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Abstract—This paper presents a critique on previous work in
the field of vision aided navigation, particularly in the fusion of
visual and inertial sensors for navigation. Several improvements
and updates are proposed for the existent systems. GPS receivers
have allowed for accurate navigation for many vehicles and
robotic platforms. GPS based navigation can, however, prove to
be impractical in applications where there is no GPS reception
such as underground, indoors or in some urban areas. This per-
tains, in particular, to many robotic applications where position
must be known in global coordinates or relative to a reference
point. An inertial navigation system (INS) can be used to calculate
one’s relative navigation state via dead-reckoning calculations.
The downfall of a low-cost INS is the errors associated with the
system. While these errors are initially small, integration causes
large drift errors over time. To combat this problem, cameras
can be used to estimate the errors present in the INS readings.
These results can then be used to correct the navigation state
output from the INS. While the motion estimations from the
cameras are not error-free, this method is made highly effective
because of the complementary nature of the errors from the
cameras and INS. Several improvements are proposed for this
method; algorithmically, in updates to its hardware, and with
the introduction of graphics processors to improve computational
performance. The overall system performance, individual steps,
algorithms, and results are compared to results from similar
works to those of the proposed improvements. It is shown that the
accuracy, responsiveness and overall performance of the system
can potentially be greatly improved.

I. INTRODUCTION

Navigation is defined as the determination of the state of
a vehicle (its position, velocity and attitude) relative to its
original state. The problem addressed in this paper is the
determination of a vehicle’s trajectory (its navigation state
through time) by the use of inertial and imaging sensors. The
ability for vehicles to accurately navigate is required in many
applications including military, industrial and commercial;
especially those in which a vehicle or robotic platform must
operate autonomously. The main, and often simplest, answer
to this problem is to use GPS (Global Positioning System)
sensors to navigate. GPS aided navigation presents a problem
in situations where there is no available signal, such as in some
urban or mountainous environments, underground (mining en-
vironments), indoors or underwater [1]. At first glance an INS
(Inertial Navigation System) offers a promising solution to the

problem of GPS-free navigation. INSs use accelerometers and
gyroscopic sensors to determine the acceleration and rotation
of the system. A strapdown INS system is attached to an object
(the vehicle, in this case) allowing these readings to be used to
determine the relative position, velocity and orientation of the
object. This solution’s downfall is that these low-cost sensors
are prone to errors, which accumulate and cause the estimated
position and velocity to drift from the object’s actual position
and velocity, making the sensors effectively unusable without
GPS assistance. This problem is especially bad in consumer-
grade sensors, but is still present in high-grade sensors [1].

Cameras have been used increasingly often to solve the
navigation problem via methods such as visual odometry [2]
and visual SLAM (Simultaneous Localisation And Mapping)
[3]. By using image processing techniques on subsequent
frames, one can track the motion of the cameras relative to the
environment. Using cameras as primary sensors for navigation
can be extremely robust, depending on the methods used. The
main difficulty in this approach is the computational power
required to perform these algorithms in realtime. In general,
the computational requirements of the system increase as the
robustness and accuracy of the algorithms increase.

This paper takes into account some established methods in
vision aided navigation, identifying shortcomings and areas
that can potentially be improved or updated. A new system,
based upon the others that are reviewed, is then proposed,
focusing on the identified points. It should also be noted that
this paper presents a conceptual solution, and no physical re-
sults for the system are given. An implementation is proposed,
and results from various other papers are cited to validate the
proposed improvements.

II. PREVIOUS WORK

The two main approaches used in vision aided navigation
are based on visual odometry and visual SLAM, both of which
can be supplemented by readings from an INS. Established
systems based on both of these approaches will be discussed.

The first method discussed for vision aided navigation based
on the visual odometry approach, is that of Veth and Raquet
[1], which uses the readings from a stereoscopic camera pair
to estimate the errors present in the INS readings. This is done
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by first capturing images using stereoscopic cameras, then
extracting features from one image in the stereo pair using
the SIFT (Scale Invariant Feature Transform) algorithm [4].
These features refer to points on the image, identified by the
SIFT algorithm, which can be easily tracked in subsequent
frames. Using a SFM (Structure From Motion) approach,
the selected features are located in the other image in the
stereo pair and the absolute depths of the feature points are
determined. The inclusion of the depth measurement allows
for increased accuracy in the measurement of the navigation
state. Integrating measurements from the INS then produces
a measured update of the navigation state. This measurement
is used to estimate the location of the previously identified
features in the next image. Using an error model of the INS
with the inertial measurements allows one to determine a
window in which each feature will be found. Statistical feature
matching is performed between newly extracted features and
those from the previous frame. Errors in the INS readings are
then estimated based on the disparities between the estimated
and measured feature locations using an EKF (Extended
Kalman Filter). These error estimations are then subtracted
from the INS readings, providing a corrected navigation state.
An overview of the system can be seen in Figure 1.
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Fig. 1. Veth’s System

The work of Veth and Raquet has similar goals, and has
produced similar results to several related works [5], [6], [7].
Other works are largely similar in their methodology, therefore
the work of Konolige et al. [5] will be briefly explained as
an example. In this work features are first extracted from one
image of a stereo pair. These features are given depth by locat-
ing them in the corresponding stereo image. Features are then
extracted from the subsequent frame and matched with the
features from the previous frame. The features are used to es-
timate the relative navigation state using RANSAC (RANdom
SAmpling and Consensus) [8], an algorithm designed to find
the best solution with respect to a large amount of potentially
noisy and/or erroneous measurements. A bundle adjustment
is performed using features from a number of recent frames
in order to improve the accuracy of the estimate [9]. This
estimated navigation state is then fused with the readings from
the INS.

The method of Veth and Raquet differs from many other

works in its fusion method, which allows for a deeper level of
integration between the visual and inertial sensors. This deeper
level of integration allows the synergistic properties of the two
sensors to be better exploited, providing more accurate results.
Another quality of Veth and Raquet’s work, when compared
to other work in this field, is that a more complete model of
the INS is utilised [5]. By doing this, the INS readings can be
used to their full potential in the fusion process.

A well established method associated with the visual SLAM
based approach, is that of Davison et al. [3]. His method
creates a sparse persistent map of landmarks extracted from
the environment. Tracking these landmarks allows for the de-
termination of the cameras trajectory. Landmarks are extracted
and stored in a probabilistic 3D map. The visible map points
are identified in each frame, and the position of the camera
in the 3D map is calculated from the relative position of
these points. The computation times involved in maintaining
the map grows in order O(n2), where n is the number of
landmarks in the map; because of this, landmarks must be
actively maintained. This maintenance involves: keeping a
maximum of 100 landmarks in the map at a given point in
time, deleting landmarks that are not repeatably matched, and
keeping a minimum number of landmarks in the camera’s
frame. As a result of the landmark maintenance, the system
excels in eliminating drift in areas where previous landmarks
are frequently observed by means of small loop closures. The
system is at a disadvantage in large loops, where old landmarks
may have been deleted; or in applications where scenes are
unique, and landmarks are not often (if ever) repeated once
they leave the camera’s frame. These circumstances can arise
in the navigation of an unknown, unconstrained, environment;
therefore this method is not directly suited to the navigation
system proposed in this paper. Other methods have, however,
branched off from the visual SLAM based approach which are
plausible in a large scale environment. For example, systems
have been created that borrow from both the visual odometry
and visual SLAM based approaches, which show promise
[10], [11].

The work of Veth and Raquet (Figure 1) has been chosen
as a basis for the proposed system due to its success in vision
aided inertial navigation. Taking into account the previously
discussed works, the following areas have been identified for
potential improvement.

A. Image Capture

The method used by Veth and Raquet utilised two Pixelink
PL-A741 Machine Vision Cameras [12] arranged to produce
a stereoscopic rig. While this allows for an adjustment in
the binocular disparity of the system, it also creates the
opportunity for human error in measurement and alignment of
the cameras. This means that the cameras must be calibrated
specially for the system. Both of these points can lead to
inaccuracies in measurements during the feature extraction
phase. The use of stereoscopic cameras, as opposed to a single
camera, allows for more reliable methods to determine depth,
and can increase the accuracy of the motion estimates.
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B. Processing Power and Image Processing Techniques

The overall accuracy of the method used by Veth and
Raquet was severely impacted by its final operating speed
of 2.5Hz (only 2.5 video frames could be processed by
its navigation system per second). This was largely due to
the high processing requirements of the image processing
steps. All calculations were performed on the CPU, which
proved to be sub-optimal for the application. Some of the
previously mentioned methods improved on this operating
speed, reaching true realtime capabilities. Some techniques for
incorporating the other method’s improvements in speed will
be elaborated upon in Section IV.

C. Fusion Algorithms/Estimation Algorithms

The EKF (Extended Kalman Filter) was used to estimate
the errors present in the INS in the method used by Veth
and Raquet. It is used very often in visual SLAM and visual
odometry based systems. This Kalman Filter variant provides
a linear-approximation of the system dynamics for non-linear
systems by using Jacobians to linearise the nonlinear system
model; the approximation does not provide an accurate esti-
mate for systems with more than first order nonlinearities. Its
main drawbacks are its complex derivation, and the errors it
introduces due to linearisation.

Civera et al. [10] used a sensor-centred EKF model in order
to minimise on the linearisation errors caused by the EKF. This
does improve on the filter’s shortcomings, however the results
were still sub-optimal.

III. THE GPU

The GPU (Graphics Processing Unit) is a stream processor,
designed to perform calculations on large amounts of data in
parallel. GPUs were originally designed for computer graphics
applications in which an array of pixels was processed (each
in parallel), and output to another array of pixels. GPUs have
a number of shaders, each capable of processing the same
computation at the same time; these shaders are responsible
for the parallel nature of GPU computations. GPGPU (General
Purpose computations on Graphics Processing Units) is a
technique by which the GPU is used to perform calculations
which would normally be processed on the CPU. This allows
the same computation to be done many times in parallel,
greatly increasing the throughput of the system.

Implementing an algorithm on the GPU requires it to be
parallelisable. This means that the algorithm, or parts thereof,
has calculations that are repeated many times in series, but
have independent outputs and identical operations. In other
words, one calculation must not depend on the output of
another, and each must follow the same formula (for example
Z = X + Y ).

GPGPU computations can, therefore, be performed in order
to decrease the time required to perform computationally
expensive steps in the navigation system. To compare GPU and
CPU based systems in their potential speed, one can refer to
the number of FLOPS (Floating Point Operations Per Second)
they are capable of computing. Figure 2 shows the change

in computing power of the CPU and GPU over time, and
illustrates the great potential for current and future GPU-based
computational systems.

Fig. 2. GPU vs CPU Performance [13]

Image processing problems occupy a middle ground with
respect to traditionally CPU-implemented algorithms and com-
puter graphics processing, the GPU’s original function. As
a result, image processing techniques are particularly suited
towards GPGPU implementations (e.g. [14]) and even share
the same input and output data structures (a two-dimensional
array of pixels). GPU implementations of image processing
techniques have the potential to experience great increases
in computational efficiency, as a pixel can be processed on
each GPU shader in parallel, opposed to each pixel being
processed individually in series on the CPU. While GPGPU
implementations do come with many advantages, using the
GPU as a computational platform can have disadvantages.
Firstly, implementation becomes more difficult, as a different
methodology must be applied when modifying an algorithm
for GPGPU implementation. Secondly, the GPU can only use
its own private memory, resulting in the need to copy a texture
to the GPU’s memory, process it, then transfer it back to
CPU-readable memory for further processing. This creates
additional overhead when processing on the GPU, and means
that one must also consider the size and frequency of these
transfers when parallelising an algorithm, as the overhead may
be more computationally expensive than the algorithm itself.

IV. PROPOSED METHODS FOR IMPROVEMENT

As previously mentioned in Section II, a low cost INS is
subject to significant measurement errors. While other methods
have had success in correcting these errors, as well as in the
general domain of vision aided navigation, certain areas have
been identified which can be improved upon. The following
subsections list these proposed improvements.
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A. Image Capture

In order to improve upon the existing stereoscopic camera
system, the use of a pre-calibrated stereoscopic camera system
is proposed. The suggested system is Point Grey’s BumbleBee
XB3 stereo vision camera [15]. The cameras are pre-calibrated
to a high level of accuracy, meaning that no manual calibra-
tions need to be performed. Libraries designed specially for the
cameras are also included in the package, simplifying several
software-based tasks when utilising the cameras. With regards
to Veth and Raquet’s work, this will address difficulties in
the construction and calibration of the stereo camera system;
and will potentially decrease the measurement noise from the
cameras, increasing overall accuracy.

B. Image Processing Techniques

For simplicity, the feature descriptors discussed here will
be limited to that of SIFT, SURF and CenSurE; all of which
have proven themselves in the image processing domain.

SIFT provides a scale- and rotation-invariant method for
extracting features. It provides a very robust descriptor, but
at a high computational cost. In general SURF (Speeded Up
Robust Features) achieves slightly diminished performance
when compared to SIFT (in feature matching and invariance),
but it performs much faster [16], [17]. CenSurE, while less es-
tablished than the other feature descriptors, provides excellent
results, especially in the field of visual odometry. CenSurE
produces similar results to those of SIFT and SURF, with the
cost of some rotational invariance, and is faster to compute.

While the SURF and CenSurE algorithms lessen the compu-
tational load, they would still consume a considerable portion
of the navigation system’s computational time. As a result,
the use of a GPGPU techniques are proposed to increase the
system’s throughput. By implementing the feature extraction
algorithms on the GPU, the system can experience a significant
increase in speed. Both the SIFT and SURF algorithms have
been implemented on the GPU, achieving speeds of 15-20 Hz
and 20-40 Hz respectively. These results pertain to the feature
extraction algorithms running on an nVidia 8800GTX graphics
card, at a resolution of approximately 1024 × 768 [18], [19]
(the default resolution of the BumbleBee XB3 stereo camera);
since the release of the 8800GTX, nVidia has seen three new
major generations of graphics cards released, therefore one
can expect these speeds to increase on more modern graphics
cards. The CenSurE algorithm could also be implemented on
the GPU; it has been shown to run at speeds of at least 10
Hz on a CPU implementation [5], therefore one could expect
a speedup to at least 40-50 Hz in the CenSurE algorithm.

Other methods that could be used to improve the system’s
performance, are the use of RANSAC and bundle adjust-
ments. These two methods were used in Howard’s [2] work,
and proved to increase the overall accuracy of the system.
RANSAC helps to remove false feature matches by finding
a consensus between groups of randomly sampled features.
Bundle adjustments refer to the process of taking geometric
feature information from several past frames to improve (for
example) the estimated motion of the camera. In other words,

one considers more frames than just the current and previous in
order to improve estimations on the trajectory. Incorporating
a SLAM-type methodology, in keeping persistent, or semi-
persistent features in a map has proven to show improvement
in vision aided navigation through small (and potentially
larger) loop closures. This requires carefully maintaining the
map, but has been proven computationally viable in previous
works [10], [11].

Considering the previous statements, CenSurE would be
recommended for a CPU-based implementation due to its
proven success and speed. For a GPU-based implementation,
the CenSurE or SURF algorithm would be recommended, due
to CenSurE’s potential speed and SURF’s speed and ready
implementation.

Up to this point, feature tracking methods have been dis-
cussed, which are used to extract motion information from
the visual inputs; these techniques can also be described
as discrete structure from motion. Another method used for
motion estimation is that of optical flow. Optical flow attempts
to estimate 2D (two Dimensional) velocities for areas on
subsequent images; in other words, approximating a 2D mo-
tion field [20]. This can be described as continuous structure
from motion. GPU implementation of optical flow has also
been proven possible, and has been shown to improve the
algorithm’s computational speed [21]. Tick et al. [22] suggests
the implementation of both discrete and continuous structure
from motion techniques in parallel, fused with Kalman filtering
techniques, in order to improve the overall motion estimate; it
provides promising results in this application.

Veth and Raquet used a CPU-based SIFT implementation
for feature extraction, which was the main limiting factor
with regards to speed. An increase in system speed would
allow a faster rate of correction for the INS, resulting in
a more accurate trajectory estimation. The original system’s
speed would also not allow for adequate realtime operation;
but with the speed gained by a GPU-based implementation,
realtime operation is very likely. In addition to the increase in
speed, the implementation of the RANSAC, batch optimisation
and visual SLAM like methods will theoretically improve the
trajectory estimation further. Thanks to the speedup gained
from GPU implementations, the method of fusing discrete
and continuous structure from motion results becomes more
feasible. Implementation of this method has the potential to,
once more, increase the accuracy of the motion estimations.

C. Fusion Algorithms/Estimation Algorithms

The two main candidates in the family of non-linear filtering
methods that will be discussed are the UKF (Unscented
Kalman Filter) and CKF (Cubature Kalman Filter) [23]. These
were chosen for their performance benefits, as well as their
relative ease of implementation. These filters are discussed
below.

Unlike the EKF, which uses precalculated Jacobians to
create a linear approximation of the system’s nonlinear model,
the UKF uses the unscented transformation in the approx-
imation of the system’s non-linear dynamics, improving on
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many of the EKF’s approximation issues. The basic premise
of the UKF is that a minimal set of sample points are chosen
and propagated through the nonlinear system model. The
unscented transform is used to generate statistical information
from the points transformed by the nonlinear model. This
results in a more accurate implementation of the optimal
recursive estimation equations, the basis of both filters, due to
the mean and covariance of the state estimate being calculated
to the second order (opposed to the first order in the EKF)
[24]. Despite this higher level of accuracy, the UKF maintains
an equivalent level of computational complexity. Without the
need to compute linearisations using Jacobian or Hessian
derivations, the implementation of the UKF becomes much
simpler [25].

The CKF operates on the same principles as the UKF,
where a minimal set of selectively chosen sample points
are propagated through the nonlinear system model. Instead
of using the unscented transform to derive the mean and
covariance of the state estimate, a set of numerical integration
methods known as cubature rules are used. Both the UKF and
CKF are approximate Bayesian filters built in the Gaussian
domain, but use different sets of deterministic weighted points
in their calculations. The point set used in the CKF improves
upon the EKF’s in two ways; certain numerical inaccuracies
present in the EKF are not present in the CKF and it eliminates
filter instabilities present in the UKF. Many filtering methods
are subject to huge increases in computational complexity as
the number of state vectors is increased [23]. While the CKF
does not solve this problem, it is less affected by it than
other filters. The methods used by the CKF are also better
at handling higher levels of noise and are not susceptible to
the divergence problems present in other filters. [26]

Both the UKF and CKF present advantages over the EKF
in ease of implementation, and potentially in performance.
The CKF is, however, recommended for this system as it can
potentially provide better results than the UKF.

V. SUMMARY

The previously mentioned proposed improvements will be
summarised in this section, and their potential impact on
the system as a whole will be discussed. The packaged pre-
calibrated BumbleBee camera has the potential to provide an
increased level of accuracy in the correlation of the features to
their real-world position, allowing for a higher faith in feature
measurements. The speed gains of implementing the proposed
feature descriptors on the GPU can increase the system’s
update rate, and inevitably its overall accuracy. Including the
RANSAC, bundle adjustment and visual SLAM-like methods
could further increase this accuracy level. Finally, the imple-
mentation of the suggested estimation algorithm can eliminate
the need for difficult Jacobian derivations as well as increase
accuracy of the system’s estimation and its ability to handle
noise.

With all of these improvements and modifications, it is
suggested that the technique followed by Veth and Raquet can
be used to achieve an execution speed of well beyond 2.5 Hz.

If the assumption is made that the image processing steps con-
sume the largest portion of processing time, one can tentatively
expect execution speeds of 20-30 Hz; this will allow realtime
operation and improved performance of the navigation system.
Implementing all of the proposed improvements, as shown in
Figure 3, should also enable increased accuracy and stability.
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Fig. 3. The Final Proposed System

VI. CONCLUSION

The importance of a robust navigation solution in environ-
ments in which GPS signal is non-existent, or unreliable, have
been highlighted. This paper has acknowledged the success
of previous works in this area, and has proposed methods
by which a system loosely based on the work of Veth and
Raquet can be improved upon and brought into the state of the
art. By implementing the proposed improvements mentioned
in Section IV, there is great potential for increase in system
performance and speed beyond that of the previous works.
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