagonal Coriolis coupling terms in the
kinetic energy operator. The terms neglected are more or
less proportional to


j( j + 1), which explains why the CS

approximation becomes worse with increasing j. So, we must
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FIG. 1. Comparison of state-to-state cross sections for H + CO calculated
with the B9(79,70,59,45,45,30,30,25,25,25) and B3(61,52,40,22) basis
sets.

conclude that the CS approximation is not suitable for the
calculation of the H–CO ro-vibrational de-excitation rates at
low temperatures. The CS approximation has the tendency to
perform well for processes dominated by short-range repulsive
interactions; in the present study of H–CO, we do not find
ourselves in that situation, however. In the top panel of
Fig. 2, we also present the cross section for vibrational
v = 1 → v ′ = 0 transitions based on the IOS approximation.
The IOS results for this transition agree fairly well with
the CC values for v = 1, j = 0 → v ′ = 0 quenching. They also
agree well with the total vibrational v = 1 → v ′ = 0 quenching
cross section from CC calculations obtained by averaging
the v = 1, j → v ′ = 0 cross sections over initial j levels, see
Eq. (10). The latter are not explicitly shown in Fig. 2, but
one can observe in this figure that the v = 1, j → v ′ = 0
cross sections hardly depend on the initial j values—apart
from resonance structures, which are most pronounced for
j = 0—so that the averaging over j has only a minor effect.

FIG. 2. Comparison of total quenching cross sections for H + CO based
on the accurate close coupling method, the coupled states approximation,
and the infinite order sudden approximation. The line labeled “IOS” shows
the cross sections of the vibrational v = 1→ v′= 0 transition from the IOS
approximation.

C. Cross sections

Examples of energy dependent state-to-state integral
cross sections of the transitions from initial states v = 1, j
= 0,5,15,25 to individual final states v ′ = 0, j ′ = 0,5,10,15,
20 are shown in Fig. 3. One observes in this figure that the
cross sections from the same initial v, j states have a similar
energy dependence. Figure 3(a) shows that the cross sections
from initial state v = 1, j = 0 have abundant structures, due to
resonances. Panels (b)–(d) of this figure illustrate that these
structures vanish with increasing initial j.

All of these state-to-state cross sections are relatively
small for low collision energy, stay more or less constant
with increasing energy, and then increase by three orders of
magnitude at energies in the range from 100 to 1000 cm−1,
followed by a flatter behavior in the high energy region. The
increase of the cross sections is steepest for the initial CO
state with j = 0, where it starts at collision energies around
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FIG. 3. State-to-state cross sections of CO in collision with H atoms from initial states v = 1, j = 0,5,15,25 to individual final states v′= 0, j′= 0,5,10,15,20.
For initial states v = 1, j = 0,5, the values are calculated with the B9(79,70,59,45,45,30,30,25,25,25) basis.

1000 cm−1. The explanation of this dramatic increase is the
existence of a barrier with a height of 1138 cm−1 in the
entrance channel of the H–CO potential surface. Vibration-
translation (V-T) and vibration-rotation (V-R) energy transfer
mainly takes place at short H–CO distances in the chemical
bonding and repulsive region of the H–CO potential, inside
of the barrier, where the potential depends most sensitively
on the CO bond length. For higher initial rotational quantum
number j of CO, the increase of the cross sections becomes
more gradual and starts at lower collision energy. This can
be explained by a release of the initial rotational energy of
CO through rotation-translation (R-T) energy transfer when
the system approaches the barrier. The additional translational
energy helps the system to overcome the barrier, so that this
can happen at lower collision energies. R-T energy transfer
is caused by anisotropic H–CO interactions, which makes it
important that the long range anisotropy of the potential is
accurate. This interplay of short and long range interactions
in H–CO leads to a much more complex behavior than in a
weakly bound system as He–CO, where ro-vibrational energy
transfer processes31 are all determined by van der Waals
interactions. Due to this dramatic increase of the cross sections
at collision energies of about 1000 cm−1, their high-energy
contribution to the rate coefficients is much more important
than usual. Therefore, cross sections at relatively high energies
needed to be computed and included in the calculation of the
H–CO rate coefficients by Boltzmann averaging over collision
energies, even for lower temperatures. This is another reason
why the calculation of rate coefficients for H–CO collisions is
so expensive.

In Fig. 4, we present the total quenching cross sections
from initial states v = 1, j = 1,8,15,20,30 to final v ′ = 0. The

general behavior of these cross sections is similar to that
of the state-to-state cross sections, but the structures in the
cross sections are washed out to some extent in the sum
of state-to-state cross sections over all final j ′ values. Apart
from resonances, the cross sections from higher initial j states
are always larger at collision energies below 1000 cm−1. For
higher energies, the total quenching cross sections for different
initial j values become almost equal and gently rise together.

The contributions from individual partial waves to the
total quenching cross sections are shown in Fig. 5 for four
different initial states with j = 0, 10, 20, and 30. In the top
panel, for a collision energy of 0.1 cm−1, the contributions are
all sharply peaked with maxima appearing at J = j. This re-
veals the dominant contribution of s-wave (L = 0) scattering at
this low energy. For a collision energy of 5000 cm−1, the contri-
butions from different total J values are much more broadly
distributed, as illustrated in the bottom panel of the figure. For
the higher initial j values of 20 and 30, the maxima still corre-
spond to J = j − 1 or j, while for lower initial j values of 0 and
10, they appear at J values higher than j. The higher the colli-
sion energy, the larger the number of partial waves needed to
obtain converged cross sections. Moreover, the contributions
from different partial waves shift to higher J for higher initial
j. For both reasons, the number and size of the computations
increase dramatically for higher collision energy.

The distributions of the final rotational levels j ′ in
ro-vibrationally inelastic v = 1, j → v ′ = 0, j ′ collisions with
collision energies Ev, j = 0.1 cm−1 and 5000 cm−1 are
presented in Fig. 6. At the low collision energy, the
final rotational level distributions are dominated by ∆ j = 0
transitions for initial j values of 0 and 10. For the higher
initial j values, they become broader. At the higher collision
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FIG. 4. Total quenching cross sections of CO in collision with H atoms from
v = 1, j = 1,8,15,20,30 to v′= 0. For initial states v = 1, j = 1,8, the values
are calculated with the B9(79,70,59,45,45,30,30,25,25,25) basis.

energy, the distributions of the final rotational levels j ′ are
broader for all initial j values, but they still show maxima for
∆ j = 0 transitions for the higher initial j values of 20 and 30.
At both collision energies, one observes oscillations in the j ′

distributions which are due to the competition of rotationally
inelastic processes induced by the terms with even and odd l in
the Legendre expansion of the anisotropic H–CO interaction
potential. This explanation is basically the same as the

FIG. 5. Contributions to the total quenching cross sections for H + CO
from different total angular momenta J for the transitions from v = 1, j
= 0,10,20,30 to v′= 0 at collision energies (a) Ev, j = 0.1 cm−1 and (b)
Ev, j = 5000 cm−1 (5210 cm−1 for j = 0).

FIG. 6. Distributions of final rotational levels j′ in the v′= 0 vibrational level
from de-excitation of initial states v = 1, j = 0,10,20,30 at collision energies
(a) Ev, j = 0.1 cm−1 and (b) Ev, j = 5000 cm−1 (5210 cm−1 for j = 0).

explanation given for the propensity of even/odd∆ j transitions
in the v = 0 ground state,17 but the nature of the oscillations
becomes less simple when vibrational inelasticity is involved.

D. Vibrational quenching rate coefficients

The vibrational v = 1 → v ′ = 0 quenching rate coeffi-
cients of CO in collisions with H atoms can be calculated
directly from the IOS approximation, but can also be obtained
from state-to-state cross sections calculated with the CC
method through the use of Eqs. (8)–(10). In Fig. 7, we
plot these rates in the temperature range from 100 K to
3000 K. The CC results are plotted as a green line with cross
markers, the IOS values calculated from the same (SAG)
H–CO potential of Song et al. are shown in the figure as
a dark red dashed line. The difference between the CC and
IOS rate coefficients is small, which implies that the IOS
method is a good approximation for the calculation of pure
vibrational de-excitation rate coefficients. The results of IOS
calculations of Balakrishnan et al.22 on the semi-empirically
adjusted WKS potential are slightly larger than our values
from the SAG potential at temperatures below 1500 K.
This is a consequence of the dissociation barrier of HCO
to H + CO on the modified WKS potential being somewhat
lower than on the SAG potential. In Fig. 7, we also plot
experimental results measured by Glass et al.8 and by von
Rosenberg et al.7 The solid lines with square and circular
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FIG. 7. Comparison of vibrational v = 1→ v′= 0 de-excitation rate coeffi-
cients of CO by collision with hydrogen atoms from different calculations
and measurements.

markers are fits to the measured data, while the dashed lines
are extrapolations of these fits to temperatures not accessed
by the measurements. Other dashed lines in Fig. 7 illustrate
some empirical formulas used in astrophysical models.32,33

The differences between the experimental data from Refs. 7
and 8 are large. von Rosenberg et al.7 only speculated on the
occurrence of H–CO collisions affecting their measurements
for other species, and they estimated the effect of collisions
with hydrogen atoms on the CO relaxation. Similar results
were obtained by Kozlov et al.9 Glass et al.8 performed H–CO
scattering experiments at various temperatures and pressures,
so we believe that their data are more reliable. Our CC and IOS
vibrational quenching rate coefficients agree well with these
data,8 which implies that the 3D SAG potential is suitable for
the calculation of vibrational quenching rate coefficients. The
IOS calculations on the modified WKS potential reproduce the
experimental data as well, which indicates that the vibrational
energy is released in the well region where the two potential
surfaces are similar and that the vibrational quenching rate
coefficients are less sensitive to the long range part of the
potential. However, as mentioned in previous publications16,34

and also here, the modified WKS potential is less successful
in predicting rotationally inelastic scattering cross sections,
owing to its less accurate long range part, and this will
probably hold also for the state-to-state ro-vibrational cross
sections and rate coefficients.

IV. CONCLUSIONS

State-to-state ro-vibrational v, j → v ′, j ′ transition cross
sections for CO in collision with H atoms are obtained by
means of the full CC method with the 3D (SAG) potential
of Song et al.17 Ro-vibrational basis sets with maximum v
and j values of 9 and 79, respectively, and up to 11,000
channels are required to converge the ro-vibrational transition
cross sections and corresponding rate coefficients to a level
appropriate for astronomical applications. Comparison with
results obtained from CS calculations shows that the CS
approach is less suitable in this case. Pure vibrational v → v ′

transition cross sections and rate coefficients are obtained

from the CC results by summation over final rotational levels
j ′ and averaging over initial levels j and they were computed
also in the IOS approximation. The CC and IOS results
are in good agreement, which shows that the IOS method
works well for v → v ′ transitions. The computed v → v ′

rate coefficients also agree with the measured data of Glass
et al.8

We find, in agreement with earlier work,16 that pure
rotational j → j ′ transition cross sections are mainly sensitive
to the anisotropy of the H–CO potential in the long range.
Ro-vibrational transitions require the system to enter the short
range region, where the H–CO potential has a deep well
(De = 6738 cm−1) at a H–CO distance of 3.021 a0 and the
coupling to the CO vibration is most effective. A barrier of
1138 cm−1 is present in the H + CO entrance channel,
however, which explains why the calculated v, j → v ′, j ′

cross sections increase by three orders of magnitude when
the collision energy surpasses 1000 cm−1. Overcoming the
barrier is facilitated through R-T energy transfer when CO
is initially in a higher rotational level j; we observe that
the rise of the v, j → v ′, j ′ cross sections starts at lower
collision energies and becomes less steep in that case. Both
the anisotropy of the H–CO potential and its dependence
on the CO bond length are important for these combined
processes, and this also explains why such large basis sets
are needed to converge the ro-vibrationally inelastic cross
sections.

In a forthcoming paper23, we present ro-vibrational
transition rate coefficients for CO in collision with H atoms
for temperatures up to 3000 K. The dramatic rise of the v, j
→ v ′, j ′ cross sections when the collision energy gets
above 1000 cm−1 made it necessary to sample a relatively
large set of high collision energies in the Boltzmann
averaging, even for lower temperatures. In combination with
the large basis sets required, this made the calculations
computationally very demanding. We described some special
features of our close-coupling scattering code that facilitated
the computations.
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