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In this paper we address the problem of computing state-dependent feedback controls for path integral control
problems. To this end we generalize the path integral control formula and utilize this to construct parametrized
state-dependent feedback controllers. In addition, we show a relation between control and importance sampling:
Better control, in terms of control cost, yields more efficient importance sampling, in terms of effective sample
size. The optimal control provides a zero-variance estimate.
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I. INTRODUCTION

Control methods are used widely in many engineering
applications, such as mechanical systems, chemical plants,
finance, and robotics. Often, these methods are used to stabilize
the system around a particular set point or trajectory using state
feedback. In robotics, the problem may be to plan a sequence of
actions that yield a motor behavior such as walking or grasping
an object [1,2]. In finance, the problem may be to devise a
sequence of buy and sell actions to optimize a portfolio of
assets, or to determine the optimal option price [3].

Optimal control theory provides an elegant mathematical
framework for computing an optimal controller using the
Hamilton-Jacobi-Bellman (HJB) equation. In general the HJB
equation is impossible to solve analytically, and numerical
solutions are intractable due to the problem of dimensionality.
As a result, often a suboptimal linear feedback controller such
as a proportional-integral-derivative (PID) controller [4] or
another heuristic approach is used instead. The use of subopti-
mal controllers may be particularly problematic for nonlinear
stochastic problems, where noise affects the optimality of the
controller.

One way to proceed is to consider the class of control
problems in which the HJB equation can be linearized. Such
problems can be divided into two closely related cases [5].
The first considers infinite-time-average cost problems, while
the second considers finite-time problems. Approaches of the
first kind [2,6] solve the control problem as an eigenvalue
problem. This class has the advantage that the solution also
computes a feedback signal, but the disadvantage that a
discrete representation of the state space is required. In the
second case the optimal control solution is given as a path
integral [7]. This case will be the subject of this work.
Path integral approaches have led to efficient computational
methods that have been successfully applied to multiagent
systems and robot movement [1,8–11].

Despite the success of the method, two key aspects have
apparently not yet been addressed.

(1) The issue of state feedback has been largely ignored
in path integral approaches and the resulting “open-loop”
controllers are independent of the state; they are possibly aug-
mented with an additional PID controller to ensure stability [1].

*s.thijssen@donders.ru.nl
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(2) The path integral is computed using Monte Carlo
sampling. The use of an exploring control as a type of
importance sampling has been suggested to improve the
efficiency of the sampling [3,12] but there appear to be no
theoretical results to back this up.

These two aspects are related because the exploring controls
are most effective if they are state feedback controls. In
this paper we propose solutions to these two issues. We
generalize the path integral control formula and utilize this to
construct parametrized state-dependent feedback controllers.
In Corollary 4 we show how a feedback controller might be
obtained using path integral control computations that can
be approximated to arbitrary precision in this way if the
parametrization is correct. The parameters for all future times
can be computed using a single set of Monte Carlo samples.

We derive the key property that the path integral is
independent of the importance sampling when using infinite
samples. However, importance sampling strongly affects the
efficiency of the sampler. In Theorem 2 we derive a bound
which implies that, when the importance control approaches
the optimal control, the variance in the estimates reduces
to zero and the effective sample size becomes maximal.
This allows us to improve the estimates iteratively by using
better and better importance sampling with increasing effective
sample size.

This work is structured as follows. In Sec. II we review path
integral control and we extend the existing theory in Sec. III.
Using this we prove additional variance bounds in Sec. IV
and generalized path integral control formulas in Sec. V. In
Sec. VI we construct a feedback controller and describe how
to compute it efficiently. In Sec. VII we show in an example
how to compute several nonlinear feedback controllers for a
nonlinear control problem.

II. THE PATH INTEGRAL CONTROL PROBLEM

Consider the dynamical system

dXu(t) = b(t,Xu(t))dt

+ σ (t,Xu(t))[u(t,Xu(t))dt + dW (t)], (1)

for t0 � t � t1 and with Xu(t0) = x0. Here W (t) is m-
dimensional standard Brownian motion, and we take
b : [t0,t1] × Rn → Rn, σ : [t0,t1] × Rn → Rn×m, and u :
[t0,t1] × Rn → Rm such that a solution of Eq. (1) exists.
Formulating exact conditions that guarantee existence is not
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the aim of this work. (See [13,14] for details of the theory,
or [15] for a mathematical approach to path integral control.)

Given a function u(t,x) that defines the control for each
state x and each time t0 � t � t1, we define the cost

Su(t) =
∫ t1

t

V (s,Xu(s)) + 1

2
u(s,Xu(s))′u(s,Xu(s))ds

+
∫ t1

t

u(s,Xu(s))′dW (s), (2)

where the prime denotes the transpose. Note that S depends on
future values of X and is therefore not adaptive [13,14] with
respect to the Brownian motion.

It is unusual to include a stochastic integral with respect to
Brownian motion in the cost because it vanishes when taking
the expectation value. However, when performing importance
sampling with u, such a term appears naturally (see Sec IV).

The goal in stochastic optimal control is to minimize the
expected cost with respect to the control:

J (t,x) = min
u

E[Su(t) | Xu(t) = x],

u∗(·,·) = arg min
u

E[Su(t0)].

Here E denotes the expected value with respect to the
stochastic process from Eq. (1). The following, previously
established, result [7,11] gives a solution of the control
problem in terms of path integrals.

Theorem 1. The solution of the control problem is given by

J (t0,x0) = − lnE e−Su(t0), (3)

u∗(t0,x0) − u(t0,x0) = lim
t→t0

E
[
e−Su(t0)

∫ t

t0
dW (s)

]
(t − t0)E[e−Su(t0)]

. (4)

Proof. Equation (3) will be proven in Remark 2 and Eq. (4)
follows from the generalized main theorem in Sec. V. �

Because the solution of the control problem is given in
terms of a path integral Eqs. (3) and (4), the control problem
Eqs. (1) and (2) is referred to as a path integral control problem.
The formulas from Theorem 1 provide a solution at t0. Of
course, since t0 is arbitrary, this can be utilized at any time
t . However, for t > t0, the state Xu(t) is probabilistic, and
consequently, the optimal control must be recomputed for
each t,x separately. This issue will be partly resolved in the
main theorem, where we show that all expected optimal future
controls can be expressed using a single path integral.

The optimal control solution holds for any function u. In
particular, it holds for u = 0 in which case we refer to Eq. (1) as
the uncontrolled dynamics. Computing the optimal control in
Eq. (4) with u �= 0 implements a type of importance sampling,
which is further discussed in Sec. IV.

Remark 1. It is straightforward, but notationally tedious, to
generalize the control problem to the following slightly more
general form

dX = bdt + σ (udt + ρdW ),

S = �(x(T )) +
∫ t1

t0

V + 1

2
u′Rudt +

∫ t1

t0

u′RρdW,

with � ∈ R, and R,σ ∈ Rm×m with λI = Rρρ ′ and λ ∈ R>0.
Note that we dropped the dependence on t,Xu(t) for brevity.

III. LINEARIZABLE HJB EQUATION AND
STOCHASTIC PROCESSES

In this work we use the HJB equation as a means of
solving the control problem. The path integral control problem
is characterized by the fact that the HJB equation can be
linearized. This will be utilized in this section to obtain the
main lemma.

Definition 1. Throughout the rest of this work we define

ψ(t,x) = e−J (t,x),

ψ(t) = ψ(t,Xu(t)),

φ(t) = e−Su(t0)+Su(t).

Note that ψ(·,·) denotes a function of time and state, while
φ(·) and ψ(·) denote stochastic processes, the latter being
equal to the function ψ(·,·) of the stochastic process Eq. (1).
This convention will also be used for other functions, e.g.,
u(t) = u(t,Xu(t)). We remark that, in contrast to Su(t), the
processes ψ(t) and φ(t) are adapted: They do not depend on
future values of X.

Lemma 1. (main lemma).

e−Su(t) − ψ(t) = 1

φ(t)

∫ t1

t

φ(s)ψ(s)[u∗(s) − u(s)]′dW (s).

(5)

Proof. The HJB equation [14] for the control problem is

−Jt = min
u

(
V + 1

2u′u + (b + σu)′Jx + 1
2 Tr(σσ ′Jxx)

)
,

with boundary condition J (t1,x) = 0. We can solve for u

which gives

u∗ = −σ ′Jx,
(6)

−Jt = V − 1
2J ′

xσσ ′Jx + b′Jx + 1
2 Tr(σσ ′Jxx).

This partial differential equation (PDE) becomes linear in
terms of ψ . We have

ψt + b′ψx + 1

2
Trσσ ′ψxx = V ψ,

(7)

u∗ = 1

ψ
σ ′ψx,

with boundary condition ψ(t1,x) = e−J (t1,x) = 1.
Using Itô’s lemma [13,14] we obtain a stochastic differ-

ential equation (SDE) for the process ψ(t) (dropping the
dependence on time for brevity)

dψ = (
ψt + ψ ′

x(b + σu) + 1
2 Trσσ ′ψxx

)
dt + ψ ′

xσdW

= V ψdt + ψ ′
xσ (udt + dW ),

where the last equation follows because ψ(·,·) satisfies Eq. (7).
From the definition of φ one readily verifies that it satisfies
the SDE dφ(t) = −φ(t)[V (t)dt + u(t)′dW (t)] with initial
condition φ(t0) = 1. Using the product rule from stochastic
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calculus [13] we obtain

d(φψ) = ψdφ + φdψ + d[φ,ψ]

= −φψu′dW + φψ ′
xσdW

= φψ(u∗ − u)′dW. (8)

Integrating the above from t to t1 gives

φ(t1)ψ(t1) − φ(t)ψ(t)

=
∫ t1

t

φ(s)ψ(s)[u∗(s) − u(s)]′dW (s).

Note that ψ(t1) = 1 and that φ(t1) = φ(t)e−Su(t). Dividing by
φ(t) we obtain the statement of the lemma. �

IV. OPTIMAL IMPORTANCE SAMPLING

A Monte Carlo approximation of the optimal control
solution Eq. (4) is a weighted average, where the weight
depends on the path cost. If the variance of the weights is
high, then a lot of samples are required to obtain a good
estimate. Critically, Eq. (4) holds for all u, so that it can
be chosen to reduce the variance of the path weights. This
induces a change of measure and an importance sampling
scheme. By the Girsanov theorem [13,14], the change in
measure does not affect the weighted average (for a more
detailed description in the context of path integral control,
see [5]). The Radon-Nikodym derivative e− ∫

[(1/2)u′udt+u′dW ] is
the correction term for importance sampling with u, which
explains why we included

∫
u′dW in the definition of S.

In this section we will show that the optimal u for sampling
purposes turns out to be u∗. More generally, the variance
will decrease as u gets closer to u∗. This motivates policy
iteration, in which increasingly better estimates u of u∗
improve sampling so that even better approximations of u∗
might be obtained.

Definition 2. Given the process Xu(t) for t0 < t < t1:
(1) The weight of a path is defined as αu = e−Su(t0)

E[e−Su(t0)]
.

(2) The fraction λu of effective samples is λu = 1
E[(αu)2] .

Theorem 2. We have the following upper and lower bounds
for the variance of the weight:

Var(αu) �
∫ t1

t0

E[(u∗ − u)′(u∗ − u)(αu)2]dt, (9)

Var(αu) �
∫ t1

t0

E[(u∗ − u)αu]′E[(u∗ − u)αu]dt. (10)

Because Var (αu) + 1 = E[(αu)2], the fraction of effective
samples as defined in Definition 2.2 satisfies 0 < λu � 1. It has
been suggested [16] that this fraction can be used to determine
how well one can compute a sample estimate of a weighted
average. This can be connected with Theorem 2 as follows.

Corollary 1. If ||u∗ − u||2 � ε/(t1 − t0), then

λu � 1 − ε.

Proof. This follows readily from Eq. (9). �
A numerical illustration of Theorem 2 can be found in

Fig. 1. Before we prove Theorem 2, we deduce a few useful
facts that follow from the main lemma.

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

(1 − )
Var(α )

FIG. 1. Estimate of Var(αε), where αε := e−Suε
(t0)/ψ(t0,x0) with

upper and lower bounds from Theorem 2 with respect to the control
problem in Example 1. Here we considered a range of suboptimal
importance controls uε(t,x) = u∗(t,x) + √

ε. The estimate of the
variance is based on 104 paths that were generated with dt = 0.001.

Corollary 2. An optimally controlled random path is an
instance of Eq. (1) with u = u∗. Although such a path is
random, its attributed cost has zero variance and is equal to the
expected optimal cost to go:

Su∗
(t0) = − ln ψ(t0,x0) = J (t0,x0).

Furthermore we have αu∗ = 1, such that the weighted average,
which is independent of u, equals the expectation under the
optimal process.

Proof. Take u = u∗ and t = t0 in Eq. (5). �
Corollary 3. The following Feynman-Kac formula [13,14]

expresses ψ as a path integral:

ψ(t) = E[e−Su(t) | Ft ]. (11)

Here the filtration Ft denotes that we are taking the expected
value conditioned on events up to time t .

Proof. Take the expected value on both sides of Eq. (5). �
Remark 2. When we consider Eq. (11) with t = t0, and take

minus the logarithm on both sides, we obtain Eq. (3): a path
integral formula for the optimal cost to go function.

Proof of Theorem 2. Consider Eq. (5) with t = t0, and divide
by ψ(t0,x0) such that

Var(αu)

= E

[(∫ t1

t0

φ(t)ψ(t)

ψ(t0)
[u∗(t) − u(t)]′dW (t)

)2
]

= E

∫ t1

t0

φ(t)2ψ(t)2

ψ(t0)2
[u∗(t) − u(t)]′[u∗(t) − u(t)]dt

= E

∫ t1

t0

[
αuψ(t)eSu(t)

]2
[u∗(t) − u(t)]′[u∗(t) − u(t)]dt.

(12)

In the first line we used that φ(t0) = 1, and in the second line
we applied the Itô isometry [13]. In the third line we used
αu = e−Su(t0)/ψ(t0), which follows from Eq. (11) with t = t0.
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For the upper bound we consider Eq. (11) and apply
Jensen’s inequality

ψ(t)2 = E
[
e−Su(t)

∣∣Ft

]2 � E
[
e−2Su(t)

∣∣Ft

]
.

Substituting in Eq. (12) and using the law of total expectation
we obtain the inequality (9).

For the lower bound we use Jensen’s inequality on the whole
integrand of Eq. (12) to obtain

Var(αu) �
∫ t1

t0

E{αuψ(t)eSu(t)[u∗(t) − u(t)]′}

E
{
αuψ(t)eSu(t)[u∗(t) − u(t)]

}
dt.

Using Eq. (11) and the law of total expectation we obtain the
inequality (10). �

We conclude that the optimal control problem is equivalent
to the optimal sampling problem. An important consequence,
which is given in Corollary 1, is that if the importance control
is close to optimal, then so is the sampling efficiency.

V. THE MAIN PATH INTEGRAL THEOREM

The main theorem is a generalization of Theorem 1 that
gives a solution of the control problem in terms of path
integrals. The disadvantage of Theorem 1 is that it requires
us to recompute the optimal control for each t,x separately.
Here, we show that we can also compute the expected
optimal future controls using a single set of trajectories with
initialization X(t0) = x0. We furthermore generalize the path
integral expressions by considering the product with some
function f (t,x). In the next section we utilize this result
to construct a feedback controller. Here we proceed with
the statement and the proof of the generalized path integral
formula.

Notation 1. For any process Y (t) we let 〈Y (t)〉 = 〈Y 〉 (t) =
E[αuY (t)] denote the weighted average.

Theorem 3 (main theorem). Let f : R × Rn → R, and
consider the process f (t) = f (t,X(t)). Then

E[ψ(t)] = E
[
e−Su(t)

]
, (13)

〈(u∗ − u)f 〉(t) = lim
r→t

〈∫ r

t
f (s)dW (s)

r − t

〉
(t). (14)

Proof of (13). Consider the Feynman-Kac formula Eq. (11)
and take the expectation with respect to Ft0 . �

Proof of (14). Consider Lemma 1 with t = t0, multiply by∫ r

t
f (s)dW (s), and take the expected value:

E

[
e−Su(t0)

∫ r

t

f (s)dW (s)

]

= E

∫ r

t

φ(s)ψ(s)[u∗(s) − u(s)]f (s)ds.

On the left-hand side the term ψ(t0)
∫

f dW has disappeared
because ψ(t0) is not random and the stochastic integral has
zero mean. On the right-hand side we have used independent
increments and the Itô isometry. Dividing by r − t and taking

the limit r → t we obtain

lim
r→t

1

r − t
E

[
e−Su(t0)

∫ r

t

f (s)dW (s)

]

= E[φ(t)ψ(t)[u∗(t) − u(t)]f (t)]

= E
[
e−Su(t0)[u∗(t) − u(t)]f (t)

]
,

where in the last line we used that φ(t) = e−Su(t0)+Su(t) and
ψ(t) = E[e−Su(t)|Ft ] combined with the law of total expecta-
tion. Dividing both sides by E[e−Su(t0)] gives Eq. (14). �

VI. A PARAMETRIZED FEEDBACK CONTROLLER

In this section we illustrate how Theorem 3 can be used to
construct a feedback controller. To this end we will assume
that u∗ is of the following parametrized from:

u∗(t,x) = A(t)h(t,x). (15)

Here h : R × Rn → Rk will be referred to as the k “basis”
functions which are assumed to be known. The “parameters”
A(t) ∈ Rm×k are assumed to be unknown. Note that the open-
loop controller can be obtained by a parametrization with one
basis function h = 1. The following corollary states that it is
possible to estimate the optimal parameters from the equations
in the main theorem.

Corollary 4 (path integral feedback). Let f (t,x) ∈ Rl be a
function, and suppose that u∗ is of the form Eq. (15); then

A(t)〈hf ′〉 (t) = 〈uf ′〉 (t) + lim
r→t

〈∫ r

t
f ′(s)dW (s)

r − t

〉
. (16)

Proof. This follows directly from Eq. (14) of the main
theorem when the parametrized from of u∗ is used. �

Assuming that both the right-hand side and the cross
correlations 〈hf ′〉(t) can be obtained by sampling methods,
Eq. (16) gives for each time t a set of m × k linear equations
in the k × m unknown parameters A(t). These equations can be
solved uniquely if the k × l matrix 〈hf ′〉 is of rank k. Although
we have to do these computations for each time t separately,
only one set of paths is needed to get the sampling estimates
for all times.

In general it will be impossible to check whether the
optimal control is of the parametrized form. However, it seems
plausible that if the parametrization can represent u∗ quite
well, it will be possible to estimate a good control function
using Corollary 4. In the next section we perform a numerical
experiment to support this statement.

Note that we can use any importance control u to estimate
the optimal control u∗. In principle, we could use u = 0
and sample long enough to compute the u∗ sufficiently
accurately. However, we find it more efficient to use an
iterative method where we use the optimal control estimate
ul that was computed at iteration l as an importance control
for the computation of the optimal control ul+1. According
to Corollary 1 we know that improved controls have a
higher fraction of effective samples and thus will make
more efficient use of the sampling data. In particular, if u

and u∗ are parametrized with the same basis functions and
time-dependent coefficients A(t) and A∗(t), respectively, this
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results in an iterative update scheme for these coefficients. We
refer to this method as iterative importance sampling.

We conclude that parametrized control functions can be
obtained directly from path integral estimates, where the
parameters can be computed using a single set of paths.
Critically, these parametrized controls can be state-dependent
functions. As a result, it is possible to construct (closed-loop)
feedback controllers, which are more widely applicable than
open-loop controllers.

VII. EXAMPLE

We consider the following control problem, of which we
know the analytical solution.

Example 1 (geometric Brownian motion). For t0 � t � t1,
the one-dimensional problem

dXu(t) = Xu(t)

(
dt

2
+ u(t,Xu(t))dt + dW (t)

)
,

Su(t) = Q

2
ln[Xu(t1)]2 + 1

2

∫ t1

t

u(s,Xu(s))2ds

+
∫ t1

t

u(s,Xu(s))′dW (s),

has the solution

u∗(t,x) = −Q ln(x)

Q(t1 − t) + 1
.

For the experiments we will take x0 = 1/2, t0 = 0, t1 = 1, and
Q = 10.

In a first experiment we visualize Theorem 2. To this
end we consider a range of suboptimal importance controls
uε(t,x) = u∗(t,x) + √

ε. Each uε yields a path weight αε :=
αuε

. Because 〈u∗ − u〉′〈u∗ − u〉 = ε, Theorem 2 implies that
ε � Var(αε) � ε

1−ε
. The results are reported in Fig. 1.

In a second experiment we construct feedback control
functions based on various parametrizations. It is clear that
a correct parametrization of the problem in Example 1 can be
obtained with just one basis function: ln(x). In the experiment
we also consider three parametrizations that cannot describe
u∗: a constant, an affine, and a quadratic function of the state.
The three controllers that we obtain in this way are denoted by
u(0), u(1), and u(2), e.g., u(2)(t,x) = a(t) + b(t)x + c(t)x2.

We have used iterative importance sampling with f = h as
described in the previous section to estimate the parameters.
The performance of the resulting control functions is given in
Table I. The row E[Su(t0)] gives the expected cost, which we
want to minimize. The row Var(αu) gives the variance of the

TABLE I. Performance estimates of various controllers based on
104 sample paths. Although for numerical consistency we used 104

sample paths to compute the parameters, only roughly 102 samples
are required to obtain well-performing controllers.

u = 0 u(0) u(1) u(2) a(t) ln(x) u∗

E[Su(t0)] 7.526 5.139 1.507 1.461 1.422 1.420
Var(αu) 1.981 1.376 0.143 0.0506 0.0085 0.0071
λu (%) 34.3 42.08 87.5 95.2 99.1 99.3
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FIG. 2. The approximate controls calculated with 104 sample
paths in two importance sampling iterations using a time discretiza-
tion of dt = 0.001 for numerical integration. The histogram was
created with 104 draws from Xu∗

(t) at t = 1/2.

path weight, which is directly related to the fraction of effective
samples. Clearly the open-loop controller u(0)(t,x) = a(t)
improves upon the zero controller u(t,x) = 0. The control
further improves when the affine and quadratic basis functions
are subsequently considered. The best result is obtained,
unsurprisingly, with the logarithmic parametrization.

In Fig. 2 we plot the state dependence of the feedback
controllers at the intermediate time t = 1/2. Although the
parametrized functions yield a control for all x, we are mainly
interested in regions of the state space that are likely to be
visited by the process X. This is visualized by a histogram of
104 particles that are drawn from Xu∗

(1/2). We observe that
the optimal logarithmic shape is fitted, and that more complex
parametrizations yield a better fit.

VIII. DISCUSSION

Most current feedback controllers that are used to stabilize
systems are linear feedback controllers such as PID controllers.
These are heuristic approaches that are optimal only if one
assumes that the system dynamics is linear and the cost is
quadratic. In this paper we have shown how to compute optimal
feedback controllers for a class of nonlinear stochastic control
problems. The optimality requires the use of the appropriate
basis functions.

It should be noted that the optimal feedback is not
necessarily a stabilizing term. Depending on the task it might
be optimal to destabilize by amplifying the noise, for example,
to create momentum efficiently.

Future work includes the development of methods for
practical scenarios, based on the path integral feedback
Eq. (16). An important aspect will be the selection of basis
functions. A recent related work [6] discusses basis functions
to obtain a solution of the linearized HJB equation (7).
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