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We present quantum mechanical calculations of the collision-induced absorption spectra of nitrogen
molecules, using ab initio dipole moment and potential energy surfaces. Collision-induced spectra are
first calculated using the isotropic interaction approximation. Then, we improve upon these results by
considering the full anisotropic interaction potential. We also develop the computationally less expen-
sive coupled-states approximation for calculating collision-induced spectra and validate this approx-
imation by comparing the results to numerically exact close-coupling calculations for low energies.
Angular localization of the scattering wave functions due to anisotropic interactions affects the line
strength at low energies by two orders of magnitude. The effect of anisotropy decreases at higher
energy, which validates the isotropic interaction approximation as a high-temperature approximation
for calculating collision-induced spectra. Agreement with experimental data is reasonable in the
isotropic interaction approximation, and improves when the full anisotropic potential is considered.
Calculated absorption coefficients are tabulated for application in atmospheric modeling. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4907917]

I. INTRODUCTION

Molecular nitrogen is the dominant component of the
atmospheres of the Earth, Titan, and early Mars.1 Collision-
induced absorption due to N2 pairs contributes significantly to
the far infrared absorption spectra of these atmospheres. There-
fore, accurate knowledge of the collision-induced spectra is
required for remote-sensing studies.2 Collisions with abundant
N2 molecules also lead to broadening of strong absorption
lines,3 such as the water continua in the Earth’s atmosphere.4

The far infrared absorption of N2 pairs also contributes to
surface warming,5 and this mechanism may be essential in
explaining the presence of liquid water on early Mars.1

Previous quantum mechanical calculations of the colli-
sion-induced rotation-translation absorption spectra of N2–N2
have been performed by Borysow and Frommhold.6 In these
calculations, effective isotropic potentials were used in combi-
nation with adjusted collision-induced dipole moments. Lab-
oratory measurements of the collision-induced N2–N2 spectra
have also been performed.7–10 Boissoles et al. investigated the
collision-induced absorption of N2–N2, N2–O2, and O2–O2, us-
ing empirical line-shapes.11,12 First principles potential energy
and dipole moment surfaces were used in classical molecular
dynamics simulations of collision-induced spectra by Bussery-
Honvault and Hartmann.13 In contrast to what one would
expect for a classical treatment, the agreement between the
simulated and experimental spectra is better for lower temper-
atures.

a)Electronic address: avda@theochem.ru.nl

In this paper, we present quantum mechanical calcula-
tions of the collision-induced N2–N2 spectra, using the the-
ory presented in the companion paper14 and first principles
potential energy and dipole moment surfaces. We performed
calculations using the isotropic interaction approximation,
the coupled-states approximation, and the numerically exact
close-coupling approach. The coupled-states approximation
neglects weak Coriolis coupling, but takes the full anisot-
ropy of the interaction into account. Results obtained in this
approximation are close to the numerically exact calculations
and approach the results obtained in the isotropic interac-
tion approximation for high energy. At low energies, angular
localization of the scattering wave function causes the line
strength to differ from the result in the isotropic interaction
approximation by several orders of magnitude. The effect
of anisotropic interactions is to increase the band intensity,
bringing the calculations into closer agreement with experi-
mental data. For high energy, the effect of the anisotropy de-
creases, which validates the use of the isotropic interaction as
a high-temperature approximation. However, in the isotropic
interaction approximation, narrow shape resonances occur
for high partial waves and energies, leading to unphysically
sharp features in the spectrum that should be smoothed. To
our knowledge, the present calculations are the first quan-
tum mechanical calculations of collision-induced absorption
including anisotropic interactions, except for nearly isotropic
systems such as H2–H2 and H2–He.14–16

This paper is organized as follows. The calculation of the
potential energy and electric dipole moment surfaces is dis-
cussed in Sec. II. The line-shape theory is discussed in Sec. III.
This includes a brief summary of the theory presented in the
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companion paper14 in Sec. III A, a derivation of the coupled-
states approximation to collision-induced spectra in Sec. III B,
and a discussion of the contribution of the bound states in
Sec. III C. The computational details are discussed in Sec. IV.
Numerical results are presented and compared to experimental
data in Sec. V and concluding remarks are given in Sec. VI.

II. ELECTRONIC STRUCTURE CALCULATIONS
AND FIT

The calculation of collision-induced absorption spectra
requires accurate potential energy and dipole moment surfaces.
These are calculated using ab initio electronic structure the-
ory, in calculations similar to those for the H2–H2 complex,
described in Ref. 17. Here, we briefly describe the method
that was used in these calculations and we discuss how these
surfaces were fit.

Potential energy and dipole moment surfaces were ob-
tained using the super-molecular approach. The method used is
coupled-cluster theory with single and double excitations and
perturbative triples [CCSD(T)], using an augmented correla-
tion consistent quadruple zeta basis set (aug-cc-pVQZ). All
calculations were corrected for the basis set superposition
error.18 The dipole moment was calculated from the linear
response to a finite electric field, at the same level of theory. In
four separate ab initio calculations for each geometrical config-
uration, uniform electric fields of ±0.001 and ±0.001

√
2 a.u.

were applied along the coordinate axes, and the results were
analyzed to remove hyperpolarization effects through fourth
order in the applied field. All calculations were performed for
29 orientations and 15 separations of the two molecules. The
N2 bond length was fixed at the vibrational average of 2.081 a0.

For the T-shaped configuration, test calculations were run
at intermolecular separations of 4.5, 7.0, and 15.0 a0, with
fields of ±0.001,±0.001

√
2, and ±0.001

√
3 a.u., in order to re-

move hyperpolarization effects through sixth order. The differ-
ences from the results obtained with four values of the applied
field were less than 0.002% in these test cases. Calculations
were also run with the larger aug-cc-pV5Z basis set, for the
T-shaped configuration at the intermolecular distances listed
above. In these test cases, after correcting for basis-set superpo-
sition errors, the largest difference between the results obtained
with the aug-cc-pVQZ and aug-cc-pV5Z basis sets was less
than 0.3%.

The potential energy surface was fit, in a linear least
squares procedure, to the following expansion in coupled
spherical harmonics:

V (r̂A, r̂B, R⃗) =

l1,l2,l

Vl1,l2,l(R)

×
 

C(l1)(r̂A) ⊗ C(l2)(r̂B)
 (l)
⊗ C(l)(R̂)

 (0)
0
. (1)

Similarly, the spherical components of the dipole operator,
µ0 = µz and µ±1 = ∓

�
µx ± iµy

�
/
√

2, were fit to the expansion

µν(r̂A, r̂B, R⃗) =


l1,l2,l,λ

Dl1,l2,l,λ(R)

×
 

C(l1)(r̂A) ⊗ C(l2)(r̂B)
 (l)
⊗ C(λ)(R̂)

 (1)
ν

. (2)

The irreducible spherical tensor product is defined by

Â(l1) ⊗ B̂(l2)

 (l)
m
=


m1,m2

Â(l1)
m1 B̂(l2)

m2 ⟨l1m1l2m2|lm⟩, (3)

the symbol in angular brackets denotes a Clebsch-Gordan coef-
ficient, and C(l)

m (R̂) denotes a Racah normalized spherical har-
monic depending on the polar angles of the vector R⃗ = RR̂, the
vector that connects the centers of mass of both molecules. The
vectors r̂A and r̂B denote the polar angles of the molecular axes
of molecules A and B, respectively. The ab initio points and
fitted expansion coefficients can be found in the supplementary
material.19

To evaluate these expansions at arbitrary separation R, we
performed a fit of the expansion coefficients, Vl1,l2,l(R) and
Dl1,l2,l,λ(R). First, the long-range was fit to an expansion in
powers of 1/R, using an Rn weighted linear least squares fit,
with n determined by the leading power of 1/R. In the region
R ≥ 12 a0, we fit the potential energy surface using terms
with n ≤ 7, whereas we fit the dipole surface using terms with
n ≤ 6 in the region R ≥ 15 a0. The long-range contributions
were damped by multiplication with Tang-Toennies damping
functions,20

fn, β(R) = 1 − e−βR
n

k=0

(βR)k
k!

, (4)

where n is the corresponding power of 1/R and β = 1.615 a−1
0

is determined from the log-derivative of the isotropic potential
in the repulsive region.20 These damped long-range contribu-
tions were subtracted from the total to obtain the short-range
part, which was fit for R ≤ 12 using the reproducing Kernel
Hilbert space method.21 The smoothness parameter for this fit
was set equal to two and the asymptotic behavior was chosen
such that the short-range part falls off as the first term in the
asymptotic expansion that was not fit explicitly in the long
range.

III. LINE-SHAPE THEORY

A. Summary

To calculate collision-induced absorption spectra, we use
the isotropic and anisotropic formalisms discussed in the
companion paper.14 The absorption coefficient is defined by
Lambert’s law, which predicts exponential decay of the inten-
sity, I(z) ∝ exp(−αz), with the path length, z. In first order
perturbation theory, the absorption coefficient at frequency ω
is given by

α(ω, T) = 2π2

3~c
n2ω


1 − exp

(
− ~ω

kBT

)
Vg(ω, T) (5)

with the spectral density

g(ω, T) =

i


f

P(i)(T)|⟨i |µ̂| f ⟩|2δ(ω f − ωi − ω). (6)

Here, n, V , and T are the number density, volume, and temper-
ature of the gas, respectively, c is the speed of light, ~ is the
reduced Planck constant, and µ̂ represents the dipole operator.
The states |i⟩ and | f ⟩ represent the initial and final states, with
energies ~ωi and ~ω f , and P(i)(T) is the thermal population of
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the initial state. The symbol  denotes a summation over all
discrete quantum numbers, such as rotational and vibrational
states, and integration over the continuum, i.e., translational
states.

The states |i⟩ and | f ⟩ are the eigenstates of the Hamiltonian

Ĥ = − ~
2

2µ
∇2

R + ĤA + ĤB + V̂ (r⃗A, r⃗B, R⃗), (7)

that is, the Hamiltonian describing the molecular pair, but not
the coupling with the radiation field. The first term represents
the kinetic energy in the center of mass frame, ĤA and ĤB

are the monomer Hamiltonians, and V̂ (r⃗A, r⃗B, R⃗) represents
the interaction between the molecules. The eigenstates of this
Hamiltonian can be divided in two distinct sets. A continuum
of scattering states exists for positive energies, whereas the
bound states correspond to a discrete set of eigenstates at nega-
tive energies. In the companion paper,14 we did not consider the
contribution of bound states to the collision-induced absorp-
tion spectra of H2, as the weak interaction between two H2
molecules supports only two weakly bound states. For N2 pairs,
the situation is markedly different,6 as the isotropic potential
now supports six rotationless bound states. In isotropic inter-
action calculations including the end-over-end rotation of the
complex, 96 bound states are found per monomer rotational
state. The contribution of these bound states is discussed in
detail in Sec. III C.

The calculation of the absorption spectrum can be simpli-
fied by determining the eigenstates |i⟩ and | f ⟩ in certain
approximation schemes. We will start by assuming that the
interaction between the two molecules, V̂ , is isotropic. In this
approximation, the wave function describing the absorbing
complex factorizes as the product of an angular wave function
and a radial wave function.14,22,23 The angular part of the wave
function is known analytically, which allows one to explicitly
perform part of the thermal averaging, required to obtain the
absorption spectrum. Only the radial part must be determined
numerically in a computationally inexpensive single-channel
calculation. This separation of rotational and translational
degrees of freedom allows one to write the spectral density
as superposition of translational profiles centered at rotational
transition frequencies given by ~ωrot = E ′rot − Erot,

Vg(ω, T) =


l1,l2,l,λ


NA,NB,N

′
A
,N ′

B

PNA
PNB

×
[1,NA,N ′A,NB,N ′B]

[l1, l2,λ]

× *
,

NA l1 N ′A
0 0 0

+
-

2

*
,

NB l2 N ′B
0 0 0

+
-

2

×VGl1,l2,l,λ(ω − ωrot), (8)

where the free-to-free contribution to the translational profile,
VG, is given by

VGfree−free
l1,l2,l,λ

(ω, T) = ~λ3
0


L,L′

[L,L′]*
,

L λ L′

0 0 0
+
-

2

×
 ∞

0
dEcol exp

(
− Ecol

kBT

)
× |⟨Ecol,L |Dl1,l2,l,λ|Ecol + ~ω,L′⟩|2, (9)

and contributions involving bound states are discussed in
Sec. III C. In the above equations, the symbols in round braces
are Wigner 3- jm symbols and we use the short-hand notation

[ j1, j2, . . . , jn] = (2 j1 + 1) (2 j2 + 1) . . . (2 jn + 1) . (10)

For a more realistic description, the orientation depen-
dence of the interaction between the two nitrogen molecules
should be considered. To take this anisotropy into account,
we calculate the bound states of the anisotropic potential as
described in Sec. III C and for the scattering states, we perform
close-coupling calculations using the method described in
Ref. 14. This method calculates the dipole coupling on-the-fly,
which allows one to treat the absorption perturbatively rather
than explicitly,15,16 yet avoids the reconstruction of the full
many-component wave function on a discrete radial grid. From
a computational perspective, it is still prohibitive to calcu-
late collision-induced spectra at temperatures of interest (T
≥ 78 K) using the numerically exact close-coupling approach.
The reason is that minimal basis sets including only the open
channels at an energy of E ≈ 1000 K already contain on the
order of 30 000 channels. In Sec. III B, we therefore develop the
coupled-states approximation for collision-induced spectra,
which reduces the dimension of the channel basis for similar
calculations to about 2000 channels.

B. Coupled-states approximation

In the companion paper,14 we point out that the method
developed to propagate the dipole coupling matrix may be used
to introduce approximations for the computation of collision-
induced spectra. In general, the strategy is to introduce approx-
imations that block-diagonalize the coupling matrix, and use
this block-diagonal structure to reduce the dimension of the
basis set. In the case of the coupled-states approximation, we
neglect off-diagonal Coriolis coupling by writing

L̂2 =
�
Ĵ −N̂

�2
= Ĵ2 + N̂2 − 2N̂ ·Ĵ ≈ Ĵ2 + N̂2 − 2N̂z Ĵz, (11)

where the angular momentum operator L̂ generates the end-
over-end rotation of the complex, Ĵ is the total angular mo-
mentum, and N̂ = N̂A + N̂B, where N̂A and N̂B are the mono-
mer angular momenta. In this helicity-decoupling approxima-
tion, the projection, K , of the total angular momentum onto
the intermolecular axis is a good quantum number.24 Hence,
the calculation may be performed per K and K ′, the projection
quantum numbers in the initial and final states, respectively.

To exploit the body-fixed projection, K , of the total angu-
lar momentum as a good quantum number, the calculation
should be performed in a body-fixed frame. Here, the primitive
angular basis functions are defined by24

⟨R̂|(NANB)NK ; JM⟩
=


KA,KB

|NAKA⟩|NBKB⟩

× ⟨NAKANBKB|NK⟩D(J )∗
MK(φ,θ,0)


2J + 1

4π
, (12)

where (θ,φ) are the polar angles of the intermolecular axis R⃗,
D(J )

MK is a Wigner D-matrix element, and the kets |NAKA⟩ and
|NBKB⟩ describe the rotation of the monomers in the body-
fixed frame. The matrix elements of the potential in this angular
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basis are24

⟨(NANB)NK ; JM |V̂ |(N ′AN ′B)N ′K ′; J ′M ′⟩
= δJJ′δMM′δKK ′


l1,l2,l

Vl1,l2,l(R)(−1)l+NA+NB+N−K

×
�
NA,N ′A,NB,N ′B,N,N ′

�1/2

× *
,

NA l1 N ′A
0 0 0

+
-
*
,

NB l2 N ′B
0 0 0

+
-

× *
,

N l N ′

−K 0 K ′
+
-




NA N ′A l1

NB N ′B l2

N N ′ l




. (13)

An additional advantage of the body-fixed frame is that this
expression is simpler than the corresponding expression in the
space-fixed basis, Eq. (A8) in Ref. 14. The matrix elements of
the dipole moment are also simpler, they are given by24

⟨(NANB)NK ; JM | µ̂ν |(N ′AN ′B)N ′K ′; J ′M ′⟩
=


k,l1,l2,l,λ

Dl1,l2,l,λ(R)(−1)NA+NB+N+M+l−λ+k

×
�
1, l,NA,N ′A,NB,N ′B,N,N ′, J, J ′

�1/2

× *
,

l λ 1
k 0 −k

+
-
*
,

J 1 J ′

−M m M ′
+
-

× *
,

J 1 J ′

−K k K ′
+
-
*
,

N l N ′

−K k K ′
+
-

× *
,

NA l1 N ′A
0 0 0

+
-
*
,

NB l2 N ′B
0 0 0

+
-

×



NA N ′A l1

NB N ′B l2

N N ′ l




. (14)

In the above equations, the symbols in curly braces are Wigner
9- j symbols. We note that, although the potential conserves the
quantum numbers J, M , and K , the dipole moment couples
states which differ in these quantum numbers by at most one
unit.

Symmetry adapted functions are generated by acting on
the primitive basis functions with projection operators 1 ± Ê∗

and 1 ± P̂AB, in order to adapt to inversion, Ê∗, and permuta-
tion, P̂AB, respectively. The action of these symmetry operators
on the body-fixed angular functions is given by24

Ê∗|(NANB)NK ; JM⟩
= (−1)NA+NB−N+J |(NANB)N − K ; JM⟩,

P̂AB|(NANB)NK ; JM⟩
= (−1)NA+NB+J |(NBNA)N − K ; JM⟩.

(15)

Since the channel functions of Eq. (12) do not have well-
defined partial wave quantum numbers, L, we cannot match
to the scattering boundary conditions in terms of the spherical
Hankel functions, Eq. (34) of Ref. 14. Instead, we match the
solutions to the asymptotic form of these functions given by

h(1)
L (kR) ≃ −i(−1)L exp (ikR) (kR)−1,

h(2)
L (kR) ≃ i(−1)L exp (−ikR) (kR)−1.

(16)

The phase of the asymptotic form of the Hankel functions
depends on whether L is even or odd, which can be determined
from the parity of the wave function and NA + NB. In practice,
this phase can be omitted as it does not affect the square of
the dipole matrix elements that enter Eq. (6). The asymptotic
form of the Hankel functions is valid when the centrifugal
term vanishes, necessitating the propagation to larger inter-
molecular separation, R. We note that customarily, scattering
calculations in the coupled-states approximation match the
asymptotic form of the wave function to Hankel functions with
some effective partial wave quantum number, Leff, which is
often taken equal to J.25 This method should yield the same
result, provided that we propagate to sufficiently large R, such
that all Hankel functions approach their asymptotic form. Test
calculations confirm that both approaches agree to within the
selected convergence criterion of about 1%.

Often, the effective partial wave quantum number is not
only used in the matching procedure but also to further approx-
imate the centrifugal term during propagation26 by writing

L̂2 ≈ Leff(Leff + 1). (17)

In this case, the results of the calculation will depend on the
arbitrary choice of effective partial wave, Leff. We do not make
such approximations, but use Eq. (11), which is exact for the
part of the centrifugal term that is diagonal in the body-fixed
projection, K .

C. Contribution of bound states

In the discussion of the contribution of bound states, one
should distinguish between the calculations with isotropic and
anisotropic interactions. For an isotropic interaction, the spec-
tral density is given by Eq. (8), where the translational profile,
VG, has the following contributions involving bound states,
in addition to the contribution from transitions between free
states, Eq. (9). The contribution of bound-to-free transitions is
given by23

VGbound−free
l1,l2,l,λ

(ω, T) = ~λ3
0


L,L′

[L,L′]*
,

L λ L′

0 0 0
+
-

2

×

n

exp
(
−

En,L

kBT

)
× |⟨En,L,L |Dl1,l2,l,λ|En,L + ~ω,L′⟩|2,

(18)

where the sum is over all bound states n for partial wave L, and
|En + ~ω,L′⟩ corresponds to a scattering state, i.e., En + ~ω
> 0. Contributions of free-to-bound transitions are determined
from Eq. (18) by detailed balance and transitions between
bound states contribute

VGbound−bound
l1,l2,l,λ

(ω, T)

= ~λ3
0


L,L′

[L,L′]*
,

L λ L′

0 0 0
+
-

2

×

n,n′

exp
(
−

En,L

kBT

)
|⟨En,L,L |Dl1,l2,l,λ|En′,L′,L′⟩|2

× δ (En′,L′ − En,L − ~ω) . (19)
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The bound-state wave functions are determined using a sinc-
function discrete variable representation (sinc-DVR).27,28

There are two aspects of the bound state contributions that
should be discussed. First, the bound-to-bound contribution
consists of a set of infinitely narrow absorption lines, since
the bound complexes have infinite life time in the two-body
theory. The δ-functions should be convolved with a line profile,
for which we choose a normalized Gaussian of 0.12 cm−1 full
width at half maximum. For all other contributions, the two
body theory allows one to calculate the line-shape. The second
aspect is one of interpretation. In the isotropic interaction
approximation, any translational state can be combined with
any rotational wave function. This means that the sum of the
rotational and vibrational energies of bound states may be
positive. On the anisotropic potential, such states of positive
total energy are continuum states rather than bound states.

To compute the bound states on the anisotropic potential,
we first determine a contracted radial basis as the lowest 50
eigenstates of a reference Hamiltonian with an isotropic refer-
ence potential

Ĥ0 = −
~2

2µ
∇2

R + Vref(R),
Vref(R) = λV0(R − Rshift) + αR,

(20)

where V0(R) is the isotropic part of the interaction.29 The eigen-
states of the reference Hamiltonian are determined using the
sinc-DVR.27,28 The shift Rshift = −1 a0 allows the radial basis
to accurately sample the repulsive region, which is otherwise
only reached by states of very high energy. The scaling λ = 3
and the slope α = 3 × 10−6 Eh/a0 improve the localization of
the radial functions inside the potential well. These parameters
were determined by variationally optimizing the energy of the
bound states of the original Hamiltonian, Eq. (7).

The bound states of Hamiltonian Eq. (7) were then deter-
mined by diagonalizing the Hamiltonian matrix in a basis
of direct products of the angular functions in Eq. (12) and
the contracted radial functions described above. We calcu-
late the bound states within the coupled-states approximation,
discussed in Sec. III B. This leads to the eigenvalue prob-
lem of a sparse matrix, which is efficiently solved for the
lowest eigenvalues using the Davidson algorithm.30 Having
converged the bound states, i.e., eigenstates with negative en-
ergy, the dipole coupling between these states is calculated. In
order to calculate the coupling between bound and free states,
we first compute the dipole operator acting on the bound state
wave function. Then, we perform scattering calculations at
energy E = Ebound + ~ω and propagate the overlap between the
free state and the product of dipole operator and bound state
along with the free state wave function.14

IV. COMPUTATIONAL DETAILS

A. Spin statistics and molecular parameters

We assume that all four nitrogen nuclei are 14N, which is
the most abundant nitrogen isotope with a natural abundance
of 99.6%. This nucleus is a boson with spin quantum number
I = 1. For nitrogen molecule X = A,B, there are six symmetric
nuclear spin wave functions corresponding to total nuclear spin

TABLE I. Nuclear spin statistical weights for all symmetries.

(−1)NA (−1)NB ϵ g ϵ
NANB

1 1 1 21
1 1 −1 15
−1 −1 1 6
−1 −1 −1 3
±1 ∓1 18

IX = 0 and 2, and there are three antisymmetric nuclear spin
wave functions with IX = 1. The total wave function should be
symmetric with respect to the interchange of identical nuclei,
which leads to the statistical weights for the rotational states
gNX
= 6 if NX is even and gNX

= 3 if NX is odd. If we consider
the colliding molecules to be distinguishable, the statistical
weights for the rotational states of the complex are given by
the product gNA

gNB
. For indistinguishable nitrogen molecules,

the statistical weights depend on the permutation symmetry, ϵ ,
and their values are given in Table I.31

The rotational energy levels of molecule X = A,B are
computed as

Erot,X = BNX(NX + 1) − D[NX (NX + 1)]2, (21)

where NX is the rotational quantum number, and the rotational
and distortion constants are given by B = 1.989 581 cm−1 and
D = 5.76 × 10−6 cm−1, respectively.32

B. Calculations with isotropic interactions

Calculations in the isotropic interaction approximation
were performed as described in more detail in the companion
paper.14 The radial part of the scattering wave function is
determined using the renormalized Numerov method.33 This
is calculated for each partial wave, L, on a discrete grid in
the kinetic energy. The calculated dipole overlap integrals,
⟨E,L |Dl1,l2,l,λ|E ′,L′⟩, were obtained on discrete grids in the
initial-state collision energy E and the energy difference ~ω
= E ′ − E, rather than in E and E ′, by spline interpolation of
the logarithm of the square of the radial integral, as explained
in Ref. 14. The integral over the initial state kinetic energy has
been calculated using trapezoidal integration.

To converge the calculated spectrum to within 1%, we
use partial waves up to Lmax = 150 and rotational quantum
numbers up to Nmax = 50. The wave functions were calculated
on a radial grid extending from 4 to 100 a0, using the shortest
local de Broglie wavelength divided by 10 as the step size,
which amounts to a step size of approximately 0.03 a0. The
same step size is used in the sinc-DVR calculations for deter-
mining the bound state wave functions. The δ-function line-
shape due to bound-to-bound transitions has been convolved
with a Gaussian of 0.12 cm−1 width.

The isotropic potential supports a large number of shape
resonances, some of which are very narrow. Consequently, the
convergence of the calculation with respect to the number of
grid points on a simple logarithmically spaced energy grid
is not smooth. We use a tailored energy grid consisting of a
logarithmically spaced grid with 200 steps on the interval from
0.1 K to 3000 K, augmented with 13 points per resonance. To
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this end, we manually identified 39 resonances and estimated
their widths, by inspecting the phase shifts, as explained in the
Appendix.

C. Calculations with anisotropic interactions

Calculations in the coupled-states approximation were
performed using a discrete grid in the photon frequency,
ω/cm−1 = 30, 45, 60, 75, 90, 105, 120, and 180. For low ener-
gies, calculations were performed on a logarithmically spaced
energy grid ranging from 0.1 K to 200 K in 165 steps. Addi-
tional calculations at higher energies were performed for E/K
= 300, 400, 500, 700, 1000, 1400, and 2000. Convergence
parameters for the basis set are given in Table II. Here, Jmax is
the highest total angular momentum included, whereas Nmax
refers to the truncation of the monomer angular momenta by
the criterion

NA(NA + 1) + NB(NB + 1) ≤ Nmax(Nmax + 1). (22)

The values of these parameters are chosen to ensure conver-
gence of 1% or better.

Numerically exact close-coupling calculations were done
for a single photon frequency,ω = 60 cm−1. These calculations
were converged with the same convergence parameters as used
in the coupled-states approximation as listed in Table II. The
close-coupling calculations were performed only for low ener-
gies, using fewer energy grid points. A logarithmically spaced
grid of 100 steps was used from 0.1 to 10 K with 4 additional
points at energies 17.78, 31.62, 56.23, and 100 K.

For energies E > 500 K, the calculations are not per-
formed for each value of J. Instead, J is increased in steps of
10, J = 0, 10, 20, . . ., and the results are interpolated by spline
interpolation of the logarithm of the line strength followed by
exponentiation. At the energy E = 500 K, calculations have
been performed for all values of J, and at this energy, we
confirm that the interpolation scheme is accurate to better
than 1%. For higher energy, this interpolation scheme should
become increasingly accurate.

Asymptotically closed channels, which are required only
in the short range, are gradually removed from the calculations
to save computational time.14,34 We use an exponentially de-
caying energy criterion, which is chosen such that all channels
are included for R < 18 a0 and all closed channels are removed
for R > 28 a0.

We match the wave function to the scattering boundary
conditions at R = 100 a0 for the lowest energies, which may

TABLE II. Convergence parameters of the coupled-states and close-coupling
calculations.

Energy Nmax Jmax

0.1 K ≤ E ≤ 10 K 16 20
10 K ≤ E ≤ 100 K 16 45
100 K ≤ E ≤ 200 K 16 60
200 K < E ≤ 400 K 20 90
400 K < E ≤ 500 K 20 100
500 K < E ≤ 1000 K 26 150a

1000 K < E ≤ 2000 K 28 200a

aInterpolation as a function of J , according to the scheme discussed in the text.

be further than strictly necessary. For the energies E = 1400 K
and E = 2000 K, we propagate only to R = 30 a0. We confirm
at individual values of the quantum numbers J and K that this
yields the same results to well within 1%.

The thermal average, Eq. (43) of our previous paper, has
been performed as follows. We interpolate the logarithm of
the line strength, as a function of the logarithm of the total
energy, by spline interpolation. Then, we exponentiate the
result, multiply with the Boltzmann factor, and perform the
integral over the total energy using a trapezoidal integration
rule. We estimate the accuracy of this approach by repeating
the interpolating step with only half of the energy grid points.
This reproduces the integral to an accuracy better than 5%.

Different convergence parameters are used for the sinc-
DVR calculation of the bound state wave functions. The calcu-
lations were converged truncating the monomer rotational
quantum numbers by the criterion Eq. (22) with Nmax = 10. All
values of J and K for which bound states exist were included
in the calculations. The highest total angular momentum for
which bound states were found is J = 30. The radial coordinate
was discretized by using a grid ranging from 4 to 100 a0, with
a step size of 0.05 a0. A contracted radial basis was determined
as the 50 lowest eigenstates of a reference Hamiltonian, as
discussed in Sec. III C. The convergence criteria for the
subsequent diagonalization of the Hamiltonian matrix using
the Davidson algorithm are as follows: the search space is
expanded until all bound states and the 10 lowest eigenstates
of positive energy are converged, that is, until the norm of the
residual of the tenth eigenstate of positive energy is smaller
than 10−6.30 Again, the δ-function line-shape due to bound-
to-bound transitions has been convolved with a Gaussian of
0.12 cm−1 width.

V. RESULTS

A. Isotropic interaction approximation

Figure 1 shows the collision-induced absorption spectra
at temperatures T = 78, 93, 126, 228.3, and 300 K. Crosses re-
present measurements in Refs. 7–10. Lines represent the

FIG. 1. Collision-induced absorption spectrum of N2 for different tempera-
tures. Lines mark theory with an isotropic interaction potential and the crosses
represent measurements in Refs. 7–10. Spectra for successive temperatures
have been shifted vertically, as indicated. Theoretical spectra have been
smoothed to ensure clarity of this figure.
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FIG. 2. Contribution of different spherical components of the dipole moment
to the collision-induced absorption spectrum of N2−N2 at T = 78 K.

theoretical absorption spectra as calculated in the isotropic
interaction approximation. The theoretical spectra include all
binary contributions to the absorption: free-to-free, free-to-
bound, bound-to-free, and bound-to-bound transitions. Reason-
able agreement is obtained, although significant differences
are observed mainly for low temperatures and in the far wing
(high ω). For clarity of this figure, the theoretical spectra in this
figure have been smoothed by convolution with a Gaussian of
11.7 cm−1 full width at half maximum. Sharp structures in the
theoretical spectra do exist, and these are discussed below.

The contributions of the spherical components of the
dipole moment to the spectrum at T = 78 K are shown in
Fig. 2. The total absorption coefficient is shown by the black
line, which shows sharp structures that were suppressed in
Fig. 1. The dominant components are the l1, l2, l, λ = 2, 0, 2, 3
and 0, 2, 2, 3 terms. In first-order perturbation theory, these
correspond to the quadrupole moment of one molecule which
induces a dipole moment in the collision complex through
the isotropic polarizability of the other molecule.37 Higher
terms in the spherical expansion contribute significantly in
the far wing. This can be understood as these terms induce
simultaneous transitions in both molecules and transitions with
larger changes in the rotational angular momenta.

Figure 3 shows the translational profiles for free-to-free
transitions at a temperature of T = 78 K as a function of the

FIG. 3. Translational profiles due to free-to-free transitions for different
spherical components of the dipole moment at T = 78 K.

angular frequency associated with the difference in kinetic
energy through ~ωtrans = E ′col − Ecol. The red and the blue
wings of the profile are related by detailed balance as VG(−ω)
= exp (−~ω/kBT)VG(ω). As discussed in Ref. 14, these pro-
files can be used to explain the shape of the absorption spec-
trum. At the lowest temperature, T = 78 K, the translational
profiles are already broader than the typical rotational structure,
which is determined by the rotational constant, Brot ≈ 2 cm−1.
Therefore, the rotational lines overlap in the spectrum (Fig. 1).
We stress the difference with the H2–H2 system studied in the
companion paper,14 where the large rotational constant leads to
a structured absorption spectrum with resolved rotational lines.
The shift of the intensity to higher frequency with increasing
temperature can be understood from the higher population of
excited rotational states at elevated temperature.

The translational profiles in Fig. 3 show sharply peaked
structures for low frequency, which occur repeatedly around
each rotational transition in the absorption spectrum. These
structures are due to the shape resonances supported by the
isotropic potential. Resonant scattering wave functions have
a large amplitude at short range, corresponding to a long life
time of the collision complex, which leads to an enhanced
dipole coupling. The sharp structure due to these resonances
survives the thermal averaging in the computation of the trans-
lational profile only if ω equals the energy difference between
two resonances of comparable width. For example, the struc-
ture at ω = 7.5 cm−1 is due to transitions between resonant
wave functions for L = 18, E = 5.2 cm−1 and L′ = 25, E ′

= 12.7 cm−1. Since the partial wave quantum number differs
by 7, this transition contributes only to dipole components
with λ ≥ 7, and the peak near ω = 7.5 cm−1 is visible only
in the l1, l2, l, λ = 4, 2, 6, 7 + 2, 4, 6, 7 components in Fig. 3.
If anisotropic interactions are taken into account, the shape
resonances are expected to become less pronounced, especially
for higher partial waves and energies. Therefore, the structure
seen in the theoretical absorption spectrum, Fig. 2, must be
considered an artifact of using the isotropic interaction approx-
imation. We note that the shape resonances of the isotropic
potential have not been discussed in previous calculations of
the collision-induced absorption spectra of N2–N2 pairs.6,35 We
cannot be certain why this is the case, but it is possible that
the energy grids employed in earlier work were too coarse to
properly sample the narrow resonances.

The translational profiles for bound-to-free transitions at
a temperature of T = 78 K are shown in Fig. 4. This figure
also shows the contribution of the individual bound states for
partial wave L = 10 to the translational profile. From a bound
state at energy Ebound, the continuum cannot be reached below
the threshold frequency given by ~ωthresh = −Ebound, and the
bound-to-free contribution vanishes. The translational profile
peaks just above threshold and falls off as ω is increased
further, as the overlap between the involved states decreases
as the energy gap increases. The contribution of weakly bound
states is typically stronger as these states exhibit better overlap
with continuum wave functions.

In Fig. 5, we compare the contributions of bound-bound,
bound-free, and free-free transitions to the absorption at T
= 78 K. Also shown in Fig. 5 are the absorption coefficients
for free-to-free transitions and the contribution of bound states
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FIG. 4. Translation profile for bound-free transitions at T = 78 K. The black
line marks the total translation profile, whereas the colored lines mark the
contributions of the four bound states with L = 10 and bound-state energies
as indicated.

from Ref. 6, as inferred from a computer code made avail-
able at Ref. 36. Both calculations were performed in the
isotropic interaction approximation. The present calculations
show much sharper features. In case of the bound-bound
contributions, the width is somewhat arbitrary, but there is no
obvious reason to smooth the lines beyond the natural width
of the free-free and bound-free transitions. Again, we cannot
be certain of the source of this discrepancy, but a possible
explanation is the inaccurate sampling of shape resonances in
earlier work.

B. Anisotropic interaction potential

In Fig. 6, we show the line strength for a fixed photon
frequency,ω = 60 cm−1, as a function of the initial state energy.
The line strength is defined as the total squared dipole moment,

f (ω,Etot) =

i, f

gϵNANB
|⟨i∥µ̂∥ f ⟩|2, (23)

where the sum over i is restricted to all states at energy Etot and
the sum over f is restricted to states of energy Etot + ~ω. The
line corresponds to the line strength in the isotropic interaction

FIG. 5. Contributions of free-free, bound-free, and bound-bound transitions
to the absorption spectrum at T = 78 K in the isotropic interaction approxima-
tion. The free-free transitions and bound state (bound-bound and bound-free)
contributions from Ref. 6 are also shown as the orange dashed and red
dashed-dotted lines, respectively.

FIG. 6. Line strength as a function of the initial energy for a photon fre-
quency ω = 60 cm−1. The solid line is obtained in the isotropic interaction
approximation, dots represent results obtained in the coupled-states approxi-
mation, and pluses denote numerically exact close-coupling results.

approximation, whereas the dots correspond to the coupled-
states approximation with the full anisotropic potential energy
surface. For low energy, E ≤ 100 K, we also performed numer-
ically exact close-coupling calculations, which are shown as
crosses. Sharp scattering resonances occur at all three levels
of theory, which are visible as sharp peaks in the line strength.
The coupled-states approximation is reasonably close to the
numerically exact results, the agreement improves for higher
energies, and both methods agree well near E = 100 K. Devi-
ations are observed mainly on the resonances, since these are
very sensitive to approximating the centrifugal barrier by the
coupled-states approximation.

In Fig. 7, we show the line strength for additional photon
frequencies. For these frequencies, no close-coupling calcula-
tions have been performed. Scattering resonances occur only
for total energies below ∼20 cm−1 when the anisotropic inter-
action potential is used. This means that except at very low
photon frequencies, the absorption spectrum will be a smooth
function of ω. This contrasts with the sharp features observed
above, for calculations in the isotropic potential approxima-
tion. In case of the isotropic potential, the narrow shape reso-
nances occur for arbitrarily high total energies.

At low energies, E ≪ 100 K, a difference of typically two
orders of magnitude is observed between results obtained with
the full anisotropic potential and results obtained using only the
isotropic part, see Figs. 6 and 7. One contributor to the increase
in the line strength is the closer approach of the colliding
molecules on the anisotropic potential, because the induced
dipole moment is much larger at short separation. By setting
the dipole moment equal to zero for separations R < 7 a0, we
find that only about 30% of the line strength at low energy
stems from these short separations, which cannot be reached on
the isotropic potential. This is a significant contribution to the
dipole moment, but it is insufficient to explain an increase of the
line strength at low energy by two orders of magnitude. Since
the large increase of the line strength is not explained by the
closer approach of the colliding molecules, we conclude that
the dramatic effect of anisotropic interactions is due to angular
localization of the scattering wave functions. The line strength
is enhanced by localization near the T-shaped geometry, which
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FIG. 7. Line strength as a function of energy for a fixed photon frequency as indicated. Lines represent results obtained in the isotropic interaction approximation,
whereas dots are obtained in the coupled-states approximation.

corresponds to the minimum of the anisotropic potential en-
ergy surface. This T-shaped N2–N2 complex bears a relatively
large dipole moment.

As seen in Fig. 7, the results of the isotropic interac-
tion approximation approach the results of the more accurate
coupled-states calculation for high energies, E ≫ 100 K. This
validates the isotropic interaction approximation as a high-
temperature approximation to collision-induced spectra. This
can be understood as the dynamics of energetic collisions are
less sensitive to the details of the interaction potential. For high
energy collisions, the molecules have insufficient time to adapt
their orientations, whereas for slow collisions, the molecules
may adiabatically follow orientations for which the interaction
is attractive. Furthermore, a larger number of rotational states
contributes to the total dipole moment at high energies, which
may lead to some cancellation of errors in the thermal average
of the calculation within the isotropic interaction approxima-
tion.

Figure 8 shows the different binary contributions to the
absorption spectrum at T = 78 K in the coupled-states approx-
imation, including the full anisotropic potential. The dots, the
crosses, and the dotted line represent the free-free, bound-free,
and bound-bound contributions, respectively. For comparison,
the smoothed total absorption spectrum in the isotropic interac-
tion approximation is included as the solid line. The contribu-
tion of bound states is significant, albeit not as strong as in the
isotropic interaction approximation. The reason is explained in
Sec. III C: in the isotropic interaction approximation, bound

states of positive total energy exist, as bound translational
states can be combined with rotational state of arbitrarily high
energy. In the anisotropic case, such states of positive en-
ergy become part of the continuum. Since bound states only
occur for negative total energy when anisotropic interactions
are considered, the bound-to-bound contribution is naturally
limited by the well-depth of the potential. Also apparent is
the smoothness of the spectrum when anisotropic interactions

FIG. 8. Different contributions to the collision-induced spectrum at temper-
ature T = 78 K using the full anisotropic interaction potential in the coupled-
states approximation. For comparison, the total absorption in the isotropic
interaction approximation is included. This contribution has been smoothed
for clarity of the figure.
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FIG. 9. Collision-induced spectrum at temperature T = 78 K. Crosses rep-
resent measurements in Ref. 10, the line represents theoretical results in the
isotropic interaction approximation, and dots are theoretical results using the
full anisotropic interaction potential in the coupled-states approximation. The
result in the isotropic interaction approximation has been smoothed for clarity
of the figure.

are included, as opposed to the unphysically sharp features
observed for calculations in the isotropic interaction approx-
imation. Even the bound-to-bound contribution is reasonably
smooth with the narrow artificial broadening of the δ-functions
by only 0.12 cm−1.

Figure 9 shows the collision-induced rotation-translation
spectrum of N2–N2 at a temperature of T = 78 K, where the
crosses represent the experimental data by Ref. 10, the dots
are theoretical results using the full anisotropic interaction
potential in the coupled-states approximation, and the solid
line shows the spectrum obtained in the isotropic interaction
approximation. For clarity of this figure, the spectrum obtained
in the isotropic interaction approximation has been smoothed
by convolution with a Gaussian of 11.7 cm−1 full width at half
maximum. Considering anisotropic interactions increases the

overall intensity of the collision-induced rotation-translation
band of N2–N2. This is consistent with the findings of Ref. 13,
and brings the calculated spectra into closer agreement with
experimental data near the band maximum.10 The difference
between theory and experimental data for T = 78 K is reduced
from 34% to 19%, which is still larger than the estimated 5%
experimental error. The remaining difference is attributed to
systematic errors in the experiment, as discussed in Ref. 10,
and inaccuracy of the dipole coefficients on the theoretical side,
as discussed below. Absorption coefficients for temperatures
between 50 K and 300 K can be found in Table III.

Inclusion of anisotropic interactions does not improve the
far wing of the spectrum, which is systematically overesti-
mated by our calculations, see higher temperatures in Fig. 1.
A possible explanation for the difference between experiment
and theory is the uncertainty of the measurements, as the exper-
imental error is largest in the far wing, where the absorption
nearly vanishes. On the theoretical side, we expect that the
largest errors come from the determination of the coefficients
in the spherical harmonic expansion of the dipole moment
surface in Eq. (2). Inaccuracy in the higher spherical-harmonic
coefficients affects only the far wings of the spectra, as can
be seen from Fig. 2. Test calculations with additional field
strengths, and comparisons of the results obtained with aug-cc-
pVQZ and the larger aug-cc-pV5Z basis sets, both at CCSD(T)
level, suggest that the values of the potential energy and dipole
moment for the individual geometrical configurations of the
N2–N2 pair are relatively well converged. However, uncer-
tainties remain in the coefficients for the spherical harmonic
expansion, obtained by fitting to the ab initio points. To reduce
these uncertainties, results from a large number of additional
ab initio calculations at suitably chosen geometries are needed.
This will permit the inclusion of more terms in the spherical
harmonic expansion, as well as more accurate determination
of the coefficients already included.

TABLE III. Tabulated absorption coefficients for temperatures between 50 K and 300 K and a range of frequen-
cies. The absorption was calculated using the full anisotropic interaction potential in the coupled-states approxi-
mation, including contributions of bound states. Absorption coefficients are given in units of cm−1 amagat−2, and
numbers in parentheses denote powers of ten.

ω/cm−1

T /K 30 45 60 75 90 105 120 180

50 1.52 (−5) 2.79 (−5) 2.24 (−5) 1.14 (−5) 5.09 (−6) 2.65 (−6) 1.58 (−6) 3.74 (−7)
55 1.20 (−5) 2.34 (−5) 2.04 (−5) 1.12 (−5) 5.11 (−6) 2.58 (−6) 1.49 (−6) 3.60 (−7)
60 9.79 (−6) 1.99 (−5) 1.87 (−5) 1.11 (−5) 5.23 (−6) 2.58 (−6) 1.45 (−6) 3.52 (−7)
70 6.90 (−6) 1.51 (−5) 1.60 (−5) 1.08 (−5) 5.56 (−6) 2.74 (−6) 1.48 (−6) 3.46 (−7)
80 5.15 (−6) 1.18 (−5) 1.38 (−5) 1.04 (−5) 5.90 (−6) 3.01 (−6) 1.60 (−6) 3.48 (−7)
90 4.02 (−6) 9.51 (−6) 1.20 (−5) 9.94 (−6) 6.16 (−6) 3.31 (−6) 1.78 (−6) 3.55 (−7)
100 3.23 (−6) 7.83 (−6) 1.05 (−5) 9.44 (−6) 6.35 (−6) 3.61 (−6) 1.99 (−6) 3.66 (−7)
125 2.08 (−6) 5.18 (−6) 7.80 (−6) 8.16 (−6) 6.47 (−6) 4.24 (−6) 2.58 (−6) 4.15 (−7)
150 1.47 (−6) 3.70 (−6) 6.01 (−6) 6.99 (−6) 6.28 (−6) 4.63 (−6) 3.12 (−6) 5.04 (−7)
175 1.12 (−6) 2.80 (−6) 4.76 (−6) 6.00 (−6) 5.91 (−6) 4.80 (−6) 3.53 (−6) 6.38 (−7)
200 8.89 (−7) 2.20 (−6) 3.89 (−6) 5.18 (−6) 5.48 (−6) 4.81 (−6) 3.81 (−6) 8.11 (−7)
225 7.33 (−7) 1.79 (−6) 3.24 (−6) 4.50 (−6) 5.05 (−6) 4.72 (−6) 3.98 (−6) 1.01 (−6)
250 6.21 (−7) 1.49 (−6) 2.74 (−6) 3.94 (−6) 4.63 (−6) 4.57 (−6) 4.06 (−6) 1.21 (−6)
275 5.38 (−7) 1.27 (−6) 2.34 (−6) 3.48 (−6) 4.25 (−6) 4.38 (−6) 4.07 (−6) 1.41 (−6)
300 4.74 (−7) 1.10 (−6) 2.05 (−6) 3.10 (−6) 3.90 (−6) 4.18 (−6) 4.03 (−6) 1.59 (−6)



084306-11 Karman et al. J. Chem. Phys. 142, 084306 (2015)

VI. CONCLUSIONS

We have presented a theoretical study of the collision-
induced absorption spectra of N2–N2. In contrast with earlier
quantum mechanical studies of these spectra, we use ab initio
dipole moment and potential energy surfaces free of empir-
ically adjusted parameters and we use the full anisotropic
interaction potential energy surface. Angular localization of
the scattering wave function due to anisotropic interactions
is seen to increase the line strength at low energies by two
orders of magnitude. Good agreement with experimental data
is obtained and the agreement improves upon inclusion of
anisotropic interactions. The effect of anisotropic interac-
tions decreases at higher energy, which validates the isotropic
interaction approximation as a high-temperature (T > 100 K
for N2–N2) approximation for calculating collision-induced
spectra. This is consistent with the classical simulations re-
ported in Ref. 13. The unambiguous identification of quantum
effects would require quantum mechanical calculations and
classical simulations using the same potential energy and
dipole moment surfaces.
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APPENDIX: SHAPE RESONANCES
ON THE ISOTROPIC POTENTIAL

The isotropic potential supports a large number of shape
resonances, some of which are very narrow. In order to con-
struct an energy grid that properly samples these resonances,

FIG. 10. The phase shift as a function of the collision energy for shape
resonances on the isotropic potential.

we manually identified the positions and widths of 39 reso-
nances by inspecting the phase shifts, defined through the S-
matrix by S = exp(i2δ). The phase shift is typically a smooth
function of the collision energy, but rapidly jumps by π on
resonance. In Fig. 10, we show the phase shifts for a number
of partial waves.
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