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I. INTRODUCTION

Nowadays, we are witnessing an outstanding progress in observational cosmology, espe-
cially owing to the precise measurements of the cosmic microwave background (CMB), which
is one of the best known observational windows to the early epochs of the universe [1]. Such
a breakthrough provides the opportunity for theoretical physicists to test the predictions
of their theories about those early stages. In particular, the possibility that we may falsify
our hypotheses about the origin of the universe in this way, makes clear the necessity of
providing a quantum theory for the gravitational interaction, as General Relativity suffers
a predictability breakdown in this regime: The big-bang singularity.

One of the most promising approaches to accomplish such a quantization of gravity is
based on the formalism of loop quantum gravity (LQG) [2]. The application of its techniques
to describe the quantization of cosmological models leads to the branch of research known as
loop quantum cosmology (LQC) [3]. LQC has proven to produce some remarkable results in
the analysis of homogeneous models. In particular, the initial big-bang singularity is avoided
and replaced with a quantum mechanism, called the big-bounce [3, 4]. However, testing the
robustness of LQC calls for obtaining physical results from more realistic scenarios, such as
inhomogeneous cosmologies. In this context, a hybrid approach has been proposed for the
quantization of models of this kind, based on the assumption that the most relevant quantum
geometry effects would mainly affect the homogeneous degrees of freedom. Such assump-
tion involves a splitting of the phase space of the system into a homogeneous sector and an
inhomogeneous one. Then, a loop quantization is adopted for the homogeneous degrees of
freedom (which, in this way, fully retain the genuine quantum features of the space-time),
while the inhomogeneous degrees of freedom are treated by means of a more conventional
Fock quantization. This quantization strategy was applied for the first time to the case of
the Gowdy cosmologies with linear polarization of the gravitational waves and with the spa-
tial topology of a three-torus, T 3, achieving a complete quantization of the model [5, 6]. The
study of these tractable cosmologies provides the opportunity to develop approximate meth-
ods and techniques to solve the complicated dynamics of inhomogeneous systems. These
methods could become particularly interesting when it comes to analyzing the dynamical
behavior of more realistic models such as Friedmann-Robertson-Walker1 (FRW) geometries
with cosmological perturbations, in the context of an inflationary universe. Recently, these
systems have drawn a substantial attention within the framework of LQC. They are being
analyzed by means of this hybrid approach [7], as well as employing other related, but dif-
ferent strategies (see [8] for a quantum treatment of inhomogeneities over a “dressed metric”
that accounts for a quantum background without any back-reaction, or [9] for an effective
point of view arising from the requirement that the algebra of constraints closes).

In order to pursue further the analysis of inhomogeneous cosmologies in LQC, we keep
investigating the dynamics of the hybrid quantum Gowdy model with linear polarization
and T 3-topology. Specifically we will consider the system with local rotational symmetry
(LRS), consistent in this model because it possesses two axial Killing vectors which are
indistinguishable in principle, and only one direction is anisotropic (namely, the direction
of the inhomogeneities, in which the gravitational waves vary). Besides, to include matter
in the system, we will consider a minimally coupled massless scalar field with the same
symmetries as the metric [10]. The classical phase space of this Gowdy model can then be
seen as that of a flat anisotropic LRS Bianchi I model with inhomogeneities (gravitational

1 These cosmologies are also called Friedmann-Lemâıtre-Robertson-Walker cosmologies by many authors.
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waves and matter field) propagating in the anisotropic direction. After a partial gauge
fixing, the reduced system is still subject to two global constraints: The zero-mode of the
Hamiltonian constraint and a momentum constraint for the inhomogeneous fields. The
Hamiltonian constraint operator resulting from the hybrid quantization of this model has a
rather complicated action on the states of the kinematical Hilbert space. Thus, approximate
methods were developed in [11] in order to find families of states that were approximate
solutions to this Hamiltonian constraint. These solutions were actually shown to satisfy
as well, within certain approximations, a Hamiltonian constraint that could be seen as
corresponding to an FRW universe coupled to a homogeneous massless scalar field and with
a perfect fluid. In this paper we will further generalize this family of states so that, while still
being approximate solutions to the full Gowdy model, in addition they approximately obey
the dynamics corresponding to an FRW cosmology with the kind of geometrical corrections
that one would expect to find in modified theories of gravity [12].

The Hamiltonian constraint operator of our hybrid Gowdy cosmology involves two trou-
blesome contributions obstructing its resolution. The first of them is an anisotropy term
that contains what can be seen as the momentum of the Bianchi I anisotropy variable. It
acts as a difference operator, coupling the isotropic part of the homogeneous sector with
the anisotropies. The second contribution is a term that couples the interaction between
the inhomogeneous modes (which come from both the gravitational waves and the massless
scalar field) with the homogeneous sector. The discussion in [11] and the generalization
presented here provide quantum states on which the action of these two complicated terms
can be approximated and disregarded when compared to the other terms in the Hamiltonian
constraint. Specifically, in the homogeneous sector (which is characterized by the volume of
the Bianchi I background and the variable accounting for the anisotropy), the dependence of
these states on the anisotropy is given by some particular Gaussian-like profiles. Essentially,
these profiles are sharply peaked at a large value of the anisotropy variable, while being
reasonably centered at a vanishing value of its momentum. The analyses in [11] dealt with
the cases where this peak is either a constant or a volume-dependent function, showing that
these states provide approximate solutions to the Gowdy model that dynamically behave
as those of an FRW cosmology coupled to a homogeneous massless scalar field (when the
peak is a constant) and possibly with a perfect fluid (if the peak depends appropriately on
the volume), including the case corresponding to a cosmological constant. The extension
of this family of states that we address in this paper considers the more general case in
which the peak may depend on a rather generic operator of the homogeneous and isotropic
geometry, not given necessarily by a function of the homogeneous volume. It will be argued
that, by imposing certain restrictions on this operator, these states provide again approxi-
mate solutions to the full Gowdy model and, in turn, to the Hamiltonian constraint of an
FRW universe coupled to a homogeneous massless scalar field, filled with a perfect fluid (as
in [11]), and now also geometrically corrected by homogeneous and isotropic curvature-like
terms. As anticipated above, such new types of corrections can be seen as those expected
to arise from certain modified theories of gravity, such as f(R) theories [12].

It is worth noting that the considered family of quantum states is not peaked at all at
homogeneous and isotropic trajectories, but rather the opposite. Nevertheless, in the dy-
namics they behave as if they were homogeneous and isotropic, as much as the Hamiltonian
constraint is concerned, a fact that can be understood as a quantum collective behavior of
their anisotropies and inhomogeneities. Let us also comment that this family is not as lim-
ited as one might have thought in principle: Just on the contrary, there exists a considerable
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variety in the geometry operators that may be used in the construction of the mentioned
Gaussian-like profiles.

The organization of the paper is as follows. In Sec. II we will revisit the results of
the hybrid quantization of the Gowdy model with T 3-topology, linear polarization, LRS,
and minimally coupled to a massless scalar field [10]. In Sec. III we will discuss how, by
considering the mentioned Gaussian-like states (already introduced in [11], and generalized
here), the complicated Hamiltonian constraint operator can be approximated by a much
simpler one when acting on them. In Sec. IV we will justify under which conditions these
states can be seen as approximate solutions of the Gowdy model that behave dynamically as
those corresponding to a modified FRW cosmology, along the lines commented above. In Sec.
V we will conclude by summarizing our results and discussing their possible implications.
Finally, we have included two appendices with extra details of the calculations.

II. HYBRID QUANTIZATION OF THE GOWDY MODEL

Let us consider the Gowdy T 3 model with linear polarization, LRS, and minimally coupled
to a massless scalar field Φ with the same symmetries as the metric. We will denote the three
orthogonal spatial coordinates as θ, σ, and δ, each of them defined on the circle. This choice
of coordinates is adapted to the symmetries of the system, so that the two inhomogeneous
fields (matter and gravitational waves) have spatial dependence only in e.g. θ. We can then
expand these fields in Fourier modes in this coordinate. The reduced phase space resulting
from a partial gauge fixing [5] can be split in two sectors: A homogeneous one formed by
the zero-modes of the Fourier expansion, which can be identified with the phase space of a
LRS Bianchi I system minimally coupled to a homogeneous massless scalar field φ (the zero-
mode of Φ); and an inhomogeneous sector containing the non-zero Fourier modes of both
the linearly polarized gravitational waves and the matter field, as well as their canonically
conjugate momenta. The whole of this reduced system is subject to two global constraints:
A momentum constraint, Cθ, that generates rigid rotations in θ, and the zero-mode of the
Hamiltonian constraint, CG, that generates time reparameterizations. This last constraint
consists of two terms, namely CG = CBI + Cinh. Here, CBI coincides with the Hamiltonian
constraint of the LRS Bianchi I model coupled to the homogeneous massless scalar φ, and
Cinh rules the dynamics of the inhomogeneities, coupling them with the homogeneous sector.

We then follow the hybrid approach for the quantization of this model [10]. We adopt a
Schrödinger representation for the homogeneous massless scalar φ, a loop quantization for
the Bianchi I degrees of freedom [6, 13] within the so-called improved dynamics scheme [14],
and a Fock representation for the non-zero modes of both gravitational and matter fields
[15]. We will first deal with the representation of the Bianchi I sector.

A. Loop quantization of the homogeneous sector

In order to adopt a loop representation of the LRS Bianchi I phase space (which is four
dimensional), it is convenient to introduce four specific classical real variables to describe
it, related with the non-vanishing components of the SU(2) Ashtekar-Barbero connection
and with the non-vanishing components of the densitized triad (see, e.g., [10]). Following
the conventions and notations of [10, 11], we denote these variables as v, b, λθ, and bθ. The
absolute value of v is proportional to the volume of the Bianchi I universe (homogeneous
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sector of the Gowdy model) and λθ measures the anisotropy in the θ-direction. From their
Poisson brackets (where ~ denotes the reduced Planck constant),

{λθ, v} = 0, {b, v} =
2

~
, {bθ, λθ} =

2

~

λθ
v
,

{λθ, b} = 0, {bθ, v} =
2

~
, {bθ, b} =

2

~v
(bθ − b), (2.1)

one observes that this set of variables is not canonical. However, it is a convenient choice
to formulate the improved dynamics scheme in the loop representation [14]. The Hilbert
space resulting from this quantization is the completion of the linear span of eigenstates of
the operators v̂ and λ̂θ with respect to a discrete inner product. Explicitly, an orthonormal
basis of the homogeneous gravitational sector is {|v, λθ〉 = |v〉 ⊗ |λθ〉} (with v, λθ ∈ R),
where 〈v′, λ′θ|v, λθ〉 = δv′,vδλ′

θ
,λθ

. Let us note that, given this discrete inner product, the
representation is not continuous. As a consequence, the variables bθ and b have no well-
defined operator counterparts. Instead, one represents their complex exponentials, e±ibθ and
e±ib, that describe the holonomies of the connection:

ê±ibθ |v, λθ〉 =
∣∣∣∣v ± 2, λθ ±

2λθ
v

〉
, ê±ib|v, λθ〉 = |v ± 2, λθ〉. (2.2)

Note that, with these definitions,

[ê±iba , v̂] = i~ ̂{e±iba , v}, [ê±iba , λ̂θ] = i~ ̂{e±iba , λθ}, (2.3)

where ba denotes either bθ or b. We also observe that the complex exponentials ê±iba , when
acting on the above basis states, produce a shift on the quantum label v that is state-
independent. This is the main reason motivating the above set of variables. Nevertheless,

the translation on the anisotropy variable produced by ê±ibθ is not constant. This is one of
the features underlying the complications when solving the dynamics of the model.

Besides, we take a standard Schrödinger representation for φ, with Hilbert space L2(R, dφ),
and momentum operator p̂φ = −i~∂φ. Then, the Bianchi I term in the Hamiltonian con-
straint is promoted to the following symmetric operator [10]:

ĈBI = ĈFRW − πG~2

8
(Ω̂Θ̂ + Θ̂Ω̂) ; ĈFRW = −3πG~2

8
Ω̂2 +

p̂2φ
2
. (2.4)

Here, G is the Newton constant, Θ̂ = Θ̂θ − Ω̂, with

Ω̂ =
√

|v̂|
[
ŝign(v)ŝin(b) + ŝin(b)ŝign(v)

]√
|v̂|, (2.5)

and Θ̂θ is defined in a similar way, replacing ŝin(b) with ŝin(bθ). These operators Ω̂ and Θ̂θ

represent, respectively, the classical functions 2v sin(b) and 2v sin(bθ). The operator ĈFRW

is the Hamiltonian constraint of a flat FRW model coupled to a massless scalar φ. Then,
the constraint operator ĈBI of this LRS Bianchi I sector can be seen as an FRW term plus
a contribution that accounts for the anisotropies.

This ĈBI operator has some remarkable properties thanks to the symmetric factor ordering
chosen for Ω̂ and Θ̂θ [13, 16]. It decouples the basis states |v, λθ〉 with v = 0 and/or λθ = 0
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from their orthogonal complement, and it does not mix states with positive values of v
and/or λθ with states with negative values of those variables. This allows us to restrict our
study to the subspace spanned by states |v, λθ〉 with, e.g., v, λθ ∈ R+. It is now convenient to
introduce a relabeling of the basis states in this subspace as |v,Λ〉 (v ∈ R+, Λ ∈ R), where
Λ = ln(λθ). Moreover, this subspace further splits into separable superselection sectors

under the action of ĈBI. On the one hand, this action preserves all the subspaces spanned
by states |v,Λ〉 with v belonging to the semilattice of step four L+

ε = {ε + 4k, k ∈ N}
determined by the initial point ε ∈ (0, 4]. Notice that ε is the (strictly positive) minimum
allowed for the Bianchi I volume v in the considered sector. On the other hand, there are
also superselection sectors in the anisotropy variable Λ. One can show that a state |v,Λ⋆〉
is related by the iterative action of the constraint only with states with Λ = Λ⋆ +Λε, where
Λε belongs to the (countable and dense) set Wε defined as [6]

{
z ln

(
ε− 2

ε

)
+

∑

m,n∈N

kmn ln

(
ε+ 2m

ε+ 2n

)
; kmn ∈ N, z ∈ Z if ε > 2, z = 0 if ε ≤ 2

}
. (2.6)

Therefore, for the homogeneous gravitational part of the system, all our future analysis
will be restricted to any of the sectors spanned by basis states |v,Λ〉 with v ∈ L+

ε and
Λ = Λ⋆ + Λε, with Λε ∈ Wε.

B. Fock quantization of the inhomogeneous sector

In the hybrid strategy, a Fock quantization is adopted for the non-zero modes of the
inhomogeneous fields, expressing them in terms of a suitable set of annihilation and creation-
like variables, that are represented as operators acting on the corresponding Fock space.
Actually, the selection of a specific quantization is possible thanks to the existence of a
privileged choice of Fock representation for both the gravitational waves and the matter field,
in the totally deparameterized Gowdy T 3 model. This representation is the unique one, up
to unitary equivalence, that admits a unitary implementation of the dynamics and whose
vacuum is invariant under rigid rotations in θ, which is the gauge symmetry of the reduced
system (see [15]). This class of unitarily equivalent Fock representations requires a particular
choice of configuration variables for the gravitational waves and for the matter field, that
involves a homogeneous rescaling of those fields. The class contains the representation that
would be most natural for massless free fields (that is, with annihilation and creation-like
variables chosen as if the frequency of the modes did not include mass terms).

With this result in mind, we adopt this “massless” Fock quantization for the non-zero
modes of the inhomogeneous fields [10]. In this representation, we will denote the annihi-

lation operator associated with the mode m ∈ Z − {0} by â
(α)
m , where α = ξ denotes the

gravitational field and α = ϕ denotes the matter field, both conveniently rescaled as stated
above. The Fock space admits a basis of n-particle states, |nξ, nϕ〉, where n

α denotes the
infinite collection of occupation numbers nα

m ∈ N in each non-zero mode m of the field α. In
this representation, the momentum constraint Cθ that generates rigid rotations in θ restricts
the occupation numbers of the n-particle states so that [10]

∑

m∈N+

m
(
nξ
m + nϕ

m − nξ
−m − nϕ

−m

)
= 0. (2.7)
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C. Hamiltonian constraint of the hybrid quantum Gowdy model

The operator which represents the Hamiltonian constraint CG in this hybrid quantization
is

ĈG = ĈFRW − πG~2

8
(Ω̂Θ̂ + Θ̂Ω̂) +

2πG~2

β
ê2ΛĤ0 +

πG~2β

4
ê−2ΛD̂Ω̂2D̂ĤI. (2.8)

Here, β = [G~/(16π2γ2∆)]1/3 is a constant that depends on some parameters of the loop
quantization (γ is the Immirzi parameter [17] and ∆ is the gap in the spectrum of area

eigenvalues [2]), Ĥ0 is the free-field energy of the non-zero modes,

Ĥ0 =
∑

α∈ξ,ϕ

∑

m∈Z−{0}

|m| â(α)†m â(α)m , (2.9)

ĤI is a self-interaction term,

ĤI =
∑

α∈ξ,ϕ

∑

m∈Z−{0}

1

2|m|
(
2â(α)†m â(α)m + â(α)†m â

(α)†
−m + â(α)m â

(α)
−m

)
, (2.10)

and D̂ represents the product of the volume by its inverse, which is regularized in LQC [3].
This product differs from the identity only in the region of small volumes:

D̂|v〉 = D(v)|v〉, D(v) = v
(√

v + 1−
√
|v − 1|

)2

. (2.11)

The last two terms in (2.8) form the operator Ĉinh that represents the inhomogeneous term
Cinh of the constraint. Given its action on the |v,Λ〉-part of the states, the Hamiltonian

constraint ĈG preserves the superselection sectors introduced in Subsec. IIA. Actually, it is
densely defined on the kinematical Hilbert space defined by the tensor product of L2(R, dφ)
with the completion of the linear span of |v,Λ, nξ, nϕ〉 with respect to the inner product

〈v′,Λ′, n′
ξ
, n′

ϕ|v,Λ, nξ, nϕ〉 = δv′,vδΛ′,Λδn′ξ,nξδn′ϕ,nϕ, (2.12)

where we recall that v ∈ L+
ε and Λ = Λ⋆ + Λε, with Λε ∈ Wε.

III. APPROXIMATING THE HAMILTONIAN CONSTRAINT

The action of the Hamiltonian constraint ĈG on the kinematical Hilbert space is quite
complicated, a fact that makes very difficult (if not impossible) to analytically find the

physical states of the system, those that solve the equation ĈG|Ψ〉 = 0.2 This is due to the

presence of two terms: The anisotropy term containing Ω̂Θ̂ + Θ̂Ω̂ and the interaction term

containing ê−2ΛD̂Ω̂2D̂ĤI. On the one hand, as far as the homogeneous sector is concerned,
neither the anisotropy operator Ω̂Θ̂ + Θ̂Ω̂ nor the operator D̂ commute with the FRW
operator Ω̂2. Therefore they cannot be diagonalized simultaneously. This fact, together with

2 Here |Ψ〉 generally stands for a generalized state. Alternatively, we can understand our constraint as an

equation of the form (Ψ|Ĉ†
G

on generalized states on the dual of the domain of ĈG.
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the v-dependent translations that the anisotropy operator produces in Λ [see (2.2)], makes
the resolution of the constraint in the homogeneous variables v and Λ extremely hard. On
the other hand, concerning the inhomogeneous sector, the interaction operator ĤI, which is
densely defined on the linear span of the n-particle states, does not act diagonally on them
(in contrast with Ĥ0). Specifically, it creates and annihilates a pair of particles in every
mode, notably complicating the resolution of the constraint for the inhomogeneous degrees
of freedom.

Owing to these obstacles, in what follows we will carry out approximations that allow
us to disregard those problematic terms when acting on certain families of states. This will
lead to a much simpler constraint operator, possessing some solutions that can be regarded
as approximate solutions to the full Gowdy model, and which will be studied in Sec. IV.

Let us start by reviewing the spectral properties of the operator Ω̂2. It is essentially self-
adjoint, with an absolutely continuous, non-degenerate, and positive spectrum [16]. In each
of the superselection sectors, with support of v in a semilattice L+

ε , the delta-normalized

eigenstates of Ω̂2 with eigenvalue ρ2 ∈ R+,

|eερ〉 =
∑

v∈L+
ε

eερ(v)|v〉, (3.1)

provide a resolution of the identity. The eigenfunctions can be chosen to be real and present
a feature that will prove essential for our future approximations, namely, that when ρ≫ 10,
eερ(v) is exponentially suppressed for v . ρ/2. On the other hand, for v ≫ ρ/2, these
eigenfunctions are oscillatory (see, e.g., [11]). The exponential suppression of the region
v . ρ/2 is a characteristic of the quantum geometry effects in the context of LQC, and it
is at the root of the occurrence of a quantum bounce in the loop quantization [16]. In the
proximity of this bounce, the LQC phenomena alter significantly the gravitational behavior
with respect to the predictions of General Relativity, invalidating the expectations based
on this latter theory [18]. Actually, this bounce resolves the cosmological singularities.
Moreover, it persists in the presence of anisotropies [19] and of inhomogeneities [20].

Let us now consider states whose homogeneous gravitational contribution has the form

|G〉 =
∑

Λε∈Wε

∫

Spc(ω)

dω g(ω,Λ⋆ + Λε)|ω,Λ⋆ + Λε〉, (3.2)

with

g(ω,Λ) = N(ω)f(ω,Λ), f(ω,Λ) = e
−

σ2
s

2q2ǫ
[Λ−Λ̄(ω)]2

. (3.3)

Here,

qε = ln

(
1 +

2

vm

)
, (3.4)

with vm ∈ L+
ε a certain value of the volume such that vm ≫ 10. Besides, σs is a free

parameter characterizing the width of the Gaussian f(ω,Λ) (together with qε), and Spc(ω)
denotes the spectrum of some operator ω̂ defined on the homogeneous and isotropic geometry
part of the kinematical Hilbert space (that is, the space spanned by the states |v〉). We
will assume ω̂ to be (essentially) self-adjoint. Let us notice that its spectrum might be



9

continuous, discrete, or even a mixture of both types. Nevertheless, we will formally denote
the spectral resolution of the identity provided by ω̂ as I =

∫
Spc(ω)

dω|ω〉〈ω|. States |G〉
of this kind were studied in [11], though only in two particular cases: First when ω̂ is a
constant operator, and then when ω̂ = v̂. Moreover, keeping in mind the key properties of
the states in [11] needed for the different approximations introduced in those references, we
will for the moment assume that the profile in the ρ-representation,

g(ρ,Λ) =

∫

Spc(ω)

dω g(ω,Λ)eεω(ρ), (3.5)

is highly suppressed in the region with ρ . ρm = 2vm. Here we are denoting by eεω(ρ)
the wave function of the state |ω〉 in the ρ-representation, eεω(ρ) = 〈eερ|ω〉. Owing to the
exponential suppression of eερ(v) in the region v . ρ/2 discussed in the previous paragraph,
a profile g(ρ,Λ) highly suppressed for ρ . ρm in turn implies that the corresponding profile
in the v-representation, g(v,Λ) =

∫∞

0
dρ g(ρ,Λ)eερ(v), is highly suppressed for v . vm.

In the following, we will analyze under which conditions the approximations of [11] extend
to these generalized states with homogeneous profiles characterized by (3.3). Later on, in
Sec. IV, we will explain how to construct approximate solutions with the desired properties.

A. Approximating the anisotropy term

In order to deal with the anisotropy operator Ω̂Θ̂ + Θ̂Ω̂, it is essential to notice that,
when acting on the considered states |G〉, and owing to the suppression in the region v . vm
that we are assuming, the only contributing v-dependent shifts on the anisotropy variable Λ
that its action produces are not (significantly) bigger than the scale qε [11]. Recalling that
the considered profiles g(ω,Λ) are Gaussian-like in the anisotropy variable with width given
by qε/σs, if that scale is much smaller than their width, namely if σs ≪ 1, then they can be
extended (from the anisotropy superselection sector) to a smooth function in Λ so that, for
contributing shifts Λ0 ≤ qε,

g(ω,Λ+ Λ0) ≃ g(ω,Λ) + Λ0∂Λg(ω,Λ), (3.6)

for all ω in the support of g(ω,Λ). If one considers the v-representation of |G〉, this in turn
implies that g(v,Λ+ Λ0) ≃ g(v,Λ) + Λ0∂Λg(v,Λ) for all v.

For such states, the operator Ω̂Θ̂ + Θ̂Ω̂ approximately factorizes as −2 ˆ̃ΩΘ̂′. Here, ˆ̃Ω is
defined like the geometry operator Ω̂ in (2.5), except for the substitution of the conjugate

pair of variables (v, b) by (v/2, 2b). On the other hand, Θ̂′ is the discretization of the first
derivative −4i∂Λ at the scale qε:

Θ̂′|Λ〉 = i
2

qε
(|Λ + qε〉 − |Λ− qε〉) . (3.7)

The proof of this approximation follows exactly the same steps as in [11]. For further details,
we refer the reader to that work.

Note that qε ∈ Wε so that ˆ̃ΩΘ̂′ preserves the superselection sectors where Ω̂Θ̂ + Θ̂Ω̂ is
defined. Furthermore, the action of Θ̂′ leaves invariant the lattices of constant step qε of
the form Lqε

Λ′ = {Λ′ + nqε; n ∈ Z} contained in those sectors, with Λ′ − Λ⋆ ∈ Wε. Using
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this result, we can further restrict the study of the anisotropy variable just to the subspace
spanned by states |Λ〉 with support in any of those lattices.

We will now show that the approximate anisotropy operator given by −2 ˆ̃ΩΘ̂′ can be
disregarded when acting on the considered states |G〉 in comparison with Ω̂2. First of all, it

is easy to check that our definition of the operator ˆ̃Ω is equivalent to the following action on
the basis states:

ˆ̃Ω|v〉 = i [ỹ−(v)|v − 4〉 − ỹ+(v)|v + 4〉] , (3.8)

with

ỹ±(v) =
1 + sign(v ± 4)

4

√
v(v ± 4). (3.9)

Employing this, we get that the approximate action of the negative of Ω̂Θ̂ + Θ̂Ω̂ on our
states is given by

〈v,Λ|2 ˆ̃ΩΘ̂′|G〉 = 4

qε

{
ỹ+(v) [g(v + 4,Λ+ qε)− g(v + 4,Λ− qε)]

−ỹ−(v) [g(v − 4,Λ + qε)− g(v − 4,Λ− qε)]
}
. (3.10)

Now, given the form (3.3) of the profiles, a straightforward calculation leads to

2

qε

[
g(v ± 4,Λ+ qε)− g(v ± 4,Λ− qε)

]

= − 4

qε
e−

σ2
s
2

∫

Spc(ω)

dω g(ω,Λ)eεω(v ± 4) sinh

(
σ2
s

qε
[Λ− Λ̄(ω)]

)
. (3.11)

Here, eεω(v) = 〈v|ω〉 denotes the wave function of the state |ω〉 in the v-representation. The
function g(ω,Λ) only contributes when σs[Λ− Λ̄(ω)]/qε is O(1). Therefore, we get

2

qε

[
g(v ± 4,Λ+ qε)− g(v ± 4,Λ− qε)

]
≃ −4 sinh σs

qε
e−

σ2
s
2 g(v ± 4,Λ)×O(1). (3.12)

Hence, recalling (3.10), we have just obtained that the action of the Bianchi I anisotropy
operator on these states can be approximated as follows, when one stays in the sector
v & vm ≫ 10 under consideration:

〈v,Λ|Ω̂Θ̂ + Θ̂Ω̂|G〉 ≃ 8
sinh σs
qε

e−
σ2
s
2 〈v,Λ| ˆ̃Ω|G〉, (3.13)

up to a factor O(1) on the right-hand side. Taking into account that the action of ˆ̃Ω on |G〉
is of the same order as that of Ω̂, since these operators are completely analogous except for
the magnitude of the shifts that they produce in v, we can expect the right-hand side of
(3.13) to be negligible compared to 〈v,Λ|Ω̂2|G〉 if 8| sinh σs| exp (−σ2

s/2) ≪ qεvm. Here, we
have used the fact that, in the region with v & vm ≫ 10,

Ω̂2|v〉 = −y++(v)|v + 4〉+ 2v2|v〉 − y−−(v)|v − 4〉, (3.14)
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with

y++(v) = y+(v)y+(v + 2), y−−(v) = y++(v − 4), (3.15)

y+(v) =
1 + sign(v + 2)

2

√
v(v + 2), (3.16)

and so the coefficients of 〈v,Λ|Ω̂2|G〉 are O(v2). Equivalently, since for vm ≫ 10, qε ≃ 2/vm,
we can rewrite the above condition as

4 |sinh σs| e−
σ2
s
2 ≪ 1. (3.17)

Recalling that we have already required that σs ≪ 1 in order to treat g(v,Λ) as smooth
in Λ and approximate it by its Taylor expansion truncated at the first derivative, the new
condition (3.17) turns out to be trivially satisfied in the considered case.

This concludes the proof that the action of the anisotropy term on states with profile of
the form (3.3) can be disregarded in the Hamiltonian constraint provided that the condition
σs ≪ 1 is satisfied and that g(ρ,Λ) is highly suppressed for ρ . ρm. This was actually
expected, since the Gaussian-like profiles that we are considering for the anisotropies are
reasonably centered on trajectories with vanishing momenta Θ̂′.

B. Approximating the interaction term

Let us analyze now the interaction term ê−2ΛD̂Ω̂2D̂ĤI. Before discussing whether this
operator can be neglected in the Hamiltonian constraint when considering states |G〉 with
profiles of the form (3.3), it is worth noticing that, owing to their suppression in the sector

v . vm with vm ≫ 10, sector on which D̂ just acts like the identity according to (2.11), we
can make the approximation:

ê−2ΛD̂Ω̂2D̂ĤI|G〉 ≃ ê−2ΛΩ̂2ĤI|G〉. (3.18)

Thus, provided that the content of inhomogeneities of our states is reasonable, we can

disregard this interaction term if the action of ê−2ΛΩ̂2 on them is negligible compared to the
rest of contributions in the Hamiltonian constraint. This action is given by

ê−2ΛΩ̂2|G〉 =
∑

Λ∈Lqε
Λ′

∫

Spc(ω)

dωN(ω)e
−

σ2
s

2q2ε

[

Λ−Λ̄(ω)+
2q2ε

σ2
s

]2

e
−2Λ̄(ω)+

2q2ε

σ2
s Ω̂2|ω〉. (3.19)

Note that the first exponential of the right-hand side is bounded from above by the unit.
Therefore we see that, if we choose the peak of the Gaussian-like profiles such that Λ̄(ω) is
much bigger than both 1 and q2ε/σ

2
s for all ω in the support of N(ω), then this contribution

will be negligible compared to Ω̂2|G〉. In conclusion, we can disregard the interaction term
in the Hamiltonian constraint of the Gowdy model for states with the considered profiles
if it is satisfied that Λ̄(ω) ≫ max (1, q2ε/σ

2
s) for all values of ω in the support of the state

(where max stands for the maximum).
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C. Approximating the free term

There is one more approximation that can be made in the Hamiltonian constraint ĈG

on states |G〉 with the profile (3.3). This is an approximation for the term containing the

free contribution of the inhomogeneities, namely (up to constants) ê2ΛĤ0. The idea is to
restrict the Gaussian-like profiles in g(ω,Λ) to be sharply peaked at Λ̄(ω), that is, to require
its width qε/σs to be much smaller than the unity. If this is so, then

ê2Λ|G〉 ≃ e2Λ̄(ω̂)|G〉. (3.20)

Indeed, the support of a Gaussian is approximately its width, and in our case this support
corresponds to Λ such that |Λ− Λ̄(ω)| ≤ qε/σs. Therefore, the non-negligible contributions

of the action of ê2Λ on these states will take the values

e2Λ = e2Λ̄(ω)+2α qε
σs , α ∈ [−1, 1]. (3.21)

Thus, if qε/σs ≪ 1, this value will be essentially equal to that taken by the operator e2Λ̄(ω̂)

on our state (term by term in its spectral decomposition). Then, this approximation will
be consistent with disregarding the anisotropy term if and only if the parameters that
characterize the width of the Gaussian-like profile are such that qε ≪ σs ≪ 1. Let us
conclude noticing that, in this way, by considering states with profiles for the anisotropy
sharply peaked at a function of some operator of the homogeneous and isotropic geometry,
one ends up mimicking a contribution in the approximated Hamiltonian constraint that is
given precisely by that very same operator, in the sense of (3.20).

IV. APPROXIMATE SOLUTIONS TO THE GOWDY CONSTRAINT:

MODELING MODIFIED FRW COSMOLOGIES

In the previous section, we have shown how the full Gowdy Hamiltonian constraint ĈG

can be approximated by the operator

Ĉ ′
app = ĈFRW +

2πG~2

β
e2Λ̄(ω̂)Ĥ0 = −3πG~2

8
Ω̂2 +

p̂2φ
2

+
2πG~2

β
e2Λ̄(ω̂)Ĥ0 (4.1)

when acting on quantum states whose homogeneous gravitational part is given by

|G〉 =
∑

Λ∈Lqε
Λ′

∫

Spc(ω)

dω g(ω,Λ)|ω,Λ〉, (4.2)

with g(ω,Λ) defined in (3.3), provided that the following conditions are satisfied:

i) In the ρ-representation, g(ρ,Λ) has to be highly suppressed for ρ . ρm, with ρm ≫ 10.
This in particular implies that g(v,Λ) is exponentially suppresed for v . vm = ρm/2.

ii) Λ̄(ω) ≫ 1 for all ω in the support of N(ω).

iii) qε ≪ σs ≪ 1.

In what follows, we will consider solutions of this approximate constraint that are in turn
approximate solutions of the full Gowdy model. Later on, a possible physical interpretation
of those solutions will be given.
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A. Construction of solutions

Let us search for solutions of the approximate constraint Ĉ ′
app|Ψ〉 = 0 by considering

states

|Ψ〉 =
∫ ∞

−∞

dpφ

∫

Spc(ω)

dω
∑

Λ∈Lqε
Λ′

∑

n
ξ,nϕ

Ψ(pφ, ω,Λ, n
ξ, nϕ)|pφ, ω,Λ, nξ, nφ〉 (4.3)

with wave function of the form

Ψ(pφ, ω,Λ, n
ξ, nϕ) = f(ω,Λ)N(ω, pφ, n

ξ, nϕ), (4.4)

where f(ω,Λ) is given in (3.3) and satisfies by construction our condition iii) above. The

sets of occupation numbers nξ and n
ϕ determine the eigenvalue of Ĥ0 (which acts diagonally

on the n-particles states):

H0 ≡ H0(n
ξ, nϕ) =

∑

m∈Z−{0}

|m|(nξ
m + nϕ

m). (4.5)

Here, we have generically included in N(ω) the dependence of the wave function on pφ and
on these occupation numbers. This function N(ω, pφ, n

ξ, nϕ) should be chosen in such a way

that the content of inhomogeneities is small, so that the approximation of disregarding ĈI

holds, and such that the momentum constraint (2.7) is satisfied.

Since p̂φ and Ĥ0 are Dirac observables of this approximate constraint, and therefore pφ
and H0 are constants of motion, solving the approximate constraint Ĉ ′

app|Ψ〉 = 0 on the

above states is equivalent to solve Ĉapp|Ψ〉 = 0 in each eigenspace of the two considered

Dirac observables, with Ĉapp being the operator

Ĉapp = −3πG~2

8
Ω̂2 +

p2φ
2

+
2πG~2

β
e2Λ̄(ω̂)H0. (4.6)

Note that this constraint operator only acts on the homogeneous and isotropic part of the
Hilbert space, namely that of the FRW model. However, let us emphasize the fact that, to
each state Ψ, there corresponds a (collection of operators) Ĉapp, as this operator depends

(besides as on pφ and H0) on e
2Λ̄(ω).

Keeping in mind that we are interested in states that are in turn approximate solutions
of the full Gowdy model, the wave function (4.4) must be such that these states satisfy
conditions i) and ii) above as well. In order to fulfill these conditions, and motivated by
the strategy employed in [11], we will restrict all considerations to states with a peak of the
Gaussian Λ̄(ω) such that the resulting operator Λ̄(ω̂) in (4.6) is defined in the following way:

Λ̄(ω̂) =

{
Λ̄0, if v < v0,

Λ̄(ω̂0), if v ≥ v0,
(4.7)

for certain v0 ≥ vm. Here, Λ̄0 is a constant and ω̂0 is the restriction (via projection) of ω̂ to
the sector of the homogeneous and isotropic part of the Hilbert space with v ≥ v0. Explicitly,
ω̂0 = P̂ ω̂P̂ , where P̂ is the projector on the linear span of |v〉 with v ∈ Lp

ε = L+
ε ∩ {v ≥ v0}.
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Note that v0 does not necessarily belong to the semilattice L+
ε considered. For future

reference, let us denote by v1 the lowest end of Lp
ε, so that v0 ≤ v1 < v0 + 4. Furthermore,

we will focus on operators ω̂ such that

e2Λ̄(ω̂0) = e2h(v̂) + Ôp, (4.8)

where the function h(v) varies sufficiently smoothly so as to allow us to make the approxi-

mation h(v ± 4) ≃ h(v) in the region v ≥ v0. Besides, we assume Ôp to be a positive (and
thus self-adjoint) operator defined on the linear span of |v〉 with v ∈ Lp

ε, with a quasi-local
action on this basis of the generic form

Ôp|v〉 =
K∑

k=0

[
f+
k (v)|v + 4k〉+ f−

k (v)|v − 4k〉
]
, K <∞. (4.9)

Here, f+
0 = f−

0 ≡ f0 and f
−
k (v) = 0 if v− 4k < v0, so that Ôp is indeed defined on the sector

v ≥ v0. The case with Ôp = 0 was the one studied in [11]. For conciseness, we now assume
that f+

K(v) is (strictly) positive for v ≥ v0. As shown in Appendix A, states Ψ that solve

the constraint equation Ĉapp|Ψ〉 = 0 can be determined from the equation

∑

v∈L+
ε

N(v, pφ, n
ξ, nϕ)Ĉapp|v〉 = 0, (4.10)

with

N(v, pφ, n
ξ, nϕ) =

∫

Spc(ω)

dωN(ω, pφ, n
ξ, nϕ)eεω(v). (4.11)

We will now analyze how we can construct solutions to (4.10) with the desired properties.
First of all, condition ii) is automatically satisfied for these states if Λ̄0 ≫ 1 and h(v) ≫ 1
for all v ∈ Lp

ε. Concerning condition i), for v < v0 the operator Λ̄(ω̂) is simply a constant

and the constraint equation reduces to an eigenvalue equation for the FRW operator Ω̂2,
given by [11]

ρ2(pφ, Λ̄0, H0) =
4

3πG~2
p2φ +

16

3β
e2Λ̄0H0(n

ξ, nϕ). (4.12)

Therefore, for all v ≤ v1 solutions are of the form

N(v, pφ, n
ξ, nϕ) = eερ(pφ,Λ̄0,H0)

(v)ψ(pφ, n
ξ, nϕ), (4.13)

where we recall that eερ is the wave function in the v-representation of the eigenfunction of

Ω̂2 with eigenvalue ρ2. Hence, condition i) for these states is satisfied, for instance, if one
restricts the function ψ(pφ, n

ξ, nϕ) to have support on the region with pφ > pmφ , where we

choose pmφ ≫
√
75πG~. That this is true follows from the positivity of the last term in

(4.12). Indeed, in that case, solutions will have significant contributions only for

ρ ≥ 2√
3πG~

pφ >
2√

3πG~
pmφ = ρm ≫ 10. (4.14)
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The identity in this formula is just a definition of the scale ρm used in our construction of
states. Let us note that this scale (and therefore the corresponding value of vm) has been
defined in an intrinsic way, in terms of the conserved momentum of the homogeneous scalar
field.

In the region with v ∈ Lp
ε, equation (4.10) leads to the difference equation [dropping the

dependence of N(v, pφ, n
ξ, nϕ) on pφ and the occupation numbers in order to simplify the

notation]

[
4p2φ

3πG~2
+

16

3β
e2Λ̃(v)H0 − 2v2

]
N(v) + y++(v)N(v + 4) + y−−(v)N(v − 4)

+
16

3β
H0

K∑

k=1

[
f+
k (v − 4k)N(v − 4k)χLp

ε
(v − 4k) + f−

k (v + 4k)N(v + 4k)
]
= 0. (4.15)

Here,

χLp
ε
(v) =

{
1, if v ∈ Lp

ε,

0, if v /∈ Lp
ε,

(4.16)

and we have defined the function

Λ̃(v) =
1

2
ln
[
e2h(v) + 2f0(v)

]
. (4.17)

The difference equation (4.15) involves coefficients N(v) evaluated on K points above the
considered one, v, in the semilattice. In particular, this happens at the matching point with
the solution of constant Λ̄0, i.e., when v equals the lower end v1 of Lp

ε. Owing to this fact
and that, at this matching point, we know data only for values of v smaller than or equal to
it, it is not difficult to realize that, in order to be able to find an approximate solution to our
equation without ambiguities, we must impose certain requirements on the operator Ôp. For
instance, to arrive at acceptably smooth solutions, we can require that the functions f±

k (v)
with k 6= 0 be negligible in a neighbourhood above v0, namely, at least at all points in the
interval I = [v0, v0+8K− 4). Indeed, if this is so and after disregarding the contribution of
those functions, then (4.15) approximately gives us in a deterministic way the K − 1 values
of the function N(v) from v = v1 + 4 up to v = v1 + 4K − 4, when supplemented with the
input data

eερ(pφ,Λ̄0,H0)
(v1) and eερ(pφ,Λ̄0,H0)

(v1 − 4), (4.18)

coming from the imposition of the constraint in the region v < v0 ≤ v1. We note, in
particular, that to fix N(v1 +4K − 4) in this manner we need to ignore the functions f±

k (v)
at least up to v1+8K−8, for any possible value of v1 ∈ [v0, v0+4), as we have assumed above
that it is indeed the case. The K coefficients computed in Lp

ε, from N(v1) to N(v1+4K−4),
can then serve as initial data in order to uniquely fix the rest of coefficients. The procedure
to do so is to consider again the full constraint equation (4.15) evaluated at points v ≥ v1
without neglecting the functions f±

k (v). Introducing the value of those K coefficients, the
constraint for v = v1 completely determines the next coefficient N(v1 + 4K), and so on and
so forth for v ≥ v1 + 4. With this method, the whole solution can be constructed, at least
approximately.
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Let us notice that, if the neighbourhood I contains n > 2K − 1 points of Lp
ε, then the

number of coefficients that can be obtained by ignoring the functions f±
k (v) in (4.15) is

n−K > K − 1. In this situation, the approximate solution that has been obtained can be
improved by iteration at the n− 2K +1 points that are just above v1. This can be done by
considering again the constraint equation (4.15) evaluated at the point just below the one
that we want to improve, taking into consideration the corrections given by the contribution
of the approximate coefficients of the K − 1 larger nearest points, and (up to) the K + 1
smaller ones in Lp

ε, all of them multiplied by the corresponding functions f±
k (v).

Finally, it seems natural to impose continuity of the approximate constraint when v = v1.
From the given construction of the solutions, it is straightforward to check that, for this
continuity to be obtained, it suffices to fix the constant Λ̄0 = Λ̃(v1), with Λ̃(v1) ≫ 1.

We refer the reader to Appendix B for additional details on the suppression of contribu-
tions with ρ . ρm in the solutions that we have constructed.

B. Perfect fluids and geometrical corrections

In the previous section we found some approximate solutions to the hybrid Gowdy model
that, besides, effectively obey a dynamics dictated by the constraint

Ĉapp = ĈFRW +
2πG~2

β

[
e2h(v̂) + Ôp

]
H0 (4.19)

for sufficiently large volumes (v ≥ v0). We will now discuss how this constraint can be
understood as the one corresponding to an isotropic flat FRW model coupled to different
types of perfect fluids coming from the term e2h(v̂), and geometrically corrected by the term
Ôp, which can be interpreted as arising from homogeneous curvature-like terms or higher-
derivative contributions in the gravitational action. Indeed, as discussed in [11], if we choose

h(v) = ln

([∑

w

v(1−w)
]1/2)

, (4.20)

the dynamics of the constructed states mimics that typical of a content of different perfect
fluids with equations of state given by p = wǫ, where p and ǫ denote respectively the pressure
and the energy density of the corresponding fluid. Here, w runs over as many parameters as
wanted (one for each different perfect fluid), provided that w < 1 so that the approximations
done in Sec. III are valid. This upper bound for w allows for physically interesting couplings
such as dust, radiation, and a cosmological constant, obtained by setting w = 0, w = 1/3,
and w = −1, respectively, in our formulas. Note that the conditions on the peak of the
Gaussian-like profiles that are needed for our approximations to hold are then automatically
satisfied if v0 ≫ e2/(1−w). In addition, we can also treat the case w = 1 as corresponding
to a massless scalar field contribution, coming from the exponential term in the definition
(4.8), that can be included in the homogeneous field φ of the FRW constraint [11] (just by
redefining the latter).

Regarding the new effective term Ôp, its action on the kinematical basis provided by

|v〉, given in (4.9), can be constructed, for instance, from sums of powers of Ω̂2, possibly
multiplied by smooth functions of v̂. Hence, taking into account that the FRW operator
Ω̂2 fully characterizes the curvature scalar R of a flat FRW universe [3], the contribution



17

of Ôp in this modified constraint Ĉapp can be seen as a term corresponding to additional
curvature-like terms correcting R in the gravitational action. Alternatively, it is also possible
to interpret it as discretized higher-derivative terms. These kinds of terms are some of those
that one would expect to appear in certain f(R)-theories and other modified theories of
gravity (see, e.g., [12]).

To sum up, we have seen how some approximate solutions of the Gowdy model, that is
genuinely anisotropic and inhomogeneous, can effectively behave as solutions (also approx-
imate in general) of the Hamiltonian constraint of a flat FRW model coupled to different
types of perfect fluids and with geometrical corrections similar to those of modified gravity.
It is worth clarifying that, despite of the dynamical behavior proven for these states with
respect to the constraint of the system (namely, a homogeneous and isotropic effective con-
straint), their Gaussian-like profiles are not peaked on isotropic trajectories of the classical
model, but generically on trajectories that are very anisotropic. Classically, isotropy implies
the relation 3Λ = ln (v/2), that ensures that λθ = eΛ coincides with the geometrical average
scale factor of the model, given by the cube root of the volume, v1/3, up to proportional-
ity factors [14]. The Gaussian-like wave functions (3.3), however, may be peaked on many
possible trajectories, determined by quite general functions Λ̄(ω̂) of a variety of homoge-
neous and isotropic operators ω̂. As we have pointed out, in general, these trajectories do
not correspond to isotropic and homogeneous solutions of the classical Gowdy system. At
the end of the day, it is in the collective behavior of the anisotropies and inhomogeneities,
together with the quantum effects of the loop quantization of the geometry, where one finds
the ultimate reasons explaining the approximate dynamics of FRW-type, with curvature-
like and higher-derivative corrections, that the considered states display. In this sense, the
geometrical modifications to the FRW dynamics obtained for these states may be regarded
as arising from the underlying quantum theory (both from the loop representation and from
the characteristics of the states). Finally, it is worth remarking that such an effective de-
scription starts to apply only when one reaches the volume v0. For smaller values of v we
get instead an effective dynamics which is just that of an FRW model coupled to a ho-
mogeneous massless scalar field. Nonetheless, once the epoch with geometrically modified
dynamics and perfect fluids is reached, that regime holds indefinitely, for all v > v0, by the
very construction of our states.

V. CONCLUSIONS

We have investigated the construction of approximate solutions in the hybrid quantum
Gowdy model with three-torus topology, linear polarization, LRS, and a minimally coupled
massless scalar field [10]. More specifically, we have managed to construct approximate
physical states of this inhomogeneous model that in turn are also (approximate) solutions to
the Hamiltonian constraint of a homogeneous and isotropic flat FRW model with corrections
that can be interpreted as curvature-like or higher-derivative terms. The present work
significantly generalizes the results of [11], where we already provided approximate solutions
of the Gowdy cosmology that resemble (as far as the Hamiltonian constraint is involved)
those of a flat FRW universe with a massless scalar and a perfect fluid. Based on the
approximations developed in those previous papers, and extending the analysis carried out
there, now we have constructed approximate solutions that behave as those of a geometrically
modified flat FRW containing different types of barotropic perfect fluids with equation of
state characterized by parameters w < 1.
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Our results show how some specific quantum solutions of inhomogeneous models, in this
case the Gowdy T 3 model, can behave dynamically as solutions of flat homogeneous and
isotropic cosmologies with a particular kind of homogeneous and isotropic matter content,
and even with homogeneous and isotropic geometrical modifications that can be regarded
as higher powers of the curvature or higher derivatives. It is worth emphasizing that those
solutions are far from being genuinely isotropic and homogeneous. Their anisotropies and
inhomogeneities are not negligible, as one could show, in principle, by measuring on those
states generic quantum observables beyond homogeneity and isotropy. Despite of that,
it is remarkable that those states behave in such a way that they lead to effective terms
in the Hamiltonian constraint which are characteristic of a flat FRW model, and more
specifically an FRW universe in the presence of perfect fluids and geometrical corrections.
In particular, the dependence of the peak of the considered Gaussian-like profiles on a
homogeneous and isotropic geometric operator (of a certain type, though quite general)
turns into the appearance of that operator in the effective constraint. This phenomenon,
that strongly depends on the specific choice of the considered family of states, emphasizes the
fact that effective descriptions generally depend on the particular set of states under analysis.
This is an idea which is attracting increasing attention lately (see, e.g., [22] for discussions
on other types of inhomogeneous quantum states for which simple homogeneous descriptions
are obtained). In fact, the effective dynamics attained here can be understood to arise from
the quantum correlations existing in the considered states between the different sectors of
the homogeneous Hilbert space, namely the set of states studied here presents profiles with
a specific mixed dependence on the variables of the homogeneous phase space. Besides
the mentioned correlations, two key properties of the constructed solutions lay behind this
interesting behavior: They display a negligible momentum of the variable that measures
the anisotropy and they experience a negligible coupling between the homogeneous sector
and the self-interaction of the inhomogeneities. It is because of these properties that one
can disregard the most problematic terms in the Hamiltonian constraint, arriving then to
a much simpler constraint operator corresponding to a modified flat FRW model coupled
to perfect fluids. It is worth mentioning that this approximation is consistent thanks to
the quantum geometry effects introduced by LQC, that in particular are responsible of the
exponential suppression of the eigenstates of the FRW geometry at small volumes. These
quantum effects, together with the collective behavior of anisotropies and inhomogeneities,
produce departures from the typical classical behavior predicted by General Relativity in
the high-curvature regime, namely, around the cosmological singularity, where the role of the
anisotropies would have been very relevant. This is the reason why the effective dynamics
obtained for these families of states differ in those regions from the classical solutions of the
model.

It may be tempting to extrapolate the lessons learned here about the peculiarities of the
effective dynamics associated with certain sets of states in order to build new avenues for the
resolution of some of the open questions of the standard cosmological model with inflation.
For instance, it may be worthy to investigate whether some elements of its phenomenology,
such as the existence of a small but non-vanishing cosmological constant, or the origins of
inflation, can be understood in terms of an effective description that arises from a global
behavior in the quantum realm, accounting for a multitude of extra degrees of freedom,
possibly inhomogeneous and anisotropic in nature. Besides, from a perspective which is
beyond that of effective field theories, the results obtained in this work suggest the possibility
that some of the corrections to the Einsteinian theory that are nowadays widely investigated
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in the context of the so-called modified theories of gravity, may actually be rooted in more
fundamental quantum geometry effects, occurring in certain types of quantum states.
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Appendix A: Validity of the constraint equation

For each sector of constant eigenvalue of the Dirac observable pφ and occupation numbers
given by n

ξ and n
ϕ (and hence also with constant eigenvalue of the Dirac observable H0),

and for all Λ ∈ Lε
Λ′, the constraint equation corresponding to Ĉapp can be written on the

states (4.4) as

∫

Spc(ω)

dωN(ω, pφ, n
ξ, nϕ)Ĉapp e

−
σ2
s

2q2ε
[Λ−Λ̄(ω̂)]

2

|ω〉 = 0. (A1)

Let us consider the operator 3

[
e

σ2
s

2q2ε
(Λ−Λ̄(ω̂))

2

, Ĉapp

]
e
−

σ2
s

2q2ε
(Λ−Λ̄(ω̂))

2

. (A2)

Then, we can approximate the constraint by

e
−

σ2
s

2q2ε
[Λ−Λ̄(ω̂)]

2 ∑

v∈L+
ε

N(v, pφ, n
ξ, nϕ)Ĉapp|v〉 = 0 (A3)

if we can neglect the contribution of (A2) as a correction to Ĉapp in this equation. If this is
so, the profiles

N(v, pφ, n
ξ, nϕ) =

∫

Spc(ω)

dωN(ω, pφ, n
ξ, nϕ)eεω(v) (A4)

that satisfy (4.10) provide indeed approximate solutions to our constraint.

Let us first recall that, given two operators Â and B̂ whose commutator is negligible in
comparison with one of them, the Baker-Campbell-Hausdorff formula implies (see, e.g., [21])

eÂB̂e−Â = B̂ + [Â, B̂] +
1

2!
[Â[Â, B̂]] + · · · ≃ B̂ + [Â, B̂], (A5)

3 Here, we replace square brackets with parentheses in the expressions involving Λ − Λ̄ to avoid confusions

with commutators.
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where we have ignored higher factor-order contributions, as the commutator [Â, B̂] is as-
sumed to be negligible. Applying this equation, we can rewrite our condition on (A2) as the
same requirement on

[
σ2
s

2q2ε

(
Λ− Λ̄(ω̂)

)2
, Ĉapp

]
≃ σ2

s

q2ε

(
Λ− Λ̄(ω̂)

) [
Ĉapp, Λ̄(ω̂)

]
. (A6)

On the right-hand side of (A6), we have ignored again higher factor-order contributions.

Taking into account that the only operator in Ĉapp that does not commute with Λ̄(ω̂) is Ω̂2,
and that, regarding the behavior in Λ, the Gaussian-like profiles of our states only contribute
when σs[Λ− Λ̄(ω)]/qε is O(1), the condition on the right-hand side of (A6) (ignoring again
factor ordering and irrelevant factors) amounts to demand that

σs
qε
e−2Λ̄(ω̂)

[
Ω̂2, e2Λ̄(ω̂)

]
(A7)

can be neglected if considered as a correction to the constraint Ĉapp.
Let us check that this condition is satisfied, and therefore that (A3) is approximately valid

on the studied solutions. Since, according to (4.7), Λ̄(ω̂) is constant in the region v < v0,
the corresponding contribution to the commutator appearing in (A7) vanishes. Therefore,
it suffices to analyze the similar commutator obtained by replacing ω̂ with ω̂0 in the region
v ≥ v0. Recalling definition (4.8) for ω̂0, there are two terms to discuss in the commutator:[
Ω̂2, e2h(v̂)

]
and [Ω̂2, Ôp]. As for the first of them, the function h(v) has been chosen to satisfy

h(v ± 4) ≃ h(v) for v ≥ v0. Therefore, since the action of Ω̂2, given by (3.14), essentially
shifts the volume of the state in four units, up and down, it turns out that we can discard
the anayzed commutator in our approximations. The second term requires a more careful
analysis. On the one hand, the action of this commutator on |v〉-states with v > v1 + 4K
yields

[Ω̂2, Ôp]|v〉 =
K∑

k=0

{[
y++(v)f

+
k (v + 4)− y++(v + 4k)f+

k (v)
]
|v + 4(k + 1)〉

+
[
y++(v)f

−
k (v + 4)− y++(v − 4k)f−

k (v)
]
|v − 4(k − 1)〉

+
[
y−−(v)f

+
k (v − 4)− y−−(v + 4k)f+

k (v)
]
|v + 4(k − 1)〉

+
[
y−−(v)f

−
k (v − 4)− y−−(v − 4k)f−

k (v)
]
|v − 4(k + 1)〉

+ 16(kv + 2k2)f+
k (v)|v + 4k〉 − 16(kv − 2k2)f−

k (v)|v − 4k〉
}
. (A8)

These terms [and a fortiori the corresponding ones in (A7)] will give negligible corrections

to Ĉapp on our states if Ôp is such that

a) The functions f±
k (v) are smooth enough as to satisfy f±

k (v ± 4) ≃ f±
k (v) in the con-

sidered region v ≥ v0.

b) The integer K is small enough so that y++(v ± 4k) ≃ y++(v), y−−(v ± 4k) ≃ y−−(v),
16kv ≪ v2, and 32k2 ≪ v2, for all k ≤ K in the sector with v ≥ v0. Using the fact
that, according to their definitions (3.15) and (3.16), the functions y±±(v) are O(v2)
in the studied sector, we can say that an integer K would be sufficiently small in this
sense if it satisfies K ≪ v0/10.
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On the other hand, if one considers the action of the commutator [Ω̂2, Ôp] on the remaining
sector of |v〉-states, with v ≤ v1 + 4K, other contributions appear different from those in

(A8). This peculiarity occurs because Ω̂2 is defined on the whole semilattice L+
ε , whereas Ôp

is defined only on the restriction Lp
ε. These additional contributions are terms of the form

K∑

k=0

y−−(v1)f
−
k (v1 + 4k)|v1 − 4〉,

K∑

k=0

y++(v1 − 4)f+
k (v1)|v1 + 4k〉. (A9)

Here, the first term accounts for the action of the commutator on all the states |v1 + 4k〉
with 0 ≤ k ≤ K, and the second one includes the contribution of the action on |v1 − 4〉
(recall that v1 is the lowest point in Lp

ε). As a consequence, if conditions a) and b) hold,
and

c) the functions f−
k (v1 + 4k) and f+

k (v1) are much smaller than the unit for 0 ≤ k ≤ K,

then all terms under discussion will give negligible corrections to the constraint equation
corresponding to Ĉapp. Let us comment that this last condition c), for k 6= 0, was required
as well at the end of Subsec IVA in order to be able to determine the solutions to the
approximate constraint. Taking that into account, here we are just including a similar
requirement on f0(v1).

Appendix B: Suppresion of the solution when ρ . ρm

In Subsec. IVA we discussed the construction of approximate solutions to the constraint
Ĉapp. In particular, our analysis contained a region v < v0 where the peak of the Gaussian
in the anisotropies is constant. In that region, we made sure that the solution, determined
by (4.13), possesses only non-negligible contributions for ρ > ρm by choosing ρm as in (4.14).
One may wonder whether this statement is still true for the whole solution, built for v ≥ v0
with Gaussian-like peaks that are not constant anymore. Although this is not directly
granted, because it involves the spectral decomposition of the whole solution in terms of
eigenfunctions of the operator Ω̂2, we show here that the change from (4.13) to the new
solution in v ∈ Lp

ε (i.e., for v ≥ v0) respects that all relevant contributions have ρ > ρm, as
required.

Up to a global numerical factor, the constraint operator Ĉapp, given in (4.6), can be

rewritten in the form Γ̂− Ω̂2, where

Γ̂ =
4p2φ

3πG~2
+

16

3β
e2Λ̄(ω̂)H0. (B1)

For our discussion, the important fact that complicates the analysis in the region v ≥ v0
is that the FRW operator Ω̂2 does not commute with Γ̂. Nonethelesss, when acting on
solutions to the constraint, the relation Ω̂2 = Γ̂ holds. Besides, for the quantum states
that were considered in Subsec. IVA, characterized by profiles with support on values of
the scalar field momentum pφ > pmφ , the action of the operator Γ̂ is always greater than

(multiplication by) ρ2m [see (4.14)], i.e., (Γ̂ − ρ2m) is strictly positive, because so is the last

term in (B1). Hence, on the sector that contains our states, the action of Ω̂2 will lead only
to contributions with ρ > ρm, as we wanted to show. In fact, one can demonstrate that, on
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the considered sector, it is a good approximation to neglect the commutator of Ω̂2 and Γ̂, so
that it is acceptable to work assuming that they can be simultaneously diagonalized, a fact
that supports the conclusion presented above.
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