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Abstract
This paper develops a new language for programming software-
defined networks based on a probabilistic semantics. We extend the
NetKAT language with new primitives for expressing probabilistic
behaviors and enrich the semantics from one based on determinis-
tic functions to one based on measures and measurable functions
on sets of packet histories. We establish fundamental properties of
the semantics, prove that it is a conservative extension of the de-
terministic semantics, and show that it satisfies a number of natural
equations. We present case studies that show how the language can
be used to model a diverse collection of scenarios drawn from real-
world networks.

1. Introduction
Formal specification and verification of networks has become a
reality in recent years with the emergence of network-specific
programming languages and property-checking tools. Program-
ming languages like Frenetic [14], Pyretic [43], Maple [60],
FlowLog [45], and others are enabling programmers to specify
the intended behavior of a network in terms of high-level con-
structs such as boolean predicates and functions on packets. Veri-
fication tools like Header Space Analysis [25], VeriFlow [26], and
NetKAT [15] are making it possible to check properties such as
connectivity, loop freedom, and traffic isolation automatically.

However, despite many notable advances, these frameworks all
have a fundamental limitation: they model network behavior in
terms of deterministic packet-processing functions. This approach
works well enough in settings where the network functionality
is simple, or where the properties of interest only concern the
forwarding paths used to carry traffic. But it does not provide
satisfactory accounts of more complicated situations that often
arise in practice:

• Congestion: the network operator wishes to calculate the ex-
pected degree of congestion on each link given traffic drawn
from a statistical model.

• Failure: the network operator wishes to calculate the probabil-
ity that packets will be delivered to their destination, given that
devices and links fail with a certain probability.

• Randomization: the network operator wishes to configure the
switches to forward traffic using randomized schemes such as
equal cost multi-path routing (ECMP) or Valiant load balancing
(VLB), which balance load across multiple paths.

Overall, there is a significant mismatch between the capabilities
of existing reasoning frameworks and the realities of modern net-

works. This paper presents a new framework, Probabilistic NetKAT
(ProbNetKAT), that is designed to bridge this gap.

As its name suggests, ProbNetKAT is based on NetKAT, a net-
work programming language developed in prior work [2]. NetKAT
is an extension of Kleene algebra with tests (KAT), an algebraic
system for propositional verification of imperative programs that
has been extensively studied for nearly two decades [30]. At the
level of syntax, NetKAT offers a rich collection of intuitive con-
structs including: conditional tests; primitives for modifying packet
headers and encoding topologies; and sequential, parallel, and iter-
ation operators. The semantics of the language can be understood
in terms of a denotational model based on functions from packet
histories to sets of packet histories (where a history records the
path through the network taken by a packet) or equivalently, us-
ing an equational deductive system that is sound and complete with
respect to the denotational semantics. NetKAT has a PSPACE de-
cision procedure that exploits the coalgebraic structure of the lan-
guage and can solve many verification problems automatically [15].
Several practical applications of NetKAT have been developed, in-
cluding algorithms for testing reachability and non-interference, a
syntactic correctness proof for a compiler that translates programs
to hardware instructions for SDN switches, and an implementation
that handles programs written against virtual topologies [56].

Probabilistic NetKAT enriches the semantics of NetKAT so that
programs denote functions that yield probability distributions on
sets of packet histories. Although this change is relatively simple
at the surface, it enables adding powerful primitives such as proba-
bilistic choice, which makes it possible to handle all of the scenar-
ios involving congestion, failure, and randomized forwarding dis-
cussed above. At the same time, it creates significant challenges,
because the semantics must be extended to handle probability dis-
tributions while preserving the intuitive meaning of NetKAT’s ex-
isting programming constructs. A number of important questions
do not have obvious answers: Should the semantics be based on
discrete or continuous distributions? How should it handle opera-
tors such as parallel composition that combine multiple distribu-
tions into a single distribution? Do suitable fixpoints exist that can
be used to provide semantics for iteration?

The development of our semantics for ProbNetKAT follows a
classic approach: we first define a suitable mathematical seman-
tic space of objects, and then identify objects in this space that
serve as denotations for each of the syntactic constructs in the lan-
guage. More specifically, our semantics is based on Markov kernels
over sets of packet histories. To a first approximation, these can be
thought of as functions that produce a probability distribution on
sets of packet histories, but the properties of Markov kernels ensure
that important operators such as sequential composition behave as
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Figure 1. Congestion example: barbell topology.

expected. The parallel composition operator is particularly interest-
ing, since it must combine disjoint and overlapping distributions—
the latter models multicast, as is the Kleene star operator, since it
requires showing that fixpoints exist.

We prove that the probabilistic semantics of ProbNetKAT is a
conservative extension of the standard NetKAT semantics. This is
a crucial point of our work: the language developed in this paper
is based on NetKAT, which in turn is an extension of KAT, a
well-established framework for program verification. Hence, this
work can be seen as the next step in the modular development of
an expressive network programming language, with increasingly
sophisticated set of features, based on a sound and long-standing
mathematical framework.

To evaluate our design for ProbNetKAT, we develop a number
of case studies that illustrate the use of the semantics on examples
inspired by real-world scenarios. Our case studies model conges-
tion, failure, and randomization, as discussed above, as well as a
gossip protocol that disseminates information through a network.

Overall, the contributions of this paper are as follows:

• We present the design of ProbNetKAT, the first language-based
framework for specifying and verifying probabilistic network
behavior.

• We develop a formal semantics for ProbNetKAT based on
Markov kernels and prove that it conservatively extends the
semantics of NetKAT.

• We discuss a number of case studies that illustrate the use of
ProbNetKAT on real-world examples.

The rest of this paper is organized as follows: §2 introduces the
basic ideas behind ProbNetKAT through an example; §3 reviews
concepts from measure theory needed to define the semantics; §4
and §5 present the syntax and semantics of ProbNetKAT; §6 further
illustrates the semantics by proving conservativity and some natural
equations; §7 discusses applications of the semantics to real-world
examples. We discuss related work in §8 and conclude in §9.

2. Overview
This section introduces the main features of ProbNetKAT using
a simple example, and discusses some of the key challenges we
experienced in designing the language.

Preliminaries. First, a bit of notation. A packet π is a record with
fields x1 to xk that range over standard header fields (Ethernet
addresses, frame type, VLAN, IP addresses and type, TCP ports,
etc.) as well as special fields for the switch and port that indicate
the location of the packet in the network:

{x1 = n1, . . . , xk = nk}
We write π(x) for value of π’s x field and π[n/x] for the packet
obtained from π by setting the x field to n. In examples, we often
abbreviate the switch field as sw . A packet history is a nonempty
sequence of packets π1 :π2 : · · · :πm, listed in order of youngest
to oldest. The head packet is π1. Operationally, only the head
packet exists in the network, but in the language we keep track

of the packet’s history to enable precise specification of forwarding
behavior involving specific paths through the network. We write
π :σ for the history with head π and tail σ and H for the set of all
packet histories.

Example. Consider the network shown in Figure 2 with six
switches arranged into a “barbell” topology. Suppose the network
operator wants to configure the network so it forwards traffic on the
two left-to-right paths from I1 to E1 and I2 to E2. The following
ProbNetKAT program implements this behavior:

p , (sw = I1; dup; sw ← C1; dup; sw ← C2; dup; sw ← E1) &

(sw = I2; dup; sw ← C1; dup; sw ← C2; dup; sw ← E2)

Because it only uses deterministic constructs, this program can be
modeled as a function f ∈ 2H → 2H on sets of packet histories.
In such a function, the input represents the initial set of in-flight
packets while the output represents the final set of results produced
by the program—the empty set is produced when the input packets
are dropped (e.g., in a firewall) and a set with more elements than
the input set is produced when some input packets are copied (e.g.,
in multicast). Our example program consists of tests (sw = I1),
which filter the set of input packets, retaining only those whose
head packets satisfy the test; modifications (sw ← C1), which
change the value of one of the fields in the head packet; duplication
(dup), which archives the current value of the head packet in the
history; and sequential (;) and parallel (&) composition operators.
In this instance, the tests on each line are mutually exclusive so the
parallel composition behaves like a disjoint union operator.

Probabilistic semantics. Now suppose the network operator
wants to calculate not just where traffic is routed but also how
much traffic is sent across each link. The deterministic semantics
we have seen so far calculates the trajectories that packets take
through the network. Hence, for a given set of inputs, we can use
the semantics to calculate the set of output histories and then count
how many packets traversed each link, yielding an upper bound
on congestion. But now suppose we want to predict the amount
of congestion that could be induced from a model that encodes
expectations about the set of possible inputs. Such models, which
are usually represented as traffic matrices, can be built from histor-
ical monitoring data using a variety of statistical techniques [42].
Unfortunately, even simple calculations of how much congestion
is likely to occur on a given link cannot be performed using the
deterministic semantics.

Encoding traffic models. Suppose that we wish to represent the
following traffic model in ProbNetKAT: in each time period, the
number of packets originating at I1 is either 0, 1 or 2, with equal
probability, and likewise for I2. Let π1 to π4 be packets that can be
distinguished from each other at any location, and write πI1,i! for
the sequence of assignments that produces the packet πi located at
switch I1. We can express the traffic distributions at I1 and I2 in
ProbNetKAT as the following terms:1

d1 , drop⊕ πI1,1!⊕ (πI1,1! & πI1,2!)

d2 , drop⊕ πI2,3!⊕ (πI2,3! & πI2,4!),

Note that because d1 and d2 involve probabilistic choice, they
denote functions whose values are distributions on sets of histories
rather than simply sets of histories as before. However, because
they do not contain tests, they are actually constant functions, so
we can treat them as distributions. For the full input distribution to
the network, we combine d1 and d2 independently using parallel
composition: d = d1 & d2.

1 An expression p1 ⊕ · · · ⊕ pn means that one of the pi should be chosen
at random with uniform probability and executed.
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Calculating congestion. To calculate a distribution that encodes
the amount of congestion on links in the network, we can push
the input distribution d through the forwarding policy p using
sequential composition: d; p. This produces a distribution on sets
of trajectories through the network. In this example, there are nine
such sets of trajectories, where we write I1,1 to indicate that π1 was
processed at I1, and similarly for the other switches and packets:

{ }
{E1,1 : C2,1 : C1,1 : I1,1}
{E1,1 : C2,1 : C1,1 : I1,1, E1,2 : C2,2 : C1,2 : I1,2}
{E2,3 : C2,3 : C1,3 : I2,3}
{E2,3 : C2,3 : C1,3 : I2,3, E2,4 : C2,4 : C1,4 : I2,4}

...

and the output distribution is uniform, each set occurring with
probability 1/9. Now suppose we wish to calculate the expected
number of packets traversing the link ` from C1 to C2. We can
filter the output distribution on the set

b , {σ | C2,i : C1,i ∈ σ for some i}
and ask for the expected size of the resulting set. The filtering is
again done by composition, viewing b as a guard. (In this example,
all trajectories traverse the link `, so the filter b has no effect.) The
expected number of packets crossing ` is given by integration:∫

a∈2H
|a| · Jd; p; bK(da) = 2.

Hence, even in a simple example where forwarding is determinis-
tic, our semantics for ProbNetKAT is quite useful: it enables mak-
ing predictions about quantitative properties such as congestion,
which can be used to provision capacity, inform traffic engineering
algorithms, or calculate the risk that service-level agreements may
be violated. More generally, ProbNetKAT can be used to express
much richer behaviors such as randomized routing, faulty links,
gossip, etc., as shown by the examples presented in Section 7.

Challenges. We faced several challenges in formulating the se-
mantics of ProbNetKAT in a satisfactory way. The determinis-
tic semantics of NetKAT [2, 15] interprets programs as packet-
processing functions on sets of packet histories. This is different
enough from other probabilistic models in the literature that it was
not obvious how to apply standard approaches. On the one hand,
we wanted to extend the deterministic semantics conservatively—
i.e., a ProbNetKAT program that makes no probabilistic choices
should behave the same as under the deterministic NetKAT se-
mantics. This goal was achieved (Theorem 2) using the notion of
a Markov kernel, well known from previous work in probabilis-
tic semantics [13, 29, 47]. On the other hand, when moving to the
probabilistic domain, several properties enjoyed by the determinis-
tic version are lost, and great care was needed to formulate the new
semantics correctly. Most notably, it is no longer the case that the
meaning of a program on an input set of packet histories is uniquely
determined by its action on individual histories (§6.4). The paral-
lel composition operator (&), which supplants the union operator
(+) of NetKAT, is no longer idempotent except when applied to
deterministic programs (Lemma 1(vi)), and distributivity no longer
holds in general (Lemma 4). Nevertheless, the semantics provides
a powerful means of reasoning that is sufficient to derive many in-
teresting and useful properties of networks (§7).

Perhaps the most challenging theoretical problem for us was the
formulation of the semantics of iteration (∗). In the deterministic
version, the iteration operator can be defined as a sum of powers. In
ProbNetKAT, this approach does not work, as it requires that paral-
lel composition be idempotent. Hence, we formulate the semantics
of iteration in terms of an infinite stochastic process. Giving deno-

tational meaning to this operational construction required an intri-
cate application of the Kolmogorov extension theorem (Appendix
A). This formulation gives a canonical solution to an appropriate
fixpoint equation as desired (Theorem 1). However the solution is
not unique, and it is not a least fixpoint in any natural ordering that
we are aware of. The correct notion of approximation is still not
clear to us and is left as an interesting subject of future investiga-
tion.

Another challenge was the observation that in the presence of
both duplication (dup) and iteration (∗), models based on discrete
distributions do not suffice, and it is necessary to base the seman-
tics on an uncountable state space with continuous measures and
sequential composition defined by integration. Most models in the
literature deal with discrete distributions only, with a few excep-
tions (e.g. [13, 28, 29, 46, 47]). To see why a discrete semantics
would suffice in the absence of either duplication or iteration note
that H is a countable set. Without iteration, we could limit our at-
tention to distributions on finite subsets ofH , which is also a count-
able set. Similarly, with iteration but without duplication, the setH
would be finite, thus a discrete semantics would suffice in that case
as well, even though iterative processes do not necessarily converge
after finitely many steps as with deterministic processes. However,
in the presence of both duplication and iteration, infinite sets and
continuous measures are unavoidable (§6.3). Having said that, in
many applications, we only need to deal with discrete distributions.

3. Measure Theory Primer
To make this paper as self-contained as possible, this section in-
troduces the background mathematics necessary to understand the
semantics of ProbNetKAT. Because ProbNetKAT requires continu-
ous probability distributions, we review some basic measure theory.
This is not a matter of discretion (see §6.3). There are many excel-
lent texts on this material; see Halmos [20], Chung [8], or Rao [51]
for a more thorough treatment.

Measures are a generalization of the concepts of length or vol-
ume of Euclidean geometry to other spaces, and form the basis
of continuous probability theory. In this section, we will explain
what it means for a space to be measurable, say how to construct
measurable spaces, and give basic operations and constructions on
measurable spaces including Lebesgue integration with respect to
a measure, and the construction of product spaces. We will also
define the crucial notion of Markov kernels, the analog of Markov
transition matrices for finite-state stochastic processes, which form
the basis of our semantics for ProbNetKAT.

Measurable Spaces & Measurable Functions. A σ-algebra B
on a set S is a collection of subsets of S containing ∅ and closed
under complement and countable union (hence also closed under
countable intersection). A pair (S,B) where S is a set and B is a
σ-algebra on S is called a measurable space. If the σ-algebra is ob-
vious from the context, we simply say that S is a measurable space.
For a measurable space (S,B), we say that a subset A ⊆ S is mea-
surable if it is in B. For applications in probability theory, elements
of S and B are often called outcomes and events, respectively.

If F is a collection of subsets of a set S, then we define σ(F)
to be the smallest σ-algebra that contains F . That is,

σ(F) ,
⋂
{A | F ⊆ A and A is a σ-algebra}.

Note that σ(F) is well-defined, since the intersection is nonempty
(we have that F ⊆ P(S), and P(S) is a σ-algebra). We say that
σ(F) is the σ-algebra generated by F . If (S,B) is a measurable
space and B = σ(F), we say that the space is generated by F .

Let S and T be measurable spaces. A function f : S → T is
measurable if the inverse image f−1(B) = {x ∈ S | f(x) ∈ B}
of every measurable subset B ⊆ T is a measurable subset of S.
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For the particular case where T is generated by the collection F ,
we have the following criterion for measurability: f is measurable
if and only if f−1(B) is measurable for every B ∈ F .

Topological Spaces & Continuous Functions. A topology T on
a set S is a collection of subsets of S that contains ∅ and S and is
closed under arbitrary union and binary intersection. It follows that
T is closed under finite intersection. A pair (S, T ) where S is a set
and T is a topology on S is called a topological space. We say that
a subset U ⊆ S is an open set of S if U belongs to the topology T .
If the topology is obvious from the context, we simply say that S is
a topological space.

Let T be a topology on S. A collection U of open sets in T is
said to be a basis for the topology T if every element of T can be
written as a union of elements of U . A subcollection S ⊆ T is said
to be a subbasis for the topology T if the collection of all finite
intersections of sets in S is a basis for T .

Let S and T be topological spaces. A function f : S → T is
said to be continuous if for every open subset V ⊆ T , the inverse
image f−1(V ) = {x ∈ S | f(x) ∈ V } is an open subset of S.
Suppose now that V is a basis and S is a subbasis for the topology
of T . Then, f is continuous if and only if f−1(V ) is open for every
V ∈ V if and only if f−1(V ) is open for every V ∈ S. These
equivalences give us simpler criteria for continuity.

Example 1 (The Cantor Space). Consider the set 2 = {0, 1} with
the discrete topology, which consists of the open sets ∅, {0}, {1},
and {0, 1}. We can think of 2ω variously as infinite streams of
Booleans, as the set of ω-indexed tuples with values in 2, as the set
of subsets of ω, or as the set of functions of type ω → 2. We define
the projection mappings πi : 2ω → 2 by putting πi(a) = a(i) for
all a ∈ 2ω . The product topology on 2ω is the coarsest (smallest)
topology for which the projections πi are continuous. So for all
indices i < ω, the sets

π−1
i (∅) = ∅ π−1

i ({0}) = {a ∈ 2ω | i /∈ a}
π−1
i ({0, 1}) = 2ω π−1

i ({1}) = {a ∈ 2ω | i ∈ a}
must be open. It suffices to consider the collection S consisting of
the sets Bi and ∼Bi = 2ω \Bi, where

Bi , {a ∈ 2ω | i ∈ a}.
The Cantor space is the set 2ω together with the product topology,
which is the coarsest topology containing S. It follows that S is a
subbasis for the topology.

Consider the set 2ω × 2ω together with the topology generated
by the sets U×V where U, V are open. The binary union function,
which sends a pair (a, b) ∈ 2ω × 2ω to a ∪ b ∈ 2ω , is continuous,
because the subsets

{(a, b) | a ∪ b ∈ Bi} = {(a, b) | i ∈ a ∪ b}
= (Bi × 2ω) ∪ (2ω ×Bi)

{(a, b) | a ∪ b ∈ ∼Bi} = {(a, b) | i /∈ a ∪ b}
= (∼Bi × 2ω) ∩ (2ω ×∼Bi)
= ∼Bi ×∼Bi

are open for all indices i < ω.

Borel Sets & Measurable Real-Valued Functions. Let T be a
topology on the set S. We say that σ(T ) is the Borel σ-algebra
generated by the topology T . The sets of this σ-algebra are also
called the Borel sets of the topology.

Let S and T be topological spaces. If the function f : S → T
is continuous, then it is also measurable with respect to the Borel
sets. In this case we say that f is Borel measurable.

Example 2 (Borel Sets of R). We say that a subset U ⊆ R is open
if for every x ∈ U there is an open interval (a, b) with a < b such

that x ∈ (a, b) and (a, b) ⊆ U . This is the standard topology on
R. We observe that the collection of open intervals is a basis for the
topology. The Borel σ-algebra of R is the σ-algebra generated by
the open sets of the standard topology, or equivalently by the open
intervals. A set that belongs to the Borel σ-algebra is called a Borel
set of R.

Let S be a measurable space and f : S → R. We say that f is
measurable if it is measurable with respect to the Borel sets of R.
This is equivalent to the condition: the inverse image f−1((a, b))
of every open interval (a, b) is a measurable subset of S. Consider
four different collections of subsets of R that consist of intervals of
the following four forms respectively:

(−∞, b) (−∞, b] (a,∞) [a,∞)

The Borel σ-algebra on R is generated by any of the above collec-
tions of intervals. So f : S → R being measurable is equivalent to
each of the following four conditions, each of which gives a simple
criterion for the measurability of f :

For every b ∈ R, the set {x ∈ S | f(x) < b} is measurable.
For every b ∈ R, the set {x ∈ S | f(x) ≤ b} is measurable.
For every a ∈ R, the set {x ∈ S | f(x) > a} is measurable.
For every a ∈ R, the set {x ∈ S | f(x) ≥ a} is measurable.

Example 3. Let S be a measurable space. The characteristic
function χA : S → R of a subset A ⊆ S is given by

χA(x) ,

{
1, if x ∈ A;
0, if x /∈ A.

Then A is measurable iff χA is measurable. The proof relies on a
straightforward use of one of the above criteria.

For the spaces we consider, the set B will always be the Borel
sets of the topology—see [8, 20].

Measures. A measure on (S,B) is a countably additive map µ :
B → R. The condition that the map be countably additive stipulates
that if Ai ∈ B is a countable set of pairwise disjoint events, then
µ(
⋃
iAi) =

∑
i µ(Ai). Equivalently, if Ai is a countable chain

of events, that is, if Ai ⊆ Aj for i ≤ j, then limi µ(Ai) exists
and is equal to µ(

⋃
iAi). A measure is a probability measure if

µ(A) ≥ 0 for all A ∈ B and µ(S) = 1. By convention, µ(∅) = 0.
For every a ∈ S, the Dirac (or point-mass) measure on a is the

probability measure:

δa(A) =

{
1, a ∈ A,
0, a 6∈ A.

A measure is said to be discrete if it is a countable weighted sum
of Dirac measures.

Product Spaces and Product Measures. Given two measurable
spaces (S,BS) and (T,BT ), the product space has elements S×T
and measurable sets the Borel sets of the product topology, which is
the weakest topology making the two projections π1 : S × T → S
and π2 : S×T → T continuous. This is also the smallest σ-algebra
containing the measurable rectangles A × B, where A ∈ BS
and B ∈ BT , and the smallest σ-algebra such that π1 and π2 are
measurable functions.

Given µ, ν measures on S and T , respectively, the product
measure µ× ν is a measure on the product space defined by

(µ× ν)(A×B) = µ(A) · ν(B)

for measurable rectangles A × B. The product measure captures
the idea of choosing a pair (s, t) ∈ S × T by sampling µ and ν
independently.
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More generally, given a finite or countable collection of measur-
able spaces (Sn,Bn), the product space has elements

∏
n Sn and

measurable sets the Borel sets of the product topology on
∏
n Sn,

which is the weakest topology making all projections continuous.
Given µn measures on Sn, the product measure

∏
n µn is a mea-

sure on the product space defined by

(
∏
n µn)(

∏
nAn) =

∏
n(µn(An))

for measurable rectangles
∏
nAn.

Integration. A probability measure µ on (S,B) and a bounded
measurable function f : (S,B) → R can be combined by the
Lebesgue integral: ∫

s∈S
f(s) · µ(ds) ∈ R.

We will often make use of the change-of-variable rule [20, Theo-
rem 39.C]: If g : (S,BS)→ (T,BT ) is a measurable function and
f : (T,BT )→ R is a bounded measurable function, then∫

s∈S
f(g(s)) · µ(ds) =

∫
t∈T

f(t) · µ(g−1(dt)). (3.1)

Markov Kernels. Let (S,BS) and (T,BT ) be measurable spaces.
A function P : S ×BT → R is called a Markov kernel (and some-
times also called a Markov transition, measurable kernel, stochastic
kernel, stochastic relation, etc.) if

• for fixed A ∈ BT , the map λs.P (s,A) : S → R is a
measurable function on (S,BS); and

• for fixed s ∈ S, the map λA.P (s,A) : BT → R is a
probability measure on (T,BT ).

These properties allow integration on the left and right respectively.
The measurable spaces and Markov kernels form a category,

the Kleisli category of the Giry monad; see [13, 46, 47]. In this
context, we occasionally write P : (S,BS) → (T,BT ) or just
P : S → T . Composition is given by integration: for P : S → T
and Q : T → U ,

(P ;Q)(s,A) =

∫
t∈T

P (s, dt) ·Q(t, A).

Associativity of composition is essentially Fubini’s theorem (see
Chung [8] or Halmos [20]). Markov kernels were first proposed as
a model of probabilistic while programs by Kozen [29].

Deterministic Kernels. A Markov kernel P : S → T is deter-
ministic if for every s ∈ S, there is an f(s) ∈ T such that:

P (s,A) = δf(s)(A) = δs(f
−1(A)) = χA(f(s)).

The set function f : S → T is necessarily Borel measurable.
Conversely, every measurable function gives a deterministic kernel.
Thus the deterministic kernels and the Borel measurable functions
are in one-to-one correspondence.

Naturals n ∈ 0 | 1 | 2 | . . .

Fields x ::= x1 | · · · | xk

Packets pk ::= {x1 = n1, · · · , xk = nk}

Histories σ ::= 〈pk〉 | pk :σ

Guards g ⊆ 2H

skip , 2H

drop , {}
x = n , {pk :h | pk(x) = n}

Tests a ::= g Guard
| a1 & a2 Disjunction
| a1; a2 Conjunction
| a Negation

Actions p ::= a Test
| x← n Modification
| p1 & p2 Parallel Composition
| p1; p2 Sequential Composition
| p1 ⊕r p2 Probabilistic Choice
| p∗ Iteration
| dup Duplication

Figure 2. ProbNetKAT Syntax.

Deterministic kernels compose on the left and right with an
arbitrary kernel as follows:

(f ;P )(s,A) =

∫
t

δf(s)(dt) · P (t, A)

= P (f(s), A)

(P ; f)(s,A) =

∫
t

P (s, dt) · χA(f(t))

=

∫
u

P (s, f−1(du)) · χA(u)

=

∫
u∈A

P (s, f−1(du))

= P (s, f−1(A)).

Next we define the syntax and semantics of ProbNetKAT formally,
with Markov kernels playing a central role in the semantics.

4. Syntax
ProbNetKAT extends NetKAT [2, 15], which is itself based on
Kleene algebra with tests (KAT) [30], a generic equational system
for reasoning about partial correctness of programs.

4.1 Kleene Algebra (KA) & Kleene Algebra with Tests (KAT)
A Kleene algebra (KA) is an algebraic structure,

(K, +, ·, ∗, 0, 1)
where K is an idempotent semiring under (+, ·, 0, 1), and p∗ · q is
the least solution of the affine linear inequality p · r+ q ≤ r, where
p ≤ q is shorthand for p+ q = q, and similarly for q ·p∗. A Kleene
algebra with tests (KAT) is a two-sorted algebraic structure,

(K, B, +, ·, ∗, 0, 1, ¬)
where ¬ is a unary operator defined only on B, such that

• (K, +, ·, ∗, 0, 1) is a Kleene algebra,
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• (B, +, ·, ¬ , 0, 1) is a Boolean algebra, and
• (B, +, ·, 0, 1) is a subalgebra of (K, +, ·, 0, 1).

The elements of B and K are usually called tests and actions.
The axioms of KA and KAT (both elided here) capture natu-

ral conditions such as associativity of · ; see the original paper by
Kozen for a complete listing [30]. Note that the KAT axioms do not
hold for arbitrary ProbNetKAT programs—e.g., parallel composi-
tion is not idempotent—although they do hold for the deterministic
fragment of the language.

4.2 NetKAT
NetKAT [2, 15] extends KAT with network-specific primitives for
filtering, modifying, and forwarding packets, along with additional
axioms for reasoning about programs built using those primitives.
Formally, NetKAT is KAT with atomic actions and tests

x← n x = n dup

with the following intuitive meanings: The assignment x ← n as-
signs the value n to the field x in the current packet; the test x = n
tests whether field x of the current packet contains the value n; the
action dup duplicates the packet in the packet history, which keeps
track of the path the packet takes through the network. In NetKAT,
we write ; instead of ·, skip instead of 1, and drop instead of 0, as
these names capture their intuitive use as programming constructs.
We often use juxtaposition to indicate sequential composition in
examples.

For example, the NetKAT expression

sw = 6 ; pt = 8 ; dst ← 10.0.1.5 ; pt ← 5

encodes the command: “For all packets located at port 8 of switch
6, set the destination address to 10.0.1.5 and forward it out on port
5.”

4.3 ProbNetKAT
ProbNetKAT extends NetKAT with several new operations, as
shown in the grammar in Figure 2:

• A random choice operation p ⊕r q, where p and q are expres-
sions and r is a real number in the interval [0, 1]. The expression
p ⊕r q intuitively behaves according to pwith probability r and
q with probability 1− r. We frequently omit the subscript r, in
which case r is understood to implicitly be 1/2.

• A parallel composition operation p & q, where p and q are
expressions. The expression p & q intuitively says to perform
both p and q, making any probabilistic choices in p and q
independently, and combine the results. The operation & serves
the same purpose as + in NetKAT and replaces it syntactically.
We use the notation & to distinguish it from +, which is used
in the semantics to add measures and measurable functions as
in [28, 29].

• Guards g which generalize NetKAT’s tests by allowing them to
operate on the entire packet history rather than simply the head
packet. Formally a guard g is just an element of 2H . The guard
skip is defined as the set of all packet histories and drop is
the empty set. An atomic test x = n is defined as the set of all
histories σ where the x field of the head packet of σ is n. As we
saw in §2, guards are often useful for reasoning probabilistically
about properties such as congestion.

Although ProbNetKAT is based on KAT, it is important to keep
in mind that because the semantics is probabilistic, many of the fa-
miliar equations of KAT no longer hold. For example, idempotence
of parallel composition does not hold in general. We will however
prove that ProbNetKAT conservatively extends NetKAT, so it fol-
lows that the NetKAT axioms hold on the deterministic fragment.

5. Semantics
The standard semantics of NetKAT interprets expressions as
packet-processing functions. As defined in Figure 2, a packet π
is a record whose fields assign constant values n to fields x and a
packet history is a nonempty sequence of packets π1 :π2 : · · · :πk,
listed in order of youngest to oldest. Recall that operationally, only
the head packet π1 exists in the network, but we keep track of the
packet’s history to enable precise specification of behavior involv-
ing forwarding along different paths.

Formally, a NetKAT term p denotes a function

JpK : H → 2H ,

where H is the set of all packet histories. Intuitively, the function
JpK takes an input packet history σ and produces a set of output
packet histories JpK(σ).

The semantics of the primitive actions and tests in NetKAT are
as follows. For a packet history π :σ with head packet π,

Jx← nK(π :σ) = {π[n/x] :σ}

Jx = nK(π :σ) =

{
{π :σ}, π(x) = n

∅, π(x) 6= n

JdupK(π :σ) = {π :π :σ}
JskipK(σ) = {σ}
JdropK(σ) = ∅.

where π[n/x] denotes the packet π with the field x rebound to the
value n. A test x = n drops the packet if the test is not satisfied
and passes it through unaltered if it is satisfied—that is, tests behave
as filters on packets. The dup construct duplicates the head packet
π, yielding a fresh copy that can be modified by other constructs.
Hence, in this standard model, the dup construct can be used to
encode paths through the network, with each occurrence of dup
marking an intermediate hop.

The KAT operations are interpreted as follows:

Jp+ qK(σ) = JpK(σ) ∪ JqK(σ)

Jp; qK(σ) =
⋃

τ∈JpK(σ)

JqK(τ)

Jp∗K(σ) =
⋃
n

JpnK(σ)

JaK(σ) =

{
{σ}, if JaK(σ) = ∅
∅, if JaK(σ) = {σ}

Note that + behaves like a disjunction operation when applied to
tests and like a union operation when applied to actions. Similarly, ;
behaves like a conjunction operation when applied to tests and like
a sequential composition when applied to actions. Negation is only
ever applied to tests, as is enforced by the syntax of the langauge.

5.1 Sets of Packet Histories as a Measurable Space
To give a denotational semantics to ProbNetKAT, we must first
identify a suitable space of mathematical objects. Because we want
to reason about probability distributions over sets of network paths,
we construct a measurable space (as defined in §3) from sets
of packet histories, and then define the semantics using Markov
kernels on this space.

The powerset 2H of packet histories H forms a topological
space with topology generated by basic clopen sets,

Bτ = {a ∈ 2H | τ ∈ a}, τ ∈ H.
This space is homeomorphic to the Cantor space, the topologi-
cal product of countably many copies of the discrete two-element
space. Let B ⊆ 22

H

be the Borel sets of this topology. This is
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the smallest σ-algebra containing the Bτ . The measurable space
(2H ,B) with outcomes 2H and events B provides a foundation for
interpreting ProbNetKAT programs as Markov kernels 2H → 2H .

5.2 The Operation &

Next, we define an operation on measures that will be needed to
define the semantics of ProbNetKAT’s parallel composition op-
erator. Parallel composition differs in some important ways from
NetKAT’s union operator—intuitively, union merely combines the
sets of packet histories generated by its arguments, whereas paral-
lel composition must somehow combine measures on sets of packet
histories, which is a more intricate operation. For example, while
union is idempotent, parallel composition will not be in general.

Operationally, the & operation on measures can be understood
as follows: given measures µ and ν, to compute the measure µ & ν,
we sample µ and ν independently to get two subsets ofH , then take
their union. The probability of an event A ∈ B is the probability
that this union is in A.

Formally, given µ, ν ∈M, let µ× ν be the product measure on
the product space 2H × 2H . The union operation

⋃
: 2H × 2H →

2H is continuous and therefore measurable, so we can define

(µ & ν)(A) , (µ× ν)({(a, b) | a ∪ b ∈ A}). (5.1)

Intuitively, this is the probability that the union a ∪ b of two
independent samples taken with respect to µ and ν lies in A.

The & operation enjoys a number of useful properties, as cap-
tured by the following lemma:

Lemma 1.

(i) & is associative and commutative (however, it is not idempotent
in general—see (vi)).

(ii) & is linear in both arguments.
(iii) (δa & µ)(A) = µ({b | a ∪ b ∈ A}).
(iv) δa & δb = δa∪b.
(v) δ∅ is a two-sided identity for &.

(vi) µ & µ = µ iff µ = δa for some a ∈ 2H .

The proof of these facts is given in Appendix B.
There is also an infinitary version of & that operates on finite or

countable multisets of measures, but we will not need this for our
development.

5.3 Semantics of ProbNetKAT
Now we are ready to define the semantics of ProbNetKAT itself.
Every ProbNetKAT term p will denote a Markov kernel

JpK : 2H × B → R

which can be curried variously as

JpK : 2H → B → R JpK : B → 2H → R.

Intuitively, the term p, given an input a ∈ 2H , produces an output
according to the distribution JpK(a). We can think of running the
program p with input a as a probabilistic experiment, and the value
JpK(a,A) ∈ R is the probability that the outcome of the experiment
lies in A ∈ B. The measure JpK(a) is not necessarily discrete
(§6.3): its total weight is always 1, although the probability of any
given singleton may be 0.

The semantics of the atomic operations are defined as follows.
For a ∈ 2H ,

Jx← nK(a) = δ{π[n/x] :σ |π :σ∈a}

Jx = nK(a) = δ{π :σ |π :σ∈a, π(x)=n}

JdupK(a) = δ{π :π :σ |π :σ∈a}

JskipK(a) = δa

JdropK(a) = δ∅,

where π[n/x] denotes packet π with the field x rebound to the
value n. Note that if no elements of a satisfy the test x = n, the
result is δ∅, which is the Dirac measure on the emptyset, not the
constant 0 measure.

These are all deterministic terms, and as such, they correspond
to measurable functions f : 2H → 2H . In each of these cases,
the function f is completely determined by its action on singletons,
and indeed by its action on the head packet of the unique element
of each of those singletons.

The semantics of the remaining ProbNetKAT terms, except for
Kleene star, is defined as follows:

Jp ⊕r qK(a) = rJpK(a) + (1− r)JqK(a)
Jp ; qK(a) = JqK(JpK(a))

Jp & qK(a) = JpK(a) & JqK(a)

Note that the semantics of composition requires us to extend JqK to
allow measures as inputs. This is done by integration as described
in §3. For µ a measure on 2H ,

JqK(µ) , λA.

∫
a∈2H

JqK(a,A) · µ(da).

It is not surprising that this extension is needed. In NetKAT, the
semantics had to be similarly extended to take sets of histories as
input to define the semantics of sequential composition. Both phe-
nomena are consequences of sequential composition taking place in
the Kleisli category of a monad: the powerset monad for NetKAT
and the Giry monad for ProbNetKAT.

5.4 Semantics of Iteration
To complete the semantics, we must define the semantics of the
Kleene star operator. This turns out to be quite challenging, because
the usual definition of star as a sum of powers does not work with
ProbNetKAT. Instead, we define an infinite stochastic process and
show that it satisfies the essential fixpoint equation that Kleene star
is expected to obey (Theorem 1).

To define the measure Jp∗K(c0), consider the following infi-
nite stochastic process. Starting with c0 ∈ 2H , create a sequence
c0, c1, c2, . . . inductively. After n steps, say we have constructed
c0, . . . , cn. Let cn+1 be the outcome obtained by sampling 2H ac-
cording to the distribution JpK(cn). Continue this process forever
to get an infinite sequence c0, c1, c2, . . . ∈ (2H)ω . Take the union
of the resulting sequence

⋃
n cn and ask whether it is in A. The

probability of this event is taken to be Jp∗K(c0, A).
This intuitive operational view can also be justified denotation-

ally. However, the formal development is quite technical and de-
pends on an application of the Kolmogorov extension theorem. For
the details, see Appendix A.

The following theorem shows that the iteration operator satisfies
a certain desired fixpoint equation. This property is in fact the
original motivating force behind the definition as we have given
it. It can be used to describe the iterated behavior of a network (§7)
and to define the semantics of while loops (§5.5).

Theorem 1. Jp∗K = Jskip & pp∗K.
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Proof. To determine the probability Jp∗K(c0, A), we sample JpK(c0)
to get an outcome c1, then run the protocol Jp∗K on c1 to obtain a
set c, then ask whether c0 ∪ c ∈ A. Thus

Jp∗K(c0, A) =
∫
c1

JpK(c0, dc1) · Jp∗K(c1, {c | c0 ∪ c ∈ A})

= Jp∗K(JpK(c0))({c | c0 ∪ c ∈ A})
= (δc0 & Jp∗K(JpK(c0)))(A) by Lemma 1(iii)

= (JskipK(c0) & Jpp∗K(c0))(A)
= Jskip & pp∗K(c0, A).

Note that unlike KAT and NetKAT, Jp∗K is not the same as
the infinite sum of powers J&n p

nK. The latter fails to capture the
sequential nature of iteration in the presence of probabilistic choice.

5.5 Guards
ProbNetKAT’s guards generalize tests, which are predicates de-
fined by their behavior on the first packet in a history, to predicates
over the entire history. Recall that a guard is simply an element
g ∈ 2H used as a deterministic program with semantics

JgK(a) , δa∩g.

A test x = n is a special case in which g = {π :τ | π(x) = n}.
Note that unlike other ProbNetKAT atomic programs, guards are
not necessarily determined by their action on the head packet.

By Lemma 1, guards extend to measures as follows:

JgK(µ) = λA.µ({a | a ∩ g ∈ A}).
Using this construct, we can define encodings of conditionals and
while loops as follows:

if b then p else q = bp & bq while b do p = (bp)∗b.

Importantly, unlike treatments involving subprobability measures
found in previous work [29, 46], the output here is always a proba-
bility measure, even if the program does not halt. For example, the
output of the program while true do skip is the Dirac measure δ∅.

6. Properties
Having defined the formal semantics of ProbNetKAT in terms of
Markov kernels, we now develop some essential properties of Prob-
NetKAT that provide further evidence in support of our semantics.

• We prove that ProbNetKAT is a conservative extension of
NetKAT—i.e., every deterministic ProbNetKAT program be-
haves like the corresponding NetKAT program.

• We present some additional properties enjoyed by ProbNetKAT
programs.

• We show that ProbNetKAT programs can generate continuous
measures from discrete inputs, which shows that our use of
Markov kernels is truly necessary and that no semantics based
on discrete measures would suffice.

• Finally, we present a tempting alternative “uncorrelated” se-
mantics and show that it is inadequate for defining the semantics
of ProbNetKAT.

6.1 Conservativity of the Extension
Although ProbNetKAT extends NetKAT with new probabilistic op-
erators, the addition of these operators does not affect the behavior
of purely deterministic programs. We will prove that this property
is indeed true of our semantics—i.e., ProbNetKAT is a conservative
extension of NetKAT.

First, we show that programs that do not use random choice are
deterministic:

Lemma 2. All syntactically deterministic ProbNetKAT programs
p (those without an occurrence of⊕r) are (semantically) determin-
istic; that is, for any a ∈ 2H , JpK(a) is a point mass.

Next we show that on deterministic programs, the ProbNetKAT
and NetKAT semantics agree. Let J·KN denote the NetKAT seman-
tic map and J·KP the ProbNetKAT semantic map.

Theorem 2. For deterministic programs, ProbNetKAT semantics
and NetKAT semantics agree in the following sense. For a ∈ 2H ,
define JpKN(a) =

⋃
τ∈aJpKN(τ). Then for any a, b ∈ 2H ,

JpKN(a) = b ⇔ JpKP(a) = δb.

The proofs of this lemma and theorem are given in Appendix B.
Using the fact that the NetKAT axioms are sound and complete

with respect to the denotational semantics [2, Theorems 1 and 2],
we immediately obtain the following corollary:

Corollary 1. The NetKAT axioms are sound and complete for
deterministic ProbNetKAT programs.

Together, these results provide additional justification that our
probabilistic semantics captures the desired behavior.

6.2 Further Properties
Next, we identify several natural equations that are satisfied by
ProbNetKAT programs. The first two equations show that drop is
a left and right unit for the parallel composition operator &:

Jp & dropK = JpK = Jdrop & pK

This equation makes intuitive sense as deterministically dropping
all inputs should have no affect when composed in parallel with any
other program. The next equation states that ⊕ is idempotent:

Jp⊕s pK = JpK

Again, this equation makes sense intuitively as randomly choosing
between p and itself is the same as simply executing p. The next
few equations show that parallel composition is associative,

J(p & q) & rK = Jp & (q & r)K

and commutative:

Jp & qK = Jq & pK
The next equation shows that the arguments to random choice can
be exchanged, provided the bias is complemented:

Jp⊕s qK = Jq ⊕1−s pK

The final equation describes how to reassociate expressions involv-
ing random choice with explicit biases:

J
(
p⊕ a

a+b
q
)
⊕ a+b

a+b+c
rK = Jp ⊕ a

a+b+c

(
q ⊕ b

b+c
r
)
K

Next we develop some additional properties involving determin-
istic programs.

Lemma 3. Let p be deterministic with JpK(a) = δf(a). The func-
tion f : 2H → 2H is measurable, and for any measure µ,

JpK(µ) = µ ◦ f−1.

As we have seen in Lemma 1(vi), & is not idempotent except
in the deterministic case. Neither does sequential composition dis-
tribute over & in general. However,

Lemma 4. If p is deterministic, then

Jp(q & r)K = Jpq & prK J(q & r)pK = Jqp & rpK.

Neither equation holds unconditionally.
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The proofs are given in Appendix B.
Finally, we give examples involving iteration. Consider the pro-

gram skip ⊕r dup. This program does nothing with probability
r and duplicates the head packet with probability 1 − r, where
r ∈ [0, 1). We claim that independent of r, the value of the starred
program on any single packet π is the point mass

J(skip⊕r dup)∗K(π) = δ{πn|n≥1}. (6.1)

The argument is given in Appendix B.
Note that the equation in the statement of Theorem 1 does

not determine Jp∗K uniquely. For example, it can be shown that
a probability measure µ is a solution of

Jskip∗K(π) = Jskip & skip ; skip∗K(π)

if and only if µ(Bπ) = 1. That is, π appears in the output set of
Jskip∗K(π) with probability 1.

6.3 A Continuous Measure
Without the Kleene star operator or dup, a ProbNetKAT program
can generate only a discrete measure. This raises the question of
whether it is possible to generate a continuous measure at all, even
in the presence of ∗ and dup. This question is important, because
with only discrete measures, we would have no need for measure
theory or integrals and the semantics would be significantly sim-
pler. It turns out that the answer to this question is yes, it is possible
to generate a continuous measure, therefore discrete measures do
not suffice.

To see why, let 0 and 1 be distinct packets and let p be the
program that changes the current packet to either 0 or 1 with equal
probability. Now consider the following program:

p ; (dup ; p)∗.

Operationally, this program first sets the input packet to either 0
or 1 with equal probability, then repeats the following three steps
forever:

1. output the current packet,

2. duplicate the current packet, and

3. set the new current packet to 0 or 1 with equal probability.

This procedure produces outcomes a with exactly one packet his-
tory of every length and linearly ordered by the suffix relation. Thus
each possible outcome a corresponds to a complete path in an in-
finite binary tree. Moreover, the probability that a history τ is gen-
erated is 2−|τ |, thus any particular set is generated with probability
0, because the probability that a set is generated cannot be greater
than the probability that any one of its elements is generated.

Theorem 3. Let µ be the measure Jp ; (dup ; p)∗K(0).

(i) For τ ∈ H , the probability that τ is a member of the output set
is 2−|τ |.

(ii) Two packet histories of the same length are generated with
probability 0.

(iii) µ({a}) = 0 for all a ∈ 2H , thus µ is a continuous measure.

A complete proof is given in Appendix B.
In fact, the measure µ is the uniform measure on the subspace

of 2H consisting of all sets that contain exactly one packet history
of each length and are linearly ordered by the suffix relation. This
subspace is homeomorphic to the Cantor space.

6.4 Uncorrelated Semantics
It is tempting to consider a weaker uncorrelated semantics

[p] : 2H → [0, 1]H

in which [p](a)(τ) gives the probability that τ is contained in the
output set on input a. Indeed, this semantics can be obtained from
the standard ProbNetKAT semantics as follows:

[p](a)(τ) , JpK(a)(Bτ ).

However, although it is simpler in that it does not require continu-
ous measures, one loses correlation between packets.

Worse, it is not compositional, as the following example shows.
Let π0, π1 be two packets and consider the programs π0!⊕π1! and
(π0! & π1!) ⊕ drop, where π! is the program that sets the current
packet to π. Both programs have the same uncorrelated meaning:

[π0!⊕ π1!](a)(π) = [(π0! & π1!)⊕ drop](a)(π) = 1
2

for π ∈ {π0, π1} and a 6= ∅ and 0 otherwise. However, their
standard meanings differ:

Jπ0!⊕ π1!K(a) = 1
2
δ{π0} +

1
2
δ{π1}

J(π0! & π1!)⊕ dropK(a) = 1
2
δ{π0,π1} +

1
2
δ∅,

Moreover, composing on the right with π0! yields δ{π0} and
1
2
δ{π0} + 1

2
δ∅, respectively, which have different uncorrelated

meanings as well. Thus we have no choice but to reject the uncor-
related semantics as a viable alternative.

7. Applications
In this section, we demonstrate the expressiveness of ProbNetKAT’s
probabilistic operators and power of its semantics by presenting
three case studies drawn from scenarios that commonly arise in
real-world networks. Specifically, we show how ProbNetKAT can
be used to model and analyze expected delivery in the presence
of failures, expected congestion with randomized routing schemes,
and expected convergence with gossip protocols. To the best of
our knowledge, ProbNetKAT is the first high-level SDN language
and reasoning framework that adequately handles these and other
examples involving probabilistic behavior.

7.1 Fault Tolerance
Failures are a fact of life in real-world networks. Devices and links
fail due to factors ranging from software and hardware bugs to
interference from the environment such as loss of power or cables
being severed. A recent empirical study of data center networks by
Gill et al. [16] found that failures occur frequently and can cause
issues ranging from degraded performance to service disruptions.
Hence, it it important for network operators to be able to understand
the impact of failures—e.g., they may elect to use routing schemes
that divide traffic over many diverse paths in order to minimize the
impact of any given failure.

We can encode failures in ProbNetKAT using random choice
and drop: the idiom p ⊕d drop encodes a program that succeeds
and executes p with probability d, or fails and executes drop with
probability 1 − d. Note that since drop produces no packets, it
accurately models a device or link that has crashed. We can then
compute the probability that traffic will be delivered under an
arbitrary forwarding scheme.

As a concrete example, consider the topology depicted in Fig-
ure 3 (a), with four switches connected in a diamond. Suppose that
we wish to forward traffic from S1 to S2 and we know that the link
between S1 and S4 fails with 10% probability (for simplicity, in
this example, we will assume that the switches and all other links
are reliable). What is the probability that a packet that originates at
S1 will be successfully delivered to S4, as desired?

Obviously the answer to this question depends on the configu-
ration of the network—using different forwarding paths will lead
to different outcomes! To investigate this question, we will encode
the overall behavior of the network using several terms: a term p
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Figure 3. Topologies used in case studies: (a) fault tolerance, (b) load balancing, and (c) gossip protocols.

that encodes the local forwarding behavior of the switches; a term t
that encodes the forwarding behavior of the network topology; and
a term e that encodes the network egresses.

The standard way to model a link ` is as the sequential com-
position of terms that (i) test the location (i.e., switch and port) at
one end of the link; (ii) duplicate the head packet, and (iii) update
the location to the other end of the link. However, because we are
only concerned with end-to-end packet delivery in this example,
we can safely elide the dup term. Hence, using the idiom discussed
above, we would model a link ` that fails with probability 1− d as
`⊕d drop. Hence, since there is a 10% probability of failure of the
link S1 → S2, we encode the topology t as follows:

t ,(sw = S1; pt = 2; ((sw ← S2; pt ← 1)⊕.9 drop))
& (sw = S1; pt = 3; sw ← S3; pt ← 1)

& (sw = S2; pt = 4; sw ← S4; pt ← 2)

& (sw = S3; pt = 4; sw ← S4; pt ← 3).

We adopt the convention that each port is named according to the
identifier of the switch it connects to—e.g., port 1 on switch S2

connects to switch S1.
Next, we define the local forwarding policy p that encodes the

behavior on switches. Suppose that we forward traffic from S1 to
S4 via S2. Then p would be defined as follows:

p , (sw = S1; pt ← 2) & (sw = S2; pt ← 4).

Finally, the egress predicate e is simply:

e , sw = S4.

The complete network program is then (p; t)∗; e. That is, the
network alternates between forwarding on switches and topology,
iterating these steps until the packet is either dropped or exits the
network.

Using our semantics for ProbNetKAT, we can evaluate this
program on a packet starting at S1: we obtain a distribution in
which there is a 90% chance that the packet is delivered to S4 and
a 10% chance that it is dropped.

As an extension to the example, we can model a more fault-
tolerant forwarding scheme that divides traffic across multiple
paths to reduce the impact of any single failure. The following
program p′ divides traffic from S1 evenly between S2 and S3:

p′ ,(sw = S1; (pt ← 2⊕ pt ← 3))

& (sw = S2; pt ← 4)

& (sw = S3; pt ← 4).

As expected, evaluating this policy on a packet starting at S1 gives
us a 95% chance that the packet is delivered to S4 and only a

5% chance that it is dropped. The positive effect with respect to
failures has also been observed in previous work on randomized
routing [62].

7.2 Load Balancing.
In many networks, operators must balance demands for traffic
while optimizing for various criteria such as minimizing the max-
imum amount of congestion on any given link. An attractive ap-
proach to these traffic engineering problems is to use routing
schemes based on randomization: the operator computes a col-
lection of paths that utilize the full capacity of the network and
then maps incoming traffic flows onto those paths randomly. By
spreading traffic over a diverse set of paths, such schemes ensure
that (in expectation) the traffic will closely approximate the optimal
solution, even though they only require a static set of paths in the
core of the network.

Valiant load balancing (VLB) [58] is a classic randomized rout-
ing scheme that provides low expected congestion for any traffic
demands in a mesh topology. VLB forwards packets using a simple
two-phase strategy: in the first phase, the ingress switch forwards
the packet to a randomly selected neighbor, without considering the
the packet’s ultimate destination; in the second phase, the neighbor
forwards the packet to the egress switch that is connected to the
destination.

As an example, consider the four-node mesh topology shown
in Figure 3 (b). When a packet destined for a host connected to
S3 arrives at S1, the switch will first pick one of S2, S3, or S4

as the intermediate hop. Suppose it picks S4. When S4 receives
the packet, it forwards the packet directly to S3, which will in turn
forwards it along to the destination host.

We assume that each switch has ports named 1, 2, 3, 4, that port
i on switch i connects to the outside world, and that all other ports j
connect to switch j. We can write a ProbNetKAT program for this
load balancing scheme by splitting it into two parts, one for each
phase of routing.

VLB often requires that traffic be tagged in each phase so that
switches know when to forward it randomly or deterministically,
but in this example, we can use topological information to distin-
guish the phases. Packets coming in from the outside (port i on
switch i) are forwarded randomly, and packets on internal ports are
forwarded deterministically.

We model the initial (random) phase with a term p1:

p1 ,
4

&
k=1

(sw = k; pt = k;
⊕
j 6=k

pt ← j).

Here we tacitly use an n-ary version of ⊕ that chooses each each
summand with equal probability.
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Similarly, we can model the second (deterministic) phase with
a term p2:

p2 ,

(
4

&
k=1

(sw = k; pt 6= k)

)
;

(
4

&
k=1

(dst = k; pt ← k)

)
Note that the guards sw = k; pt 6= k restrict to second-phase
packets. The overall switch term p is simply p1 & p2.

The topology term t is encoded with dup terms to record the
paths, as described in §7.1.

The power of VLB is its ability to route nr/2 load in a network
with n switches and internal links with capacity r. In our example,
n = 4 and r is 1 packet, so we can route 2 packets of random
traffic with no expected congestion. We can model this demand
with a term d that generates two packets with random origins and
random destinations (writing πi,j,k for a sequence of assignments
setting the switch to i, the port to j, and the identifier to k):

d , (

4⊕
k=1

(πk,k,0!) &

4⊕
k=1

(πk,k,1!)); (

4⊕
k=1

dst← k)

The full network program to analyze is then d; (p; t)∗; p. Even on
this small example, the output of the program is too large to reason-
ably write down here. Instead, as in the congestion example from
§2, we can define a random variable to extract the information we
care about. Let Xmax be a random variable equal to the maximum
number of packets traversing a single internal link. Then the ex-
pected value of Xmax is 1 packet. That is, there is no congestion.

7.3 Gossip Protocols
Gossip (or epidemic) protocols are randomized algorithms that are
often used to efficiently disseminate information in large-scale dis-
tributed systems [11]. An attractive feature of gossip protocols and
other epidemic algorithms is that they are able to rapidly converge
to a consistent global state while only requiring bounded worst-
case communication. Operationally, a gossip protocol proceeds in
loosely synchronized rounds: in each round, every node communi-
cates with a randomly selected peer and the nodes update their state
using information shared during the exchange. For example, in a
basic anti-entropy protocol, a “rumor” is injected into the system
at a single node and spreads from node to node through pair-wise
communication. In practice, such protocols can rapidly disseminate
information in well-connected graphs with high probability.

We can use ProbNetKAT to model the convergence of gossip
protocols. We introduce a single packet to model the “rumor”
being gossiped by the system: when a node receives the packet,
it randomly selects one of its neighbors to infect (by sending it
the packet), and also sends a copy back to itself to maintain the
infection. In gossip terminology, this would be characterized as a
“push” protocol since information propagates from the node that
initiates the communication to the recipient rather than the other
way around.

We can make sure that nodes do not send out more than one in-
fection packet per round by using a single incoming port (port 0) on
each switch and exploiting ProbNetKAT’s set semantics: because
the infection packets are identical modulo topology information,
multiple infection packets arriving at the same port are identified.

To simplify the ProbNetKAT program, we assume that the net-
work topology is a hypercube, as shown in Figure 3 (c). The pro-
gram for gossiping on a hypercube is highly uniform—assuming
that switches are numbered in binary, we can randomly select a
neighbor by flipping a single bit.

The fragment of the switch program p for switch 000 is as
follows:

sw = 000; ((pt ← 001⊕ pt ← 010⊕ pt ← 100) & pt ← 0).

This overall forwarding policy can be obtained by combining anal-
ogous fragments for the other switches using parallel composition.

Encoding the topology of the hypercube as t, we can then
analyze (p; t)∗ and calculate the expected number of infected nodes
after a given number of rounds Xinfected using the ProbNetKAT
semantics. The results for the first few rounds are as follows:

Rounds E[Xinfected]

0 1.00
1 2.00
2 3.33
3 4.86
4 6.25
5 7.17
6 7.66

The above examples, despite their simplicity, illustrate the ex-
pressiveness and versatility of ProbNetKAT. The ability to reason
probabilistically is an important step to fully realize the vision of
SDN and the framework presented in the paper provides strong se-
mantic foundations to this end.

8. Related Work
Work related to ProbNetKAT can be divided into two categories:
(i) models and semantics for proabilistic programs and (i) domain-
specific frameworks for specifying and reasoning about network
programs. This section summarizes the most relevant pieces of
prior work in each of these categories.

8.1 Probabilistic Programming
Computational models and logics for probabilistic programming
have been extensively studied for many years. Denotational and op-
erational semantics for probabilistic while programs were first stud-
ied by Kozen [28]. Early logical systems for reasoning about prob-
abilistic programs were proposed in a sequence of separate papers
by Saheb-Djahromi, Ramshaw, and Kozen [29, 49, 53]. There are
also numerous recent efforts [18, 19, 31, 34, 44, 50]. Our seman-
tics for ProbNetKAT builds on the foundation developed in these
papers and extends it to the new domain of network programming.

Probabilistic programming in the context of artificial intelli-
gence has also been extensively studied in recent years [5, 17, 52].
However, the goals of this line of work are different than ours in
that it focuses on codification of Bayesian inference.

Probabilistic automata in several forms have been a popular
model going back to the early work of Paz [48], as well as many
other recent efforts [3, 10, 38, 54, 55]. Probabilistic automata are
a suitable operational model for probabilistic programs and play a
crucial role in the development of decision procedures for bisim-
ulation equivalence, logics to reason about behavior, in the syn-
thesis of probabilistic programs, and in model checking proce-
dures [1, 3, 7, 12, 24, 32, 33, 35, 36]. In the present paper, we do
not touch upon any of these issues so the connections to probabilis-
tic automata theory are thin. However, we expect they will play an
important role in our future work—see below.

Denotational models combining probability and nondetermin-
ism have been proposed in papers by several authors [22, 23, 39,
40, 57, 59], and general models for labeled Markov processes, pri-
marily based on Markov kernels, have been studied extensively
[4, 13, 46, 47]. Because ProbNetKAT does not have nondetermin-
ism, we have not encountered the extra challenges arising in the
combination of nondeterministic and probabilistic behavior.

All the above mentioned systems provide semantics and logical
formalisms for specifying and reasoning about state-transition sys-
tems involving probabilistic choice. A crucial difference between
our work and these efforts is in that our model is not really a state-
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transition model in the usual sense, but rather a packet-filtering
model that filters, modifies, and forwards packets. Expressions de-
note functions that consume sets of packet histories as input and
produce probability distributions of sets of packet histories as out-
put. As demonstrated by our example applications, this view is ap-
propriate for modeling the functionality of packet-switching net-
works. It has its own peculiarities and is different enough from stan-
dard state-based computation that previous semantic models in the
literature do not immediately apply. Nevertheless, we have drawn
much inspiration from the literature and exploited many similarities
to provide a powerful formalism for modeling probabilistic behav-
ior in packet-switching networks.

8.2 Network Programming
Recent years have seen an incredible growth of languages and
systems for programming and reasoning about networks. Net-
work programming languages such as Frenetic [14], Pyretic [43],
Maple [60], NetKAT [2], and FlowLog [45] have introduced high-
level abstractions and semantics that enable programmers to reason
precisely about the behavior of networks. However, as mentioned
previously, all of these language are based on deterministic packet-
processing functions, and do not handle probabilistic traffic models
or forwarding policies. Of all these frameworks, NetKAT is the
most closely related as ProbNetKAT builds directly on its features.

In addition to programming languages, a number of network
verification tools have been developed, including Header Space
Analysis [25], VeriFlow [26], the NetKAT verifier [15], and Li-
bra [61]. Similar to the network programming languages described
above, these tools only model deterministic networks and verify
deterministic properties.

Network calculus is a general framework for modeling and an-
alyzing the network behavior using tools from queuing theory [9].
It models the low-level behavior of network devices in significant
detail, including features such as traffic arrival rates, switch prop-
agation delays, and the behaviors of components like buffers and
queues. This enables reasoning about quantitative properties such
as latency, bandwidth, congestion, etc. Past work on network cal-
culus can be divided into two branches: deterministic [37] and
stochastic [21]. Like ProbNetKAT, the stochastic branch of net-
work calculus provides tools for reasoning about the probabilis-
tic behavior, especially in the presence of statistical multiplexing.
However, network calculus is generally known to be difficult to
use, since it can require the use of external facts from queuing the-
ory to establish many desired results. In contrast, ProbNetKAT is a
self-contained, language-based framework that offers general pro-
gramming constructs and a complete denotational semantics.

9. Conclusion
Previous work [2, 15] has described NetKAT, a language and
logic for specifying and reasoning about the behavior of packet-
switching networks. In this paper we have introduced ProbNetKAT,
a conservative extension of NetKAT with constructs for reasoning
about the probabilistic behavior of such networks. To our knowl-
edge, this is the first language-based framework for specifying
and verifying probabilistic network behavior. We have developed
a formal semantics for ProbNetKAT based on Markov kernels and
shown that the extension is conservative over NetKAT. Finally, we
have presented several case studies that illustrate the use of Prob-
NetKAT on real-world examples.

Our examples have used the semantic definitions directly in the
calculation of distributions, fault tolerance, load balancing, and a
probabilistic gossip protocol. Although we have exploited several
general properties of our system in these arguments, we have made
no attempt to assemble them into a formal deductive system or
decision procedure as was done previously for NetKAT [2, 15].

These questions remain topics for future investigation. We are
hopeful that the coalgebraic perspective developed in [15] will
be instrumental in obtaining a sound and complete axiomatization
and a practical decision procedure for equivalence of ProbNetKAT
expressions.

We are also fascinated by the question of the appropriate no-
tion of convergence by which an iterate p∗ is approximated by its
partial computations pn. The semantics of iteration is defined op-
erationally by an infinite stochastic process and denotationally in
terms of a product measure on the ω-power of the space of sets
of packet histories. The definition is canonical and satisfies the de-
sired fixpoint equation (Theorem 1), but the notion of approxima-
tion involves both the inclusion order on sets of packet histories and
convergent probabilities and seems not to satisfy any natural order.
Thus, standard order-theoretic domains for probabilistic program-
ming that have been proposed in the literature seem inadequate for
describing the present situation.

As a more practical next step, we would like to augment the
existing NetKAT compiler [56] with tools for handling the prob-
abilistic constructs of ProbNetKAT along with a formal proof of
correctness. Features such as OpenFlow [41] “group tables” sup-
port for simple forms of randomization and emerging platforms
such as P4 [6] offer additional flexibility. Hence, there already ex-
ist machine platforms that could serve as a compilation target for
(restricted fragments of) ProbNetKAT.

Another interesting topic is whether we can learn ProbNetKAT
programs from partial traces of a system, enabling active learning
of running network policies. This is interesting for many applica-
tions. We are particularly interested in applications involving se-
curity and multiple administrative domains. For example, learning
algorithms might be useful for detecting compromised nodes in a
network. Alternatively, a network operator might use information
from traceroute to learn a model that provides partial informa-
tion about the paths from their own network to another autonomous
system on the Internet.
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Appendix
A. Semantics of Iteration via the Kolmogorov

Extension Theorem
The Kolmogorov extension theorem identifies conditions under
which a family of measures on finite subproducts of an infinite
product space extend to a measure on the whole space. This the-
orem can be used to create a sample space for an iterative process
when the behavior of each individual step of the process is known.

For our application, it is convenient to have a slightly more
general version that applies to countable chains of spaces connected
by Markov kernels. In this section we formulate this version and
use it to justify our treatment of Jp∗K in §A.1.

First, a few definitions. A topological space is separable if
it contains a countable dense subset—i.e., there is a sequence
(xi)i<ω of elements such that every nonempty open set contains
at least one element of the sequence. A space X is metrizable if
there is a metric d : X × X → R that induces the topology. A
metric space (X, d) is called complete if every Cauchy sequence in
X has a limit that is also in X . Finally, a topological space is said
to be completely metrizable if there is a metric d such that (X, d) is
complete and d induces the topology. A Polish space is a separable
completely metrizable topological space.

Suppose we have a sequence of Polish spaces (Sn,Bn), n ∈ ω
along with measurable functions fnm : Sn → Sm for m ≤ n such
that for all k ≤ m ≤ n,

fnk = fmk ◦ fnm fnn = 1Sn . (A.1)

This sequence has a limit (Sω,Bω) in the category of measurable
spaces and measurable functions, where

Sω = {(sn | n ∈ ω) ∈
∏
n∈ω

Sn | ∀m ≤ n fnm(sn) = sm}

and Bω is the weakest σ-algebra on Sω such that all projections
πm : Sω → Sm are measurable. The space Sω , being a closed
subspace of a countable product of Polish spaces, is itself a Polish
space.

Now suppose that we have Markov kernels Pkn : Sk → Sn for
each k, n < ω such that for all k,m, n < ω,

Pkn(s,A) =

∫
t∈Sm

Pmn(t, A) · Pkm(s, dt) (A.2)

Pkn(s) = δfkn(s), n ≤ k. (A.3)

In particular, Pnn(s) = δs.
The following local consistency condition corresponds to the

premise needed to apply the Kolmogorov extension theorem (see
[8, Theorem 3.3.6]).

Lemma 5. For all k,m, n with m ≤ n,

Pkm(s,A) = Pkn(s, f
−1
nm(A)).

Proof. Starting from the left-hand side and using the change-of-
variable rule (3.1) at the crucial step,

Pkm(s,A) =

∫
t∈Sn

Pnm(t, A) · Pkn(s, dt)

=

∫
t∈Sn

χA(fnm(t)) · Pkn(s, dt)

=

∫
u∈Sm

χA(u) · Pkn(s, f−1
nm(du))

=

∫
u∈A

Pkn(s, f
−1
nm(du))

= Pkn(s, f
−1
nm(A)).

There is another condition needed for the application of the Kol-
mogorov extension theorem, namely inner regularity. This is auto-
matically satisfied because Sω is a Polish space; see [51, Theorem
2.3.10].

Let R be the set of finite Boolean combinations of measurable
sets π−1

m (Am) for Am ∈ Bm. By the monotone class theorem (see
[8, Theorem 2.1.2] or [20, Theorem 6.A]), the σ-algebra Bω is the
smallest set containing R and closed under unions of countable
ascending chains and intersections of countable descending chains.

Lemma 6. Every element of R is of the form π−1
n (An) for suffi-

ciently large n ∈ ω and some An ∈ Bn. Moreover, for all suffi-
ciently large m,n with m ≤ n, we can take An = f−1

nm(Am).

Proof. Every finite Boolean combination B(π−1
m (Am) | m ∈ F )

depends on only finitely many generators π−1
m (Am) for m ∈ F ,

where F is a finite set of indices. But for any n ≥ maxF ,

B(π−1
m (Am) | m ∈ F ) = B(π−1

n (f−1
nm(Am)) | m ∈ F )

= π−1
n (B(f−1

nm(Am) | m ∈ F )),

and B(f−1
nm(Am) | m ∈ F ) ∈ Bn. For the last statement, if

An = f−1
nm(Am), then

π−1
n (An) = π−1

n (f−1
nm(Am)) = π−1

m (Am).

Now for each π−1
m (Am) ∈ R, define

Pnω(s, π
−1
m (Am)) , Pnm(s,Am). (A.4)

We must argue that Pnω is well defined. If π−1
m (Am) = π−1

k (Ak)
with m ≤ k, then for any s ∈ Sω ,

πk(s) ∈ Ak ⇔ s ∈ π−1
k (Ak)⇔ s ∈ π−1

m (Am)⇔ πm(s) ∈ Am
⇔ fkm(πk(s)) ∈ Am ⇔ πk(s) ∈ f−1

km(Am).

As the πk are surjective (we can discard any element of Sk not
appearing as a component of any element of Sω), we have that
Ak = f−1

km(Am). Then

Pnk(s,Ak) = Pnk(s, f
−1
km(Am))

= (Pnk ;Pkm)(s,Am) = Pnm(s,Am).

Theorem 4. The map Pnω : Sn × R → R extends to a Markov
kernel Pnω : Sn → Sω .

Proof. We must show:

(i) For fixed s ∈ Sn, the map λA.Pnω(s,A) : R → R extends to
a measure λA.Pnω(s,A) : Bω → R.

(ii) For fixed A ∈ Bω , the map λs.Pnω(s,A) : Sn → R is a
measurable function.

For (i), using inner regularity one can show that for fixed s ∈
Sn, the map λA.Pnω(s,A) : R → R is countably additive
on R, therefore by the Carathéodory extension theorem (see [20,
Theorem 13.A] or [27, Theorem 7.27.7]) extends to a measure
λA.Pnω(s,A) : Sω → R. This is essentially the Kolmogorov
extension theorem in this setting.

For (ii), the proof is by induction. The basis is (A.4). For the
induction step, we use the monotone class theorem and the fact that
the pointwise supremum of a countable ascending chain of uni-
formly bounded measurable functions is measurable. For a chain
A0 ⊆ A1 ⊆ · · · , we know that the functions λs.Pnω(s,Ai)
are measurable by the inductive hypothesis, and λs.Pnω(s,

⋃
iAi)
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is the pointwise supremum of the λs.Pnω(s,Ai), therefore mea-
surable. The argument for intersections of countable descending
chains is similar.

A.1 Definition of Jp∗K
In this section we apply Theorem 4 to obtain the semantics of p∗

for a ProbNetKAT program p. Suppose we have determined the
semantics of p as a Markov kernel JpK : 2H → 2H and we wish
to define Jp∗K : 2H → 2H . Let (Sn,Bn) be the product space
(2H)n. For n ≥ m, let fnm : Sn → Sm be the projection onto
the first m components: fnm(a0, . . . , an−1) = (a0, . . . , am−1).
For n ≥ m, the Markov kernels Pmn : Sm → Sn are the
maps that extend (a0, . . . , am−1) to (a0, . . . , an−1) by choosing
am, . . . , an−1 successively according to JpK; that is,

Pm,m+1(a0, . . . , am−1, (2
H)m−1 ×A) = JpK(am−1, A).

By Theorem 4, the Pnm give rise to Markov kernels Pnω :
(2H)n → (2H)ω .

Now consider the following infinite process:

1. Start with a given initial set a0 ∈ 2H .

2. At stage n+1, having constructed a0, . . . , an, sample JpK(an)
to obtain an+1.

The outcome after the first n steps of the process is a sequence
a0, . . . , an. For A ∈ Bn+1, the probability that this sequence lies
in A is P0,n+1(a0, A). After ω steps, the outcome is an infinite
sequence a0, a1, . . . ∈ (2H)ω , and the probability of eventA ∈ Bω
is P0ω(a0, A).

We can now compose this process with the deterministic process⋃
: (2H)ω → 2H that takes the union of a countable sequence of

sets. This is the result of the process Jp∗K(a0). Formally, forA ∈ B,

Jp∗K(a0, A) ,
∫
s∈(2H )ω

χA(
⋃
s) · P0ω(a0, ds)

=

∫
a∈2H

χA(a) · P0ω(a0,
⋃−1(da))

=

∫
a∈A

P0ω(a0,
⋃−1(da)) = P0ω(a0,

⋃−1(A)).

A.2 Colimit Construction
In fact, more can be said. Recall that a Markov kernel P : S → T
is deterministic iff for every s ∈ S, there is a Borel measurable
function f : S → T such that

P (s,A) = δf(s)(A) = δs(f
−1(A)) = χA(f(s)).

Let us call a Markov kernel P : S → T reversible if it has a
deterministic right2 inverse f : T → S; thus

δs(A) = (P ; f)(s,A) = P (s, f−1(A)).

The measurable spaces and reversible Markov kernels form a sub-
category of the Kleisli category of the Giry monad.

Theorem 5. The space (Sω,Bω) is the colimit of the (Sn,Bn)
with coprojections Pnω : Sn → Sω in the category of measurable
spaces and reversible Markov kernels.

Proof. First, we show that the Pnω commute with the Pnm in the
sense that Pnω = Pnm;Pmω . It suffices to consider their behavior
on generators π−1

k (A), that is,

Pnω(s, π
−1
k (A)) =

∫
t∈Sm

Pnm(s, dt) · Pmω(t, π−1
k (A)).

2 in diagrammatic order

By (A.4), we wish to show

Pnk(s,A) =

∫
t∈Sm

Pnm(s, dt) · Pmk(t, A).

But this is immediate from (A.3). Moreover, Pmω is reversible with
right inverse πm:

(Pmω ;πm)(s,A) = Pmω(s, π
−1
m (A)) = Pmm(s,A) = δs(A).

To show the universality of the construction, let (T,BT ) be any
measurable space with reversible Markov kernels Qn : Sn → T ,
each with a deterministic right inverse gn : T → Sn such that
Qm = Pmn ;Qn for all m,n. In particular, gm = gn ; fnm for
all m < n. Since (Sω,Bω) is the limit of the (Sn,Bn) in the
category of measurable spaces and measurable functions, there is
a measurable function g : T → Sω such that gn = g ;πn for all n.
Now define the Markov kernel Qω : Sω → T by

Qω = πn ;Qn.

The choice of n does not matter: for m ≤ n,

πm ;Qm = πn ; fnm ;Qm = πn ;Pnm ;Qm = πn ;Qn.

The kernel Qω is reversible with right inverse g:

Qω ; g ;πn = πn ;Qn ; g ;πn = πn ;Qn ; gn = πn ; 1Sn = πn,

and by the universality of the product,

Qω ; g = 1Sω .

Finally, the Qn factor through Sω via the universal arrow Qω:

Qn = 1Sn ;Qn = Pnω ;πn ;Qn = Pnω ;Qω.

B. Omitted Proofs
Proof of Lemma 1. Associativity and commutativity are clear from
(5.1). For (ii), let A×B be a measurable rectangle. We have

((aµ+ bν)× ξ)(A×B) = (aµ+ bν)(A) · ξ(B)

= aµ(A) · ξ(B) + bν(A) · ξ(B)

= a(µ× ξ)(A×B) + b(ν × ξ)(A×B)

= (a(µ× ξ) + b(ν × ξ))(A×B),

thus

(aµ+ bν)× ξ = a(µ× ξ) + b(ν × ξ). (B.1)

Then for any C,

((aµ+ bν) & ξ)(C)

= ((aµ+ bν)× ξ)({(a, b) | a ∪ b ∈ C})
= (a(µ× ξ) + b(ν × ξ))({(a, b) | a ∪ b ∈ C}) by B.1
= a(µ× ξ)({(a, b) | a ∪ b ∈ C}) + b(ν × ξ)({(a, b) | a ∪ b ∈ C})
= a(µ & ξ)(C) + b(ν & ξ)(C)

= (a(µ & ξ) + b(ν & ξ))(C).

For (iii), since

(δa × µ)({(b, c) | b ∪ c ∈ A} ∩ (∼{a} × 2H))

≤ (δa × µ)(∼{a} × 2H) = δa(∼{a})µ(2H) = 0,
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we have

(δa & µ)(A) = (δa × µ)({(b, c) | b ∪ c ∈ A})
= (δa × µ)({(b, c) | b ∪ c ∈ A} ∩ ({a} × 2H))

+ (δa × µ)({(b, c) | b ∪ c ∈ A} ∩ (∼{a} × 2H))

= (δa × µ)({(b, c) | b ∪ c ∈ A} ∩ ({a} × 2H))

= (δa × µ)({a} × {c | a ∪ c ∈ A})
= δa({a})µ({c | a ∪ c ∈ A})
= µ({c | a ∪ c ∈ A}).

Properties (iv) and (v) follow directly from (iii).
Finally, for (vi), δa & δa = δa is immediate from (iv). Now

suppose µ & µ = µ. For any µ and ν, we have

(µ & ν)(∼Bτ ) = (µ× ν)({(a, b) | a ∪ b ∈ ∼Bτ})
= (µ× ν)({(a, b) | τ 6∈ a ∪ b})
= (µ× ν)({(a, b) | a ∈ ∼Bτ , b ∈ ∼Bτ})
= (µ× ν)(∼Bτ ×∼Bτ )
= µ(∼Bτ ) · ν(∼Bτ ),

therefore (µ & µ)(∼Bτ ) = µ(∼Bτ )2, and this equals µ(∼Bτ )
iff µ(∼Bτ ) ∈ {0, 1}. Since µ(Bτ ) = 1 − µ(∼Bτ ), it must be
that exactly one of µ(Bτ ) and µ(∼Bτ ) is 1 and the other is 0. Let
a = {τ | µ(Bτ ) = 1}. Then

a ∈ Bτ ⇔ τ ∈ a⇔ µ(Bτ ) = 1

a ∈ ∼Bτ ⇔ τ 6∈ a⇔ µ(Bτ ) 6= 1⇔ µ(∼Bτ ) = 1,

so

{a} =
⋂
{Bτ | a ∈ Bτ} ∩

⋂
{∼Bτ | a ∈ ∼Bτ}

=
⋂
{Bτ | µ(Bτ ) = 1} ∩

⋂
{∼Bτ | µ(∼Bτ ) = 1}

µ({a}) = µ(
⋂
{Bτ | µ(Bτ ) = 1} ∩

⋂
{∼Bτ | µ(∼Bτ ) = 1})

= 1,

therefore µ = δa.

Proof of Lemma 2. All primitive ProbNetKAT programs p (assign-
ments, tests, dup) are by definition semantically deterministic. That
& preserves semantic determinacy is immediate from Lemma 1(iv).

The sequential composition pq of two semantically determinis-
tic programs is semantically deterministic, since if JpK(a) = δb,
then JpqK(a) = JqK(JpK(a)) and JqK(δb) = JqK(b).

To argue that p∗ is semantically deterministic, we must show
that the construction of §5.4 yields a point mass whenever JpK is
semantically deterministic. This is true because the sets cn gen-
erated by the process are uniquely determined by the start set c0,
since JpK(cn) = δcn+1 . The result is the point mass on

⋃
n cn.

Proof of Theorem 2. The proof is by induction on the structure of
the expression. This is clear for assignments, tests, and dup by
inspection. The parallel composition operator & in ProbNetKAT
corresponds to the sum operator + in NetKAT. Here we have, for
JpKN(a) = b and JqKN(a) = c,

Jp+ qKN(a) = JpKN(a) ∪ JqKN(a) = b ∪ c
Jp & qKP(a) = JpKP(a) & JqKP(a) = δb & δc = δb∪c

by Lemma 1(iv).
For sequential composition, suppose JpKN(a) = b and JqKN(b) =

c. Then

JpqKN(a) = JqKN(JpKN(a)) = JqKN(b) = c

JpqKP(a) = JqKP(JpKP(a)) = JqKP(δb) = JqKP(b) = δc.

Finally, for iteration, given c0, let cn+1 = JpKN(cn) for n ≥ 0.
Then

Jp∗KN(c0) =
⋃
n

JpnKN(c0) =
⋃
n

cn,

and as argued in the proof of Lemma 2, the deterministic process
Jp∗KP produces the point mass on the same set

⋃
n cn.

Proof of Lemma 3. For any A ∈ B,

f−1(A) = {a | f(a) ∈ A}
= {a | δf(a)(A) = 1} = {a | JpK(a)(A) = 1},

which is a measurable set since JpK is a Markov kernel. By the
change-of-variable rule (3.1),

JpK(µ)(A) =
∫
a

JpK(a)(A) · µ(da) =
∫
a

δf(a)(A) · µ(da)

=

∫
a

χA(f(a)) · µ(da) =
∫
c

χA(c) · µ(f−1(dc))

=

∫
c∈A

µ(f−1(dc)) = µ(f−1(A)).

Proof of Lemma 4. Suppose p is deterministic with JpK(a) =
δf(a). For the left-hand equation,

Jp(q & r)K(a) = Jq & rK(JpK(a)) = Jq & rK(b) = JqK(b) & JrK(b)
= JqK(JpK(a)) & JrK(JpK(a)) = JpqK(a) & JprK(a)
= Jpq & prK(a).

For the right-hand equality, we have

J(q & r)pK(a) = JpK(JqK(a) & JrK(a))
Jqp & rpK(a) = JpK(JqK(a)) & JpK(JrK(a)),

so it suffices to show for any µ, ν that

JpK(µ & ν) = JpK(µ) & JpK(ν).

By Lemma 3, it suffices to show that

(µ & ν) ◦ f−1 = µ ◦ f−1 & ν ◦ f−1.

By Lemma 1(iv) and Theorem 2 we have f(a∪ b) = f(a)∪ f(b).
Let B = {(a, b) | a ∪ b ∈ A)}. Then

(µ ◦ f−1 & ν ◦ f−1)(A) = (µ ◦ f−1 × ν ◦ f−1)(B),

((µ & ν) ◦ f−1)(A) = (µ & ν)(f−1(A))

= (µ× ν)({(a, b) | a ∪ b ∈ f−1(A))}
= (µ× ν)({(a, b) | f(a) ∪ f(b) ∈ A)}
= (µ× ν)({(a, b) | (f(a), f(b)) ∈ B}
= (µ× ν)(F−1(B)),

where F (a, b) = (f(a), f(b)). It therefore remains to show that
the measures µ ◦ f−1 × ν ◦ f−1 and (µ× ν) ◦F−1 are equal. But
on measurable rectangles C × D, both are easily seen to give the
same value µ(f−1(C)) · ν(f−1(D)).

Neither equation holds unconditionally. For both equations, take
p to be any program that is not deterministic and q = r = skip.
As Jskip & skipK = JskipK and Jp ; skipK = Jskip ; pK = JpK,
both equations reduce to JpK = Jp & pK, which is false by Lemma
1(vi).

Proof of Equation (6.1). Let µ = J(skip⊕r dup)∗K(π). Then

Jskip⊕r dupK(π) = rJskipK(π) + (1− r)JdupK(π)
= rδ{π} + (1− r)δ{π2},
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J(skip⊕r dup)∗K(Jskip⊕r dupK(π))
= rJ(skip⊕r dup)∗K(π) + (1− r)J(skip⊕r dup)∗K(π2)

= rµ+ (1− r)µ :π,

where for A ∈ B, a ∈ 2H , σ, τ ∈ H , σ :τ denotes the concatena-
tion of σ and τ and

a :τ , {σ :τ | σ ∈ a} A/τ , {a | a :τ ∈ A} (µ :τ)(A) , µ(A/τ).

The set A/τ ∈ B, because the function λa.a :τ is measurable:

{a | a :τ ∈ Bσ} = {a | σ ∈ a :τ} =

{
Bυ, if σ = υ :τ ,
∅, otherwise.

By Lemma 1(iii),

µ(A) = (rµ+ (1− r)µ :π)({c | {π} ∪ c ∈ A})
= rµ({c | {π} ∪ c ∈ A}) + (1− r)µ({c | {π} ∪ c ∈ A}/π).

In particular, for A = Bτ ,

µ(Bτ ) = rµ({c | {π} ∪ c ∈ Bτ}) + (1− r)µ({c | {π} ∪ c ∈ Bτ}/π)
= rµ({c | τ ∈ {π} ∪ c}) + (1− r)µ({c | τ ∈ {π} ∪ c}/π).

For the three mutually exclusive and exhaustive cases τ = π,
τ = σ :π with |σ| ≥ 1, and τ = σ :ρ with ρ 6= π, we have

{c | π ∈ {π} ∪ c} = 2H

{c | σ :π ∈ {π} ∪ c} = Bσ :π

{c | σ :ρ ∈ {π} ∪ c} = Bσ :ρ

{c | π ∈ {π} ∪ c}/π = 2H/π = 2H

{c | σ :π ∈ {π} ∪ c}/π = Bσ :π/π = Bσ

{c | σ :ρ ∈ {π} ∪ c}/π = Bσ :ρ/π = ∅.
In these three cases, we have

µ(Bπ) = rµ(2H) + (1− r)µ(2H) = 1

µ(Bσ :π) = rµ(Bσ :π) + (1− r)µ(Bσ)
µ(Bσ :ρ) = rµ(Bσ :ρ) + (1− r) · 0 = rµ(Bσ :ρ),

thus

µ(Bπ) = 1 µ(Bσ :π) = µ(Bσ) µ(Bσ :ρ) = 0, ρ 6= π.

We thus have µ(Bπn) = 1 for n ≥ 1 and µ(Bτ ) = 0 for all other
τ , therefore µ = δ{πn|n≥1}.

Proof of Theorem 3. For x ∈ {0, 1}∗, let suf x be the set of all
nonnull suffixes of x; for example,

suf 01001 = {01001, 1001, 001, 01, 1}.
Note that suf ε = ∅.

Let µ = Jp ; (dup ; p)∗K(0), let µi = J(dup ; p)∗K(i) for i ∈
{0, 1}, and let fx(b) = suf x ∪ b :x for x ∈ {0, 1}∗ and b ∈ 2H .
We start with a few claims.

(A) fε(b) = b and fxy = fy ◦ fx
(B) µ = 1

2
(µ0 + µ1)

(C) µi = µ ◦ f−1
i , i ∈ {0, 1}

(D) For all n, µ = 2−n
∑
|x|=n µ ◦ f

−1
x .

For (A),

fε(b) = suf ε ∪ b :ε = ∅ ∪ b = b,

fy(fx(b)) = suf y ∪ fx(b) :y = suf y ∪ (suf x ∪ b :x) :y
= suf y ∪ (suf x) :y ∪ (b :x) :y = suf xy ∪ b :xy
= fxy(b).

For (B),

µ = Jp ; (dup ; p)∗K(0) = J(dup ; p)∗K(JpK(0))
= J(dup ; p)∗K( 1

2
0 + 1

2
1)

= 1
2
J(dup ; p)∗K(0) + 1

2
J(dup ; p)∗K(1) = 1

2
(µ0 + µ1).

For (C), for A ∈ B and i, j ∈ {0, 1},
(δ{i} & µj : i)(A) = (µj : i)({a | {i} ∪ a ∈ A})

= µj({a | {i} ∪ a ∈ A}/i)
= µj({b | b : i ∈ {a | {i} ∪ a ∈ A}})
= µj({b | {i} ∪ b : i ∈ A})
= µj(f

−1
i (A)),

thus δ{i} & µj : i = µj ◦ f−1
i . Then

µi = J(dup ; p)∗K(i)
= JskipK(i) & J(dup ; p)∗K(Jdup ; pK(i))
= δ{i} & J(dup ; p)∗K(JpK(ii))
= δ{i} & J(dup ; p)∗K( 1

2
0i+ 1

2
1i)

= δ{i} & ( 1
2
J(dup ; p)∗K(0i) + 1

2
J(dup ; p)∗K(1i))

= 1
2
(δ{i} & J(dup ; p)∗K(0i)) + 1

2
(δ{i} & J(dup ; p)∗K(1i))

= 1
2
(δ{i} & J(dup ; p)∗K(0) : i) + 1

2
(δ{i} & J(dup ; p)∗K(1) : i)

= 1
2
(δ{i} & µ0 : i) +

1
2
(δ{i} & µ1 : i)

= 1
2
µ0 ◦ f−1

i + 1
2
µ1 ◦ f−1

i

= 1
2
(µ0 + µ1) ◦ f−1

i

= µ ◦ f−1
i .

For (D), we proceed by induction on n. The basis n = 0 is
trivial, as f−1

ε is the identity on B. For the induction step,

µ = 2−n
∑
|x|=n

µ ◦ f−1
x = 2−n

∑
|x|=n

1
2
(µ0 + µ1) ◦ f−1

x

= 2−(n+1)
∑
|x|=n

(µ0 + µ1) ◦ f−1
x

= 2−(n+1)
∑
|x|=n

(µ ◦ f−1
0 + µ ◦ f−1

1 ) ◦ f−1
x

= 2−(n+1)
∑
|x|=n

(µ ◦ f−1
0 ◦ f−1

x + µ ◦ f−1
1 ◦ f−1

x )

= 2−(n+1)
∑
|x|=n

(µ ◦ f−1
0x + µ ◦ f−1

1x ) = 2−(n+1)
∑

|x|=n+1

µ ◦ f−1
x .

Now on to (i)–(iii) of the theorem. Recall that B is generated by
the sets Bτ = {a | τ ∈ a}. We have

f−1
x (Bτ ) = {a | fx(a) ∈ Bτ} = {a | τ ∈ suf x ∪ a :x}

=


2H , τ ∈ suf x,

Bσ, τ = σ :x,

∅, otherwise.

Thus for any n, if |x| = |τ | = n, then

f−1
x (Bτ ) =

{
2H , τ = x,

∅, τ 6= x
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and if |x| = |τ | = |σ| = n and τ 6= σ, then

f−1
x (Bτ ∩Bσ) = f−1

x (Bτ ) ∩ f−1
x (Bσ)

=

{
2H , τ = x,

∅, τ 6= x
∩

{
2H , σ = x,

∅, σ 6= x

= ∅,
thus

µ(Bτ ) = 2−n
∑
|x|=n

µ(f−1
x (Bτ ))

= 2−n(
∑
x=τ

µ(2H) +
∑
x6=τ

µ(∅)) = 2−n

µ(Bτ ∩Bσ) = 2−n
∑
|x|=n

µ(f−1
x (Bτ ∩Bσ))

= 2−n
∑
|x|=n

µ(∅) = 0.

These two equations verify (i) and (ii), respectively. For (iii), we
have

{a} ⊆
⋂
|τ |=n
τ∈a

Bτ ,

and it follows from (i) and (ii) that for any n,

µ({a}) = µ({a} ∩
⋂
|τ |=n
τ∈a

Bτ ) ≤ 2−n.

As n was arbitrary, µ({a}) = 0.
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