
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/143744

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/43589641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/143744

Learning To Parse on Aligned Corpora
(Rough Diamond)

Cezary Kaliszyk1?, Josef Urban??2, and Jiří Vyskočil3

1 University of Innsbruck, Austria
2 Radboud University Nijmegen

3 Czech Technical University

Abstract. One of the first big hurdles that mathematicians encounter
when considering writing formal proofs is the necessity to get acquainted
with the formal terminology and the parsing mechanisms used in the
large ITP libraries. This includes the large number of formal symbols,
the grammar of the formal languages and the advanced mechanisms in-
strumenting the proof assistants to correctly understand the formal ex-
pressions in the presence of ubiquitous overloading.
In this work we start to address this problem by developing approximate
probabilistic parsing techniques that autonomously train disambiguation
on large corpora. Unlike in standard natural language processing, we can
filter the resulting parse trees by strong ITP and AR semantic methods
such as typechecking and automated theorem proving, and even let the
probabilistic methods self-improve based on such semantic feedback. We
describe the general motivation and our first experiments, and build an
online system for parsing ambiguous formulas over the Flyspeck library.

1 Introduction

Is it possible to automatically parse informal mathematical texts into formal ones
and formally verify them? Four out of five ITP (interactive theorem proving)
practitioners say no.4 Even Andrzej Trybulec – an accomplished linguist by one
of his professions and the father of human-like formal mathematical notation,
linguistic typing mechanisms and proof style – used to quote the past work (e.g.,
by Zinn [10]) as discouraging from such efforts. We however believe that it is a
good time to try, and in particular to try to automatically learn how to formalize
(“semanticize”) informal texts, based on the knowledge available in existing large
formal corpora. There are several reasons [6].

First, statistical machine learning (data-driven algorithm design) has been
responsible for several recent AI breakthroughs, including machine translation
systems like Google Translate that automatically train on large aligned bilingual
corpora. Similar successes are in query answering (IBMWatson) and autonomous
car driving, which are arguably much more semantic domains than just “simple”
natural language alignment. It seems today that as soon as there are sufficiently
? Supported by the Austrian Science Fund (FWF): P26201.

?? Supported by NWO grant nr. 612.001.208.
4 Approximate results of an opinion poll run by the second author since 2000.

large datasets, data-driven algorithms can automatically learn complicated sets
of rules – thus perhaps also the nontrivial mapping of informal to formal – that
would be otherwise hard to program and maintain manually.

Second, recent formalization projects have produced large corpora that can –
perhaps after additional annotation – be used for such experiments with machine
learning of formalization. Further growth of such corpora is only a matter of time,
and assisted formalization might help “bootstrap” this process, making it faster
and faster due to the positive feedback loop from more data becoming available.

Third, statistical machine learning methods have recently really turned out
to be useful in deductive AI domains such as automated reasoning in large the-
ories [1] (ARLT). This shows that in practice, its inherent undecidability does
not make mathematics into some special field where statistical techniques can-
not apply. Quite the opposite: formal mathematical corpora seem to largely obey
similar statistical laws as other texts produced by humans, and statistical and
information-retrieval algorithms such as TF-IDF, naive Bayes, k-nearest neigh-
bor, and kernel methods, are indispensable parts of the ARLT methods [4,7].

Finally, we believe that strong ARLT methods are a new useful weapon
in auto-formalization, that can complement the statistical translation methods.
This could result in hybrid understanding/thinking AI methods that self-improve
on large annotated corpora by cycling between (i) statistical prediction of the
text disambiguation based on learning from existing annotations and knowledge,
and (ii) improving such knowledge by confirming or rejecting the predictions by
the semantic ARLT methods. This point is quite unique to the domain of (infor-
mal/formal) mathematics, and a good independent reason for this AI research.

2 Contributions
Below we briefly present the first significant effort in statistical learning of pars-
ing ambiguous formulas over a very large formal mathematical corpus – the
Flyspeck project. The main result of this effort is a large-scale evaluation of the
methods (Section 6), and the first version of an online system5 (Section 5) that
allows HOL Light and Flyspeck users to write ambiguous bracket-free formulas
using many common ambiguous symbols, skipping disambiguation mechanisms
such as casting functors. Such formulas are probabilistically parsed, using an effi-
ciently implemented parsing system (Section 4) trained on the correct parse trees
of all (about 22000) toplevel Flyspeck theorems (Section 3). The trained parsing
system produces a required number of most probable parse trees, which are then
further filtered by parsing and type checking in HOL Light, presenting the most
probable filtered parses in a disambiguated HOL Light notation. Simultaneously,
these typechecked formulas are given to the HOL(y)Hammer system which then
further marks those that can be automatically proved using the whole Flyspeck
library and thus are much more likely to have the intended meaning.

In some sense we thus implement the first version of “jumping” between
probabilistic and semantic parsing used by informal mathematicians, as fittingly
described by Dijkstra [2]:
5 http://colo12-c703.uibk.ac.at/hh/parse.html

http://colo12-c703.uibk.ac.at/hh/parse.html

The bulk of traditional mathematics is highly informal: formulae are not
manipulated in their own right, they are all the time viewed as denoting
something, as standing for something else. The bulk of traditional math-
ematics is characterized by a constant jumping back and forth between
the formulae and their interpretation and the latter has to carry the bur-
den of justifying the manipulations. The manipulations of the formulae
are not justified by an appeal to explicitly stated rules but by the appeal
to the interpretation in which the manipulations are "obviously" OK.
By and large, the mathematicians form a much more informal lot than
they are aware of.

3 Making Ambiguous Data
While our ultimate goal is to parse the informal LATEX formulas that have been
aligned by Hales with the formal Flyspeck formulas [3,8], our initial research
approach is to explore parsing of increasingly ambiguous versions of the formal
HOL Light and Flyspeck theorems. Making the formal notation more ambiguous
turns out to be relatively easy, allowing us to experiment with different kinds of
ambiguities and their amount. We did the initial development and evaluations on
a subset of 550 Flyspeck trigonometric theorems.6 This subset is interesting and
suitable, because it contains complex and real versions of trigonometric functions
(e.g. csin instead of sin) and frequently uses casting functions such as e.g. Cx
which casts a real number to a complex number.

It could be however argued that this subset is a toy domain which does not
differ much from manually prepared examples, and where manual tweaking of
the algorithms is easy and not particularly useful to interested Flyspeck users.
That is why we have tried to scale the parsing methods to the whole Flyspeck,
making a large number of ambiguous symbols and sentences, hopefully in a way
that makes writing such sentences an interesting experiment for some users. The
transformations (informalizing) consist of:

– Using 72 overloaded instances defined in HOL Light/Flyspeck, like ("+",
"vector_add") . The result sentence would use + instead of vector_add.

– Getting the (currently 108) infix operators from HOL Light, and printing
them as infix in the informalized sentences. Since + is declared as infix,
vector_add u v, would thus result in u + v.

– Getting all “prefixed” symbols from the list of 1000 most frequent sym-
bols by searching for: real_, int_, vector_, nadd_, treal_, hreal_,
matrix_, complex_ and making them ambiguous by forgetting the prefix.

– Similar overloading of various other symbols that disambiguate overload-
ing, for example the “c”-versions of functions such as ccos cexp clog csin,
similarly for vsum, rpow, nsum, list_sum, etc. In the end the above steps
yield a list of about 70 overloaded symbols corresponding to some 200 nonam-
biguous symbols used very frequently throughout HOL Light and Flyspeck.

– Deleting all brackets, type annotations, and the 10 most frequent casting
functors such as Cx and real_of_num (which alone is used 17152 times).

6 Exactly, the theorems containing substrings sin, cos and tan.

4 Probabilistic Parsing and Its Extensions

Our task is to assign to each informalized sentence (a list of often ambiguous
symbols) its most probable HOL parse tree, with all terms annotated by types.
For example, the correct parse tree for REAL_NEGNEG: ! A0 -- -- A0 = A0 is:
(Comb (Const "!" (Tyapp "fun" (Tyapp "fun" (Tyapp "real") (Tyapp "bool")) (Tyapp "bool"))) (Abs

"A0" (Tyapp "real") (Comb (Comb (Const "=" (Tyapp "fun" (Tyapp "real") (Tyapp "fun" (Tyapp "real")

(Tyapp "bool")))) (Comb (Const "real_neg" ... (Var "A0" (Tyapp "real")))))

For this, after initial tries with the Stanford Statistical Parser,7 we wrote
our custom OCaml implementation of the CYK chart parsing algorithm [9] for
probabilistic context-free grammars (PCFG), and a custom tree transformation
tool that enables us to create ambiguous sentences and annotated training input
(“grammar”) trees for the parser from the HOL parse trees. These grammar trees
treat each (possibly complicated) type as the resulting nonterminal assigned to
parsing each term, and additionally each ambiguous symbol (terminal) such as
“--” is wrapped in its disambiguating nonterminal, such as $#real_neg. This is
analogous to annotating with word-sense disambiguations for linguistic PCFG
tools, however our “semantic concepts” are not word senses but HOL types and
unambiguous symbols. The tool also applies infix notations and replaces cast-
ing terminals with their corresponding nonterminals. For example the complex
casting terminal Cx disappears, since we do not want the user to write it ex-
plicitly, and is replaced in the grammar tree by the corresponding “semantic”
nonterminal $#Cx applied to the corresponding ambiguous subterm.

We produce two versions of the parser, a standard one and a HOL-specialized
one that prunes the parse space by additional fast lightweight semantic restric-
tions, such as compatibility constraints on types of free variables in parsed sub-
trees. Both versions have a training and testing phase. In the training phase all
the grammar trees (we use all 22000 trees for Flyspeck formulas by default, but
this can be further limited) are used to generate grammar rules about the ter-
minals and nonterminals and their probabilities, generating a binarized PCFG.
In the testing (evaluation) phase the PCFG is used to parse a given ambiguous
sentence with a required number of best parses. Efficient indexing is used to
prune the search space, and the parse limit is used to prune improbable parsing
subtrees, making it reasonably fast (on average 4 seconds for a Flyspeck theo-
rem) to get the 20 most probable parses. The resulting grammar trees are again
transformed back into a HOL parse tree, to which HOL parsing and typechecking
is applied as an additional filter. Since all these three parts (CYK, transforma-
tions, and HOL Light routines) are written in OCaml, their tight integration is
possible, offering further future options such as full HOL-based pruning of unty-
pable subtrees during the CYK parsing, etc. The so far implemented HOL-based
extensions of CYK, include the variable typing constraints, special treatment of
lambda abstractions, and allowing all unknown symbols to have small nonzero
probability of being a variable.

7 http://nlp.stanford.edu/software/lex-parser.shtml

http://nlp.stanford.edu/software/lex-parser.shtml

5 Online Parsing System
Since we are very interested in seeing the probabilistic parsing in action, we
deploy the whole parsing toolchain as an online service8 that further uses the
HOL(y)Hammer AI/ATP system [5] for even stronger semantic filtering. The ser-
vice allows HOL Light and Flyspeck users to write ambiguous formulas using
many common ambiguous symbols and omitting brackets and casting functors.
For example, the top two parses out of allowed 16 for
“sin 0 * x = cos pi / 2” are

sin (&0) * A0 = cos (pi / &2) where A0:real
sin (&0) * A0 = cos pi / &2 where A0:real

where only the first one can be automatically proved by HOL(y)Hammer. The
user can add brackets to limit the parses, and then for example
“sin (0 * x) = cos pi / 2” produces 16 parses of which 11 get type-checked
by HOL Light as follows, with all but three being proved by HOL(y)Hammer:

sin (&0 * A0) = cos (pi / &2) where A0:real
sin (&0 * A0) = cos pi / &2 where A0:real
sin (&0 * &A0) = cos (pi / &2) where A0:num
sin (&0 * &A0) = cos pi / &2 where A0:num
sin (&(0 * A0)) = cos (pi / &2) where A0:num
sin (&(0 * A0)) = cos pi / &2 where A0:num
csin (Cx (&0 * A0)) = ccos (Cx (pi / &2)) where A0:real
csin (Cx (&0) * A0) = ccos (Cx (pi / &2)) where A0:real^2
Cx (sin (&0 * A0)) = ccos (Cx (pi / &2)) where A0:real
csin (Cx (&0 * A0)) = Cx (cos (pi / &2)) where A0:real
csin (Cx (&0) * A0) = Cx (cos (pi / &2)) where A0:real^2

The HOL-specialized probabilistic parsing and HOL typechecking phases are fast
(given that the input sentence is not too long), because we limit the number of
required parses to 16, and preselect only the 1024 closest grammar trees for the
grammar training by running a k-nearest neighbor (k-NN) filter using n-gram
(unigram, bigram and trigram) representations of all Flyspeck theorems in their
ambiguous form. Thus the four first phases – k-NN filtering, grammar induction,
probabilistic parsing, and HOL typechecking – typically take several seconds,
giving real-time feedback to the user. The AI/ATP phase is slow, because for
maximal semantic performance it typically runs parallelized (14-CPU) AI/ATP
methods selecting relevant premises from the whole Flyspeck, and this needs to
be done for a dozen of the most probable and typechecked parse trees. This is
however a “mere hardware” issue: If we had a 200-core server rather than the
current one, the 16 best parses could be attacked by HOL(y)Hammer in parallel,
and the AI/ATP phase would feel much more real-time too. Some screenshots
of the service in action are available on our web page.9

6 Evaluation on Flyspeck
Once the methods were reasonably scaled up to the whole Flyspeck, we have
done a large-scale training/testing evaluation (100-fold cross-validation) on the
whole corpus of 22000 theorems. It proceeds as follows:
8 http://colo12-c703.uibk.ac.at/hh/parse.html
9 http://colo12-c703.uibk.ac.at/hh/parseimg.html

http://colo12-c703.uibk.ac.at/hh/parse.html
http://colo12-c703.uibk.ac.at/hh/parseimg.html

1. We create the ambiguous sentences and the disambiguated grammar trees
from all 22k Flyspeck theorems as described in Section 3. These sets are
permuted randomly and split into 100 equally sized chunks of about 220 trees
or sentences. The trees serve for training and the sentences for evaluation.

2. For each testing chunk Ci (i ∈ 1..100) of 220 sentences we take the union
of the 99 chunks of grammar trees (altogether about 21800 trees) that cor-
respond to the remaining sentences and build the probabilistic grammar on
them - this is fast, taking several seconds. This way we avoid training on the
parse trees of the testing sentences.

3. Then we try to get the best 20 parse trees for all the 220 sentences in C
using that grammar. This takes on average 4 seconds for each sentence, i.e.
the whole parsing takes about 90000 CPU seconds = 25 CPU hours.

4. The parse trees are again transformed into HOL syntax trees, typechecked
in HOL, and a single AI/ATP method is run on each typechecked tree for
30 seconds (using Vampire and 128 most relevant Flyspeck premises). This
is weaker than using the full HOL(y)Hammer online system, but we cannot
afford the 14-fold AI/ATP parallelization due to the number of parse trees.

5. 698549 of the parse trees typecheck (221145 do not), resulting in 302329
distinct (modulo alpha) HOL formulas. These are subjected to ATP, i.e., we
run for ca 9000000 CPU seconds = 2500 CPU hours. This is done on a large
server with 100-fold parallelization, taking about one day of real time.

We can automatically prove about 70957 (23.5%) of the 302329 typechecked
formulas.10 However, first analysis shows that many of them are provable only
because they are parsed incorrectly, for example when the antecedent of an
implication becomes trivially false. In this first experiment we do not recognize
such cases, however it should not be too difficult to remove such cases with
another ATP round that checks for the unsatisfiability of antecedents. Such
additional semantic checks could also eventually become a part of the (more
tightly integrated) semantic-parsing toolchain.

In 39.4% of the 22000 cases, the HOL formula resulting from one of the
sentence’s 20 parse trees is alpha-equal to the correct (training) original HOL
formula, and its average rank there is 9.34. This is quite encouraging statistics,
given that this runs efficiently over whole Flyspeck with quite a high number
of introduced ambiguities, and many more sophisticated probabilistic parsing
tricks (such as full-scale lexicalization) have not been used yet.

Interestingly, 0.2% of the 22000 cases produce a parse tree that is the same as
an existing training tree, but of a different theorem. This means – as can already
be seen from the online system parses above – that thanks to the probabilistic
behavior the system also (quite necessarily) functions as a conjecture maker.
Given a seed of symbols, the system tries to figure out the most probable ways
how to give meaning to them, a bit like the Dijkstra’s “informal mathematical
lot” does. Quite likely one of the many interesting future directions is to evolve
one version of the system in such a way that the conjectures are as interesting
as possible, using our probabilistic setting to avoid today’s brute-force methods.
10 The exact list is at http://mizar.cs.ualberta.ca/~mptp/i2f/00proved2.

http://mizar.cs.ualberta.ca/~mptp/i2f/00proved2

References

1. J. C. Blanchette, C. Kaliszyk, L. C. Paulson, and J. Urban. Hammering towards
QED. Accepted to Journal of Formalized Reasoning, preprint at http://www4.in.
tum.de/~blanchet/h4qed.pdf, 2015.

2. E. W. Dijkstra. The fruits of misunderstanding. Elektronische Rechenanlagen,
25(6):10–13, 1983.

3. T. Hales. Dense Sphere Packings: A Blueprint for Formal Proofs, volume 400 of
London Mathematical Society Lecture Note Series. Cambridge University Press,
2012.

4. C. Kaliszyk and J. Urban. Stronger automation for Flyspeck by feature weighting
and strategy evolution. In J. C. Blanchette and J. Urban, editors, PxTP 2013,
volume 14 of EPiC Series, pages 87–95. EasyChair, 2013.

5. C. Kaliszyk and J. Urban. HOL(y)Hammer: Online ATP service for HOL Light.
Mathematics in Computer Science, 9(1):5–22, 2015.

6. C. Kaliszyk, J. Urban, J. Vyskocil, and H. Geuvers. Developing corpus-based trans-
lation methods between informal and formal mathematics: Project description. In
S. M. Watt, J. H. Davenport, A. P. Sexton, P. Sojka, and J. Urban, editors, Intel-
ligent Computer Mathematics - International Conference, CICM 2014, Coimbra,
Portugal, July 7-11, 2014. Proceedings, volume 8543 of Lecture Notes in Computer
Science, pages 435–439. Springer, 2014.

7. D. Kühlwein, T. van Laarhoven, E. Tsivtsivadze, J. Urban, and T. Heskes.
Overview and evaluation of premise selection techniques for large theory math-
ematics. In B. Gramlich, D. Miller, and U. Sattler, editors, IJCAR, volume 7364
of LNCS, pages 378–392. Springer, 2012.

8. C. Tankink, C. Kaliszyk, J. Urban, and H. Geuvers. Formal mathematics on
display: A wiki for Flyspeck. In J. Carette, D. Aspinall, C. Lange, P. Sojka, and
W. Windsteiger, editors, MKM/Calculemus/DML, volume 7961 of Lecture Notes
in Computer Science, pages 152–167. Springer, 2013.

9. D. H. Younger. Recognition and parsing of context-free languages in time nˆ3.
Information and Control, 10(2):189–208, 1967.

10. C. Zinn. Understanding informal mathematical discourse. PhD thesis, University
of Erlangen-Nuremberg, 2004.

http://www4.in.tum.de/~blanchet/h4qed.pdf
http://www4.in.tum.de/~blanchet/h4qed.pdf

	Learning To Parse on Aligned Corpora(Rough Diamond)

