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Abstract—In a fuzzy environment where the decision making involves multiple criteria, fuzzy multi-criteria decision making 

approaches are a viable option. The nurse re-rostering problem is a typical complex problem situation, where scheduling decisions 

should consider fuzzy human preferences, such as nurse preferences, decision maker’s choices, and patient expectations. For 

effective nurse schedules, fuzzy theoretic evaluation approaches have to be used to incorporate the fuzzy human preferences and 

choices. The present study seeks to develop a fuzzy multi-criteria simulated evolution approach for the nurse re-rostering problem. 

Experimental results show that the fuzzy multi-criteria approach has a potential to solve large scale problems within reasonable 

computation times. 
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I. INTRODUCTION 

Biologically inspired evolutionary algorithms have attracted the attention of many researchers concerned with multi-criteria 
decision making [1-4]. Some of the most popular algorithms are genetic algorithms, neural networks, particle swarm 
intelligence, ant colony algorithm, and simulated evolution algorithm. Significant research activities have implemented these 
algorithms with appreciable results [1][2]. However, when addressing complex multi-criteria decision problems under 
fuzziness, fuzzy evaluation techniques are an essential addition, if more realism is desired in the algorithm chosen. Fuzzy 
evaluation techniques accommodate imprecision, uncertainty, or partial truth, based on fuzzy theory concepts [5]. In addition, 
these techniques can also handle real world problems with multiple criteria. An important research direction is hybridizing 
efficient evolutionary approaches with fuzzy evaluation concepts [1]. The goal is to develop hybrid fuzzy evolutionary 
algorithms providing optimal or near optimal solutions within a reasonable computation time. 

In this paper, a fuzzy multi-criteria evaluation approach is developed based on fuzzy set theory concepts. The approach is 
hybridized with simulated evolution algorithm to come up with a fuzzy simulated evolution algorithm. In this regard, the 
purpose of this paper is to present a fuzzy simulated evolution algorithm for solving complex multi-criteria decision problems 
under fuzziness. 

The rest of the paper is structured as follows. The next section briefly describes the basic simulated evolution algorithm and 
the nurse re-rostering problem. Section III outlines the fuzzy multi-criteria simulated evolution algorithm. Section IV presents 
illustrative experiments. Section V concludes the paper. 

II. PRELIMINARIES 

This section presents a background on the simulated evolution and the nurse re-rostering, a typical application area. 

A. Simulated Evolution 

Simulated Evolution (SE) is an evolutionary optimization approach originally proposed in [6]. Inspired by the philosophy 
of natural selection in biological environments, the SE algorithm evolves a single candidate solution from one generation 
(iteration) to the next by eliminating or discarding inferior elements in the solution. Thus, in each generation, elements with 
high fitness are retained. The desired goal is to gradually create a stable solution perfectly adapted to the given constraints. To 
escape from local optima, mutation perturbs genetic inheritance in anticipation of new improved genetic information, enabling 
the algorithm to effectively explore and exploit the solution space[1][6]. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Johannesburg Institutional Repository

https://core.ac.uk/display/43589108?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management 

Kuala Lumpur, Malaysia, March 8-10, 2016 

The SE procedure comprises evaluation, selection and reconstruction operators that iteratively work on a single candidate 
solution. Prior to evaluation, initialization creates a valid starting solution and accepts input parameters. The evaluation 
operator then computes the fitness of each element in the solution, which is used to probabilistically select and discard weak 
elements. The resulting incomplete solution is rebuilt by the reconstruction operator using problem-specific heuristics. The 
complete solution is then passed on to the evaluation operator, repeating the procedure until a termination condition is fulfilled. 

The basic SE procedure is a search and optimization heuristic that improves the solution through iterative perturbation and 
reconstruction. However, the iterative process ensures that the best solution is always preserved. To enhance its search and 
optimization, SE needs to incorporate fuzzy evaluation techniques. 

B. The Nurse Re-rostering Problem 

The nurse rerostering problem can be defined as follows: A set of n heterogeneous nurses, indexed i (i =1,…,n), are 
scheduled over a period spanning over d days, indexed j (j =1,…,d). The nurses are currently assigned to one of the available 
shifts, indexed k (k=1,…,s), where the last shift s is treated as the day off. In this connection, the decision for nurse rerostering 
is defined according to the expression; 

1 If nurse  is scheduled to work on day , shift 

0 0 otherwise
ijk

i j k
x


 


 

This implies that each available nurse is assigned to a single schedule, subject to all organizational and goals, as well as 
labour policies. The shift assignment or roster should satisfy hard constraints affecting individual shift schedules of each nurse. 
In addition, decisions regarding the conflicting multiple goals are made, for instance, maximizing satisfaction of nurse 
preferences [1][7], maximizing satisfaction of quality of patient service, minimizing understaffing and minimizing overstaffing 
costs, and constructing schedules that are as fair as possible. 

In addressing the nurse rerostering problem, it is assumed that the nurse rostering problem has been solved satisfactorily. 
Following this assumption, the decision in the prior or original roster is defined as follows; 

1      If nurse  was originally scheduled to work on day , shift 

0     If otherwise
ijk

i j k
x


  





The problem of rerostering nurse schedules arises when unforeseen schedule disruptions occur due to nurse i who can no 
longer shift k on one or more of the future work days j. In this view, the rerostering problem is concerned about reconstructing 
shift schedules, based on the original schedule, over the short-term to medium-term horizon. Fig. 1 shows an example of a 
nurse roster with a schedule disruption in (a) and a suitable roster in (b).  

 

 Day 1 Day 2 Day 3 Day 4   Day 1 Day 2 Day 3 Day 4 

Nurse 1 D D  N  Nurse 1 D  N N 

Nurse 2 E E E E  Nurse 2 E E E E 

Nurse 3 N N N   Nurse 3 N N   

Nurse 4 D D D D  Nurse 4 D D D D 

Nurse 5   D D  Nurse 5  D D D 

Nurse 6 D D D D  Nurse 6 D D D D 

ΣD 3 3 3 3  ΣD 3 3 3 3 

ΣE 1 1 1 1  ΣE 1 1 1 1 

ΣN 1 1 1 1  ΣN 1 1 1 1 

   

(a) 

      

(b) 

  

Fig 1 A disrupted nurse schedule and a re-roster 

 

Table 1.  A typical set of assignable shifts 

Shift Type Shift Description Period 

D Day shift  8 am to 4 pm 

E Night shift  4 pm to 12 am 

N Late night shift  12 am to 8 am  

O Off day or holiday  

 
Nurses are originally assigned either day shift (D, 8 am to 4 pm), night shift (E, 4 pm to 12 am), or late night shift (N, 12 

am to 8 am), shown in Table 1. The day off shift is represented by a blank space. Schedule disruptions are reported by nurse 1 
and nurse 2 for day 2 and day 3, respectively. Like in rostering, rerostering seeks to reconstruct the disrupted schedule subject 
to various hard and soft constraints. However, rerostering requires that schedule changes are to be as minimal as possible. In 
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this view part (b) presents a feasible roster where nurse 1 and nurse 5 are assigned the disrupted shifts on day 3 and day 2, 
respectively. In this case, the rerostering period spans over 4 days, preferably from the day of disruption to the last day of the 
planning horizon. 

1) Common Constraints 
There are two basic categories of nurse scheduling constraints: (i) time-related constraints, related to labour policies, 

organizational regulations, and contract specifications, which control the sequence of individual nurse schedules [1][8-10], and 
(ii) staffing requirements constraints ensure adequate coverage of healthcare tasks that need to be performed. This implies that 
overstaffing should be as low as possible, where zero values are most favourable. 

However, the nurse rerostering problem is also restricted by disruption constraints, which is the third type of constraints. 
This requires that some of the nurses must not be assigned any working shift due to the reported inability to show up for the 
duty. Therefore, due to reported unplanned absences, the following restriction is imposed as a hard constraint; 

0 ( , , )ijkx i j k A    

where, A is a set of reported unplanned absences. 

Due to the imposed disruption constraints, the roster should necessarily undergo some shift changes in order to 
accommodate the unplanned absences and to ensure continuity of service. However, in practice, it is essential to minimize the 
number of changes as much as possible in order to avoid dissatisfaction of the affected nurses [8]. For high quality schedules, 
all the three identified types of constraints must be satisfied to the highest degree possible. 

2) Problem Objectives 
The overall objective is to maximize the quality of a nurse roster, which includes satisfaction of patient expectations, nurse 

preferences, and organizational goals. Most of these decision criteria are difficult to quantify in real life. As such, the nurse 
rerostering problem is a multi-criteria decision problem with complex imprecise or fuzzy objective. These criteria are classified 
into four categories: (1) maximize or maintain quality of service, ensuring that a minimum level of healthcare service quality is 
offered, (2) maximize satisfaction of individual nurse preferences, (3) maximize schedule fairness, and (4) minimize schedule 
changes. 

III. FUZZY MULTI-CRITERIA APPROACH 

Fuzzy simulated evolution (FMSE) is an enhanced iterative algorithm developed from the general simulated evolution (SE) 
[6][11], where one or more of the original SE operators are fuzzified. FMSE, like SE, is inspired by the philosophy of natural 
selection in biological environments. Following initialization, where a candidate solution is generated, the algorithm iteratively 
goes through evaluation, selection, mutation, and reconstruction operators, which work on the single candidate solution. Fig. 2 
presents the flowchart for the FMSE algorithm. 

 

Fig. 2  Flow chart of the FMSE algorithm 

 

In initialization, input parameters and a valid starting solution are generated. Evaluation computes the fitness of each 
element in the current solution. A goodness measure is used to probabilistically discard some elements in selection based on 
the fitness of that element. The resulting partial solution is then fed into the reconstruction operator that heuristically forms a 

Fuzzy Evaluation 
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Reconstruction 

Terminate? 
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End 
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Initialization 
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new complete solution from the partial solution. The current complete solution is re-evaluated in a loop fashion until a 
termination condition is satisfied. Therefore, FMSE is a search heuristic that achieves improvement through iterative 
perturbation and reconstruction. To enhance its evaluation, selection, mutation and reconstruction processes, FMSE needs to 
incorporate intelligent techniques such as fuzzy set theory which enables fuzzy evaluation of candidate solutions. 

A. FMSE Coding 

The proposed FMSE coding scheme represents a candidate solution S as a sequence of elements, where each element ei 
denotes a schedule for nurse i, i =1,…,m, typically covering a weekly planning horizon. This implies that each schedule is a 
feasible sequence of shifts D, E, N and O for a particular nurse. A combination of schedules of all the nurses, i =1,…,m, form 
the overall schedule, called roster. A roster should satisfy the work requirements for each shift on each day. Furthermore, a 
solution space E is a set of all possible combinations of elements ei. 

Fig. 3 shows a typical candidate solution for a complete schedule or roster. Shift “O” is represented by a blank space. The 
roster allocates schedules to 8 nurses, covering a period of 7 days. The shift requirements for the D, E, and N shifts are 3, 2 and 
2, respectively. A closer look at the proposed coding scheme reveals that evaluating a population of candidate solutions is 
potentially time consuming. Therefore, FMSE works on a single solution to reduce computations. 

 

 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

Nurse 1 D D  E E N E 

Nurse 2 E N E N E  N 

Nurse 3 D D D D  E D 

Nurse 4 E N N  D D D 

Nurse 5 N E N E D N E 

Nurse 6 D  D D N E D 

Nurse 7 N E D D N D  

Nurse 8  D E N D D N 

ΣD 3 3 3 3 3 3 3 

ΣE 2 2 2 2 2 2 2 

ΣN 2 2 2 2 2 2 2 

Blank space represents shift “O” 
 

Fig. 3  Coding scheme for a typical candidate solution 

 

B. Initialization 

A good initial solution is generated as a seed for ensuing iterations. Generally, the quality of the seed influences the quality 
of the final solution. The FMSE algorithm obtains the original roster and uses it as a seed or initial solution. Following the 
initialization phase, the algorithm sequentially iterates through evaluation, selection, and reconstruction, in a loop fashion till a 
termination criteria is satisfied. The termination criterion is defined in terms of (i) predetermined number of iterations, or (ii) 
number of iterations without significant solution improvement. 

C. Fitness Evaluation 

Fuzzy evaluation determines the fitness of the candidate solution as a function of the fitness of individual elements (nurse 
schedules) in the solution (roster). Thus, the aim is to determine the relative contribution of each element ei to the fitness of the 
current solution S, and to determine those elements that contribute below the acceptable level. The fitness of each element 
F(ei), is a combination of normalized functions.  

The goodness, fitness, or quality of a solution is a function of how much it satisfies soft constraints. As such, fitness is 
expressed as a function of the weighted sum of the satisfaction of the desired goals and preferences. Thus, each soft constraint 
is represented as a normalized fuzzy membership function in [0,1]. In this study, we use two types of membership functions: 
(a) triangular functions, and (b) interval-valued functions, as show in Fig. 4. 

 

Fig 4  Linear membership functions 
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In (a), the satisfaction level is represented by a fuzzy number Am,a, where m denotes the centre of the fuzzy parameter 
with width a. Thus, the membership function is, 

| |
1 If 

( )

0 If otherwise

A

m x
m a x m a

ax


    

 



 

In (b), the satisfaction level is represented by a decreasing linear function where [0,a] is the most desirable range, and b is 
the maximum acceptable. Therefore, the corresponding function is,  

1 If 

( ) ( ) ( ) If 

0 If otherwise

B

x a

x b x b a a x b




    



 

The respective membership functions for the problem are derived, based on the above described interval-valued functions. 
 

Membership Function 1 - Fair Workload Assignment 

High quality rosters have fair workload assignment. Therefore, the variation of workload should be as low as possible. For 
each nurse schedule i, the deviation xi of workload ωi from the average workload is, 

1

| |i

ix
 




  

Assuming the interval-valued function, the membership function for fair workload assignment is as follows, 

 1 1 1( )i A ix x   

Where, the values a and b reflect the fuzzy parameters of the interval-valued membership function. 

 

Membership Function 2 – Minimal number of shift changes 

For each nurse i, let ci be the number of shift changes, and J be the number of days or planning horizon, which is 
equivalent to the length of a shift pattern. It follows that satisfaction according to the objective of minimal number of changes 
x2i for each nurse i is measure by the expression, 

2i ix c J  

Similarly, we assume the interval-valued membership function for fair days-off assignment. The corresponding 
membership function is as follows, 

 2 2 2( )i B ix x   

where, the values a and b reflect the fuzzy parameters of the membership function. 

Other membership functions are formulated in a similar manner, that is, (a) variation of night shifts, (b) forbidden shift 
sequences, (c) shift variation, and (d) congeniality, a measure of compatibility (congeniality) of staff allocated similar shifts, 
(e) overstaffing, (b) understaffing. 

D. The Overall Fitness Function  

For each nurse i, schedule fitness is obtained from the weighted sum of the first four membership functions.  As such, the 
fitness for each shift pattern (or element) i is obtained according to the following expression; 
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6

1

( )i z z i

z

w x i 


   

where, wz is the weight of each function µz, such that condition ∑wz = 1.0 is satisfied. Similarly, the fitness according to 

shift requirement in each day j is given by, 

8

7

( )j z z j

z

w x j 


  

where, wj is the weight of each function µj, with ∑wz = 1.0. From the above membership functions, the overall fitness of 

the candidate solution is given by the expression, 

1 2

1 1f
 

 

   
      
   

 

where, ˄˄µ = µ1˄µ2˄…˄µJ; I is the number of nurses, J is the number of working days; ω1 and ω2 are the 
weights associated with η and λ, respectively; “˄” is the min operator. The weights wz, wj, ω1 and ω2 offer the decision maker 
an opportunity to incorporate his/her choices reflecting expert opinion and preferences of the management and the nurses. 

The selection operator probabilistically determines whether or not an element or shift pattern i should be retained for the 
next generation. Elements with a high fitness value Fi have a higher probability of surviving into the next generation. 
Discarded elements are reserved in queue for the reconstruction phase. Selection compares fitness Fi with an allowable fitness 
ft at iteration t; 

max[0, ]t tf p p   

where, pt is a random number in [0,1] at iteration t; p is a predetermined constant in [0,1]. 

 
    Selection Algorithm 

1.    Set constant p = 0.2; 

2.    Initialize i = 1; 

3.    While (i ≤ m) do  

4. Compute fitness of element i; Fi; 

5. Let pt = Random [0,1]; 

6. Let ft = max [0, pt – p]; 

7.  If (Fi  ft) Then, 

8.   discard i, return; 

9.       Else return i; 

10.  End If; 

11. i = i + 1; 

10.    End While 

11.    Return Solution; 
 

Fig 5  Algorithm for the selection phase 

 

Fig. 5 presents a summary of the selection algorithm. The algorithm begins by computing the allowable fitness ft. At each 
iteration t, compare fitness F(ei) of element ei. Compare F(ei) with the allowable fitness ft, and return the element with better 
fitness. The expression ft = pt – p enhances convergence; when pt is high, the probability of discarding good elements is very 
high, which is inefficient. As a result, the search power can be controlled by setting the value of p to a reasonable value (e.g., p 
= 0.22 in this study). 

E. Mutation 

Mutation performs intensive and explorative search, around solution S and in unvisited regions of the solution space, 
respectively. Intensification is performed by swapping randomly chosen pairs of elements within a group. On the other hand, 
exploration enables the algorithm to move from local optima. This involves probabilistic elimination of some elements, even 
the best performing ones. Generally, mutation is applied at a very low probability pm, to ensure convergence. In this 
application, we use a decay function to model a dynamic mutation probability as follows, 
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( ) ln(2)

0( ) t T

mp t p e    

where, t is the iteration count; T is the maximum count; and p0 is the initial mutation probability.  This expression can be 
used for both explorative and intensive mutation probabilities. Any infeasible partial solutions are repaired in the 
reconstruction phase. 

F. Reconstruction 

The reconstruction phase re-builds into a complete solution the partial solution evolved from the previous phases. This 
essentially means assigning clients to empty spaces in every incomplete group. A greed-based constructive heuristic is used for 
the reconstruction process, based on the attractiveness of adding a shift k into the current incomplete solution, thereby 
increasing the fitness Fi of a shift sequence i in that solution. The algorithm keeps a limited number of discarded elements in a 
set Q. Fig. 6 shows the generalized reconstruction algorithm procedure. 

 
Reconstruction Algorithm 

1.    Input incomplete solution; 

2.    For i = 1 to I  

3.  Initialize shift sequence position k = 1 

4.  Repeat 

5.     If sequence [sksk+1] ∉ Forbidden set F, Then  

7.    Insert shift sk+1 = rand (D, E, N) 

8.             If workload wi of sequence [s1s2…sk+1] ≥ wmax Then 

9.           sk+1 = O 

10.            End If 

11.   Increment counter k = k+1 

12.     End If 

13.  Until (Shift sequence Pi is complete 

14.  Increment counter i = i + 1 

15.    End For (Required schedules, I, are generated) 

16. //Check for shift requirements 

17.    For each shift k in day j 

18. If shift requirement rk is not met, Then 

19.  Adjust number of k shifts in that day, accordingly. 

20. End If 

21.    Return solution S 

 

Fig. 6  FMSE reconstruction algorithm 
 

Each shift assignment is subject to sequence and workload restrictions, where a shift “O” is assigned in the case of 
violation of the restrictions. The iterative loops run till each nurse is assigned a feasible shift pattern, which make a complete 
roster for the nursing staff. 

Subsequently, the complete roster is checked for compliance with shift requirement. This implies that the total assignment 
for each shift k is checked against the pre-determined shift requirement rk. In the case that requirement rk is not met, eliminate 
surplus or add missing shift k accordingly. This operation is performed over all shifts in each day. 

IV. ILLUSTRATIVE EXPERIMENTS 

To test the efficiency and effectiveness of the FMSE algorithm, complex data sets were obtained from literature [2], while 
some were artificially generated. The test data presented here assumes that there are no days off, and a perfect initial roster 
satisfying all preference constraints is disrupted by reported absences from nurses 1, 5, 8, 12, as shown in Fig 7. The nurses 
report that they can only show up for shifts other than the ones indicated in the shaded ones. The aim is to reconstruct the 
roster, so that the disruption constraints are satisfied, while minimizing the total number of changes to the original roster. 

 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Fitness ηi 

Nurse 1 E E D D D D D D D D D D D N N E E D D D D D D D D D D D N N 1.000 

Nurse 2 N E E D D D D D D D D D D D N N E E D D D D D D D D D D D N 1.000 

Nurse 3 N N E E D D D D D D D D D D D N N E E D D D D D D D D D D D 1.000 

Nurse 4 D N N E E D D D D D D D D D D D N N E E D D D D D D D D D D 1.000 

Nurse 5 D D N N E E D D D D D D D D D D D N N E E D D D D D D D D D 1.000 

Nurse 6 D D D N N E E D D D D D D D D D D D N N E E D D D D D D D D 1.000 

Nurse 7 D D D D N N E E D D D D D D D D D D D N N E E D D D D D D D 1.000 

Nurse 8 D D D D D N N E E D D D D D D D D D D D N N E E D D D D D D 1.000 

Nurse 9 D D D D D D N N E E D D D D D D D D D D D N N E E D D D D D 1.000 

Nurse 10 D D D D D D D N N E E D D D D D D D D D D D N N E E D D D D 1.000 

Nurse 11 D D D D D D D D N N E E D D D D D D D D D D D N N E E D D D 1.000 

Nurse 12 D D D D D D D D D N N E E D D D D D D D D D D D N N E E D D 1.000 

Nurse 13 D D D D D D D D D D N N E E D D D D D D D D D D D N N E E D 1.000 

Nurse 14 D D D D D D D D D D D N N E E D D D D D D D D D D D N N E E 1.000 

Nurse 15 E D D D D D D D D D D D N N E E D D D D D D D D D D D N N E 1.000 

Fitness λj 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.000 

 

Fig. 7  Initial roster with disruptions as indicated 
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Fig. 8 shows the computational results for the first experiment. Due to unplanned absences of nurses 1, 5, 8 and 12, the 
roster was rescheduled, yet with minimal changes to the original roster; only those disruptions were changed. It is interesting to 
note that the overall satisfaction of the new roster is still at an acceptable level of 1.00. The average computation time was less 
than 180 minutes. This demonstrates that the FMSE algorithm can satisfactorily address complex multi-criteria rerostering 
problems even in the presence of fuzzy goals and preference constraints. The algorithm has potential to solve large scale 
problems with reasonable computation time. 

 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Fitness ηi 

Nurse 1 D D D D D D D D N N E E D D D D D D D D D D D N N E E D D D 1.000 

Nurse 2 N E E D D D D D D D D D D D N N E E D D D D D D D D D D D N 1.000 

Nurse 3 N N E E D D D D D D D D D D D N N E E D D D D D D D D D D D 1.000 

Nurse 4 D N N E E D D D D D D D D D D D N N E E D D D D D D D D D D 1.000 

Nurse 5 D D D D D N N E E D D D D D D D D D D D N N E E D D D D D D 1.000 

Nurse 6 D D D N N E E D D D D D D D D D D D N N E E D D D D D D D D 1.000 

Nurse 7 D D D D N N E E D D D D D D D D D D D N N E E D D D D D D D 1.000 

Nurse 8 D D N N E E D D D D D D D D D D D N N E E D D D D D D D D D 1.000 

Nurse 9 D D D D D D N N E E D D D D D D D D D D D N N E E D D D D D 1.000 

Nurse 10 D D D D D D D N N E E D D D D D D D D D D D N N E E D D D D 1.000 

Nurse 11 E E D D D D D D D D D D D N N E E D D D D D D D D D D D N N 1.000 

Nurse 12 E D D D D D D D D D D D N N E E D D D D D D D D D D D N N E 1.000 

Nurse 13 D D D D D D D D D D N N E E D D D D D D D D D D D N N E E D 1.000 

Nurse 14 D D D D D D D D D D D N N E E D D D D D D D D D D D N N E E 1.000 

Nurse 15 D D D D D D D D D N N E E D D D D D D D D D D D N N E E D D 1.000 

Fitness λj 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.000 

 

Fig. 8 Final re-roster with minimal disruptions 

 

V. CONCLUSIONS 

In an environment where human preferences and expectations are imprecise; the use of fuzzy set theory concepts is 
beneficial. This chapter proposed an FMSE algorithm that incorporates a fuzzy multi-criteria fitness evaluation method, with 
heuristic perturbation and improvement heuristics. FMSE enables the decision maker to use expert opinion deriving from 
information from patients, nurses, and managers to make adjustments to the solution process based on weights. Therefore, 
FMSE is an effective and efficient approach for decision support in nurse rerostering. 

 

REFERENCES 

[1] Mutingi, M. and Mbohwa, C. 2014. A fuzzy-based particle swarm optimization algorithm for nurse scheduling. IAENG International 
Conference on Systems Engineering and Engineering Management, October 2014, San Francisco, USA, 998-1003. 

[2] Moz, M. and Pato, M. 2007. A genetic algorithm approach to a nurse rerostering problem. Computers & Operations Research 34: 
667–91. 

[3] Inoue, T., Furuhashi T., Maeda, H. and Takaba, 2003. M. A proposal of combined method of evolutionary algorithm and heuristics for 
nurse scheduling support system. IEEE Transactions on Industrial Electronics 50: 833–8. 

[4] Aickelin, U. and Dowsland K. 2000. Exploiting problem structure in a genetic algorithm approach to a nurse rostering problem. 
Journal of Scheduling 3: 139–53. 

[5] R.E. Bellman, L.A. Zadeh, “Decision making in a fuzzy environment,” Management Science, vol.17, pp.141–164, 1970 

[6] Kling, R.M. and Banejee, P. ESP: A New Standard Cell Placement Package Using Simulated Evolution. Proceedings of the 24th 
ACWIEEE Design Automation Conference, 60-66, 1987. 

[7] Bard, J. and Purnomo, H. 2005. Preference scheduling for nurses using column generation. European Jrnal of Op Research 164: 510–
34. 

[8] Moz, M., Pato, M. 2003. An integer multicommodity flow model applied to the rerostering of nurse schedules. Annals of Operations 
Research 119: 285–301. 

[9] Moz, M. and Pato, M. 2004. Solving the problem of rerostering nurse schedules with hard constraints: new multi-commodity flow 
models. Annals of Operations Research 128: 179–97. 

[10] Pato, M. and Moz, M. 2008. Solving a bi-objective nurse rerostering problem by using a utopic Pareto genetic heuristic. Journal of 
Heuristics 14: 359–74. 

[11] Ly, T.A. and Mowchenko, J.T. Applying Simulated Evolution to High Level Synthesis. IEEE Transaction on Computer-Aided Design 
of Integrated Circuits and Systems, 12, 389-409, 1993 

[12] Beasley, J. and Chu P. 1996. A genetic algorithm for the set covering problem. European Journal of Operational Research 94: 392–
404. 

[13] Burke, E., Cowling, P., De Causmaecker P.  and Vanden Berghe, G. 2001. A memetic approach to the nurse rostering problem. 
Applied Intelligence 15: 192–214. 

[14] Burke, E. De Causmaecker P, Petrovic S, Vanden Berghe G. 2001. Fitness evaluation for nurse scheduling problems. Proceedings of 
congress on evolutionary computation, CEC2001; 1139–46. 

 



Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management 

Kuala Lumpur, Malaysia, March 8-10, 2016 

BIOGRAPHY 

 

Michael Mutingi is a Lecturer and Coordinator of the Master of Industrial Engineering at the Namibia University of Science 

and Technology, Namibia. He is also a Senior Visiting Research Associate at the University of Johannesburg, South Africa. 

He obtained his PhD in Engineering Management from the University of Johannesburg, South Africa. He also holds a MEng 

and a BEng in Industrial Engineering from the National University of Science and Technology, Zimbabwe, where he served 

as a Research Fellow and a Lecturer in Industrial Engineering. Michael Mutingi also served as a Research Associate at the 

National University of Singapore, Singapore, and a Lecturer at the University of Botswana, Botswana. His research interests 

include fuzzy multi-criteria decision making, simulation, optimization, scheduling, healthcare operations, logistics, and lean. 

He has published one book and more than 90 articles in international journals and conference proceedings. He is member of 

the South African Institute of Industrial Engineering (SAIIE) and the International Association of Engineers (IAENG). 
 

Charles Mbohwa is a Professor and Vice Dean with the Faculty of Engineering and the Built Environment at the University 

of Johannesburg. He has a DEng from Tokyo Metropolitan Institute of Technology, MSc in Operations Management and 

Manufacturing Systems from the University of Nottingham and a BSc (honors) in Mechanical Engineering from the 

University of Zimbabwe. He has been a British Council Scholar, Japan Foundation Fellow, a Heiwa Nakajima Fellow, a 

Kubota Foundation Fellow and a Fulbright Fellow. His research interests are in operations management, engineering 

management, energy systems and sustainability assessment. He has published a book, book chapters and more than 150 

academic papers. 
 


