
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/143154

Please be advised that this information was generated on 2016-08-25 and may be subject to

change.

http://hdl.handle.net/2066/143154

Rody W. J. KeRsten

softWaRe analysis Methods
foR ResouRce-sensitive

systeMs

so
ftW

a
R
e a

n
a

ly
sis M

eth
o

d
s fo

R
 R

eso
u

R
c
e-sen

sitiv
e sy

steM
s

R
o

d
y

 W
. J. K

eR
sten

Copyright c© 2015 Rody W.J. Kersten
ISBN 978-94-6259-738-9
IPA dissertation series 2015-17

Typeset using LATEX 2ε
Cover design: Thomas Mennen at Dark Roast Design
Printed by: Ipskamp Drukkers

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Unported Li-
cense. See http://creativecommons.org/licenses/

by-nc-nd/3.0/.

The work in this thesis has been carried out under the auspices of the research
school IPA (Institute for Programming research and Algorithmics). This research
was partially supported by the IOP GenCom GoGreen project, sponsored by the
Dutch Ministry of Economic Affairs. This research was partially supported by
the CHARTER project, sponsored by the EU Artemis Joint Undertaking. Part of
this research was conducted during a visit to the National Institute for Aerospace
and the NASA Langley Research Center.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Software Analysis Methods for
Resource-Sensitive Systems

Proefschrift

ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus, prof. dr. Th.L.M. Engelen,
volgens besluit van het college van decanen

in het openbaar te verdedigen op dinsdag 1 september 2015
om 14:30 uur precies

door

Rody Wilhelmus Johannes Kersten

geboren op 29 mei 1983
te Nijmegen

Promotor:

Prof. dr. Marko C.J.D. van Eekelen

Copromotor:

Dr. Sjaak Smetsers

Manuscriptcommissie:

Prof. dr. Frits W. Vaandrager

Prof. Ricardo Peña (Universidad Complutense de Madrid, Spanje)

Prof. dr. Marieke Huisman (Universiteit Twente)

Dr. Neha S. Rungta (NASA Ames Research Center, Verenigde Staten)

Dr. ir. Erik Poll

Software Analysis Methods for
Resource-Sensitive Systems

Doctoral thesis

to obtain the degree of doctor
from Radboud University Nijmegen

on the authority of the Rector Magnificus, prof. dr. Th.L.M. Engelen,
according to the decision of the Council of Deans

to be defended in public on September 1, 2015
at 14:30 hours

by

Rody Wilhelmus Johannes Kersten

born on May 29, 1983
in Nijmegen, The Netherlands

Supervisor:

Prof. dr. Marko C.J.D. van Eekelen

Co-supervisor:

Dr. Sjaak Smetsers

Doctoral Thesis Committee:

Prof. dr. Frits W. Vaandrager

Prof. Ricardo Peña (Complutense University of Madrid, Spain)

Prof. dr. Marieke Huisman (University of Twente, The Netherlands)

Dr. Neha S. Rungta (NASA Ames Research Center, United States of America)

Dr. ir. Erik Poll

Acknowledgements

Before starting this thesis, I would like to thank the many people that have
helped make it possible. First and foremost, my advisors Marko and Sjaak.
Thank you for your valuable advice and guidance. Marko, your optimistic atti-
tude has been instrumental in keeping me motivated and your ambition, pragma-
tism and enthusiasm are inspiring. Sjaak, your sharp observations and straight-
forward criticism were paramount in improving my research and my writings.
The combination of your optimistic and sceptical personalities has made you the
best possible team of advisors I could wish for.

In 2014, I did a two-month internship at NASA Langley Research Center and
the National Institute for Aerospace (NIA). I was supervised by Suzette Person,
who was a great advisor, as well as an amazing host. Thank you Suzette, for
your helpful guidance, your valuable advice and your general kindness. My stay
in Hampton was an amazing experience and I have learned a lot from you and
your colleagues. During my internship at NASA Langley, we also worked closely
together with Neha Rungta and Oksana Tkachuk at NASA Ames Research Cen-
ter. Thank you Neha and Oksana for your insightful comments and advice. I have
greatly enjoyed our collaboration and I hope we can continue this in California.
Finally I would like to thank all the other friendly and interesting people I have
met at NASA Langley and at NIA, who have made my stay in Hampton very en-
joyable. In particular, thank you Alwyn Goodloe, for introducing me to Suzette.

To the members of my thesis committee Frits Vaandrager, Ricardo Peña,
Marieke Huisman, Neha Rungta and Erik Poll, thank you for your very useful
comments. Your criticism has substantially contributed to improving this thesis.

Thanks to my co-authors Bernard, Olha, Paolo, Manuel, Manu, Marc and
Jascha, without whom I would not have succeeded in writing the publications
on which this thesis is based. Bernard in particular has collaborated on four of
the papers in this thesis and has helped me out with my research many times.
Thank you Bernard for our pleasant collaboration, for being a friend and for
being a lot of fun to work with. Olha supervised my master thesis back in 2009
and then collaborated with me on my first paper. Thank you Olha for helping
me get a great start of my PhD. Paolo, Manuel, Manu, Marc and Jascha, thank
you for your contributions and the very enjoyable collaboration.

Thanks to the partners in the GoGreen project, who I enjoyed working with.
In particular, thanks to Paul Havinga and Nirvana Meratnia for leading the

project. Also thanks to all the partners in the CHARTER project, from whom
I learned a lot about safety-critical software development.

The Digital Security department and ICIS have always been a very pleasant
work environment. Thank you for interesting research discussions, as well as
countless coffee-breaks, cooking and beer related events and other extracurricular
activities: Fabian, Bas Lijnse, Bas Joosten, Freek, Bariş, Joeri, Sven, Wojciech,
Leonard, Harald, Jeroen, Irma, Ronny, Engelbert, Bart, Ken, Gerhard, Pim,
Roel, Alejandro, Thomas, Julien, Bas Spitters, Merel, Paulan, Gergely, Wouter,
the “Quantum Squad” and all others.

To my paranymphs Daan and Roderick, thank you for your help with the
organisation of my defence. Moreover, thank you so much for being by my side
on this big day, as you were throughout my PhD studies.

I would like to thank my parents, Mieke and Willy, and the rest of my family
and friends for their endless support. The last five years have not always been
easy, but you have invariably been there for me when I needed you.

Finally, I would like to thank my lovely wife Silke. Thank you for your un-
conditional support and for your endless patience and understanding in stressful
times. I look forward to our new adventure in California and to spending the
rest of our lives together. You mean the world to me.

ii

Table of Contents

Acknowledgements . i

1 Introduction . 1
1.1 Dynamic Analysis . 2

1.1.1 Testing . 2
1.1.2 Debuggers and Profilers . 3

1.2 Static Analysis . 4
1.2.1 Flow Analysis . 4
1.2.2 Hoare Logic . 5
1.2.3 Symbolic Execution . 5
1.2.4 Model-Checking . 6
1.2.5 Theorem Proving . 7

1.3 Motivation and Thesis Overview . 7
1.3.1 Security . 8
1.3.2 Functional correctness . 8
1.3.3 Energy efficiency . 9
1.3.4 Time efficiency . 9
1.3.5 Memory efficiency . 9

1.4 Contributions . 10

2 Using Model-Checking to Reveal a Vulnerability
of Tamper-Evident Pairing . 13

2.1 Introduction . 13
2.2 Tamper-Evident Pairing . 15

2.2.1 The Tamper-Evident Announcement . 16
2.2.2 Receiving the Slots . 17

2.3 Modelling the Tamper-Evident Announcement in Spin 18
2.3.1 Model Parameters . 18
2.3.2 Clock Implementation . 19
2.3.3 Model Processes . 21

2.4 Model-Checking Results . 22
2.4.1 Revealed Vulnerability in the TEA . 22
2.4.2 Varying the Values of the Model Parameters 23

2.5 Related Work . 24

2.6 Conclusions . 25

3 Improving Coverage of Test-Cases Generated by
Symbolic PathFinder for Programs with Loops 27

3.1 Introduction . 27

3.1.1 Related Work . 29

3.2 Bounding Loops in SPF . 30

3.2.1 K-Bounded Unwinding . 31

3.2.2 Specifying Loop-Specific Bounds . 31

3.3 Concretising Loop Variables . 32

3.3.1 Example . 32

3.3.2 Annotations in SPF . 33

3.3.3 Limitations . 34

3.4 Conclusions . 37

4 A Hoare Logic for Energy Consumption Analysis . . . 39

4.1 Introduction . 39

4.2 Modelling Hybrid Systems . 41

4.2.1 Language . 42

4.2.2 Modelling Components . 42

4.2.3 Semantics . 43

4.3 Energy Analysis of Hybrid Systems . 43

4.3.1 Energy-Aware Semantics . 43

4.3.2 Energy-Aware Modelling . 46

4.3.3 A Hoare Logic for Energy Analysis . 48

4.4 Example: Wireless Sensor Node . 51

4.5 Soundness . 54

4.6 Implementation in ECAlogic . 55

4.6.1 Input Language ECA . 55

4.6.2 Component Models in ECM . 57

4.6.3 Tool Application . 58

4.7 Conclusions and Future Work . 59

5 Test-based Inference of Polynomial Ranking
Functions for Loops . 61

5.1 Introduction . 62

5.2 Polynomial Interpolation . 63

5.3 Inference of Ranking Functions for Loops . 67

5.3.1 RF Inference: The Basic Method . 69

5.3.2 Expressing the RF in JML . 71

5.3.3 Complexity: Exponential in the Number of Variables 72

5.4 Prototype and Case Studies . 73

5.5 Related Work . 75

5.6 Conclusions . 76

iv

6 ResAna: A Resource Analysis Toolset for
(Real-Time) Java . 77

6.1 Introduction . 77
6.2 Loop-Bound Analysis . 80

6.2.1 Ranking Functions with Rational or Real Coefficients 80
6.2.2 Branching inside the loop body . 81
6.2.3 Piecewise Ranking Functions for Loops with Disjunctive Guards 82
6.2.4 Condition Jumping . 83

6.3 Heap-Space Usage Analysis . 87
6.3.1 Interpolation-based height analysis for improving a recurrence

solver . 87
6.3.2 Correct array-size analysis . 90
6.3.3 Virtual-machine specialisation by adding type-size information . . 92
6.3.4 Simplification of bounds . 92
6.3.5 Example . 93

6.4 Stack-Size Analysis . 94
6.4.1 Adjustments for analysis of libraries . 95
6.4.2 Stack-size analysis by VeriFlux . 96

6.5 User Experience . 98
6.6 Related Work . 98

6.6.1 Loop-Bound Analysis . 99
6.6.2 Time Performance Analysis . 99
6.6.3 Heap-Space Usage Analysis . 100
6.6.4 Stack-Size Analysis . 100

6.7 Conclusions and Future Work . 100

7 Conclusions . 103

Bibliography . 105

Summary . 117

Samenvatting (Dutch Summary) . 119

Curriculum Vitae . 121

v

Chapter 1

Introduction

Software is ubiquitous. It is not only found in obvious places like a desktop
computer or a smart phone, but practically every modern electronic device is
controlled by software, including household appliances, cars, power plants and
sluices. Failure can be lethal. Functional correctness and security are crucial
for safe operation. In a world that is quickly depleted of its resources, energy-
efficiency is vital.

A wide array of software analysis techniques is available, all aiming to ensure
that software indeed exhibits desired functional or non-functional properties.
These range from running the program once, to providing a mathematical proof
using a theorem prover. More rigorous methods typically require a significantly
larger effort. There is no “silver bullet” of software analysis, choice of methods
depends highly on circumstance, e.g. the properties of interest and criticality.

Which technique is fit for a certain application also depends on the prop-
erty of interest. Most of the research on which this thesis is based was done in
the context of the GoGreen project, which aims to build a self-learning, secure
and energy-efficient smart-home system. Such a system combines wireless sensor
nodes to observe a house and the people within its walls with intelligent al-
gorithms that control heating, ventilation, lighting and appliances. We focus on
properties that are crucial for such a system: functional correctness, security and
efficient use of resources. The latter point is of special interest for the wireless
sensor nodes, which are highly resource-sensitive.

Many properties are impossible to automatically analyse in general, as this
would mean solving the halting problem. However, this does not imply that we
cannot analyse such properties in some (most) cases. Thus, when devising a
software analysis method, it is often the aim to maximise the set of analysable
programs. Alternatively, the aim can be, e.g., to verify stronger properties.

Software analysis methods can be roughly divided into two categories: dy-
namic analysis, where a program is analysed while executing it, and static anal-
ysis, where the program’s source, binary code, or a model is analysed. Mixtures
of static and dynamic analysis also exist, such as the loop-bound analysis pre-
sented in Chapter 5, in which the results of dynamic analysis are used to guess

2 Introduction

a loop bound, which is then verified statically. Note that, while the term static
analysis for many people is associated with compile-time syntactical checkers –
often yielding many false positives and false negatives – we focus on semantic
analysis in this thesis.

Dynamic analysis and static analysis are introduced in Section 1.1 and Sec-
tion 1.2, respectively. Each of these sections also introduces the specific tech-
niques that are used in this thesis. When applying an analysis technique to a
system, this increases the trust in the system. Techniques that provide a higher
level of trust usually require a greater effort. The order in which techniques are
discussed in this chapter is based loosely on the level of trust they can provide.
For each technique, an introduction is given, along with an example of an ap-
plication or extension, and a description of where it is used in this thesis. After
introducing the software analysis methods used in this thesis, a motivation of the
properties of interest and the thesis outline are given in Section 1.3. Software
analysis in this thesis is focused on properties that are essential for the soft-
ware used in a smart-home system as researched within the GoGreen project.
Finally, in Section 1.4, the papers on which this thesis is based are listed and
the contributions of the author are highlighted.

1.1 Dynamic Analysis

Dynamic analysis is any type of program analysis in which the program is exe-
cuted. It is run for certain test input and its behaviour is studied. As such, the
effectiveness of dynamic analysis highly depends on the considered input, as it
can only provide certainty for behaviours that always occur for the test input.

We first discuss program testing in Section 1.1.1. We then describe debugging
and profiling in Section 1.1.2, as this is very similar to the method that is used
for loop-bound analysis in Chapter 5 and 6.

1.1.1 Testing

Software testing is perhaps the most ubiquitous program analysis technique.
Consequently, there is a large body of research on the subject. A good intro-
duction to software testing is given in [MSB11], which defines testing as “the
process of executing a program with the intent of finding errors”. In black-box
testing, the internal structure of the program is unknown, i.e. the test cases are
fully based on the specification of the program. When test cases are based on the
program code, we speak about white-box testing. In that context we can apply
coverage measures to assess the adequacy of the test data, such as the percentage
of statements covered by the tests.

Example. One relatively extreme coverage criterion is Modified Condition/De-
cision Coverage (MC/DC). Air traffic in the United States is regulated by the
Federal Aviation Administration. As such, this organisation provides aircraft

1.1. Dynamic Analysis 3

certification. In order to be certified, all airborne software must comply with the
DO-178C standard [SC-11]. This quality assurance standard specifies that testing
must achieve MC/DC coverage. This is a rigorous coverage criterion, that speci-
fies that“every point of entry/exit in the program has been invoked at least once,
every decision has taken all possible outcomes at least once, every condition in
a decision has taken all outcomes at least once and every condition in a decision
has been shown to independently affect that decision its outcome” [HVCR01].
An empirical evaluation of the MC/DC coverage criterion is presented in [DL00],
where it is applied for the control software of the HETE-2 (High Energy Tran-
sient Explorer) satellite, built by the MIT Center for Space Research for NASA.
In this evaluation, it is found that important errors are detected by a test set
that satisfies the MC/DC criterion, that are missed by black-box functional test-
ing or by structural testing using weaker criteria, such as decision coverage and
condition/decision coverage.

In this thesis. In Chapter 3, coverage of branches inside loops is discussed,
with respect to test data generated using symbolic execution. This extension is
described in more detail in Section 1.2.3, where symbolic execution is introduced.

1.1.2 Debuggers and Profilers

To gain more information about the program at run-time, one can run it in a
debugging or profiling tool. Such a tool can for instance provide insight into the
data-structures allocated in memory at a certain break-point in the program, es-
timate time-complexity of a function or calculate the percentage of time spent in
a certain part of the program. In many cases, the program is instrumented with
additional code, to provide more information to the tool. Generally, debugging
tools are focused on functional correctness, while profiling tools are mostly con-
cerned with performance and diagnostic issues. A thorough survey of dynamic
analysis techniques for program comprehension is given in [CZvD+09].

Example. Software profiling can be used for dynamic energy consumption anal-
ysis [SKZS12, WGR13, NRS14]. The profiler is placed at the operating system
level and uses an energy model. This eliminates the need for a hardware measure-
ment set-up. Such an energy model must be able to predict energy consumption
of operating system calls with sufficient accuracy. Not only do they need to esti-
mate the energy-usage of the processor, but also that of other components (e.g.
hard drives and network controllers), which often consume energy based on their
internal state (i.e. not synchronous with the system call).

In this thesis. A profiling-like method is used in Chapters 5 and 6, where program
loops are instrumented with a counter in order to determine the number of
iterations for certain input values. By interpolating the results, loop bounds
are inferred. These bounds hold for the tested inputs. Whether or not they are
correct for any input is verified statically, using a theorem prover. This last step
is discussed in more detail in Section 1.2.5, where theorem proving is introduced.

4 Introduction

1.2 Static Analysis

Static analysis is any type of program analysis in which the program is not
executed. Instead, the source code, binary or a model is used to derive or prove
certain properties. Such properties typically do not hold only for a finite set of
test inputs, but rather for well-defined classes of inputs (ideally, all inputs).

The static program analysis techniques we discuss in this section are limited
to those used in this thesis. Other techniques, including type systems [Pie02]
and abstract interpretation [CC77], are omitted. Flow analysis is introduced in
Section 1.2.1. Hoare logic is discussed in Section 1.2.2 and symbolic execution
in Section 1.2.3. Model-checking is introduced in Section 1.2.4. Finally, theorem
proving is discussed in Section 1.2.5.

1.2.1 Flow Analysis

In static analysis, alternative (graph) representations of programs are often con-
structed, to which standard mathematical methods can be applied. The Control-
Flow Graph (CFG) has so-called basic blocks as nodes. These are the maximal
blocks of code that are always executed in sequence, i.e. there can be only jumps
to the first expression in a basic block and only jumps from the last expression.
The edges in the CFG represent the jumps between basic blocks. A CFG can for
instance be used for data-flow analysis, which tries to restrict the set of possible
values a variable might have by propagating constraints through the CFG. An
excellent introduction to data-flow analysis is given in [NNH99].

Example. Another example where an alternate representation of a program is
analysed mathematically is resource analysis through recurrence relation solving,
as in COSTA [AAG+08]. In this technique, the program is transformed into a
set of recursive formulas expressing consumption of a certain resource, e.g. heap-
space. This recurrence relation is then transformed into closed form, capturing
the resource consumption of the program in a single formula.

In this thesis. The control-flow graph of a program is used to detect loops at
the Java bytecode level in Chapter 3. If an edge exists in the CFG from n to
h and h dominates n (all paths from the entry node to n go through h), then
the edge is the back-edge of a loop with header h. Furthermore, in Chapter 6,
COSTA is used for heap-space analysis. A post-processing step is added, where
an inaccuracy is corrected. Results are simplified for easier understanding and
possibly concretised for a particular Java virtual machine. Data-flow analysis
is used in Chapter 6 to concretise symbolic stack-usage bounds. The presented
tool ResAna first calculates a symbolic stack space usage bound. A concrete
number of bytes (upper bound) for this symbolic bound can be calculated by
incorporating data-flow analysis from the tool VeriFlux.

1.2. Static Analysis 5

1.2.2 Hoare Logic

Hoare logic or Floyd-Hoare logic is a set of formal rules for reasoning about
programs. It was developed by Hoare in [Hoa69], inspired by an earlier work by
Floyd [Flo67]. The central concept of Hoare logic is the so-called Hoare triple:
{P} S {Q}, where P is the precondition, S is a statement and Q is the post-
condition. An example of a valid triple is {x = 5} x := x + 1 {x = 6}. Using
such triples, a set of axioms for simple statements (e.g. skip or assignment) and
inference rules for more complex programming constructs (e.g. composition or
a conditional) are defined. Loops are normally handled using a loop invariant,
that holds before execution of the loop, after each iteration and after the loop.

Example. Basic Hoare logic does not have rules for many constructs that occur
in modern imperative programming languages. Therefore, many extensions to
this basic logic exist, e.g. for Java concepts such as dynamic method binding
and exception handling [vO01, HJ00]. One extension that has received much
attention is separation logic, which can be applied for local reasoning about
separate parts of the heap [Rey02, ORY01].

In this thesis. In Chapter 4, a Hoare logic for energy-consumption analysis is
presented. The language to which this logic is applied is a simple while language,
extended with a construct for calling functions on specific components. Condi-
tions in the logic are extended with energy-aware component states. When the
inference rules of this logic are applied to a program and energy-models for the
components it works on, the result is an upper-bound on the energy consumption
of each of the components.

1.2.3 Symbolic Execution

In symbolic execution [BEL75, Cla76, Kin76, RHC76, CGK+11, CS13], a pro-
gram is executed with symbols instead of actual input. For each branch in the
program, both choices must be explored, maintaining a path condition. Infeasi-
ble paths should be excluded. Feasibility can be verified by checking satisfiability
of the path condition. Typically, whenever a path condition is extended, satis-
fiability is checked using an off-the-shelf SMT-solver, e.g. Yices [DdM06], Z3
[dMB08] or CVC4 [BCD+11]. SMT (Satisfiability Modulo Theories) is an ex-
tension of SAT with formal theories such as the theory of integers. SAT, or the
Boolean Satisfiability Problem, is the problem of determining satisfiability of a
Boolean proposition. It is well-known to be NP-complete [Coo71], still many al-
gorithms can solve SAT problem fairly efficiently for practical applications, such
as the ones implemented in the SMT-solvers mentioned above.

Example. Many modern symbolic execution techniques mix concrete and sym-
bolic execution, e.g. Symbolic Pathfinder [PR10]. This so-called concolic ex-
ecution executes the program on concrete input and maintains both a concrete

6 Introduction

state and a symbolic state. The symbolic state only contains values for the subset
of program variables marked as symbolic by the user. When concrete execution
for the given input is done, concolic execution backtracks and the collected sym-
bolic constraints on the execution path are used to generate inputs that force
concrete execution down an alternative feasible path. This process continues un-
til either all paths are explored (which is unlikely, due to path explosion) or some
other condition is met (typically a coverage criterion).

In this thesis. Symbolic execution is used in Chapter 3 to generate test-cases.
This can be done by finding a model for the path condition of every path through
the program. However, input-dependent loops often imply infinite paths. Sym-
bolic execution must therefore be bounded. Furthermore, scalability is limited
because of the exponential increase in the number of paths through loops (path
explosion), even those that are not dependent on input. Because of the bounding
of loops, branching that only occurs after n iterations of a loop might be missed
by test data generated using symbolic execution. An implementation of an alter-
nate bounding mechanism is presented, as well as a novel method to concretise
symbolic variables in order to execute all branches. Symbolic execution is used
in Chapter 6 to infer a so-called update function which captures the behaviour
of a loop for a certain variable.

1.2.4 Model-Checking

In model-checking [CE82, QS82, CES86, CGP99, BK08, CES09], not the soft-
ware itself, but rather a finite model representation is exhaustively verified. The
model, essentially a finite state machine, is usually written in a special modelling
language. In some cases, such as with the tool Uppaal [BLL+96], the finite state
machine can be directly constructed in a graphical interface. The model-checker
exhaustively traverses the finite state machine and verifies that a given logical
property holds in every reachable state.

Example. Several software analysis methods that are used to verify the relia-
bility of mission-critical flight software at NASA’s Jet Propulsion Laboratory
are discussed in [GHH+14]. A Flash file-system used in space-craft serves as a
case-study. An anomaly in this file-system previously led to a loss of communi-
cation that lasted several days, when it was deployed in the Mars Exploration
Rover “Spirit” [RN05]. One of the methods applied to the file-system case-study
is model-driven verification, in which the actual program code is used for model-
checking, instead of a model [HJ04]. A major challenge with model-checking in
general and model-driven verification in particular, is scalability, due to the state-
space explosion problem. In this case, this is countered by using abstract states,
i.e. many concrete states map to the same abstract state, greatly reducing the
search space. Because of file-system intrinsics, using sound abstractions did not
turn out to be very helpful. Instead, unsound abstractions were used, meaning
that this particular approach finds bugs but does not prove their absence.

1.3. Motivation and Thesis Overview 7

In this thesis. Model-checking is used in Chapter 2 to find under-specified pa-
rameter values to ensure security of a device pairing protocol. In Chapter 3,
the tool Symbolic Pathfinder is extended in order to improve the coverage
of the test-cases it generates. Symbolic Pathfinder itself builds upon Java
Pathfinder, which is a model-checking tool for Java.

1.2.5 Theorem Proving

In theorem proving, the validity of a logical proposition is proved using an
(automated) proof assistant. Examples of theorem provers are PVS [ORS92],
Coq [BC04], ACL2 [KMM00], Isabelle [Pau94] and KeY [BHS07]. The ad-
vantage of using a proof assistant over proving the proposition on paper, is that
it rules out human error and potentially automates a large part of the process.
Depending on the used proof assistant, the theorem to be proved might be de-
scribed in classical logic, or including a form of program code. In the latter
case, a formalisation of the programming language in the logic used by the proof
assistant is required. Each theorem prover typically uses its own form of pro-
gram logic, often based on classical systems like Hoare logic. This is the case, for
instance, in KeY its dynamic logic, which includes Java code in its propositions.

Example. In [MSvE10], theorem proving is one of the techniques used to verify
correctness of the Rotterdam Storm Surge Barrier (Maeslantkering). This barrier
is one of the largest moving structures in the world and protects the south-
west part of The Netherlands. Opening and closing of the barrier is controlled
fully autonomously by a system called BOS. During formal verification, three
discrepancies between the specification of a sub-system of BOS and its program
code were found.

In this thesis. The theorem prover KeY is used in Chapters 5 and 6 to prove
automatically inferred loop bounds. Dynamically inferred loop bounds are guar-
anteed to hold for the tested program inputs and expected to hold for any pro-
gram input. A formal proof of their validity is therefore sought with the highly
automated theorem prover KeY, which uses Java as input language.

1.3 Motivation and Thesis Overview

Most of the research presented in this thesis was done in the context of the IOP
GenCom GoGreen project. This project studies a self-learning energy-preserving
smart-home system, which reads various sensors in the house, learns about the
household and the environment and actuates lighting, heating, ventilation, air-
conditioning, appliances and other electronics. Sensing and actuation is mostly
done using Wireless Sensor Nodes (WSNs), which are small, typically battery-
powered, devices containing a simple micro-controller, one or more sensors and
a wireless transceiver. Such devices are highly resource-sensitive, as they have a

8 Introduction

finite energy-supply and are equipped with limited memory. The main thesis can
be formulated as: How can we establish software properties, that are of particular
interest to resource-sensitive systems?

Desirable properties for GoGreen software – largely embedded on WSNs – are
functional correctness, security, and energy, time and memory efficiency. Each
of these properties corresponds to a sub-question for this thesis.

1.3.1 Security

The GoGreen system collects large amounts of sensitive data about the residents
(or visitors) of the house in which it is deployed. Most of this data is commu-
nicated wirelessly, which must therefore be done in a secure way. Moreover, an
attacker should be prevented from influencing communication and thereby gain-
ing control over the actuated devices. Wireless communication can be secured
by encrypting the stream of information. To enable this, the communicating
parties must agree on a key (for symmetric cryptography) or a pair of keys (for
asymmetric cryptography). Normally, this requires the user to enter a password,
which is not possible on a WSN, as it does not have a keyboard or a screen.
A solution is to use the Push-Button Configuration protocol defined within the
Wi-Fi Protected Set-up standard, which enables pairing of two devices by press-
ing a (virtual) button on both devices within a certain time-frame. However,
a series of vulnerabilities of this protocol is presented in [GAZK11]. The same
paper presents an extension of this protocol, that protects it against attacks that
take advantage of these vulnerabilities: Tamper-Evident Pairing (TEP).

Some of the parameters needed to implement TEP are under-specified. In
Chapter 2, model-checking is used to analyse TEP and it is discovered that
the protocol is vulnerable to attacks if these parameters are not chosen wisely.
Model-checking is applied in an iterative fashion to discover what values of the
parameters result in a tamper-evident set-up. From these results, a constraint
ensuring security of the protocol from the results is formulated.

1.3.2 Functional correctness

As for all software, it is desirable that the software embedded on WSNs behaves
according to specification. For embedded software this is extra important, be-
cause it can be very hard to update the software in case errors are detected after
release. As most WSNs have uncommon interfaces for programming, GoGreen
software running on WSNs in the home is not likely to ever be updated. It must
therefore be thoroughly tested.

Chapter 3 presents two extensions to the tool Symbolic Pathfinder, one of
which is an implementation of a known method for bounding symbolic execution
of loops, the other is a novel method for improving the coverage of test cases
generated by symbolic execution for programs with loops. This latter method
works by symbolically executing the loop body out-of-context, i.e. by disregard-
ing constraints over symbolic variables. This can produce models for symbolic

1.3. Motivation and Thesis Overview 9

variables that execute all branches within the loop body. The symbolic variables
can then be concretised to these values.

1.3.3 Energy efficiency

WSNs are typically battery-powered. Quickly draining their batteries will pre-
vent adoption of the GoGreen system by potential users. Moreover, the GoGreen
system must at least be energy-neutral as a whole, but preferably save energy.
One of the goals of the GoGreen project is to develop techniques for harvesting
energy from surroundings, such as solar or kinetic energy, charging the battery. It
is thus crucial that WSNs are energy-efficient. The hardware of the WSNs is con-
trolled by the embedded software. It is therefore essential to use energy-efficient
implementations.

Chapter 4 presents a Hoare logic for energy-consumption analysis. Given a
model of the energy-related behaviours of the hardware components, this anal-
ysis can statically bound the energy consumption of software running on said
hardware. The method is sound and is implemented in the tool ECAlogic.

1.3.4 Time efficiency

WSNs typically wake up for a short time to do their work, then go back into
an energy-saving mode again. Their program must be able to execute within
this time-frame. It is therefore important to be able to bound execution time.
As most of the execution time of typical embedded programs is spent in loops,
it is an important step to bound loop iterations. Furthermore, loop bounds are
a prerequisite for analysing consumption of any resource, as a certain amount
of resources (possibly bounded) can be consumed on every iteration. Finally,
bounding loops is also an essential step in proving termination, which might be
required for proving functional correctness.

Chapter 5 presents a novel method to infer polynomial ranking functions
for loops. It instruments the loop with a counter, then runs it for a set of test
inputs and interpolates a polynomial over the resulting iteration counts. The
set of test inputs is chosen such that it satisfies a condition that guarantees
the existence of a unique interpolating polynomial. The presented loop-bound
analysis is implemented in the tool ResAna.

1.3.5 Memory efficiency

Wireless sensor nodes need to be produced in a cost-effective manner, such that
end-users can afford to place them ubiquitously throughout their house. They
are therefore equipped with just as much memory as they need, not more. It
is thus important to be able to bound memory consumption of their embedded
software. Memory is usually allocated in two separate structures: the stack and
the heap. The stack is a last-in-first-out list of stack frames. When a function
is invoked, a new stack frame is pushed on the stack, containing local variables

10 Introduction

and bookkeeping data. When the function is finished, the corresponding stack
frame is popped from the stack. The heap is the rest of the memory, which can
be used for dynamic allocation. Whereas the stack contains ordered blocks with
a well-defined structure, the heap can contain any arbitrary data-structure that
the user defines. Due to its unstructured nature, the heap is harder to analyse.

Chapter 6 presents the tool ResAna and the underlying resource analysis
methods. The loop bound analysis method from Chapter 5 is further extended
with a way to deal with so-called condition jumping. A heap-space analysis is
developed, using extensions of the resource analysis tool COSTA, which is based
on recurrence relation solving. COSTA is extended by applying the polynomial
interpolation based ranking function inference method to recurrence relation
solving, correcting its results for arrays, simplifying its results and adding a
Virtual Machine specialisation step. Furthermore, a stack-space analysis is pre-
sented. This analysis uses COSTA to obtain a measure for recursive functions
(analogous to a ranking function for loops), then combines this with data-flow
analysis and measured stack frame sizes to obtain a concrete upper bound on
the consumed stack space.

1.4 Contributions

This section lists the publications that form the basis for this thesis and high-
lights the contributions of the author. This thesis is based on a total of seven
publications, four of which were presented at international workshops, two at
international conferences, and one (an extended version of one of the workshop
papers) was published in the Journal of Concurrency and Computation: Practice
and Experience. Except for moderate restructuring, minor corrections and slight
changes in the layout, the content of each chapter is the same as that of the
original publication(s). Chapter 4 is based on the contents of two publications.
Chapter 5 and Chapter 6, together, are based on the contents of three publica-
tions. Note that the chapters are not presented in the chronological order of the
original publications. Rather, chapters are bundled with respect to the analysed
property type (security, functional correctness, resource consumption).

Chapter 2 presents the analysis of the Tamper-Evident Pairing (TEP) protocol
using model-checking. It is based on [KvGD+13]:

Rody Kersten, Bernard van Gastel, Manu Drijvers, Sjaak Smetsers, and
Marko van Eekelen. Using model-checking to reveal a vulnerability of
tamper-evident pairing. In Proceedings of the 5th NASA Formal Methods
Symposium, number 7871 in Lecture Notes in Computer Science, pages
63–77. Springer, May 2013.

Model-checking TEP required a thorough understanding of the protocol in
order to build a model which captures the essential security issues. The author
made the transition from the protocol description in [GAZK11], an academic

1.4. Contributions 11

paper, to the unambiguous implementation in a Spin model (with the exception
of the clock model and the adversary model). The author of this thesis has
written most of the publication.

This chapter differs slightly from the original publication. Figures have been
improved (two have been merged) and the nature of the discovered vulnerability
is described more extensively.

Chapter 3 presents two extensions to the symbolic execution tool Symbolic
Pathfinder, that improve the coverage of test cases generated by symbolic
execution for programs with loops. This chapter is based on [KPRT15]:

Rody Kersten, Suzette Person, Neha Rungta, and Oksana Tkachuk. Im-
proving coverage of test-cases generated by Symbolic PathFinder for pro-
grams with loops. In SIGSOFT Software Engineering Notes, 40(1):1–5.
ACM, January 2015.

This work consists of the author’s own contributions and was written during
an internship at the NASA Langley Research Center in the Formal Methods
group. The author received supervision from Suzette Person (NASA Langley),
as well as guidance from Neha Rungta and Oksana Tkachuk (NASA Ames).

Chapter 4 presents a Hoare logic for energy-consumption analysis. Given a
model of the energy-related behaviors of the hardware components, this anal-
ysis can statically bound the energy consumption of software running on said
hardware. This chapter is largely based on [KPvv14]:

Rody Kersten, Paolo Parisen Toldin, Bernard van Gastel, and Marko van
Eekelen. A Hoare logic for energy consumption analysis. In Proceedings
of the Third International Workshop on Foundational and Practical As-
pects of Resource Analysis, FOPARA’13, number 8552 in Lecture Notes
in Computer Science, pages 93–109. Springer, October 2014.

The author of this thesis has co-developed the presented energy analysis,
focusing mostly on the modeling aspect. He has written most of the original
publication and the corresponding technical report [PKvv13], and devised the
examples.

Chapter 4 also contains elements that were taken from [SNKvE14], mainly
the discussion of the implementation of the analysis in the tool ECAlogic:

Marc Schoolderman, Jascha Neutelings, Rody Kersten, and Marko van
Eekelen. ECAlogic: Hardware-parametric energy-consumption analysis
of algorithms. In Proceedings of the 13th Workshop on Foundations of
Aspect-oriented Languages, FOAL’14, pages 19–22. ACM, April 2014.

The tool ECAlogic is an implementation of the presented energy analy-
sis. It was developed by a group of students in the course System Development

12 Introduction

Research. The author actively supervised this group and wrote the original publi-
cation together with students Marc Schoolderman and Jascha Neutelings, guided
by Marko van Eekelen.

Chapter 5 presents a novel method to infer polynomial ranking functions for
loops. This chapter is based on [SKVE10]:

Olha Shkaravska, Rody Kersten, and Marko Van Eekelen. Test-based
inference of polynomial loop-bound functions. In PPPJ’10: Proceedings
of the 8th International Conference on the Principles and Practice of
Programming in Java, pages 99–108. ACM, September 2010.

The author co-developed the interpolation-based method for loop bound
analysis and implemented it in the tool ResAna.

A limited description of several extensions to the basic method is given
in [SKVE10]. This section is not included in Chapter 5, in lieu of the more
elaborate description in Chapter 6, which also contains further extensions. The
section on future work is also not included, as it has become redundant with the
publication of [KvGS+14] and the corresponding extensions to the implementa-
tion ResAna.

Chapter 6 presents extensions to the loop-bound analysis, a heap-space anal-
ysis, a stack-space analysis and their implementation in the tool ResAna. It is
based on [KvGS+14]:

Rody W. J. Kersten, Bernard E. van Gastel, Olha Shkaravska, Manuel
Montenegro, and Marko C. J. D. van Eekelen. ResAna: a resource analy-
sis toolset for (real-time) JAVA. Concurrency and Computation: Practice
and Experience, 26(14):2432–2455. Wiley, September 2014.

This paper was published in a special edition of the Journal of Concurrency
and Computation: Practice and Experience, with selected papers from the Work-
shop on Java Technologies for Real-time and Embedded Systems 2012. It is an
extended version of [KSvG+12]:

Rody Kersten, Olha Shkaravska, Bernard van Gastel, Manuel Montene-
gro, and Marko van Eekelen. Making resource analysis practical for
Real-Time Java. In Proceedings of the 10th International Workshop
on Java Technologies for Real-time and Embedded Systems, JTRES’12,
pages 135–144. ACM, October 2012.

The author’s contributions are the extensions to the loop bound analysis,
supportive work for the memory analysis methods and co-authoring and editing
the publications.

The contents of this chapter is the exact publication [KvGS+14], except the
introduction of the loop bound analysis method. This section from the original
publication is omitted, as the loop bound analysis method is described in detail
in Chapter 5 of this thesis.

Chapter 2

Using Model-Checking to Reveal
a Vulnerability of
Tamper-Evident Pairing

Abstract. Wi-Fi Protected Setup is an attempt to simplify configura-
tion of security settings for Wi-Fi networks. It offers, among other meth-
ods, Push-Button Configuration (PBC) for devices with a limited user-
interface. There are however some security issues in PBC. A solution to
these issues was proposed in the form of Tamper-Evident Pairing (TEP).

TEP is based on the Tamper-Evident Announcement (TEA), in which a
device engaging in the key agreement not only sends a payload containing
its Diffie-Hellmann public key, but also sends a hash of this payload in a
special manner, that is trusted to be secure. The idea is that thanks to
the special way in which the hash is sent, the receiver can tell whether
or not the hash was altered by an adversary and if necessary reject it.

Several parameters needed for implementation of TEP have been left
unspecified by its authors. Verification of TEA using the Spin model-
checker has revealed that the value of these parameters is critical for the
security of the protocol. The implementation decision can break the re-
sistance of TEP against man-in-the-middle attacks. We give appropriate
values for these parameters and show how model-checking was applied
to retrieve these values.

2.1 Introduction

Security protocols aim at securing communications over networks that are pub-
licly accessible. Depending on the application, they are supposed to ensure se-
curity properties such as authentication, integrity or confidentiality even when
the network is accessible by malicious users, who may intercept and/or adapt
existing, and send new messages. While the specification of such protocols is usu-
ally short and rather natural, designing a secure protocol is notoriously difficult.

14 Using Model-Checking to Reveal a Vulnerability of Tamper-Evident Pairing

Flaws are often found several years later. One of the sources for the vulnerabil-
ity of such protocols is that their specification is often (deliberately) incomplete.
There are several reasons for the omission of certain details by the designer.
For instance, a protocol may depend on properties of the hardware on which it
is used. It also leaves some room for the implementer of the protocol to make
implementation-dependent choices. The problem with these unspecified param-
eters is that it can be very hard to analyse the effects of specific choices on the
correctness of the protocol itself. Mostly this is due to the fact that the pro-
tocol is specified in such a way that both designer and implementer are either
convinced that the correctness is not influenced by the concrete values of these
parameters, or they assume that theses values are chosen within certain (not
explicitly specified) boundaries.

During the last two decades, formal methods have demonstrated their use-
fulness when designing and analysing security protocols. They indeed provide
rigorous frameworks and techniques that allow to discover new flaws. For exam-
ple, the ProVerif tool [Bla01] and the Avispa platform [ABB+05] are both
dedicated tools for automatically analysing security properties. More general
purpose model-checkers, such as Spin [Hol97] and Uppaal [BLL+96], are also
successfully applied to verify desired properties of protocol specifications. While
this model-checking process often reveals errors, the absence of errors does in
general not imply correctness of the protocol.

Secure wireless communication is a challenging problem due to the inherently
shared nature of the wireless medium. For wireless home networks, the so-called
Wi-Fi Protected Setup was designed to provide a standard for easy establish-
ment of a secure connection between a wireless device with a possibly limited
interface (e.g. a webcam or a printer) and a wireless access point. The wireless
device, once connected to the access point, gets not only internet connectivity,
but also access to shared files and content on the network. The standard provides
several options for configuring security settings (referred to as pairing or imprint-
ing). The most prominent ones are PIN and Push-Button Configuration. The
PIN method has been shown to be vulnerable to brute-force attacks; see [Vie11].
This method and its weaknesses are briefly discussed in Section 2.5. To establish
a secure connection using the Push-Button method, the user presses a button
on each device within a certain time-frame, and the devices start broadcasting
their Diffie-Hellman public keys [DH76], which are used to agree on the encryp-
tion key to protect future communication. In [GAZK11] the authors argue that
this protocol only protects against passive adversaries. Since the key exchange
messages are not authenticated, the protocol is vulnerable to an active man-in-
the-middle (MITM) attack. To protect key establishment against these MITM
attacks, [GAZK11] presents a method called Tamper-Evident Pairing (TEP),
that provides simple and secure Wi-Fi pairing without requiring an out-of-band
communication channel (a medium, differing from the communication channel
that is used for transmitting normal data). The essence of their method is that
the chip-sets used in Wi-Fi devices offer the possibility not only to transmit data,
but also to sense the medium to detect whether or not information is commu-

2.2. Tamper-Evident Pairing 15

nicated. The correctness of the proposed protocol is based on the assumption
that an adversary can only change or corrupt data on the medium but not com-
pletely remove the data. The TEP protocol is specified in a semi-formal way; its
correctness is proven manually (i.e. on paper; not formally using e.g. a theorem
prover). However, in the protocol itself some parameters are used that are not
fully specified.

In this chapter, we investigate the TEP protocol in order to determine whether
its correctness depends on the values chosen for the unspecified parameters. In
other words, we analyse the protocol by varying the values of these parame-
ters in order to find out if there exists a combination for which correctness is
no longer guaranteed. Our analysis is done using the Spin model-checker. We
have modelled the essential part of the protocol (known as the Tamper-Evident
Announcement), and used this model to hunt for potentially dangerous combi-
nations of parameters, which indeed appeared to exist. The next step was to
explore the vulnerability boundaries, by deriving a closed predicate relating the
parameters to each other and providing a safety criterion. The derivation of this
predicate, and the verification of the resulting safety criterion, was done by us-
ing the model-checker. The contribution of our work is twofold. First, it reveals
a vulnerability of a protocol that was ‘proven to be correct’. And secondly, it
shows how model-checking can be used, not only to track down bugs, but also
to establish side-conditions that are essential for the protocol to work properly.

2.2 Tamper-Evident Pairing

The Wi-Fi Alliance has defined the Wi-Fi Protected Setup (WPS) standard
in [Wi-06]. The standard provides several options for simple configuration of se-
curity settings for Wi-Fi networks (pairing). One of them is Push-Button Config-
uration (PBC), where two devices (enrollee and registrar) are paired by pressing
a (possibly virtual) button on each of the devices within a time-out period of
two minutes. Security of this method is enclosed in the fact that the user needs
physical access to both devices. However, in [GAZK11], three vulnerabilities are
described creating opportunity for man-in-the-middle attacks:

1. Collision: An attacker can create a collision with the enrollee’s message and
send his own message immediately after.

2. Capture effect: An attacker can transmit a message at a much higher
power than the enrollee. Capture effects were first described in [WJCD00].

3. Timing control: An attacker can occupy the medium, prohibiting the en-
rollee from sending his message, and send his own message in-between.

Gollakota et al. also provide an innovative solution to the PBC security
problems in [GAZK11]. Their alternative pairing protocol is named Tamper-
Evident Pairing (TEP). It is based on the fact that Wi-Fi devices can not only
receive packets, but also simply measure the energy on the channel, as part of
the 802.11 standard requirements. This provides the opportunity to encode a bit

16 Using Model-Checking to Reveal a Vulnerability of Tamper-Evident Pairing

of information as a time-slot where energy is present or absent on the wireless
medium. Under the assumption that an attacker does not have the ability to
remove energy from the medium, this means that an attacker cannot turn an
on-slot into an off-slot.

Let us start by explicating the attacker model, i.e. the assumptions about the
adversary that we are securing the protocol against. The presence of an active
adversary is assumed, who is trying to launch a MITM attack. He/she has the
following capabilities:

Overwrite data packets The adversary can use any of the three vulnerabili-
ties listed above to overwrite data packets.

Introduce energy on the channel The adversary can introduce energy on
the channel. Energy cannot be eliminated from the wireless medium.

2.2.1 The Tamper-Evident Announcement

To facilitate TEP, Gollakota et al. introduce the Tamper-Evident Announce-
ment (TEA) primitive, which is sent in both directions: enrollee to registrar and
vice-versa. The structure of a TEA is given in Figure 2.1. It starts with the
so-called synchronisation packet. This an exceptionally long packet, filled with
random data. It is detected by the receiver by measuring a burst of energy on
the medium of at least its length (so in a manner similar to the on-off slots).
Because this packet is exceptionally long, this uniquely identifies a TEA.

synchronization packet

pay
load

CTS to
SELF

1 0 01 0 0 1…....

time

1

On-off slots

Figure 2.1: The structure of a Tamper-Evident Announcement (TEA)

The synchronisation packet is followed by the payload of the TEA, which
contains the Diffie-Hellman public key [DH76] of the sender. Then, a CTS-to-
self packet is sent. This message is part of the IEEE 802.11 specification and
requests all other Wi-Fi devices not to transmit during a certain time period,
here the time needed for the remainder of the TEA.

Finally, a hash of the payload is sent by either transmitting or refraining
from transmitting during a series of so-called on-off slots. An attacker cannot
change an on-slot into an off-slot, because he/she cannot remove energy from
the medium, but might still do the opposite. To be able to detect this as well, a

2.2. Tamper-Evident Pairing 17

specially crafted bit-balancing algorithm is applied to the 128-bit hash, prolong-
ing it to 142 bits (71 zeros and 71 ones). Now, when an off-slot is changed into an
on-slot, the balance between on and off slots is disturbed, making the tampering
detectable. The 142-bit bit-balanced hash is preceded by two bits representing
the direction of the TEA (enrollee to registrar or vice-versa). So, in total, 144
slots are sent.

2.2.2 Receiving the Slots

The sender sends out the 144 slots, which take 40 µs each, back-to-back. On the
receiver-side the slots are received by measuring energy on the wireless medium.
The receiver iteratively measures the energy on the medium, during so-called
sensing windows of 20 µs. The total number of measurements m during the
sensing window is stored, as well as the number of measurements e during which
there was energy on the medium. If the fractional occupancy, given by e/m, is
above a certain threshold then the medium is considered occupied during this
particular sensing window.

Sent hash

Energy on the medium

Fractional occupancy of the
even/odd sensing windows

1 0 10 0

1
4/20

0
0

0
16/20

1
4/20

skew
16μs

After threshold of 0.5 1
0

0
0

0
1

1
0

time

Figure 2.2: Sending and receiving the slots of a 4-bit hash. The even sensing
windows have the higher variance here. Therefore, those represent the received
hash. Clock skew (16 µs) is shown in blue on the left.

The length of a sensing window is half the slot-length. The reason for this
is that now either all the even sensing windows or all the odd sensing windows
fall entirely within a slot, i.e. do not cross slot-boundaries. This is shown in
Figure 2.2, where the even sensing windows all fall entirely within one of the
40 µs slots. Note that the figure shows the ideal case, where measurements are
exact. In reality the measurements will be less than perfect, which motivates
the use of a threshold. The use of this special method of receiving the slots is
motivated by the fact that there may be a slight clock-skew. This is shown in
Figure 2.2 on the lower-left.

18 Using Model-Checking to Reveal a Vulnerability of Tamper-Evident Pairing

After all the measurements are done and after applying the threshold, the
receiver verifies that either the even or the odd sensing windows have an equal
number of zeros and ones1. Then, the receiver checks that the received bits match
a calculated hash of the payload packet. If this is not the case, the receiver aborts
the pairing process.

2.3 Modelling the Tamper-Evident Announcement in
Spin

We use the same attacker model as the authors of [GAZK11], listed in Section 2.2.
Given that an adversary can replace the payload packet, we will try to verify
that he/she cannot adapt the bits of the hash that are received without being
detected. Namely, if the attacker manages to send his/her own payload and
adapt the hash such that it matches this payload and contains an equal number
of zeros and ones, he/she can initiate a MITM attack. The payload packet itself
is therefore not part of the model. We will only model the sending of the bit-
balanced hash. The direction bits (i.e. the first two slots) are also not modelled.
Gollakota et al. give an informal proof of the security of TEP in [GAZK11].
Effectively, we are challenging Proposition 7.2 of their proof.

We used Spin [Hol97] for the verification of the model. This section contains
illustrative fragments from the model only. The full model (including results) can
be downloaded from http://www.cs.ru.nl/R.Kersten/publications/nfm/.

2.3.1 Model Parameters

The model has a series of parameters that are described in this section.

Hash length The length of the bit-balanced hash to send. All possible hashes
of this length that are bit-balanced are tried (the balancing algorithm itself
is not part of the model).

Number of measurements per sensing window The number of measure-
ments in each sensing window depends on the Wi-Fi hardware on which the
protocol is implemented. The length of the window is 20 µs. During each win-
dow, the hardware logs the total number of clock-ticks, as well as the number
of clock-ticks during which there was energy on the wireless medium. The
number of measurements during each sensing window is thus variable. In the
model though, the number of measurements is fixed and given by a param-
eter. The reason for this is that a variable number of measurements would
highly enlarge the state-space, the number of measurements is not something

1 Actually, the variance of all the even sensing window measurements and that of all
the odd sensing window measurements is calculated. The sensing windows with the
higher variance will be the correct ones, since on and off slots are balanced. It is
however not clear to us what the advantage of this approach is over simply selecting
the sensing windows in which the on-off slots are balanced.

http://www.cs.ru.nl/R.Kersten/publications/nfm/

2.3. Modelling the Tamper-Evident Announcement in Spin 19

that an adversary can influence and that we believe it will be fairly constant
in practice. A programmer implementing the protocol could measure or cal-
culate the average number of measurements during a sensing window and
use a “safe” approximation (a little lower) in the formula. In our model, the
sender puts energy on the wireless medium for the number of clock-ticks it
takes to do the measurements for two sensing windows (the sensing window
has half the length of an on-off slot). This means that one measurement is
the unit for a clock-tick.

Sensing window threshold As explained in Section 2.2.2, bits are received
by measuring the fractional occupancy during a sensing window. It is de-
termined whether or not the medium was occupied in a sensing window
by checking if the fractional occupancy is above a certain threshold. The
value of this threshold is not defined in [GAZK11], although it influences the
measurements heavily. Since the number of measurements during a sensing
window is constant in the model, we can omit the calculation of the fractional
occupancy. This means that also the threshold should now be modelled, not
as a number between 0 and 1, but as a number between 0 and the number of
sensing window measurements and that its unit is clock-ticks (the medium
was occupied during e ticks of the discrete clock). If the number of mea-
surements (clock-ticks) in a sensing window where there was energy on the
medium exceeds the threshold, then a one is stored for this sensing window.

Skew The reason for the use of pairs of sensing windows for receiving the slots
is that there may be an inherent clock skew. It is stated in [GAZK11] that
this inherent clock skew may be up to 10 µs, i.e. half the sensing window
length. By using pairs of sensing windows, either the even or the odd win-
dows are guaranteed not to cross slot-boundaries. Furthermore, it is stated
in [GAZK11] that to detect a TEA it is sufficient to detect a burst of energy
“at least as long as the synchronisation packet”. It is not specified which
is the exact synchronisation point: the beginning or the end of the energy
pulse. Neither is the maximum length of an energy burst that signifies a
synchronisation packet. The difference with the given length of 19ms intro-
duces an extra skew. Since an adversary can introduce energy to the wireless
medium, he/she can prolong the synchronisation packet and introduce extra
skew (the sign of this skew depends on the choice of synchronisation point).
The model variable skew is the total of the inherent clock skew and this
attacker skew. Like the number of measurements and the threshold, its unit
is also clock-ticks. We only consider positive skew (forward in time) in our
model.

These parameters to the model are henceforth referred to as hash length,
sw measurements, threshold and skew, respectively.

2.3.2 Clock Implementation

Timing is essential to modelling the TEA. However, Spin has no inherent notion
of time. Luckily, in this case the exact scheduling and execution speed are not

20 Using Model-Checking to Reveal a Vulnerability of Tamper-Evident Pairing

important, as the only interaction between the sender and receiver processes is
sending energy to and reading the energy-level from the wireless medium. The
receiver observes the value of the wireless medium once per clock cycle, the
sender updates it at most once.

Due to these properties, we can implement a discrete clock in Promela (the
modelling language used by Spin), without the need to use specialised model-
checkers with native clock support. We introduce a separate clock process, which
waits until all processes using a clock are finished with a clock cycle (Listing 2.1,
line 17), before signalling them to continue. Processes are signaled to continue by
flipping the Boolean clock (line 23). Processes can only continue with the next
clock cycle if this variable differs from their local variable localclock (line 10),
which is also flipped after each clock-tick (line 11). Our clock implementation
also supports processes which do not use a clock. A clock-tick in the model
corresponds to a measurement taken by the receiver. To avoid the situation that
the receiver executes before the sender, we implemented explicit turns for the
processes, so the sender always executes first after a clock-tick. The process with
the lowest process identifier is always executed first (line 7). We can introduce
skew by letting one of the processes wait a number of clock-ticks before starting.

1 byte waiting = 0 ;
2 bool clock = false ;
3 #define useClock () bool l o c a l c l o c k = false ;
4
5 inline waitTicks (procID , numberOfTicks) {
6 byte tick ;
7 for (tick : 0 . . (numberOfTicks−1)) {
8 waiting++;
9 atomic {

10 localclock != clock ;
11 localclock = clock ;
12 waiting == procID ;
13 }
14 }
15 }
16 proctype clockProc () {
17 end :
18 do

19 : : atomic {
20 waiting == NUMBER_OF_CLOCK_PROCESSES ;
21 waiting = 0 ;
22 clock = ! clock ;
23 }
24 od ;
25 }

Listing 2.1: Modelling the clock. The useClock and waitTicks functions must
be used in processes that use the clock.

2.3. Modelling the Tamper-Evident Announcement in Spin 21

2.3.3 Model Processes

The model begins with a routine that generates all possible hashes of the given
length non-deterministically. It then starts four processes:

Clock A simple clock process is used to control the other processes. The clock
process is described in Section 2.3.2.

Sender The sender process first initialises and starts the clock. It then itera-
tively sends a bit of the generated hash (by putting energy on the medium,
or not), waits for 2 · sw measurements clock-ticks, then sends the next bit.
When finished sending, the sender must keep the clock ticking, because the
receiver process might still be running.

1 proctype sender () {
2 useClock () ;
3 waitTicks (0 , 1) ;
4 byte i ;
5 for (i : 0 . . (HASH_LENGTH−1)) {
6 mediumSender = get (i) ; //send slot

7 waitTicks (0 , SW_MEASUREMENTS ∗2) ;
8 }
9 doneWithClock (0) ;

10 }

Listing 2.2: Sender model.

Receiver The receiver also begins with initialising and starting the clock. It
then introduces clock skew by waiting skew more ticks. Then, it measures
energy on the medium sw measurements times (once every clock-tick) and
stores the received bit for each sensing window (one if e is above threshold).
Note that the model of the wireless medium consists of two bits: one that
is set by the legitimate sender and one that is set by the adversary. The
receiver reads energy if either bit is set. Once measurements for all sensing
windows are done, the checkHash() function verifies if either the even or
the odd sensing windows have an equal number of on and off slots.

1 receiver () {
2 useClock () ;
3 waitTicks (1 , SKEW+1);
4 short sw ;
5 for (sw : 0 . . (HASH_LENGTH∗2−1)) {
6 byte e = 0 , ticks = 0 ;
7 for (ticks : 0 . . (SW_MEASUREMENTS−1)) {
8 e = e + (mediumSender | | mediumAdversary) ;
9 waitTicks (1 , 1) ;

10 }
11 store (sw , e>THRESHOLD) ;
12 }

22 Using Model-Checking to Reveal a Vulnerability of Tamper-Evident Pairing

13 checkHash () ;
14 }

Listing 2.3: Receiver model.

Adversary The adversary is modelled as a simple process that increases the
energy on the medium, then decreases it again. Because processes may be
interleaved in any possible way, this verifies all scenarios.

1 proctype adversary () {
2 end :
3 do

4 : : mediumAdversary = 1 ;
5 mediumAdversary = 0 ;
6 od

7 }

Listing 2.4: Adversary model.

2.4 Model-Checking Results

Verification of the model means stating the assertion that either 1) the received
hash is equal to the sent hash, or 2) the received hash is not equal to the sent
hash, but the tampering by the adversary is detected (because the number of
ones in the hash is unequal to the number of zeros). It is thus a search for a
counter-example.

The expectation was that we might be able to find such a counter-example,
but that the freedom with which an adversary could modify the received hash
would be limited, probably to just the first or last bit. Model-checking indeed
generated a counter-example. Moreover, experimentation with different asser-
tions turned out that the adversary actually has more freedom in modifying the
hash than expected. This vulnerability is described in Section 2.4.1. After the
vulnerability was discovered, we executed a large series of Spin runs to discover
what the exact conditions are that enable such an attack. The results are given
in Section 2.4.2.

2.4.1 Revealed Vulnerability in the TEA

Model-checking the TEA model using Spin generated a counter-example to the
assertion that a hash that was modified by an adversary will not be accepted by
the receiver. In Figure 2.2, where no adversary is active, the even sensing windows
still have the higher variance (1001 versus 0010). Thus, those are chosen as the
correct slots and the hash 1001 is received, which is equal to the sent hash. In
Figure 2.3 a scenario is shown in which an adversary actively introduces energy
on the wireless medium. The energy that is introduced by the attacker is shown

2.4. Model-Checking Results 23

as a dotted blue line. He/she manages to trick the receiver into choosing the odd
sensing windows and consequently receive a modified hash: 1010.

Sent hash

Fractional occupancy of the
even/odd sensing windows

1 0 10 0

1
1

1
0

0
16/20

1
4/20

skew
16μs

After threshold of 0.5 1
1

1
0

0
1

1
0

time

Sent hash

Energy on the medium

Fractional occupancy of the
even/odd sensing windows

1 0 10 0

1
4/20

0
0

0
16/20

1
4/20

skew

After threshold of 0.5 1
0

0
0

0
1

1
0

time

Energy on the medium

Introduced by the adversary

Figure 2.3: The attack found by model checking, for a 4-bit hash. The adversary
introduces energy to the medium to change the received hash to 1010.

Experimentation with modified assertions has confirmed our conjecture that
an adversary can use this tactic to change a 1 bit in the hash to a 0, if and only
if it is immediately followed by a 0. Note, however, that the results an attacker
can achieve are constrained by the original hash, since he/she can only change
the value of all bits to the subsequent value at the same time. In case the hash
starts with a 1-bit (i.e. in 50% of the cases), this modified hash has a single 0-bit
extra. In that case, the attacker can place a 1-bit in a location of his/her choice.

2.4.2 Varying the Values of the Model Parameters

After discovering the vulnerability described in the previous section, we wanted
to investigate what the exact circumstances are in which the vulnerability oc-
curs. We therefore ran the Spin model-checker for many different values of the
parameters hash length, sw measurements, threshold and skew2. Some of the
results are shown in Table 2.1. As it turns out, the length of the hash has no in-
fluence on the occurrence of the vulnerability, so this is omitted from the results.
Remember that the unit for all three parameters in the table is clock-ticks.

It is obvious from Table 2.1 that the following predicate determines the pos-
sibility of an attack:

skew ≥ sw measurements− threshold (2.1)

2 In order to run the Spin model-checker for various values of defined parameters, we
have implemented a small wrapper in the form a of C program. This wrapper can
be obtained from http://www.open.ou.nl/bvg/spinbatch/.

http://www.open.ou.nl/bvg/spinbatch/

24 Using Model-Checking to Reveal a Vulnerability of Tamper-Evident Pairing

threshold = 3
skew

0 1 2 3 4 5 6 7 8 9 10

4 + - - - - - - - - - -
5 + + - - - - - - - - -
6 + + + - - - - - - - -

sw meas. 7 + + + + - - - - - - -
8 + + + + + - - - - - -
9 + + + + + + - - - - -
10 + + + + + + + - - - -

(a) Results for threshold = 3.

threshold = 5
skew

0 1 2 3 4 5 6 7 8 9 10

6 + - - - - - - - - - -
7 + + - - - - - - - - -

sw meas. 8 + + + - - - - - - - -
9 + + + + - - - - - - -
10 + + + + + - - - - - -

(b) Results for threshold = 5.

threshold = 7
skew

0 1 2 3 4 5 6 7 8 9 10

8 + - - - - - - - - - -
sw meas. 9 + + - - - - - - - - -

10 + + + - - - - - - - -

(c) Results for threshold = 7.

threshold = 9
skew

0 1 2 3 4 5 6 7 8 9 10

sw meas. 10 + - - - - - - - - - -

(d) Results for threshold = 9.

Table 2.1: Model-checking results. Pluses indicate that the proposition is not
broken. Minuses indicate the occurrence of the vulnerability.

In Figure 2.3, a threshold of 0.5 is used, which is represented by a value for
threshold of 1

2 · sw measurements in the model. If the skew is large enough to
move a number of threshold measurements of the even windows over the sensing
window boundary, then an adversary might change the received hash. We have
model-checked the predicate for all combinations of sw measurements 1–10,
threshold 1–10 and skew 1–10.

2.5 Related Work

Before the Spin model on which this article is based was made, a simple model
of the TEA and TEP in Uppaal was made by Drijvers [Dri12]. Uppaal is a tool
with which properties about systems modelled as networks of timed automata
can be verified [BLL+96]. Because of the simple nature of this model, it did not
include clock skew and therefore did not reveal the vulnerability that was later
found using Spin. Apart from the TEA, Drijvers made a separate model of the
overlying TEP, with which – under the assumption that the TEA is secure –
no problems were identified. Since TEP was already successfully model-checked
using Uppaal and, contrary to the TEA model, not in a highly abstract form
(it is much simpler), we chose not to repeat the modelling for Spin.

In [BD98], a method is proposed for modelling a discrete clock in Promela,
without the need to alter Spin. Instead of an alternating Boolean, time is mod-
elled as an integer which negatively impacts the state space explosion. Just as

2.6. Conclusions 25

with our approach a separate clock is introduced, which waits until all the other
processes are finished, before increasing the discrete clock variable. This waiting
is modelled with a native feature of Promela, which only continues if no other
state-transition can be made (the timeout keyword). Therefore, all the processes
are implicitly using the modelled clock. Because of our general adversary process,
this restriction is too severe for us.

Many approaches to pairing wireless devices are described in the literature.
A comparison of various wireless pairing protocols is given in [SVA07]. Often, a
trusted out-of-band channel is used to transfer (the hash of) an encryption key,
e.g. a human [KFR09], direct electrical contact [SA02], Near-Field Communica-
tion [MGH07], (ultra)sound [MG07], laser [MW07], visual/barcodes [SEKA06],
et cetera. A nice overview is given in [KST+09]. In TEP, a hash of the key is
communicated in a trustedly secure manner in-band.

When using the PIN method that Wi-Fi Protected Setup provides, one of the
devices displays an eight-digit authentication code, which the user then needs
to enter on the other device. This method thus requires a screen and some sort
of input device. The PIN method has been shown to be vulnerable to feasible
brute-force attacks by Viehböck in [Vie11]. The reason for this is that the last
digit is actually a check-sum of the first seven digits (i.e. there are only seven
digits to verify) and, moreover, that the PIN is verified in two steps. The result
of the verification of the first four digits is sent back to the enrollee, which may
then send three more digits if this result was positive. This reduces the number
of codes to try in a brute-force attack from 107 to 104 + 103. A successful attack
can be executed in approximately two hours on average. CERT-CC has urged
users to disable the WPS feature on their wireless access points in response to
this vulnerability3. A security and usability analysis of Wi-Fi Protected Setup,
as well as Bluetooth Simple Pairing, which is similar, is given in [KWP07].

Approaches to model-checking security protocols are described in [Low98]
and [ACC09]. In [ML08], a series of XSS and SQL injection attacks is detected
using model-checking. Model-checking and theorem proving of security proper-
ties are discussed in [Mar98]. In [RA00], security issues that arise from combining
hosts in a network are investigated using model-checking. An entire Linux dis-
tribution is model-checked against security violations in [SCW+05].

2.6 Conclusions

The effects of a number of decisions to be made when implementing Tamper-
Evident Pairing have been studied. In particular, the sending of a hash by using
on-off slots – in which energy is present or absent on the wireless medium – was
modelled. The values of several essential parameters of the protocol have not
been adequately specified. Model checking proved to be very effective both in
uncovering a vulnerability for certain values of these parameters and in finding
a predicate on the parameters indicating for which values the vulnerability

3 http://www.kb.cert.org/vuls/id/723755

http://www.kb.cert.org/vuls/id/723755

26 Using Model-Checking to Reveal a Vulnerability of Tamper-Evident Pairing

Future work could include extending the model to cover more of the TEA
and constructing a full formal proof that the found vulnerability can only occur
if the discovered predicate is satisfied. Furthermore, it would be interesting to
investigate the feasability of exploiting the found vulnerability in practice. Unfor-
tunately, there is currently no publicly available implementation of the protocol,
so this would require significant software engineering.

Chapter 3

Improving Coverage of
Test-Cases Generated by
Symbolic PathFinder for
Programs with Loops

Abstract. Symbolic execution is a program analysis technique that is
used for many purposes, one of which is test-case generation. For loop-free
programs, this generates a test-set that achieves path coverage. Program
loops, however, imply exponential growth of the number of paths in the
best case and non-termination in the worst case. In practice, the number
of loop unwindings needs to be bounded for analysis.
We consider symbolic execution in the context of the tool Symbolic
Pathfinder. This tool extends the model-checker Java Pathfinder and re-
lies on its bounded state-space exploration for termination. We present
an implementation of k-bounded loop unwinding, which increases the
amount of user-control over the symbolic execution of loops.
Bounded unwinding can be viewed as a naive way to prune paths through
loops. When using symbolic execution for test-case generation, naively
pruning paths is likely at the cost of coverage. In order to improve cov-
erage of branches within a loop body, we present a technique that semi-
automatically concretises variables used in a loop. The basic technique is
limited and we therefore present annotations to manually steer symbolic
execution towards certain branches, as well as ideas on how the technique
can be extended to be more widely applicable.

3.1 Introduction

Embedded software is hard to update in case errors are detected after release.
Moreover, it is often used in safety-critical and mission-critical settings. It is
therefore highly important to find errors during the development process. Test-
ing is the most widely used technique for detecting faults in software. Software

28 Improving Coverage of Test-Cases Generated by Symbolic PathFinder

companies often dedicate over 50% of development time to testing. For safety-
critical applications, this number is even larger. Composing an extensive set of
test inputs is a complicated task, as the test-designer must achieve some form
of coverage. For instance, statement coverage requires that all statements in the
program have been executed at least once.

Symbolic execution is a well-known technique from program analysis, which
can be used for test-case generation. In symbolic execution, a program is executed
with symbols in place of concrete input. A path-condition is maintained, i.e.,
updated on each branch, that indicates the constraint under which this path
is followed. Effectively, this means that if the generated constraints lie within
the set of decidable theories, symbolic execution enumerates all paths through
the software and the generated test-cases provide full path-coverage. However,
in programs with loops, any extra iteration of a loop introduces a new path,
introducing exponential growth in the number of paths. Moreover, in loops that
depend on input values, the number of paths may be infinite (81.8% of loops
in the applications studied in survey paper [XLXT13] by Xiao et al. are input-
dependent). Therefore, in practice, symbolic execution has to be bounded. Since
in general, it is impossible to know a priori how many iterations are needed to
enter certain branches, this means that likely, any notion of coverage is lost.

We consider symbolic execution in the context of a specific tool, namely
Symbolic Pathfinder (SPF) [PR10], which combines the model-checker Java
Pathfinder [HP00] with symbolic execution and constraint solving to, among
other objectives, generate test-cases. SPF currently implements bounding of the
search-space that is explored by the model-checker, rather than bounded unwind-
ing of loops. This means that the number of unwindings of loops is affected by
the structure and complexity of the surrounding code. It is therefore hard to pre-
dict the number of unwindings for a particular loop, especially if other loops are
present. We present the implementation of a more flexible and intuitive bound-
ing mechanism for loops: k-bounded unwinding. Using this algorithm makes it
possible to unwind the same number of iterations for each loop. Additionally, we
present an annotation to specify k-bounds that are loop-specific.

Both types of bounding (loop bounding and search space bounding) may
cause important paths through a program to be missed by SPF. When used
to generate a set of test-cases, this means that the test-set will not cover all
branches in the loop body. Paths are pruned by naively dropping all with more
than k iterations, which can make it very complicated to achieve high coverage.
We strive to improve the object branch coverage of the set of test-cases generated
by SPF.

Definition 1. A set of test-inputs provides object branch coverage if running
the program for those test-inputs executes every branch in the object code level
control-flow graph.

Since in the object code level control-flow graph (CFG), evaluation of a con-
dition such as b1 ∧ b2 amounts to two CFG nodes, as opposed to a single node
in the source code level CFG, object branch coverage implies branch coverage.

3.1. Introduction 29

Object branch coverage is thus a more rigorous coverage metric than source-level
branch coverage.

We present an annotation which can be used to concretise symbolic variables.
This can be used to fix symbolic variables to a set of concrete values that cover
all branches in the loop body. Furthermore, we present a technique which can
infer these cases for loops that are independent of context. The approach has
limitations, but represents a step in improving the object branch coverage of the
generated test-set. Our contribution is thus threefold:

1. An implementation of k-bounded unwinding of loops in SPF.

2. Annotations to concretise variables upon loop entry.

3. An experimental method to semi-automatically infer such annotations, based
on out-of-context symbolic execution of the loop body.

We have implemented k-bounding and concretisation using Java annotations
in Java Pathfinder. The source code for this extension can be found here:
http://www.cs.ru.nl/R.Kersten/jpf-symbc-loops.tar.gz.

3.1.1 Related Work

Symbolic execution for software testing is surveyed in [CGK+11]. Various exten-
sions to classical symbolic execution and state-of-the-art tools are discussed.

Verification of program properties using SPF is discussed in [PV04]. Loops
are handled using invariants. Verification of a post-condition of a loop can be
simplified to verification of 1) the loop invariant before executing the loop (base
case), 2) the loop invariant after a generic iteration using symbolic execution
(inductive case) and 3) implication of the post-condition from the invariant. The
first two steps prove that the loop invariant is correct. The third step proves the
post-condition follows from the invariant.

Gladisch describes a method to generate a test-set with full feasible branch
coverage, using the theorem prover KeY in [Gla08]. It requires that strong pre-
conditions, post-conditions and loop invariants are supplied and leverages the
theorem prover to replace symbolic execution of a loop by the application of a
loop invariant rule. Several types of preconditions are formed for loops, which
guarantee the execution of all branches in and after the loop.

Trt́ık presents a technique for handling loops in symbolic execution in [Trt13].
He introduces path counters with update paths (increment by one) and reset
paths (set to zero). Symbolic values of program variables can then be expressed
in terms of these counters. This theoretically tackles the problem in part, but
more complex loops quickly result in non-linear constraints which are expensive
to solve or even undecidable.

A survey on loop problems for dynamic symbolic execution (DSE) is given
in [XLXT13]. DSE executes the program using concrete random inputs and col-
lects the path condition on the side. An interesting result is that 81.8% of loops in
the studied applications are dependent on input, thus possibly non-terminating.

http://www.cs.ru.nl/R.Kersten/jpf-symbc-loops.tar.gz

30 Improving Coverage of Test-Cases Generated by Symbolic PathFinder

The most common way to deal with this type of loops is bounded iteration, solv-
ing the termination problem at the cost of completeness of the generated test-set.
Search-guiding heuristics can be used to guide symbolic execution to certain “in-
teresting” paths, making the pruning less naive. A more complex approach is to
create loop summaries: a set of formulas based on loop invariants and induction
variables that summarises the effects of the loop. This is a complex task which
is infeasible for many loops. In fact, the state-of-the-art loop summarising al-
gorithm presented in [GL11] can only summarise 6 out of 19 input-dependent
loops in their experiment. Single-path symbolic execution is a variation of DSE,
in which a set of executions which follow the same control-flow path is consid-
ered. It is extended with a mechanism for loops in [SPMS09]. Iteration counters
named trip count variables are introduced that can be linked to a known input
grammar. It is shown that this is a powerful tool for finding problems such as
buffer overflow vulnerabilities.

3.2 Bounding Loops in SPF

In this section we present our implementation of k-bounded unwinding of loops
in SPF. Consider the method in Listing 3.1. As i is assigned a symbolic value,
symbolic execution of this program iterates the loop infinitely many times. In
practice, symbolic execution is bounded. SPF currently does not implement
bounding itself, but instead relies on the bounded state-space exploration im-
plemented in Java Pathfinder. This means that the number of unwindings of
loops is affected by the structure and complexity of the surrounding code.

1 boolean m (int i) {
2 boolean b = false ;
3 while (i > 0) {
4 if (i== 10)
5 b = true ;
6 i−−;
7 }
8 return b ;
9 }

Listing 3.1: Example program with a loop.

To cover all branches, it is desired to unwind the loop in Listing 3.1 at least
10 times. Say we have a simple main method that initialises the object and then
calls this method on it. If we set the depth-limit on the number of explored
states to 4, the loop will be unwound only once, because of the other states
on the path related to calling the method from the main function. The depth
bound is based on the number of ChoiceGenerator objects that are encountered
by Java Pathfinder. It cannot distinguish between choices related to a loop
or other points of non-determinism. It gets harder to estimate the number of
unwindings when there are other choice points on the path. Say, if there was a

3.2. Bounding Loops in SPF 31

single if-statement after the loop, a depth-limit of 5 would be needed to unwind
the loop once. Moreover, the number of choice points may differ between paths.
Therefore, a different number of iterations might be unwound for the same loop
in different paths. This makes it very hard to control the number of unwindings
that will actually be done for a given loop.

3.2.1 K-Bounded Unwinding

We implemented k-bounded unwinding in SPF, in a listener called the KBound-

edSearchListener. When this class is initialised, the CFG is built and the
dominance set is calculated, in order to detect headers and back-edges of loops
(a loop header is the single point of entry into the loop). A node n1 dominates a
node n2 if all paths from the entry node to n2 go through n1. If an edge exists in
the CFG from n to h and h dominates n, then the edge is the back-edge of a loop
with header h. Note that there may be several back-edges into the same loop
header. This loop detection algorithm is implemented in the LoopFinder class.
Headers are stored in objects of the Location class, which combines a method
name and an instruction position. The instructions of the choice points follow-
ing the loop headers are also stored, because that is where the actual branching
occurs (loop headers typically consist of a load instruction).

The listener then counts the number of unwindings of each loop, using a
stack, by listening for registered ChoiceGenerator objects. These are objects
that Java Pathfinder uses to navigate over decisions, where paths branch.
When the k-bound is reached for a certain loop, the remaining paths through
this loop are pruned by setting the next ChoiceGenerator to done.

Bounded unwinding is activated by adding the KBoundedSearchListener

to the Java Pathfinder configuration and setting the configuration option
kbound=K, where K is the maximal number of unwindings. The implementation
currently is limited to intra-procedural analysis (only loops within the analysed
method itself are detected and bound, not those in called methods). An inter-
procedural version will be implemented in the near future.

3.2.2 Specifying Loop-Specific Bounds

In some cases, one might want a certain loop to be unwound more than others,
or maybe it is clear that unwinding it only once is enough. For those cases we
have added an annotation to express loop-specific bounds. It is added to the
header of a Java method and has the following syntax:

@KBound(k = {“N1 : b1”, . . . ,“Nn : bn”})
where each Ni is a loop identifier, determined by the order of loop headers from
the top of the method in its source code, and each bi is an integer bound. For
instance, to limit unwinding of the second loop in a method to 1, the following
annotation can be used:

@KBound(k = {“2 : 1”})

32 Improving Coverage of Test-Cases Generated by Symbolic PathFinder

3.3 Concretising Loop Variables

Typically, when symbolically executing a loop, up to a fixed number of k it-
erations are unwound and the path condition includes propositions expressing
the number of unrolled iterations. For example i > 0 ∧ i − 1 > 0 ∧ i − 2 ≤ 0
signifies two unrolled iterations for the example in Listing 3.1. As the number of
iterations of loops is potentially infinite, a selection of paths through loops needs
to be pruned. Unwinding of loops up to a given bound can often be ineffective
in achieving our testing goals, e.g. object branch coverage.

Since we are considering symbolic execution in the context of test-case gener-
ation, we are interested in obtaining test-sets with better coverage. We therefore
propose to prune paths through loops based on object branch coverage of the
loop body. Our technique is inspired by [PV04], in which a loop body is symbol-
ically executed with fresh symbols in order to prove a loop invariant. It consists
of the following steps:

1. Symbolically execute the loop body out-of-context, i.e., with fresh symbols.

2. Solve the generated path conditions to obtain a model for each of them.

3. Concretise the values of the variables by adding the concrete values to the
path condition (e.g., for models i = 0 and i = 1 we add i = 0 ∨ i = 1).

Thanks to using fresh symbols for program variables, the search will not be
biased to their symbolic values before entering the loop. The result of step 1 is a
set of path conditions, capturing all behaviours that one iteration of the loop can
exhibit. Models for these path conditions can then be found using off-the-shelf
constraint solvers. By concretising the symbolic variables to these models, we
prune all other paths, making the search-space finite. Concretisation can thus
replace other bounding methods. Note, however, that all iterations corresponding
to the bound will need to be unrolled. For instance, if for our running example,
a model m is found, the loop needs to be unrolled m times.

Only variables that are used in the loop body or loop guard should be concre-
tised. Otherwise, symbolic execution will settle on a limited set of paths through
the entire program. These are also the only variables that need to be fresh for
the out-of-context symbolic execution. Variables for which the model is not con-
strained by the path condition will also not be concretised, as these do not
influence the flow of control in the loop.

3.3.1 Example

Consider the Java method in Listing 3.1. If regular k-bounded unwinding is
applied to this loop with k < 10, not all paths are explored. For example, with

3.3. Concretising Loop Variables 33

k = 2, the following 3 path conditions are generated:

i ≤ 0 (3.1a)

i > 0 ∧ i 6= 10 ∧ i− 1 ≤ 0 (3.1b)

i > 0 ∧ i 6= 10 ∧ i− 1 > 0 ∧ i− 1 6= 10 ∧ i− 2 ≤ 0 (3.1c)

Using the Yices solver, we get models i = 0, i = 1 and i = 2. The branch
where b is assigned the value true is missed. Let us now take the loop body
out of context. A new Java method containing the extracted body is shown in
Listing 3.2. The while statement has been replaced by an if, because we want
to consider only the loop body, but still want the resulting models to satisfy the
loop guard (except for the single model that we also need in which the loop is
not entered at all).

1 void outofcontext (int i , boolean b) {
2 if (i > 0) {
3 if (i== 10)
4 b = true ;
5 i−−;
6 }
7 }

Listing 3.2: The loop body from Listing 3.1, taken out of context.

Symbolic execution of this extracted loop body results in the following path
conditions:

i ≤ 0 (3.2a)

i > 0 ∧ i 6= 10 (3.2b)

i > 0 ∧ i = 10 (3.2c)

Using the Yices solver, we get models i = 0, i = 9 and i = 10. Because
there are no statements before the loop in our program, we can simply use these
symbols in the path condition as-is. In general, a mapping to the original symbols
is needed, which is explained in Section 3.3.2.

The paths through the loop can now be pruned in a more informed man-
ner which enables object branch coverage by adding the models to the path
condition. One can think of this as adding the following assumption before the
loop:

assume (i==0 || i==9 || i==10);

Note that using the path conditions instead of the models would not prune
the paths. A k-bound with k ≥ 10 would still be needed to cover all branches.

3.3.2 Annotations in SPF

Whether determined by out-of-context symbolic execution or by hand, the mod-
els for concretisation of loop variables can be expressed with a special annotation.

34 Improving Coverage of Test-Cases Generated by Symbolic PathFinder

It is added to the header of a Java method and has the following syntax:

@UseModels(models = {C1, . . . , Ck})

where each Cx represents a concretisation string:

Cx := “Nx.[v
x
1 , . . . , v

x
j]→ [mx

1 , . . . ,m
x
j]”

where Nx is the identifier of a loop (determined by the order of loop headers
from the top of the method in its source code), vxa is a program variable to be
concretised and mx

a the model to concretise it to. In each of the k concretisation
strings, several variables may be concretised that might differ from the other
concretisation strings. When only a single variable and model combination is
used, brackets may be omitted. As an example, to concretise i to 20 in the first
loop of a method one can use the following annotation:

@UseModels(models = {”1.i→ 20”})

When concretising, an equality between the value specified in the model and
the symbolic value of the program variable upon entry to the loop is added to the
path condition. In other words, if the value of a program variable i is i+3 before
the loop and there is an annotation that i should be concretised to 20, then
20 = i+ 3 is added to the path condition. When symbolically executing nested
loops, the variables in the inner loop are concretised and used in the subsequent
out-of-context symbolic execution of the outer loops.

3.3.3 Limitations

The concretisation approach to handle loops has two major limitations. We dis-
cuss these here, including ideas on how we intend to address them in the future.
Given these limitations, it is recommended to use the loop concretisation tech-
nique for test-case generation in combination with a coverage checker. Such a tool
can check if the test-set achieves object-branch coverage and point to branches
that are missed. The user can then go back and add annotations to direct SPF
to improve the generated test-set.

Context-dependence. Out-of-context symbolic execution finds models for the out-
of-context loop body. In cases such as the running example of this chapter, adding
these models to the path condition achieves object branch coverage, because the
execution of the loop does not depend on this context. However, when the execu-
tion of the loop-body is dependent on the context, the models may be infeasible
and the search will back-track. Consider, for instance, the loop in Listing 3.3. This
method is taken from the Java prototype of the Airborne Coordinated Conflict
Resolution and Detection (ACCoRD) framework developed and maintained by
the NASA Langley formal methods group4. This is a framework for formal speci-
fication and verification of state-based airspace separation assurance algorithms.

4 http://shemesh.larc.nasa.gov/people/cam/ACCoRD/

http://shemesh.larc.nasa.gov/people/cam/ACCoRD/

3.3. Concretising Loop Variables 35

This specific method estimates the change of vertical speed from a sequence of
velocity vectors stored in the containing object. The numPtsVsRateCalc param-
eter specifies the number of data points used in the calculation of the average
and the method returns the vertical acceleration. The sign of the return value
indicates the direction of the acceleration.

1 public double avgVsRate (int numPtsVsRateCalc) {
2 int n = size () ;
3 if (numPtsVsRateCalc < 2) numPtsVsRateCalc = 2 ;
4 int numPts = Math . min (numPtsVsRateCalc , n) ;
5 double vsLast = 0 ;
6 double tmLast = 0 ;
7 double vsRateSum = 0 . 0 ;
8 for (int i = n−1; i > n−numPts−1 && i >= 0 ; i−−) {
9 StateVector svt = get (i) ;

10 double vs = svt . v () . vs () ;
11 double tmTr = time (i) ;
12 if (i < n−1) {
13 double vsRate = (vs−vsLast)/ (tmTr−tmLast) ;
14 vsRateSum = vsRateSum + vsRate ;
15 }
16 vsLast = vs ;
17 tmLast = tmTr ;
18 }
19 if (numPts < 2) return 0 ;
20 else return vsRateSum /(numPts−1);
21 }

Listing 3.3: Loop for which its execution is dependent on its context, taken from
the ACCoRD conflict resolution and detection framework.

If we analyse the body of the loop at lines 8–18 out-of-context, we get the
following models (each row corresponds to a path through the loop body; other
variables are omitted because they do not influence the control-flow in the loop
and are therefore not concretised):

i n numPts

47 89 97
0 0 0

-24 -43 89
-77 86 92

The problem with these models is that the value of numPts is defined as
the minimum of numPtsVsRateCalc and n on line 4, but none of these models
except for the one with all zeros satisfy the consequential constraint numPts ≤ n.
Furthermore, the path condition upon entry to the loop will contain a constraint

36 Improving Coverage of Test-Cases Generated by Symbolic PathFinder

i = n− 1, as this is what i is initialised to on line 8. This constraint is also not
satisfied by any of the models. Therefore, when we add the constraints for these
models to the path condition, symbolic execution will find none of the paths
through the loop feasible.

We intend to create a refinement loop, which iteratively refines the constraint
to for which a model must be found. The constraint is first set to the path
condition of the path we are working on. The model that is found by the solver is
then checked against the path conditions of the paths leading to the loop. If all of
these conflict with the model, the constraint is strengthened with the conflicting
sub-constraint of the path conditions. Complexity lies in finding this conflicting
sub-constraint. Furthermore, we will introduce an annotation to specify whether
or not loop variable concretisation should be used.

Iteration-count dependence. Consider the example in Listing 3.4. There is only
a single path through the loop body. Its path condition is i > 0 and a model
is i = 1. When considering only this path, the path where the method does
“something” (line 8) is missed.

1 void m (int i) {
2 int j = 0 ;
3 while (i > 0) {
4 j++;
5 i−−;
6 }
7 if (j== 20) {
8 //do something
9 }

10 }

Listing 3.4: Loop which shows dependence on iteration count.

In this case, the problem can be solved by using a manual annotation that
states that i should be concretised to 20. There may also be branching in the
loop that only occurs for a particular iteration, the conditional on line 12 of
Listing 3.3 is an example of this. The condition used in this case is true for any
path, except for the first one. Such a case may be solved by setting a k-bound
that is high enough.

The general case, where a branch may occur after n iterations, is equivalent
to the halting problem. However, this does not mean that certain cases may not
be tackled. An idea to improve this, is to add the iteration count as a variable
to symbolic execution or detect induction variables, as is done e.g. in [Trt13]
and [GL11]. The symbolic value of variables can then be expressed using the
number of iterations of each loop.

3.4. Conclusions 37

3.4 Conclusions

We have presented a series of improvements to the loop-handling capabilities of
Symbolic Pathfinder:

• An implementation of k-bounded unwinding of loops.
• The loop concretisation technique, which symbolically executes the loop

body out-of-context, then concretises the variables to the found models.
• Novel annotations to direct symbolic execution towards branches that may

otherwise be missed.

The loop concretisation technique has two major limitations: 1. when loops
are context-dependent, and 2. when program variables are dependent on the
number of loop iterations. We suggest some extension ideas to address these
limitations.

The problem of pruning paths through loops is a notoriously hard one. A
large body of literature on the topic exists and no proposed solution is complete.
Our work represents a series of small steps towards better treatment of loops.

Future Work. We will develop the ideas discussed in Section 3.3.3 of this chap-
ter and implement them in SPF. Furthermore, in [PDEP08, MPR12, RPB12,
BPRT13], an extension to SPF is discussed that compares software versions and
generates test-cases for paths that are impacted by changes only. This incremen-
tal analysis implies a significant reduction in the number of generated test-cases.
Extensions of our method that are specific for incremental analysis can poten-
tially reduce this number even further and improve object branch coverage.

Chapter 4

A Hoare Logic for Energy
Consumption Analysis

Abstract. Energy inefficient software implementations may cause bat-
tery drain for small systems and high energy costs for large systems.
Dynamic energy analysis is often applied to mitigate these issues. How-
ever, this is often hardware-specific and requires repetitive measurements
using special equipment.

We present a static analysis deriving upper-bounds for energy consump-
tion based on an introduced energy-aware Hoare logic. Software is con-
sidered together with models of the hardware it controls. The Hoare logic
is parametric with respect to the hardware. Energy models of hardware
components can be specified separately from the logic. Parametrised with
one or more of such component models, the analysis can statically pro-
duce a sound (over-approximated) upper-bound for the energy-usage of
the hardware controlled by the software. The analysis is implemented in
the tool ECAlogic.

4.1 Introduction

Power consumption and green computing are nowadays important topics in IT.
From small systems such as wireless sensor nodes, cell-phones and embedded
devices to big architectures such as data centres, mainframes and servers, en-
ergy consumption is an important factor. Small devices are often powered by a
battery, which should last as long as possible. For larger devices, the problem
lies mostly with the costs of powering the device. These costs are often amplified
by inefficient power-supplies and cooling of the system.

Obviously, power consumption depends not only on hardware, but also on
the software controlling the hardware. Currently, most of the methods available
to programmers to analyse energy consumption caused by software use dynamic
analysis: measuring while the software is running. Power consumption measure-
ment of a system and especially of its individual components is not a trivial task.

40 A Hoare Logic for Energy Consumption Analysis

A designated measuring set-up is required. This means that most programmers
currently have no idea how much energy their software consumes. A static anal-
ysis of energy consumption would be a big improvement, potentially leading to
more energy-efficient software. Such a static analysis is presented in this chapter.

Since the software interacts with multiple components (software and hard-
ware), energy consumption analysis needs to incorporate different kinds of anal-
ysis. Power consumption may depend on hardware state, values of variables and
bounds on the required number of clock-cycles.

Related Work There is a large body of work on energy-efficiency of software.
Most papers approach the problem on a high level, defining programming and
design patterns for writing energy-efficient code (see e.g. [Alb10, Sax10, Ran10]).
In [tBMB+13], a modular design for energy-aware software is presented that is
based on a series of rules on UML schemes. In [CZSL12] and [SDF+11], a program
is divided into “phases” describing similar behaviour. Based on the behaviour of
the software, design level optimisations are proposed to achieve lower energy
consumption. A lot of research is dedicated to building compilers that optimise
code for energy-efficiency, e.g. in GCC [ZBA+09] or in an iterative compiler
[GCB05]. Petri-net based energy modelling techniques for embedded systems
are proposed in [JNM+06] and [NMT+11].

Analyses for consumption of generic resources are built using recurrence rela-
tion solving [AAG+08], amortised analysis [HAH11], amortisation and separation
logic [Atk10] and a Vienna Development Method style program logic [ABH+07].
The main differences with our work are that we include an explicit hardware
model and a context in the form of component states. This context enables the
inclusion of state-dependent energy consumption.

Relatively close to our approach are [JML06] and [KLG+13], in which en-
ergy consumption of embedded software is analysed for specific architectures
([JML06] for SimpleScalar, [KLG+13] for XMOS ISA-level models), while our
approach is hardware-parametric. Several tools perform a static analysis of the
energy-consumption of the CPU based on per-instruction measurements, such
as JouleTrack [SC01] and Wattch [BTM00]. Furthermore, tools exist for en-
ergy profiling of software libraries, i.e. using dynamic analysis [KZ08]. SEProf
is an advanced tool that combines dynamic profiling with static estimation of
energy consumption [TC12]. One difference is that, while our analysis is geared
towards complete systems, SEProf only estimates the energy usage of the CPU.
Moreover, while SEProf estimates energy-usage, our analysis gives bounds that
are sound with respect to the hardware model.

In [tMB+14], an abstraction of the resource behaviour of components is pre-
sented, called Resource-Utilisation Models (RUMs). Our component models can
be viewed as an instantiation of a RUM. RUMs can be analysed, e.g., with the
model checker Uppaal. A possible future research direction is to find a way to
analyse also algorithms with RUMs as component models.

4.2. Modelling Hybrid Systems 41

Our Approach Contrary to the approaches above, we are interested in stat-
ically deriving bounds on energy-consumption using a novel, generic approach
that is parametrised with hardware models. Energy consumption analysis is an
instance of resource consumption analysis. Other instances are worst-case exe-
cution time [WEE+08], size [SvEvK09], loop bound [SKVE10, KvGS+14] and
memory [KvGS+14] analysis). The focus of this chapter is on energy analysis.
Energy consumption models of hardware components are input for our analysis.
The analysis requires information about the software, such as dependencies be-
tween variables and information about the number of loop iterations. For this
reason we assume that a previous analysis (properly instantiated for our case)
has been made deriving loop bounds (e.g. [PR04, KvGS+14]) and variable de-
pendency information (e.g. [HTS08]).

Our approach is essentially an energy-aware Hoare logic that is proven sound
with respect to an energy-aware semantics. Both the semantics and the logic
assume energy-aware component models to be present. The central control is
however assumed to be in the software. Consequently, the analysis is done on
a hybrid system of software and models of hardware components. The Hoare
logic yields an upper bound on the energy consumption of a system of hard-
ware components that are controlled by software. It is implemented in the tool
ECAlogic.

Our contribution The main contributions of this chapter are:

• A novel hardware-parametric energy-aware software semantics.
• A corresponding energy-aware Hoare logic that enables formal reasoning

about energy consumption such as deriving an upper-bound for the energy
consumption of the system.

• A soundness proof of the derived upper-bounds with respect to the semantics.
• An implementation of the analysis in the tool ECAlogic.

The basic modelling and semantics are presented in Section 4.2. Energy-
awareness is added and the logic is presented in Section 4.3. An example is given
in Section 4.4 and the soundness proof is outlined in Section 4.5. Implementation
of the analysis in the tool ECAlogic is discussed in Section 4.6. The chapter is
concluded in Section 4.7.

4.2 Modelling Hybrid Systems

Most modern electronic systems consist of hardware and software. In order to
study the energy consumption of such hybrid systems we will consider both
hardware and software in one single modelling framework. This section defines
a hybrid logic in which software plays a central role controlling hardware com-
ponents. The hardware components are modelled in such a way that only the
relevant information for the energy consumption analysis is present. In this chap-
ter, the controlling software is assumed to be written in a small language designed
just for illustrating the analysis.

42 A Hoare Logic for Energy Consumption Analysis

4.2.1 Language

Our analysis is performed on the simple ‘while’ language eca. The grammar for
our language is defined as follows (where � ∈ {+,−, ∗, >,≥,=, 6=,≤, <,∧,∨}):

c ∈ Const = 0 | 1 | 2 | 3 | . . .
id ∈ Ident = ’a’ | ’A’ | ’b’ | ’B’ | . . . | ’z’ | ’Z’ | id1id2

x ∈ Var = id

f ∈ FuncName = id

C ∈ Component = Cid

e ∈ Expr = c | x | e1 � e2 | C ::f(e1) | f(e1) | S, e1

S ∈ Statement = skip | S1;S2 | e | x := e1 | if e then S1 else S2 end if

| while e do S end while | F

F ∈ Func = function f(x) begin e end

This language is used just for illustration purposes, so the only supported
type in the language is unsigned integer. There are no explicit Booleans. The
value 0 is handled as a False value, while all the other values are handled as a
True value. There are no global variables and parameters are passed by-value,
so functions do not have side-effects on the program state. Furthermore, while
loops are supported but recursion is not. Functions are statically scoped and
can be defined anywhere in the program, since they are statements. There are
explicit statements for operations on hardware components, like the processor,
memory, storage or network devices. By explicitly introducing these statements
it is easier to reason about those components, as opposed to, for instance, using
conventions about certain memory regions that will map to certain hardware
devices. Functions on components have a fixed number of arguments and always
return a value. The notation Ci :: f will refer to a function f of a component Ci.

4.2.2 Modelling Components

To reason about hybrid systems we need a way to model hardware components
(e.g. memory, hard-disk, network controller) that captures the behaviour of those
components with respect to resource consumption. Hence, we introduce a com-
ponent model that consists of a state and a set of functions that can change the
state: component functions. A component state Ci ::s is a collection of variables
of any type. They can signify e.g. that the component is on, off or in stand-by.

A component function is modelled by a function that produces the return
value (rvf) and a function that updates the internal state of the component (δf).
Both functions are functions over the state variables. The update function Ci ::δf
and the return value function Ci :: rvf take the state s and the arguments
args passed to the component function and return respectively the new state
of the component and the return value. Each component Ci may have multiple
component functions. All the state changes in components must be explicit in the
source code as an operation, a component function, on that specific component.

4.3. Energy Analysis of Hybrid Systems 43

4.2.3 Semantics

Standard, non-energy-aware semantics can be defined for our language. Full se-
mantics are given in a technical report [PKvv13]. Below, the assignment rule
(sAssign) and the component function call rule (sCallCmpF) are given to illus-
trate the notation and the way of handling components. The rules are defined
over a triple 〈e, σ, Γ 〉 with respectively a program statement S or expression
e, the program state function σ and the component state environment Γ . The
program state function returns for every variable its actual value. ∆ is an envi-
ronment of function definitions. We use the following notation for substitution:
σ[xi ← n]. The top-right of the (sCallCmpF) thus shows the calculation of Γ ′

from Γ . With CΓi :: s we mean the state of component Ci in Γ . The reduction
symbol ⇓E is used for expressions, which evaluate to a value, a new state func-
tion and a new component state environment. We use ⇓S for statements, which
only evaluate to a new state function and component state environment.

∆ ` 〈e, σ, Γ 〉⇓E〈n, σ′, Γ ′〉
(sAssign)

∆ ` 〈x1 := e, σ, Γ 〉⇓S〈σ′[x1 ← n], Γ ′〉

∆ ` 〈e, σ, Γ 〉⇓E〈a, σ′, Γ ′〉

Ci ::rvf (CΓi ::s, a)=n Γ ′ = Γ [Ci ::s←Ci ::δf (CΓi ::s, a)]
(sCallCmpF)

∆ ` 〈Ci ::f(e), σ, Γ 〉⇓E〈n, σ′, Γ ′〉

In the following sections we will define energy-aware semantics and energy
analysis rules. We used a consistent naming scheme for the different variants of
the rules (e.g. sAssign, eAssign and aAssign for the Assignment rule in respec-
tively the standard non-energy-aware semantics, the energy aware semantics and
the energy analysis rules).

4.3 Energy Analysis of Hybrid Systems

In this section we extend our hybrid modeling, in order to reason about the
energy consumption of programs. We distinguish two kinds of energy usage:
incidental and time-dependent. The former represents an operation that uses a
constant amount of energy, disregarding any time aspect. The latter signifies a
change in the state of the component; while a component is in a certain state it
is assumed to draw a constant amount of energy per time unit.

4.3.1 Energy-Aware Semantics

As energy consumption can be based on time, we first need to extend our se-
mantics to be time-aware. We effectively extend all the rules of the semantics
with an extra argument, a global timestamp t. Using this timestamp we are able
to model and analyse time-dependent energy usage.

44 A Hoare Logic for Energy Consumption Analysis

We track energy usage for each component individually, by using an accumu-
lator e that is added to the component model. For time-dependent energy usage,
with each component state change, the energy used while the component was
in the previous state is added to the accumulator. To enable calculation of the
time spent in the current state, we add τ to the component model, signifying the
timestamp at which the component entered the current state. We assume that
each component has a constant power draw while in a state. Therefore, the com-
ponent model function Ci ::φ(s) maps component states onto the corresponding
power draw, independent of time. To calculate the power consumed while in a
certain state we define the td function, with as arguments the component and
the current timestamp:

td(Ci, t) = Ci ::φ(s) · (t− Ci ::τ)

We model incidental energy usage associated with a component function f
with the constant Ci :: Ef . For each call to a component function we add this
constant to the energy accumulator.

A component function call can influence energy consumption in two ways:
through its associated incidental energy consumption and by changing the state,
thereby influencing time-dependent energy usage. This is expressed by energy-
aware semantic rule (eCallCmpF) for component functions as defined below,
with Ci ::Tf representing the time it costs to execute this component function.

∆ ` 〈e, σ, Γ, t〉⇓E〈a, σ′, Γ ′, t′〉 Ci ::rvf (CΓ
′

i ::s, a) = n

Γ ′′ = Γ [Ci ::e += Ci ::Ef + td(CΓ
′

i , t), Ci ::s← Ci ::δf (CΓ
′

i ::s, a), Ci ::τ ← t′]
(eCallCmpF)

∆ ` 〈Ci ::f(e), σ, Γ, t〉⇓E〈n, σ′, Γ ′′, t′ + Ci ::Tf 〉

Note the addition of the incidental and time dependent energy usages (Ci ::Ef
and td(CΓi , t) respectively) to the energy accumulator Ci :: e, the increment of
the global time with Ci ::Tf and the update of the component timestamp Ci ::τ .
Evaluation by ⇓ in the energy-aware semantics extends the original semantics
with a timestamp and an energy accumulator, which are used to calculate the
total energy consumption of the evaluation (esystem as defined below). The full
energy-aware semantics are given in Figure 4.1.

The energy accumulator of the components is not always up to date with
respect to the current time, as it is only updated in the (eCallCmpF) rule. This
is done for simplicity; otherwise each rule that adjusts the global time needs to
update the energy accumulator of all components.

To calculate the total actual energy usage, the time the components are in
their current state should still be accounted for. This means we have to add the
result of the td function for each component. The total energy consumption of
the system can be calculated at any time as follows:

esystem(Γ, t) =
∑
i

CΓi ::e + td(CΓi , t)

4.3. Energy Analysis of Hybrid Systems 45

(eConst)
∆ ` 〈c, σ, Γ, t〉⇓E〈c, σ, Γ, t〉

(eVar)
∆ ` 〈x, σ, Γ, t〉⇓E〈σ(x), σ, Γ, t〉

∆ ` 〈e1, σ, Γ, t〉⇓E〈n, σ′, Γ ′, t′〉

∆ ` 〈e2, σ′, Γ ′, t′〉⇓E〈m,σ′′, Γ ′′, t′′〉

Cimp ::�(n,m) = p

Γ ′′′ = Γ ′′[Cimp ::e += Cimp ::Ee]
(eBinOp)

∆ ` 〈e1 � e2, σ, Γ, t〉⇓E〈p, σ′′, Γ ′′′, t′′ + Cimp ::Te〉

∆ ` 〈e, σ, Γ, t〉⇓E〈a, σ′, Γ ′, t′〉 Ci ::rvf (CΓ
′

i ::s, a) = n

Γ ′′ = Γ [Ci ::e += Ci ::Ef + td(CΓ
′

i , t), Ci ::s← Ci ::δf (CΓ
′

i ::s, a), Ci ::τ ← t′]
(eCallCmpF)

∆ ` 〈Ci ::f(e), σ, Γ, t〉⇓E〈n, σ′, Γ ′′, t′ + Ci ::Tf 〉

∆ ` 〈e, σ, Γ, t〉⇓E〈a, σ′, Γ ′, t′〉

∆(f) = (e1, ∆
′, x)

∆′ ` 〈e1, [x← a], Γ ′, t′〉⇓E〈n, σ′′, Γ ′′, t′′〉
(eCallF)

∆ ` 〈f(e), σ, Γ, t〉⇓E〈n, σ′, Γ ′′, t′′〉

∆ ` 〈S, σ, Γ, t〉⇓S〈σ′, Γ ′, t′〉 ∆ ` 〈e, σ′, Γ ′, t′〉⇓E〈n, σ′′, Γ ′′, t′′〉
(eExprConcat)

∆ ` 〈 S,e , σ, Γ, t〉⇓E〈n, σ′′, Γ ′′, t′′〉

∆ ` 〈e1, σ, Γ, t〉⇓E〈n, σ′, Γ ′, t′〉
(eExprAsStmt)

∆ ` 〈e1, σ, Γ, t〉⇓S〈σ′, Γ ′, t′〉
(eSkip)

∆ ` 〈skip, σ, Γ, t〉⇓S〈σ, Γ, t〉

∆ ` 〈S1, σ, Γ, t〉⇓S〈σ′, Γ ′, t′〉 ∆ ` 〈S2, σ
′, Γ ′, t′〉⇓S〈σ′′, Γ ′′, t′′〉

(eStmtConcat)
∆ ` 〈S1;S2, σ, Γ, t〉⇓S〈σ′′, Γ ′′, t′′〉

∆ ` 〈e, σ, Γ, t〉⇓E〈n, σ′, Γ ′, t′〉 Γ ′′ = Γ ′[Cimp ::e += Cimp ::Ea]
(eAssign)

∆ ` 〈x := e, σ, Γ, t〉⇓S〈σ′[x← n], Γ ′′, t′ + Cimp ::Ta〉

∆ ` 〈e, σ, Γ, t〉⇓E〈0, σ′, Γ ′, t′〉

∆ ` 〈S2, σ
′, Γ ′, t′〉⇓S〈σ′′, Γ ′′, t′′〉

Γ ′′′ = Γ ′′[Cimp ::e += Cimp ::Eite]
(eIf-False)

∆ ` 〈if e then S1 else S2 end if, σ, Γ, t〉⇓S〈σ′′, Γ ′′′, t′′ + Cimp ::Tite〉

n 6= 0

∆ ` 〈e, σ, Γ, t〉⇓E〈n, σ′, Γ ′, t′〉

∆ ` 〈S1, σ
′, Γ ′, t′〉⇓S〈σ′′, Γ ′′, t′′〉

Γ ′′′ = Γ ′′[Cimp ::e += Cimp ::Eite]
(eIf-True)

∆ ` 〈if e then S1 else S2 end if, σ, Γ, t〉⇓S〈σ′′, Γ ′′′, t′′ + Cimp ::Tite〉

∆ ` 〈e, σ, Γ, t〉⇓E〈0, σ′, Γ ′, t′〉 Γ ′′ = Γ ′[Cimp ::e += Cimp ::Ew]
(eWhile-False)

∆ ` 〈while e do S1 end while, σ, Γ, t〉⇓S〈σ′, Γ ′′, t′ + Cimp ::Tw〉

Γ ′′ = Γ ′[Cimp ::e += Cimp ::Ew] ∆ ` 〈e, σ, Γ, t〉⇓E〈n, σ′, Γ ′, t′〉 n 6= 0

∆ ` 〈S1; while e do S1 end while, σ′, Γ ′′, t′ + Cimp ::Tw〉⇓S〈σ′′, Γ ′′′, t′′〉
(eWhile-True)

∆ ` 〈while e do S1 end while, σ, Γ, t〉⇓S〈σ′′, Γ ′′′, t′′〉

∆[f ← (e,∆, x)] ` 〈S1, σ, Γ, t〉⇓S〈σ′, Γ ′, t′〉
(eFuncDef)

∆ ` 〈function f(x) begin e end S1, σ, Γ, t〉⇓S〈σ′, Γ ′, t′〉

Figure 4.1: Energy-aware semantics.

46 A Hoare Logic for Energy Consumption Analysis

We can now make the distinction between non-energy-aware component state
Ci ::s, and energy-aware component state, which also includes the time-stamp τ
and the energy accumulator e.

Most energy consuming actions are explicit in our language: Ci ::consume().
However, basic language features, such as evaluation of arithmetic expressions,
also implicitly consume energy. We capture this behaviour in the Cimp com-
ponent. This component is an integral part of our energy-aware semantics and
logic. The Cimp component should at least have resource consumption constants
defined for the following operations:

• Cimp ::Ee and Cimp ::Te for expression evaluation.
• Cimp ::Ea and Cimp ::Ta for assignment.
• Cimp ::Ew and Cimp ::Tw for an iteration of a while loop.
• Cimp ::Eite and Cimp ::Tite for conditionals.

To capture the resource consumption of these basic operations, we extend
the associated rules in the semantics. The energy-aware rule for assignment
(eAssign) is listed below, with Cimp :: Ea for the incidental energy usage of
an assignment and Cimp ::Ta for the time it takes to perform an assignment.

∆ ` 〈e, σ, Γ, t〉⇓E〈n, σ′, Γ ′, t′〉 Γ ′′ = Γ ′[Cimp ::e += Cimp ::Ea]
(eAssign)

∆ ` 〈x := e, σ, Γ, t〉⇓S〈σ′[x← n], Γ ′′, t′ + Cimp ::Ta〉

All computations of resource consumption and new component states are
done symbolically. In the logic, these values are added, multiplied and subtracted
or their max is taken. Hence, every t, e and τ , as well as the values in component
states, are polynomial expressions, extended with the max operator, over program
variables. Additionally, symbolic states are used, both as input for the program
and as start state for the components. The aforementioned polynomials also
range over the symbols used in these symbolic states.

4.3.2 Energy-Aware Modelling

Energy-aware models will be used to derive upper-bounds for energy consump-
tion of the modelled system. In order for the energy-aware model to be suited for
the analysis the model should reflect an upper-bound on the actual consumption.
This can be based on detailed documentation or on actual energy measurements.

To provide a sound analysis, we need to assume that components are modelled
in such a way that the component states reflect different power-levels and are
partially ordered. Greater states should imply greater power draw. We will use
finite state models only to enable fixpoint calculation in our analysis of while
loops. The modelling should be such that the following properties hold (in the
context of the full soundness proof in [PKvv13] these properties are axioms):

• Components states form a finite lattice with a partial order based on the
ordering of polynomials (extended with max) over symbolic variables. Within
the lattice each pair of component states has a least upper-bound.

4.3. Energy Analysis of Hybrid Systems 47

• Energy-aware component states are partially ordered. This ordering extends
the ordering on component states in a natural way by adding an energy
accumulator and a timestamp. The timestamp stores the time of the latest
change to the component state. So, the earliest timestamp reflects the high-
est energy usage. Therefore, with respect to timestamps the energy-aware
component state ordering should be defined such that smaller timestamps
lead to bigger energy-aware component states.

• Power draw functions preserve the ordering, i.e. larger states consume more
energy than smaller states.

• Component state update functions δ preserve the ordering. For this reason, δf
cannot depend on the arguments of f . To signify this, we will use δ(s) instead
of δ(s, args) in the logic. As a result, component models cannot influence
each other. Our soundness proof (Theorem 2 in Section 4.5) requires this
assumption.

Severeness of model restrictions There are several restrictions to the mod-
elling that may seem far from reality.

1. Component state functions take up a constant amount of time and incidental
energy. This is needed for the soundness proof. For instance, when a radio
component sends a message, the duration of the function call cannot directly
depend on the number of bytes in the message. In most cases this can be
dealt with by using a different way of modelling. First, one can use an over-
estimation. Second, such dependencies can be removed by distributing the
costs over multiple function calls. For instance, the radio component can have
a function to send a fixed number of bytes. If it internally keeps a queue, the
additional costs of sending the full queue can be modelled by distributing it
over separate queueing operations. energy consumption of components must
remain fixed per component state.

2. With each component state a constant power draw is associated. However,
some hardware may accumulate heat over time incurring increasing energy
consumption over time. Such a ’heating’ problem can be modelled e.g. by
changing state to a higher energy level with every call of a component func-
tion. This is still an approximation of course. In the future, we want to study
models with time driven state change or with time-dependent power draw.

3. Component model must be finite state machines. Modelling systems with
finite state machines is not uncommon, e.g using model checking and the
right kind of abstraction for the property that is studied. In our models the
abstraction should be such that the energy consumption is modelled as close
as possible.

4. The effect of component state functions on the component states cannot de-
pend on the arguments of the function. Also, component models cannot in-
fluence each other. Both restrictions are needed for soundness guarantee of
our analysis. This restricts the modelling. Using multiple component state
functions instead of dynamic arguments and cross-component calls is a way

48 A Hoare Logic for Energy Consumption Analysis

of modelling that can mitigate these restrictions in certain cases. Relieving
these restrictions in general is part of future work.

4.3.3 A Hoare Logic for Energy Analysis

This section treats the definition of an energy-aware logic with energy analysis
rules that can be used to bound the energy consumption of the analysed system.
The full set of rules is given in Figure 4.2. These rules are deterministic; at each
moment only one rule can be applied.

(aConst)
{Γ ; t; ρ}n{Γ ; t; ρ}

(aVar)
{Γ ; t; ρ}x{Γ ; t; ρ}

{Γ ; t; ρ}e1{Γ1; t1; ρ1}

{Γ1; t1; ρ1}e2{Γ2; t2; ρ2} Γ3 = Γ2[Cimp ::e += Cimp ::Ee]
(aBinOp)

{Γ ; t; ρ}e1 � e2{Γ3; t2 + Cimp ::Te; ρ2}

Γ1 = Γ [Ci ::s← Ci ::δf (Ci ::s), Ci ::τ ← t, Ci ::e += Ci ::Ef + td(Ci, t)]
(aCallCmpF)

{Γ ; t; ρ}Ci ::f(args){Γ1; t + Ci ::Tf ; ρ}

∆(f) = (e1, x)

e = a ∈ ρ

{Γ ; t; ρ}e{Γ1; t1; ρ1}

{Γ1; t1; ρ1[x′ ← a]}e1[x← x′]{Γ2; t2; ρ2} x′ fresh in e1
(aCallF)

{Γ ; t; ρ}f(e){Γ2; t2; ρ2}

(aSkip)
{Γ ; t; ρ}skip{Γ ; t; ρ}

{Γ}S{Γ1} {Γ1}e{Γ2}
(aExprConcat)

{Γ}S, e{Γ2}

{Γ ; t; ρ}S1{Γ1; t1; ρ1} {Γ1; t1; ρ1}S2{Γ2; t2; ρ2}
(aConcat)

{Γ ; t; ρ}S1;S2{Γ2; t2; ρ2}

{Γ ; t; ρ}e{Γ1; t1; ρ1} Γ2 = Γ1[Cimp ::e += Cimp ::Ea]
(aAssign)

{Γ ; t; ρ}x := e{Γ2; t1 + Cimp ::Ta; ρ2}

{Γ ; t; ρ}e{Γ1; t1; ρ1}

Γ2 = Γ1[Cimp ::e += Cimp ::Eite]

{Γ2; t1 + Cimp ::Tite; ρ1}S1{Γ3; t2; ρ2}

{Γ2; t1 + Cimp ::Tite; ρ1}S2{Γ4; t3; ρ3}
(aIf)

{Γ ; t; ρ}if e then S1 else S2 end if{lub(Γ3, Γ4); max{t2, t3}; ρ4}

Γ1 = process-td(Γ, t)

{wci(Γ1, e;S); t; ρ}e{Γ2; t1; ρ1}

Γ3 = Γ2[Cimp ::e += Cimp ::Ew]

{Γ3; t1 + Cimp ::Tw; ρ1}S{Γ4; t2; ρ2}
(aWhile)

{Γ ; t; ρ}whileib e do S end while{oe(Γ1, t, Γ4, t2, ib); ρ3}
Figure 4.2: Energy analysis rules.

Our energy consumption analysis depends on external symbolic analysis of
variables and loop analysis. The results of this external analysis are assumed to
be accessible in our Hoare Logic in two ways.

First, we restrict the scope of our analysis to programs that are bound in
terms of execution. We assume that all loops and component functions terminate
on any input. Each loop is annotated with a bound: whileib. The bound is a
polynomial over the input variables, which expresses an upper-bound on the

4.3. Energy Analysis of Hybrid Systems 49

number of iterations of the loop. We have added the ib to the while rule in the
energy analysis rules to make this assumption explicit. Derivation of bounds is
considered out of scope for our analysis. We assume that an external analysis
has produced a sound bound.

Second, the symbolic state environment ρ gives a symbolic state of every vari-
able at each line of code, e.g. {x1 := e1}x1 := x1 + x2 + x3{x1 := e1 + x2 + x3},
plus other non-energy related properties invariants that have previously been
proven. In Figure 4.2 we included this prerequisite by denoting ρ, ρ1, . . . explic-
itly. As these variables represent external input, thet are not bounded by our
logic.

All the judgements in the rules have the following shape: {Γ ; t; ρ}S {Γ ′; t′; ρ′},
where Γ is the set of all energy aware component states, t is the global time and
ρ represents the symbolic state environment retrieved from the earlier standard
analysis. The notation Γ [n += m] is a shorthand for Γ [n← n+m]. As (energy-
aware) component states are partially ordered, we can take a least upper bound
of states lub(s1, s2) and sets of energy-aware component states lub(Γ1, Γ2).

We will highlight the most relevant aspects of the rules. The (aCallCmpF)
rule uses the td(Ci, t) function to estimate the time-dependent energy consump-
tion of component function calls. The (aIf) rule takes the least upper bound of
the energy-aware component states and the maximum of the time estimates.

Special attention is warranted for the (aWhile) rule. We study the body of the
while loop in isolation. This requires processing the time-dependent energy con-
sumption that occurred before the loop (process-td). An overestimation (oe)
of the energy consumption of the loop will be calculated by taking the product
of the bound on the number of iterations and an overestimation of the energy
consumption of a single iteration, i.e. the worst-case iteration (wci). The worst-
case-iteration is determined by taking the least upper-bound of the set of all
states that can occur during the execution of the loop. As there are a finite
number of states for each component, this set can be determined via a fix point
construction (fix). The fixpoint is calculated by iterating the component itera-
tion function (ci).

In order to support the analysis of statements after the loop, also an overesti-
mation of the component states after the loop has to be calculated. For brevity,
in Figure 4.2, this is dealt with in the calculation of oe.

Five calculations are needed:

1. Component iteration function ci. The component iteration function cii(S)
aggregates the (possibly overestimated) effects of S on Ci. It performs the
analysis on S, then considers only the effects on Ci. If there are nested loops
or conditionals, the effects on the state of Ci are overestimated in the same
manner as in the rest of the analysis. By cini (S) we mean the component
iteration function applied n times: cii(S) ◦ cin−1

i (S), with ci1i (S) = cii(S).
2. Fixpoint function fix. Because component states are finite, there is an itera-

tion after which a component is in a state that it has already been in, earlier
in the loop (unless the loop is already finished before this point is reached).

50 A Hoare Logic for Energy Consumption Analysis

Since components are independent, the behaviour of the component will be
identical to its behaviour the first time it was in this state. This is a fix-
point on the set of component states that can be reached in the loop. It can
be found using the fixi(S) function, which finds the smallest n for which
∃k.cin+1

i (S) = ciki (S). The number of possible component states is an upper
bound for n.

3. Worst-Case Iteration function wci. To make a sound overestimation of the
energy consumption of a loop, we need to find the iteration that consumes the
most. As our analysis is non-decreasing with respect to component states,
this is the iteration which starts with the largest component state in the
precondition. For this purpose, we introduce the worst-case iteration function
wcii(S), which computes the least-upper bound of all the states up to the

fixpoint: wcii(S) = lub(ci0i (S), ci1i (S), . . . , ci
fixi(S)
i (S)). The global version

wci(Γ, S) is defined by iteratively applying the wcii(S) function to each
component Ci in Γ .

4. Overestimation function oe. This function overestimates the energy-aware
output states of the loop. It needs to do three things: find the largest non-
energy-aware output states, find the minimal timestamps and add the re-
source consumption of the loop itself. This function gets as input: the start
state of the loop Γin, the start time t, the output state from the analysis of
the worst-case iteration Γout, the end time from the analysis of the worst-case
iteration t′ and the iteration bound ib. It returns an overestimated energy-
aware component state and an overestimated global time.
Because component state update functions δ preserve the ordering, the anal-
ysis of the worst-case iteration results in the maximum output state for any
iteration. This, however, does not yet address the case where the loop is not
entered at all. Therefore, we need to take the least-upper bound of the start
state and the result of the analysis of the worst-case iteration.
To overestimate time-dependent energy usage, we must revert component
timestamps to the time of entering the loop. So, if a component is switched to
a greater state at some point in the loop, the analysis assumes it has been in
this state since entering the loop. Note that the least-upper bound of energy-
aware component states does exactly this: maximise the non-energy-aware
component state and minimise the timestamp. Taking Γbase = lub(Γin, Γout)
we find both the maximum output states and the minimum timestamps.
Now, we can add the consumption of the loop itself. We perform the following
calculation for each component: CΓbasei ::e = CΓini ::e+(CΓouti ::e−CΓini ::e)·ib.
We do something similar for the time consumption: tret = t + ((t′ − t) · ib).

5. Processing time-dependent energy function process-td. When analysing an
iteration of a loop, we must take care not to include any energy consumption
outside of the iteration. This would lead to a large overestimation, since it
would be multiplied by the (possibly overestimated) number of iterations.
Therefore, before analysing the body, we add the time-dependent energy
consumption to the energy accumulator for each component and set all
timestamps to the current time. Otherwise, the time-dependent consump-

4.4. Example: Wireless Sensor Node 51

tion before entering the loop would also be included in the analysis of the
iteration. We introduce the function process-td(Γ, t), which adds td(Ci, t)
to Ci ::e and sets Ci ::τ to t, for each component Ci in Γ .

Applying the rules overestimates the sum of the incidental energy consump-
tion and the time-dependent energy consumption. However, the time-dependent
energy consumption is only added to the accumulator at changes of component
states. So, as for the energy-aware semantics, the time the components are in
their current state should still be accounted for by calculating esystem(Γend, tend).

4.4 Example: Wireless Sensor Node

To illustrate our analysis, we model a wireless sensor node, which has a sensor
Cs and a radio Cr. Furthermore, it has a basic Cimp component for the implicit
resource consumption. We analyse the energy usage of a program that repeat-
edly measures the sensor for 10 seconds, then sends the measurement over the
radio, shown in Listing 4.1. The example illustrates both time-dependent (sen-
sor) and incidental (radio) energy usage. We choose a highly abstract modelling
to keep the example brief and simple. A more elaborate example can be found
in Section 4.6, where two algorithms are compared using an implementation of
our Hoare logic. A similar analysis, comparing two algorithms, is also done by
hand in [PKvv13].

1 whilen n > 0 do

2 C s : : on () ;
3 . . . some code taking 10 seconds . . .
4 x = C s : : off () ;
5 C r : : send (x) ;
6 n = n − 1 ;
7 end while ;

Listing 4.1: Example program.

Modelling The sensor component Cs has two states: son and soff. It does
not have any incidental energy consumption. It has a power draw (thus time-
dependent consumption) only when on. For this power draw we introduce the
constant eon. There are two component functions, namely on and off, which
switch between the two component states.

The radio component Cr only has incidental energy consumption. It does not
have a state. Its single component function is send, which uses Cr ::Tsend time
and Cr ::Esend energy.

The Cimp component models the implicit resource consumption by various
language constructs. For the sake of presentation, we choose a very simple model
here, in which only assignment consumes time and energy. We set both the

52 A Hoare Logic for Energy Consumption Analysis

associated constants Cimp :: Ta and Cimp :: Ea. The other six constants in the
Cimp model (see Section 4.3.1 for a list) are set to 0.

Application of the energy-aware semantics from Figure 4.1 on the loop body
results in a time consumption tbody of 10 + Cr :: Tsend + 2 · Cimp :: Ta and an
energy consumption ebody of 10 · eon +Cr ::Esend + 2 ·Cimp ::Ea. Intuitively, the
time and energy consumption of the whole loop are n(tbody) and n(ebody).

Energy consumption analysis The analysis (Figure 4.2) always starts with a
symbolic state. Note that only the sensor component Cs has a state. We introduce
the symbol ons

0 for the symbolic start-state (on or off) of the sensor.
We start the analysis with the while loop. So, we apply the (aWhile) rule:

Γ1 = process-td(Γ0, t0)

{wci(Γ1, n > 0;Sbody); t0; ρ0}n > 0{Γ2; t1; ρ1} {Γ2; t1; ρ1}Sbody{Γit; tit; ρit}
(aWhile)

{Γ0; t0; ρ0}whilen n > 0 do Sit end while{oe(Γ1, t0, Γit, tit, ρ(n)); ρend}

Since Cimp ::Ew and Cimp ::Tw are 0, we omit them here. We will first solve
the process-td and wci functions, then analyse the loop guard and body (i.e.
the part above the line), then determine the final results with the oe function.

We first add time-dependent energy consumption and set timestamps to t0
for all components using the process-td function. If we would not do this, the
time-dependent energy consumption before the loop would be included in the
calculation of the resource consumption of the worst-case iteration. As this would
be multiplied by the number of iterations, it would lead to a large overestimation.
Cr and Cimp do not have a state, so we only need to add the time-dependent
consumption of Cs: td(Cs, t0) = Cs ::φ(ons

0) · (t0 − Cs ::τ0), where Cs ::τ0 is the
symbolic value of the sensor timestamp before starting the analysis.

We must now find the worst-case iteration, using the wci function. For the
Cs component we need the cis(n > 0;Sbody) function. As the other components
do not have a state, ciimp(n > 0;Sbody) and cir(n > 0;Sbody) are simply the
identity function. The loop body sets the state of the sensor to soff, indepen-
dent of the start state. So, cis(n > 0;Sbody) always results in soff. Now we can
find the fixpoint. In the first iteration, we enter the loop with symbolic state
ons

0. In the second iteration, the loop is entered with state soff. In the third
iteration, the loop is again entered with state soff. We have thus found the fix-
point. The worst-case iteration can now be calculated by wcis(n > 0;Sbody) =
lub(ci0s(n > 0;Sbody), ci1s(n > 0;Sbody)) = ons

0. Intuitively, this means that,
since after any number of iterations the sensor is off, the symbolic start state, in
which it is unknown whether the sensor is on or off, yields the worst-case.

As there are no costs associated with the evaluation of expressions, the anal-
ysis of n > 0 using the (aBinOp) rule does not have any effect on the state. We
continue with analysis of the loop body, which starts with a call to component
function on. We apply the (aCallCmpF) rule:

Γ3 = Γ2[Cs ::s← Cs ::δon(Cs ::s), Cs ::τ ← t1, Cs ::e += td(Cs, t1)]
(aCallCmpF)

{Γ2; t1; ρ1}Cs ::on(){Γ3; t1; ρ2}

4.4. Example: Wireless Sensor Node 53

There is no incidental energy consumption or time consumption associated
with the call. We must however add the time-dependent energy consumption to
the energy accumulator, by adding td(Cs, t). Since we have just set Cs :: τ to
t0 and the evaluation of n > 0 costs 0 time, hence t1 = t0, td(Cs, t1) results in
0. The function Cr :: δon produces new component state son. It also saves the
current timestamp to the component state, in order to know when the last state
transition happened. For simplicity, we omit the application of the concatenation
rule (aConcat) in the following.

After ten seconds of executing other statements (which we assume only cost
time, not energy), the sensor is turned off. The call to the function off returns
the measurement, which is assigned to x. We must therefore first apply the
(aAssign) rule. This adds Cimp :: Ta to the global time and Cimp :: Ea to the
energy accumulator. We now apply the (aCallCmpF) rule to the right-hand side
of the assignment, i.e. the call to Cs ::off. This updates the state of the component
to soff. It also executes the td(Cs, t2) function in order to determine the energy
cost of the component being on for ten seconds. Because t2 = Cs :: τ + 10 and
our model specifies a power draw of eon for son, this results in 10 · eon. We add
this to the energy accumulator of the sensor component.

We apply the (aCallCmpF) rule again, this time to the send function of
the Cr component. As the transmission costs a fixed amount of energy, all time-
dependent constants associated with transmitting are set to zero. So, the (aCall-
CmpF) rule will only add the incidental energy usage specified by Cs ::Esend and
the constant time usage Cs ::Tsend. Finally, we apply the (aBinOp) rule, which
has no costs, and the (aAssign) rule, which again adds Cimp ::Ea and Cimp ::Ta.

Analysis of the worst-case iteration results in global time tit and energy-
aware component state environment Γit. We can now apply the overestimation
function oe(Γ1, t0, Γit, tit, ρ(n)). This takes as base the least-upper bound of Γ1

and Γit, which in this case is exactly Γ1 (note that the state of the sensor is
overestimated as ons

0). It then adds the consumption of the worst-case iteration,
multiplied by the number of iterations. The worst-case iteration results in a
global time of t0 + 10 +Cr ::Tsend + 2 ·Cimp ::Ta. So, oe results in a global time
tend of t0 + n · (10 + Cr ::Tsend + 2 · Cimp ::Ta). Note that this is equal to the
time consumption resulting from the energy-aware semantics.

A similar calculation is made for energy consumption, for each component.
Then, we can calculate esystem. In total, the oe function results in an energy
usage of e0 + n · (10 · eon + Cr ::Esend + 2 · Cimp ::Ea). However, we still need to
add the time-dependent energy consumption for each component. This is where
potential overestimation occurs in this example. Since Cr and Cimp do not have
a state, we only need to add the time-dependent consumption of Cs. After the
analysis of the loop, the state of the sensor is overestimated as ons

0. We must
therefore add a consumption of td(Cs, tend) = Cs :: φ(ons

0) · (tend − t0) = Cs ::
φ(ons

0) ·n · (10 +Cr ::Tsend + 2 ·Cimp ::Ta). This leads to an overestimation only
in case ons

0 = son and n > 0. Otherwise, the result of the analysis is equal to
that of the energy-aware semantics.

54 A Hoare Logic for Energy Consumption Analysis

4.5 Soundness

In this section, we outline a proof of the soundness of the energy-aware Hoare
logic with respect to the energy-aware semantics. Intuitively, this means we prove
that the analysis over-estimates the actual energy consumption. Here, we present
only the fundamental theorems. The reader is referred to [PKvv13] for the full
proof. Soundness of the annotations (loop bounds and symbolic states) is as-
sumed in order to guarantee soundness of the final result.

We first show that the logic over-estimates time consumption. In order to
establish soundness of the analysis of the energy consumption of the program,
we need to establish first soundness of the timing analysis.

Theorem 1 (Timing over-estimation). If 〈S, σ, Γ, t〉⇓S〈σ′, Γ ′, t′〉, then for
any derivation {Γ ; t; ρ}S{Γ1; t1; ρ1} holds that t1 ≥ t′.

Proof. Theorem 1 derives from the property that the analysis does not depend
on the timestamp in the precondition. For {Γ1; t1; ρ1}S{Γ2; t2; ρ2}, the duration
t2− t1 always over-estimates the duration of every possible real execution of the
statement S. Theorem 1 is proved by induction on the energy-aware semantics
and the energy analysis rules. The only source of any over-estimation are the rules
(aIf) and (aWhile). The (aIf) rule computes a max between the final timestamps
of then-branch and the else-branch. In the (aWhile) rule, the execution time of
one iteration of the loop is over-estimated and multiplied by the loop bound,
which is an over-estimation of the number of iterations of the loop. ut

Over-estimating the component state is fundamental for over-estimating the
total energy consumption. A larger component state requires more power and
hence consumes more energy.

Theorem 2 (Component state over-estimation). If {Γ ; t; ρ}S{Γ1; t1; ρ1}
and 〈S, σ, Γ, t〉⇓S〈σ′, Γ ′, t′〉 then Γ1 ≥ Γ ′.

Proof. Induction on the energy-aware semantics and the energy analysis rules,
yields that the update function δ preserves the ordering on component states
(see Section 4.3.2). ut

Now, we can formulate and prove the main soundness theorem:

Theorem 3 (Soundness). If {t;Γ ; ρ}S{t1;Γ1; ρ1} and 〈S, σ, Γ, t〉⇓S〈σ′, Γ ′, t′〉
then esystem(Γ1; t1) ≥ esystem(Γ ′; t′).

Proof. By induction on the energy-aware semantics and the energy analysis rules.
Theorem 1 ensures that the final timestamp is an over-estimation of the actual
time-consumption, hence the calculation of energy usage is based on an over-
estimated period of time. Theorem 2 ensures (given that the analysis is non-
decreasing with respect to component states, a larger input state means a larger
output state) that we find the maximum state (including incidental energy-
usage) that can result from an iteration of a loop body with the logic. This

4.6. Implementation in ECAlogic 55

depends on the wci function determining the maximal initial state for any itera-
tion. It follows, by the definition of esystem that esystem(Γ1; t1) ≥ esystem(Γ ′; t′).
The total energy consumption resulting from the analysis is larger than that of
every possible execution of the analysed program. ut

4.6 Implementation in ECAlogic

This section presents ECAlogic5, a tool that implements the static energy
consumption analysis. The tool is parametric with respect to a set of hardware
component models. Its results are symbolic over the program parameters. It has
a web-interface as well as a command-line interface.

hardware

algorithm

ecm model

eca program

analysis
time

energy

Figure 4.3: Architecture of the ECAlogic tool.

A schematic representation of ECAlogic is shown in Figure 4.3. The algo-
rithm and the hardware on which it will run must first be modelled. To capture
the functionality of the algorithm, we offer the simple ‘while’ language eca,
described in Section 4.6.1. Each hardware component is modelled in a similar
language, ecm, which is described in Section 4.6.2.

Component functions explicitly influence energy consumption. Other lan-
guage constructs, for instance the evaluation of an arithmetic expression, also
implicitly consume energy. This is modelled in the special implicit component.
This component is assumed to be present in any system. It is modelled in ecm
and therefore under full user control.

4.6.1 Input Language ECA

For describing algorithms, we use the simple programming language eca. Be-
cause ECAlogic was developed in parallel with the analysis, there are minor
differences with the “while” language described in Section 4.2. However, these
do not affect the set of algorithms that can be expressed. The grammar of the
language is shown in Figure 4.4. A program is represented as a function with
input parameters. eca is a simple “while”-type language, with the usual control
structures and function calls. It has two major restrictions:

• All while-loops are bounded in the number of iterations. This upper bound
must be specified explicitly and is assumed to be sound. It can either be
inferred by a third-party tool or specified directly by the programmer.

5 http://resourceanalysis.cs.ru.nl/energy/

http://resourceanalysis.cs.ru.nl/energy/

56 A Hoare Logic for Energy Consumption Analysis

〈program〉 ::= {〈comp-imp〉 〈sep〉} {〈fun-def 〉 〈sep〉}
〈comp-imp〉 ::= ‘import’ ‘component’ id {‘.’ id} [‘as’ id]
〈fun-def 〉 ::= ‘function’ id [‘(’ [id {‘,’ id}] ‘)’] 〈fun-body〉
〈fun-body〉 ::= ‘:=’ 〈expr〉
| 〈stat-list〉 ‘end’ ‘function’
| 〈empty〉
〈stat-list〉 ::= {〈statement〉 〈sep〉}
〈statement〉 ::= ‘skip’
| id ‘:=’ 〈expr〉
| 〈fun-call〉
| ‘if’ 〈expr〉 ‘then’ 〈stat-list〉 ‘else’ 〈stat-list〉 ‘end’ ‘if’
| ‘while’ 〈expr〉 ‘bound’ 〈expr〉 ‘do’ 〈stat-list〉 ‘end’ ‘while’
| ‘{’ 〈annot-elem〉 {‘,’ 〈annot-elem〉} ‘}’ [〈statement〉]
〈fun-call〉 ::= [id ‘::’] id ‘(’ [〈expr〉 {‘,’ 〈expr〉}] ‘)’
〈annot-elem〉 ::= id ‘<-’ 〈expr〉
〈expr〉 ::= 〈expr〉 〈bin-op〉 〈expr〉
| id

| numeral

| 〈fun-call〉
| ‘(’ 〈expr〉 ‘)’
〈bin-op〉 ::= ‘or’|‘and’|‘=’|‘<>’|‘>’|‘<’|‘>=’|‘<=’|‘+’|‘-’|‘*’|‘/’|‘^’
〈sep〉 ::= ‘;’ | end-of-line
〈id〉 ::= [:a-zA-Z_:] {[:a-zA-Z0-9_:]}
〈numeral〉 ::= [:0-9:] {[:0-9:]}
〈comment〉 ::= ‘//’ {〈any-character〉} (〈end-of-line〉 | 〈end-of-file〉)
| ‘/*’ {〈any-character〉} ‘*/’
| ‘(*’ {〈any-character〉} ‘*)’

Figure 4.4: Grammar of the input language eca.

• All variables are positive integers. There is no form of structured data. These
can however be simulated by modelling them as component functions, as we
will see below.

A simple program for a wireless sensor node that switches the radio on, takes
N measurements and transmits these, is shown in Listing 4.2.

1 function alwaysOn (N)
2 Radio : : on ()
3 while N > 0 bound N do

4 Value := Sensor : : measure ()
5 Radio : : queue (Value)
6 Radio : : send ()
7 N := N−1
8 end while

9 Radio : : off ()
10 end function

Listing 4.2: Example program for a wireless sensor node.

4.6. Implementation in ECAlogic 57

Here the parameter N acts as an upper bound on the number of iterations
of the while loop. It is allowed to use any expression as an upper bound, as
long as it can be evaluated in terms of the parameters of a function. In many
cases this can be done directly, as above. If, however, the upper bound of a loop
references variables whose values are only available at run time, an annotation
with a Hoare-style precondition is required to relate each of those variables to
the parameters. An example of this is given in Section 4.6.3.

4.6.2 Component Models in ECM

Hardware components models are defined by:

1. A (possibly empty) set of component states
2. A function phi which maps component states to power draw
3. A set of component functions

A simple model for a radio is shown in Listing 4.3.

1 component Radio (active : 0 . . 1)
2 initial active := 0
3
4 component function on uses 400 time 400 energy

5 active := 1
6 end function

7
8 component function off uses 200 time 200 energy

9 active := 0
10 end function

11
12 component function queue (X) uses 30 time 30 energy

13 component function send uses 100 time 100 energy

14
15 function phi := 2 + 200 ∗ active

16 end component

Listing 4.3: A simple model for a radio.

In this example, the radio has two states: off (0) or on (1). There are component
functions to turn the radio on/off, to enqueue a measurement for sending and
for transmitting the queue. The function on has an incidental energy usage of
30 and changes the state of the component to active. The function phi gives the
energy consumption per time-unit, depending on the state of the radio. Note
that this is where the timing analysis is needed.

An important constraint on the phi function is monotonicity with respect to
the ordering of the states: a higher state implies a higher energy usage. ECA-
logic checks whether this constraint holds. Apart from that, component func-
tions have the same expressive power as the eca language. Hence, more detailed
models can easily be constructed.

58 A Hoare Logic for Energy Consumption Analysis

〈component〉 ::= {〈class-imp〉 〈sep〉} ‘component’ id [‘(’ [〈var-def 〉 {‘,’ 〈var-def 〉}] ‘)’]
{〈member〉 〈sep〉} ‘end’ ‘component’

〈class-imp〉 ::= ‘import’ ‘class’ id {‘.’ id} [‘as’ id]
〈var-def 〉 ::= id ‘:’ numeral ‘..’ numeral
〈member〉 ::= ‘initial’ id ‘:=’ numeral
| 〈fun-def 〉
| 〈comp-fun-def 〉
〈comp-fun-def 〉 ::= ‘component’ ‘function’ id [‘(’ [id {‘,’ id}] ‘)’] [〈uses-clause〉]

〈fun-body〉
〈uses-clause〉 ::= ‘uses’ numeral ‘energy’ [numeral ‘time’]
| ‘uses’ numeral ‘time’ [numeral ‘energy’]

Figure 4.5: Grammar of the component modelling language ecm.

4.6.3 Tool Application

To use the tool, the target platform must first be modelled. This is a complex
step, as building a precise model requires measurements of the actual energy
consumption. Depending on the goals of the user, educated guessing might suffice
when modelling, or a standard ecm model (e.g. for the CPU) taken from a library
of component models might be used. If precise results are required, accurate
modelling is paramount. If the user wants to compare implementation variants,
a less precise modelling will often suffice.

A typical use case is the comparison of different implementations of an al-
gorithm. In the case of a wireless sensor node, a strategy to conserve energy is
to send data packets in batches of size B, only turning the radio on right before
sending. An alternative implementation of the wireless sensor node example is
shown in Listing 4.4.

1 function buffering (N , B)
2 while N > 0 bound N/B do

3 K := B

4 { K <− B }
5 while K > 0 and N > 0 bound K do

6 Value := Sensor : : measure ()
7 Radio : : queue (Value)
8 K := K − 1
9 N := N − 1

10 end while

11 Radio : : on ()
12 Radio : : send ()
13 Radio : : off ()
14 end while

15 end function

Listing 4.4: An alternative application for a wireless sensor node, using buffering.

4.7. Conclusions and Future Work 59

Note that the annotation { K <- B } is necessary to express that the symbolic
value of the variable K in terms of the function parameters is B. ECAlogic
issues a diagnostic message whenever the symbolic value of a loop bound or
function argument cannot be determined.

1 component Implicit

2 component function e uses 10 energy 10 time

3 component function a uses 5 energy 5 time

4 component function w uses 25 energy 25 time

5 component function ite uses 25 energy 25 time

6 end component

Listing 4.5: Implicit component model

1 component Sensor

2 component function measure uses 40 energy 10 time

3 function phi := 3
4 end component

Listing 4.6: Sensor component model

Using the simple implicit component model in Listing 4.5 and sensor model
in Listing 4.6, we can now compare the two implementations:

implementation time energy

alwaysOn(N) 600 + 195 ·N 83600 + 40200 ·N
buffering(N ,B)

(
130 + 740

B

)
·N

(
1070 + 105640

B

)
·N

These results also provide information on appropriate values for the block size B.
If we are interested in a constantly functioning sensor node, we should consider
very large N. It is then clear that the buffering implementation is more efficient
for B ≥ 3.

4.7 Conclusions and Future Work

We presented a hybrid, energy-aware Hoare logic for reasoning about energy
consumption of systems controlled by software. The logic comes with an analysis
which is proven to be sound with respect to the semantics. To our knowledge,
our approach is the first attempt at bounding energy-consumption statically in
a way which is parametric with respect to hardware models. This is a first step
towards a hybrid approach to energy consumption analysis in which the software
is analysed automatically together with the hardware it controls. The analysis is
implemented in the tool ECAlogic. In the Software Analysis course at Radboud
University Nijmegen students have used ECAlogic for exercises, successfully
modelling various algorithms and hardware components.

60 A Hoare Logic for Energy Consumption Analysis

Future Work Many future research directions can be envisioned: e.g. perform-
ing energy measurements for defining component models, modelling of software
components and enabling the development of tools that can automatically derive
energy consumption bounds for large systems, finding the most suited tool(s) to
provide the right loop bounds and annotations for our analysis and study en-
ergy usage per time unit on systems that are always running, removing certain
termination restrictions.

With regard to the implementation, we aim to improve the ECAlogic tool
as follows:

• Since ECAlogic currently only supports the eca language, the software to
be analysed must be expressed in this language. When analysing existing
software, this is restrictive. Eventually, we want to support a ‘real-world’
programming language, such as C.
• We want to increase the inter-operability with other analysis tools, such as
ResAna [SKVE10] for deriving the necessary loop bounds and a CEGAR-
based tool [tMB+14] for deriving component models.
• To increase the practical applicability, we will start an open library where

users can submit ecm models for hardware components. An additional ad-
vantage of such a library is that users with access to physical measurement
tools could take a model from the library and validate it.

Chapter 5

Test-based Inference of
Polynomial Ranking Functions
for Loops

Abstract. This chapter presents an interpolation-based method of in-
ferring arbitrary degree ranking functions for Java loops. Given a loop,
by its “ranking function” we mean a function with the numeric program
variables as its parameters, that is used to bound the number of itera-
tions.

Analysis of loop bounds is important in several different areas, including
worst-case execution time (WCET) and heap consumption analysis, opti-
mising compilers and termination-analysis. While several other methods
exist to infer numerical loop bounds, we know of no other research on the
inference of non-linear symbolic loop bounds. Additionally, the inferred
bounds are provable using external tools, e.g. KeY.

To infer a ranking function for a given loop, it is instrumented with a
counter and executed on a well-chosen set of values of the numerical
program variables. By well-chosen we mean that using these test val-
ues and the corresponding values of the counter, one can construct a
unique interpolating polynomial. The uniqueness and the existence of
the interpolating polynomial is guaranteed if the input values are in the
so-called NCA-configuration, known from multivariate-polynomial inter-
polation theory. The constructed interpolating polynomial presumably
bounds the dependency of the number of loop iterations on arbitrary
values of the program variables. This hypothetical loop bound is verified
by a third-party proof assistant.

A prototype tool has been developed which implements this method.
This prototype can infer piecewise polynomial ranking functions for a
large class of loops in Java programs. Applicability of the prototype has
been tested on a series of safety-critical case studies. For most of the loops
in the case studies, ranking functions could be inferred (and verified using
a proof assistant).

62 Test-based Inference of Polynomial Ranking Functions for Loops

5.1 Introduction

Most of the execution time of typical embedded programs is spent in loops.
In bounding resource consumption, it is therefore an important step to bound
loop iterations. Compiler optimisations that transform loops, e.g. loop-unrolling,
may also depend on knowledge about loop-bounds. Furthermore, termination of
a program can only be proved if an upper bound on the number of loop iterations
exists for each loop in the program.

In this chapter, we describe test-based inference of piecewise polynomial rank-
ing functions for Java loops with first-order numerical loop guards. The ranking
function (RF) of a loop expresses an upper bound on the number of iterations,
depending on (some of) the numerical program variables and data sizes.

Consider, for example, the loop in Listing 5.1. While several other methods
exist that are able to infer a numerical loop bound for certain values of i, for
instance minimal or maximal values, we infer the symbolic loop bound 15-i,
which can be used to bound (or in this case, calculate exactly) the number of
iterations of this loop for arbitrary values of i. Only one paper [Gul09] is known
to the authors where symbolic bounds are inferred, but in the method described
in that paper only a limited use of non-linear terms in bounds is possible. In
other articles, soundness is not usually discussed, but the correctness of the RF
inferred by the presented method can be checked by external tools. By proving
correctness of the bound, termination of the loop is also proved inherently.

1 while (i < 15) {
2 i++;
3 }

Listing 5.1: A typical single (i.e. not nested) while-loop.

The schema of our approach is as follows. Given a loop, it is first placed into a
testing method. The loop in this method is instrumented with a counter and this
testing method outputs the number of iterations of the loop on given values of
the program variables. We take into consideration numerical program variables
that occur in the loop condition and its body. Then, the method is executed on
a well-chosen set of inputs, which we call test values or, sometimes, following
polynomial-interpolation terminology, test nodes. By well-chosen set of test val-
ues we mean that using these test values and the corresponding values of the
counter, one can construct a unique interpolating polynomial. The uniqueness
and the existence of the interpolating polynomial is guaranteed if the input val-
ues are in the so-called NCA-configuration, known from multivariate-polynomial
interpolation theory. This issue is highlighted in Section 5.2, explaining appli-
cation of polynomial interpolation. The obtained results are used to compute
the corresponding interpolating polynomial. The inference part of the proce-
dure outputs a method, annotated with the inferred bound, e.g. annotated in
JML [CKLP06] by the decreases-expression. The correctness of the annota-
tion is verified by an external checking tool. In our prototype implementation

5.2. Polynomial Interpolation 63

the method with the annotated loop is run through KeY [BHS07], which con-
tains a verification-condition generator and a theorem prover.

To obtain concrete loop bounds (i.e. the concrete number of iterations on
concrete data), the obtained RF may be applied to the results of data-flow
analysis, possibly accelerated by abstract interpretation and/or program slicing.
Several examples exist in the literature [ESG+07, LCFM09] indicating how this
might be implemented.

This work builds on previous research on size analysis [SvEvK09], where we
studied polynomial dependencies of the sizes of output data structures (e.g. the
length of a linked list) on the sizes of input data structures. A similar algorithm
as is used here for generating loop bounds was used in [vKSvE08] to infer size
relations.

The running example throughout this chapter is a while-loop with a quadratic
RF, given in Listing 5.2. This bound is successfully inferred by the prototype
implementation and can be verified using KeY (although some manual steps are
required for such a complex bound).

1 while (x>0 && i>0 && i<x && j>0 && j<=x) {
2 if (j== x) { i++; j = 0 ; }
3 j++;
4 }

Listing 5.2: A single loop with the quadratic RF x2 − xi− j + 1.

This research is conducted in the context of the Critical and High Assurance
Requirements Transformed through Engineering Rigour (CHARTER) project6.
The goal of this project is to ease, accelerate, and cost-reduce the certification
of safety-critical embedded systems by melding Realtime Java, Model Driven
Development, rule-based compilation, and formal verification. It is part of a
larger chain of tools developed in this project.

We recapitulate polynomial interpolation in Section 5.2. The RF inference
method is introduced in Section 5.3. We then discuss the prototype implemen-
tation and a series of case studies in Section 5.4. Related work is discussed in
Section 5.5 and the chapter is concluded in Section 5.6.

5.2 Polynomial Interpolation

When the result of a polynomial function is known for certain test values, the
values of its coefficients can be derived. Such a polynomial, which interpolates

the test results, exists and is unique under some conditions on the data, which
are explored in polynomial-interpolation theory [CL87].

For 1-variable interpolation this condition is well-known: all the test nodes
must be different. Let us recapitulate in more detail. A polynomial p(z) of degree

6 http://charterproject.ning.com/

http://charterproject.ning.com/

64 Test-based Inference of Polynomial Ranking Functions for Loops

d with coefficients a0, . . . , ad can be written as follows:

a0 + a1 z + . . . + ad z
d = p(z)

The values of the polynomial function in any pairwise different d+1 points de-
termine a system of linear equations with respect to the polynomial coefficients.
More specifically, given the set

(
zi, p(zi)

)
of pairs of numbers, where 0 ≤ i ≤ d,

and coefficients a0, . . . , ad, the system of equations can be represented in the
following matrix form, where only the ai are unknown:

1 z0 · · · zd−1
0 zd0

1 z1 · · · zd−1
1 zd1

...
...

. . .
...

...

1 zd−1 · · · zd−1
d−1 z

d
d−1

1 zd · · · zd−1
d zdd

a0

a1

...
ad−1

ad

 =

p(z0)
p(z1)

...
p(zd−1)
p(zd)

The determinant of the matrix is called a Vandermonde determinant. For

pairwise different points z0, . . . , zd it is non-zero. This means that, as long as
the output values p(zi) are known for d + 1 different inputs zi, there exists a
unique solution for the system of equations and, thus, a unique interpolating
polynomial.

The condition under which there exists a unique multivariate polynomial
p(z1, . . . , zk) that interpolates multivariate data is not trivial. Using the result
from [CL87], it is shown how to generate test data for size analysis of functional
programs in [SvEvK09]. Here we recall the basic facts from these papers. First, a
polynomial p(z1, . . . , zk) of a degree d and dimension k (the number of variables)
has Nk

d =
(
d+k
k

)
coefficients. Let a set of values fi of a real function f be given

and let z̄ denote a vector-variable (z1, . . . , zk). A set W = {w̄i = (zi1, . . . , zik) :
i = 1, . . . , Nk

d } of points in a real k-dimensional space forms the set of interpola-

tion nodes if there is a unique polynomial p(z̄) = Σ0≤j1+...+jk≤daj1...jkz
j1
1 . . . zjkk

with the total degree d with the property p(w̄i) = fi, where 1 ≤ i ≤ Nk
d .

In this case one says that the polynomial p interpolates the function f at the
nodes w̄i. The condition on W , which assures the existence and uniqueness of
an interpolating polynomial, is geometrical: it describes a node configuration,
called Node Configuration A [CL87], NCA in short, in which the nodes from W
should be placed in Rk. The multivariate Vandermonde determinant computed
from such points is non-zero. Thus, the corresponding system of linear equations
with respect to the polynomial its coefficients has a unique solution. For a two-
dimensional polynomial of degree d, the condition on the nodes that guarantees
a unique polynomial interpolation is as follows:

N2
d nodes forming a set W ⊂ R2 lie in a 2-dimensional NCA if there exist lines

γ1, . . . , γd+1 in the space R2, such that d+1 nodes of W lie on γd+1 and d nodes
of W lie on γd \ γd+1, . . . , and finally 1 node of W lies on γ1 \ (γ2 ∪ . . .∪ γd+1).

5.2. Polynomial Interpolation 65

A typical instance of such a configuration is a 2-dimensional grid. An example
of a two-dimensional grid based on integers is given in Figure 5.1.

For dimensions k > 2 the NCA is defined inductively on k. A set of Nk
d nodes

is in NCA in Rk if and only if

• there is a (k − 1)-dimensional hyperplane such that it contains some Nk−1
d

of the given nodes lying in (k − 1)-dimensional NCA for the degree d,

• there is a (k − 1)-dimensional hyperplane such that it contains some Nk−1
d−1

nodes, lying in (k−1)-dimensional NCA for the degree d−1, and these nodes
do not lie on the previous hyperplane,

• in general, for any 0 ≤ i ≤ d, there is a (k− 1)-dimensional hyperplane such
that it contains some Nk−1

d−i nodes, lying in (k− 1)-dimensional NCA for the
degree d− i, and these nodes do not lie on the previous hyperplanes,

• thus, the remaining 1 node lies on the remaining hyperplane and does not
belong to the previous ones.

For instance, for the example in Listing 5.2, we might assume that the ranking
function is a quadratic polynomial (so, d = 2) and depends on three variables,
x, i and j. Recall, that a quadratic function of three variables has

(
5
3

)
= 10

coefficients: p(x, i, j) = a200x
2 + a020i

2 + a002j
2 + a110xi + a101xj + a011ij +

a100x + a010i + a001j + a000. Therefore we need 10 three-dimensional points in
R3-NCA. According to the definition above we need:

• A set of
(

2+2
2

)
= 6 points on a plane in R2-NCA: we take the hyperplane

j = 1 and the following nodes:

x i j

2 1 1
3 1 1
4 1 1
3 2 1
4 2 1
4 3 1

These points are given (projected on the hyperplane j = 1) in Figure 5.1.

• A set of
(

2+1
2

)
= 3 points in R2-NCA on another plane: we take the hyper-

plane j = 2 and nodes

x i j

3 1 2
4 1 2
3 2 2

• A single (
(

2+0
2

)
= 1) point on yet another plane in R2-NCA: we take just

(x = 4, i = 1, j = 3).

66 Test-based Inference of Polynomial Ranking Functions for Loops

The corresponding system of linear equations is:

22a200 + 12a020 + 12a002 + 2a110 + 2a101+
1a011 + 2a100 + 1a010 + 1a001 + 1a000 = 2

32a200 + 12a020 + 12a002 + 3a110 + 3a101+
1a011 + 3a100 + 1a010 + 1a001 + 1a000 = 6

42a200 + 12a020 + 12a002 + 4a110 + 4a101+
1a011 + 4a100 + 1a010 + 1a001 + 1a000 = 12

32a200 + 22a020 + 12a002 + 3 · 2a110 + 3a101+
2a011 + 3a100 + 2a010 + 1a001 + 1a000 = 3

42a200 + 22a020 + 12a002 + 4 · 2a110 + 4a101+
2a011 + 4a100 + 2a010 + 1a001 + 1a000 = 8

42a200 + 32a020 + 12a002 + 4 · 3a110 + 4a101+
3a011 + 4a100 + 3a010 + 1a001 + 1a000 = 4

32a200 + 12a020 + 22a002 + 3a110 + 3 · 2a101+
2a011 + 3a100 + 1a010 + 2a001 + 1a000 = 5

42a200 + 12a020 + 22a002 + 4a110 + 4 · 2a101+
2a011 + 4a100 + 1a010 + 2a001 + 1a000 = 11

32a200 + 22a020 + 22a002 + 3 · 2a110 + 3 · 2a101+
2 · 2a011 + 3a100 + 2a010 + 2a001 + 1a000 = 2

42a200 + 12a020 + 32a002 + 4a110 + 4 · 3a101+
3a011 + 4a100 + 1a010 + 3a001 + 1a000 = 10

Its solution is (1, 0, 0,−1, 0, 0, 0, 0, 0,−1, 1), which yields the following poly-
nomial: p(x, i, j) = x2 − xi− j + 1.

0

1

2

2 3 41

3

x

i

Figure 5.1: An example of well-chosen test nodes for a polynomial g(x, i) =
a20x

2 + a11xi + a02i
2 + a10x + a01i + a00. These may be used to reconstruct a

polynomial g(x, i) = p(x, i, 1), where p is the polynomial bound for our running
example. The grey area represents points that satisfy the condition x < i.

5.3. Inference of Ranking Functions for Loops 67

5.3 Inference of Ranking Functions for Loops

Our method is designed for loops with guards in the form of propositional logic
expressions over numerical (in)equalities. Formally:

guard := inequality | inequality ∧ guard

inequality := num1 b num2

where numi is a numerical program variable or constant and where operator
b ∈ {<,>,=, 6=,≤,≥}.

For now, we limit our focus to loops where the loop guards are conjunctions
over linear (in)equalities. The analysis of loops where the guard contains dis-
junctions is discussed in Chapter 6. Note that limiting the loop guards to linear
(in)equalities does not mean limiting to linear RFs. The loop in Listing 5.2 has
a non-linear RF for instance.

Test-based
inference
procedure

External
checking tool

(KeY)

Java
source

Rejection: repeat testing
with a higher degree

Annotated
generated method
with a chosen loop

Not verifiable
automatically
Manual steps

Verified RF

Figure 5.2: Test-based procedure from a bird’s-eye view: infer-and-check cycle.

In Figure 5.2 we give a bird’s-eye view of the test-based infer-and-check proce-
dure. First, a user inputs the Java source code to the inference procedure. Then
the procedure makes a hypothesis of a RF, based on test-runs. This hypothe-
sis is expressed in some conventional annotations, like JML, so the annotated
method can be read by an external checker that checks if the inferred bound is
correct. Manual steps might be necessary to construct the proof. If the user con-
cludes that such a proof cannot be found, (s)he might go back to the inference
procedure and try again with a higher degree of a polynomial RF.

In Figure 5.3, we zoom in on the test-based inference module. We start with
Java source code and pick a loop for which one wants to infer a RF. The loop
is (automatically) inserted in a new method and instrumented with a counter,
which is returned at the end of the method. The parameters of the method are
the numerical variables that occur in the loop guard and in its body. The new

68 Test-based Inference of Polynomial Ranking Functions for Loops

public int meth(int x, int i, int j) {
int count=0;
while (x > 0 && i > 0 && i < x

&& j > 0 && j <= x) {
if (j==x) { i++;j = 0;}
j++;

 count++;
}
return count;

}

Test runs

1st group: degree 2 NCA on plane 2nd group: degree 1 NCA on plane
x=2, i=1, j=1 => count =2 x=3, i=1, j=2 => count=5
x=3, i=1, j=1 => count=6 x=4, i=1, j=2 => count=11
x=4, i=1, j=1 => count=12 x=3, i=2, j=2 => count=2
x=3, i=2, j=1 => count=3
x=4, i=2, j=1 => count=8 3rd group: degree 0 NCA on plane
x=4, i=3, j=1 => count=4 x=4 i=1, j=3 => count=10

Degree
of a loop bound

(e.g. d=2)

Find the interpolating polynomial
and generate the method annotated
with the corresponding loop bound:
p(x, i, j) = x*x – x*i – j + 1;

public void meth(int x, int i, int j) {
while (x > 0 && i > 0 && i < x

&& j > 0 && j <= x) {
if (j==x) { i++;j = 0;}
j++;

}
}

Generated method
with the loop and its annotations

 /*@ assignable j, leg;
@ decreases ();
@ loop_invariant true;
@*/

Generated method
with the loop and its annotations

 /*@ assignable j, leg;
@ decreases ();
@ loop_invariant true;
@*/

Generated method
with the loop and its annotations

 /*@ assignable j, leg;
@ decreases ();
@ loop_invariant true;
@*/

Figure 5.3: Test-based inference module in more detail. The choice of test nodes
is explained in Section 5.2.

method is now executed for a given degree and an appropriate set of values
of these parameters, i.e. on so called test nodes. For instance, in our running
example (x = 2, i = 1, j = 1) is an admissible test node. A well-chosen complete
set of test nodes for this loop is given in the figure. The set consists of 10 nodes,
since a polynomial of degree 2 of 3 variables has 10 coefficients: p(x, i, j) =
a200x

2 +a020i
2 +a002j

2 +a110xi+a101xj+a011ij+a100x+a010i+a001j+a000.
The result of a test run is the number of iterations for the corresponding node.
For instance, with (x = 2, i = 1, j = 1) the loop body is executed 2 times, so the

5.3. Inference of Ranking Functions for Loops 69

test method returns count = 2. From the results of the test-runs a polynomial
over the parameters can be calculated which interpolates the test results.

Multiple tactics are possible to guess the degree of the polynomial. It can be
left to the user to supply it as input to the procedure, or an increasing degree
can be tried, up to a certain bound. When a degree that is too low is supplied,
the method will still find a RF, but the checker will reject it. When a degree that
is too high is given, the right polynomial will still be found, but more test-runs
are needed.

5.3.1 RF Inference: The Basic Method

This polynomial interpolation method was previously applied to infer output-on-
input data-structure size relations in a functional language [SvEvK09, vKSvE08].
The main challenge we face when we adjust the interpolation theory to inferring
ranking functions for loops in imperative programs is that test data must not
only lie on a grid (or more generally, be in NCA), but also satisfy the loop guard
C. In Figure 5.1 we show the set of points satisfying the (in)equalities i < x, i > 0
and x > 0. This corresponds to the loop guard in our running example for the
fixed j = 1. Whenever the loop guard is violated the loop is not executed and
the testing method, which is wrapped around the loop, outputs 0. Therefore,
if we to construct the interpolation polynomial using a node(s) that does not
satisfy the loop guard, we would obtain an incorrect loop bound for sure.

The problem of generating test data for imperative loops is formalised as
follows:

Given:

• a degree d,
• the number of variables k, on which the ranking function depends,
• a loop condition C,

find Nk
d nodes in NCA that satisfy C.

We have reduced this task to the following one: construct an integer grid in
Rk, such that it is based on d + 1 parallel hyperplanes and contains Nk

d nodes,
where

• there are Nk−1
d nodes in (k − 1)-dimensional NCA for the degree d that lie

on one of the hyperplanes and satisfy the corresponding projection of C to
this hyperplane,

• there are Nk−1
d−1 nodes in (k − 1)-dimensional NCA for the degree d− 1 that

lie on another hyperplane and satisfy the projection of C on this hyperplane,
• there are Nk−1

d−i nodes in (k − 1)-dimensional NCA for the degree d− i that
lie on a fresh hyperplane and satisfy the projection of C on this hyperplane,
0 ≤ i ≤ d,

• and the remaining 1 node lies on the remaining hyperplane and satisfies the
corresponding projection of C.

70 Test-based Inference of Polynomial Ranking Functions for Loops

In general terms, our approach is based on a search of the appropriate nodes
on hyperplanes x1 = i0, . . . , id. The search is inductive on the number of vari-
ables k. To bound the search space one uses an external optimisation procedure
solving tasks of the form f(x1, . . . , xk) → min, where x1, . . . , xk satisfy the
constraint C(x1, . . . , xk). Currently, in our prototype, we use a linear program-
ming solver. Therefore, the prototype handles only linear loop guards. Note that
this does not limit the generated ranking functions to linear ones. In general,
one may use non-linear optimisation software, such as the implementation of
the Augmented Lagrangian Genetic Algorithm (ALGA) by MathWorks7 or the
open-source Java package Sigoa8.

The rest of this subsection is structured as is the inference procedure: gener-
ating test-nodes, conducting the tests and interpolating a polynomial RF.

The algorithm for generating test-nodes

1. Run the chosen optimisation procedure for the objective functions xi →
min, xi → max and the constraints constituted from the loop guard and
the additional bounds mi ≤ xi ≤ Mi, where mi and Mi are pre-defined
minimal and maximal admissible values, respectively, of the variables xi,
with 1 ≤ i ≤ k.
The results define the k-dimensional box that bounds the set defined by C
(within the minimal-maximal values). We only look for nodes inside this box,
because we know that others do not satisfy the loop condition.

2. Obtain search hyperplanes Hj by cutting the bounding box on d congruent
“slices”, j = 0, . . . , d.

3. Amongst these hyperplanes, search for one that contains Nk−1
d nodes in

(k − 1)-dimensional NCA for the degree d and the projection of C on this
hyperplane, et cetera, as explained above.

4. If the search succeeds, then stop. Otherwise, refine the grid by increasing the
number of hyperplanes (i.e. by decreasing the distance between them) and
repeat the search for the refined grid.

This procedure finds test-nodes that both satisfy the loop condition and lie in
NCA, if they exist on a grid within the minimal-maximal values mi and Mi.
It finds suitable test-nodes for the case-study examples. To refine the search
algorithm, one may add other kinds of NCA configurations than a rectangular
grid, such as the pencil configuration.

Run tests Now that suitable test nodes have been selected, we can run the tests.
Of course, because the investigated loops are actually executed, termination of
the inference procedure depends on termination of those loops. The RF inference
procedure terminates if the considered loop terminates for all inputs.

7 http://www.mathworks.com/access/helpdesk/help/toolbox/gads/bqf8bdd.html
8 http://sigoa.sourceforge.net/

http://www.mathworks.com/access/helpdesk/help/toolbox/gads/bqf8bdd.html
http://sigoa.sourceforge.net/

5.3. Inference of Ranking Functions for Loops 71

Assuming that infinite loops are undesirable in general, but especially for
loops for which one seeks to bound the number of iterations, “finding” non-
termination for certain inputs is a valuable result in itself. An implementation
can never conclude non-termination, but it may quit execution after a particular
amount of time has passed and hint the user that there is a large chance that
the loop does not terminate on the considered inputs.

Find the interpolating polynomial When all the tests have produced iter-
ation counts (i.e. all have terminated), then we can now fit a polynomial, which
interpolates these results. Because the test-nodes satisfy NCA, we know that a
single interpolating polynomial exists.

5.3.2 Expressing the RF in JML

In this section we discuss how we can express the found RF in JML, in order to
be verified by an external tool.

The result of our method is Java code annotated with JML, in which the
inferred RF is expressed. Ranking functions for loops are most easily expressed
in JML by defining a decreases clause on the loop. This is an expression which
must decrease by at least 1 on each iteration, and remains greater than or equal
to 0, see the JML reference manual [LPC+07]. It therefore forms an upper-bound
on the number of iterations.

We want to verify the RF for the case where the loop condition initially
holds, otherwise the decreases-clause is not guaranteed to be greater than or
equal to 0 initially (and the loop will iterate exactly 0 times). Therefore, the loop
condition is added as a precondition to the constructed method. The example
from Listing 5.2 is shown in annotated form in Listing 5.3.

1 /∗@
2 r e q u i r e s x>0 && i>0 && i<x && j>0 && j<=x ;
3 ensure s t rue ;
4 ∗/
5 public void meth (int x , int i , int j) {
6
7 //@ a s s i g n a b l e i , j ;
8 //@ l o o p i n v a r i a n t t rue ;
9 //@ de c r ea s e s x∗x − x∗ i − j + 1 ;

10 while (x>0 && i>0 && i<x && j>0 && j<=x) {
11 if (j== x) { i++; j = 0;}
12 j++;
13 }
14 }

Listing 5.3: The inferred RF for the example in Listing 5.2 expressed as a JML
annotation.

72 Test-based Inference of Polynomial Ranking Functions for Loops

5.3.3 Complexity: Exponential in the Number of Variables

The first sub-procedure in the presented inference method is an external opti-
misation procedure used to bound the test-nodes search space. Typically, the
complexity of optimisation methods depends on the number of (in)equations in
the constraints, number of variables (the space’s dimension) and complexity of
(in)equations. For non-linear constraints the worst-case complexity is, as a rule,
exponential, but one often uses “smart search” algorithms providing better aver-
age computation time. For instance, in genetic algorithms the search is directed
by e.g. the value of a penalty function that decreases when one searches in the
“right direction”.

For the remaining parts of the inference method we can give independent
estimations of complexity. These parts are:

• the search of test nodes that, as one intuitively expects, has the most signif-
icant complexity, which we will discuss right now, below,
• the runs (Nk

d =
(
d+k
k

)
times) of the test method on the test nodes,

• solving a system of Nk
d linear equations w.r.t. Nk

d variables that has the worst
complexity O((Nk

d)3); with some advanced matrix-multiplication algorithms
the complexity may be between O((Nk

d)2) and O((Nk
d)3).

Searching of test nodes is the most time-consuming part of the inference
procedure (besides, probably, non-linear optimisation part). Let N (d, k) denote
the time for finding the nodes for a polynomial of the degree d with k variables.
Consider its behaviour from the best to the worst case, with Nmin(d, k) denoting
the best computation time.

In the best case we just cut the k-dimensional cube by d+ 1 hyperplanes of
the dimension k − 1, and find immediately Nk−1

d−i points on the i-th hyperplane
in time Nmin(d − i, k − 1), where 0 ≤ i ≤ d. Therefore, we may assume that
Nmin(d, k − 1) = Nmin(d, k − 1) + Nmin(d − 1, k − 1) + . . . + Nmin(1, k − 1) +
Nmin(0, k − 1) + (d+ 1) that includes the time for d+ 1 recursive calls. We can

show by induction on k that Nmin(d, k) = O
(
dk

k!

)
. Indeed, for k = 1 we have to

pick up d+1 different points on the line, so Nmin(d, 1) = d+1 = O(d1). For k = 2

we have Nmin(d, 2) = (d+ 1) + d+ . . .+ 1 + (d+ 1) = d(d+1)
2 + (d+ 1) = O(d

2

2).

Using the induction assumption, Nmin(d, k) =
∑d
i=0O((d−i)k−1

(k−1)!) + (d + 1) =

O
(

1
(k−1)!

∑d
i=0 j

k−1
)

+ (d+ 1) ≈ O
(

1
(k−1)!

∫ d
0
xk−1dx

)
+ (d+ 1) = O(d

k

k!).

In the “middle” case the initial collection of (d + 1) hyperplanes does have
all the points in the necessary configuration, but, roughly, one has to reorder
hyperplanes to get the k-dimensional NCA configuration. That is, the i = 0-th
hyperplane does not contain enough, i.e. Nk−1

d , (k−1)-dimensional points, so in
general we have to look through all d+ 1 hyperplanes. Next, for Nk−1

d−1 points we

have to search in d remaining hyperplanes, etc. So, for Nk−1
d−i points we search in

d+ 1− i hyperplanes. Therefore, N (d, k) =
∑d
i=0

(
(d+ 1− i)(N (d− i, k − 1) +

1)
)
, including the recursive calls (with “+1” staying for the recursive call of the

procedure for d− i, k − 1). Then, the estimate is

5.4. Prototype and Case Studies 73

N (d, k) ≤∑d
i=0

(
(d + 1− i)(N (d, k − 1) + 1)

)
=

(N (d, k − 1) + 1)
∑d

i=0(d + 1− i) =

(N (d, k − 1) + 1)O(d2

2
) ≤

(N (d, k − 2) + 1)O(d4

4
) + O(d2

2
) =

O((d2

2
)k)

Now, it is clear that the the worst-case computation time of node search
is exponential in k. Different versions of the search procedure provide different
bases of the exponent or differ by a multiple, that may be quite large. Here we
consider one of the versions (implemented in the prototype) with accelerated
generation of new collections of hyperplanes. In the worst case, if we fail to find
enough nodes w.r.t. the current collection of hyperplanes, we have to generate
another collection of D > d + 1 hyperplanes for a refined grid. Similarly to
the estimates above, the estimate is N (d, k) =

∑d
i=0(D + 1 − i)(N (d − i, k −

1) + 1) ≤ (N (d, k − 1) + 1)O
(
D2

2

)
= O

((
D2

2

)k)
. After failing with the first

hyperplane collection, D takes consecutively the values 2(d + 1), 282(d + 1), ...
28i+1(d+ 1), with 0 ≤ i ≤ imax and for imax the following holds. It is such that
28imax+1(d + 1) ≤ M + 1, where M is the (length of the) side of the bounding
box, generated by the optimisation procedure on the first step. So, we obtain

that imax ≤
1

8
(log2

M+1
d+1 − 1). The worst-case time, when we have to go through

all the possible cuts, is then∑imax
i=0

(((28i+1(d+1))2

2

)k)
=

O(2k(d + 1)2k)
∑imax

i=0 O(216k)i =

O
(
2k(d + 1)2k (216k)imax+1−1

216k−1

)
Taking into account the estimate for imax we obtain that N (d, k) does not

exceed

O

((2

216
(d + 1)2

)k(M + 1

2(d + 1)

)2k)
= O

((1

217
(M + 1)2

)k)

5.4 Prototype and Case Studies

We have created a prototype implementation of the method in Java. This pro-
totype is embedded in the tool ResAna and can be used to load Java source
files, select a loop to analyse, input an expected degree, infer a ranking func-
tion for the loop and output Java code containing JML annotations in order
to prove this inferred RF using an external tool, for instance KeY [BHS07] or
OpenJML [Cok11].

For the prototype, existing software packages were used as much as possi-
ble, for instance for bounding the test-node search space and for solving the

74 Test-based Inference of Polynomial Ranking Functions for Loops

interpolation matrix. Around 3000 lines of code were added to create a working
prototype, including a graphical user interface.

JML annotations can be generated for all of the loops listed in this chapter.
We were able to prove all the inferred RFs using KeY. Additionally, we have
conducted three case studies of safety-critical Java systems, suggested as test
cases by the CHARTER partners.

• Collision detector case study from [HSST06]. The first case is the
collision detector example from the paper “Provably Correct Loop bounds
for Realtime Java Programs” by James Hunt et al. This code stems from a
safety-critical avionics application.

• DIANA Package. This package is developed in the FP6 project Dis-
tributed, equipment Independent environment for Advanced avioNics Appli-
cations (DIANA)9. The package is described in detail in [SJL+09].

• CDx Collision Detector package. The CDx Collision Detector pack-
age10 is a publicly available Realtime Java benchmark. It is described
in [KHP+09].

Nr. of loops Analysable Percentage

Hunt et al 2 2 100%

DIANA 4 4 100%

CDx 38 23 61%

Total 44 29 66%

Table 5.1: Summary of the cases studied.

The results are shown in Table 5.1. As can be read from the table, we can
handle roughly two-thirds of the loops found in the case studies. This means
that we can infer a RF for these loops using our prototype and prove it using
KeY. All of the found RFs were linear, i.e. of degree one.

In the case studies, apparently, enough test-nodes are found after just a few
cuts of the k-dimensional search space. This leads us to believe that the average
complexity of the method lies somewhere around O(D2k) for D = 29(d + 1),
rather than near the worst-case complexity. For the examples in the case studies
this amounts to approximately one second spent in RF inference. KeY was able
to prove all the RFs fully automatically, for which it requires approximately 5
to 10 seconds.

There are 15 examples in the case studies that cannot yet be analysed us-
ing our method. In these cases, the loop bound depends on Booleans, array

9 http://diana.skysoft.pt/
10 http://adam.lille.inria.fr/soleil/rcd/

http://diana.skysoft.pt/
http://adam.lille.inria.fr/soleil/rcd/

5.5. Related Work 75

elements, fields of referenced objects, a method invocation or results from a
different thread. We do not support such cases at this point. The first four lim-
itations are left for future work. Loops in which results from a different thread
are used require a fundamentally different analysis, as loop duration cannot be
captured in a ranking function that consideres the loop in isolation.

For examples that can be handled by our method, it usually computes the
exact RF. An exception to this is when branch-splitting is applied. This means
that compared to other methods, our method finds bounds that are equally tight,
or tighter. Furthermore, other methods are unable to derive non-linear RFs. This
is discussed in more detail in the next section.

5.5 Related Work

Various other research results on bounding the number of loop iterations ex-
ist. However, most are concerned with concrete (numerical) bounds, instead of
symbolic bounds. Also, most can only handle (tightly) cases where the bound
depends linearly on program variables (we can handle the polynomial case). In a
sense, our technique is more general than the methods discussed in this section.
It may not be the most efficient method for simple loops, but it can be used to
handle certain more complex cases. This makes it complementary to the other
techniques discussed here.

Another common difference is that other approaches rely on hand-made
soundness proofs of their method, while we rely on a verification tool to en-
sure that the derived RFs are correct.

In [FJ10], pattern-matching on abstract syntax trees (ASTs) is used by Fulara
et al. to select one of several syntax-based schemes for generating decreases-
clauses. If the AST matches a known pattern, it can be used to form a decreases-
clause. The authors claim to cover 71% of all for-loops in a set of case studies. It
is thinkable that their method is used in an implementation for the basic cases
and our method is applied when no pattern matches.

Abstract interpretation, program slicing and invariant analysis are used by
Ermedahl et al. in [ESG+07] to infer numerical bounds for C programs. The
bounds meant here are integers representing the number of times a certain block
of code is executed. The method can infer bounds for over 50% of the loops in a
set of benchmarks.

A similar approach is taken by Lokuciejewski et al. in [LCFM09], who com-
bine abstract interpretation with polytope models to calculate numerical loop
bounds for C programs. Both upper and lower bounds are calculated and the
analysis is accelerated by using program slicing. Even though there are restric-
tive constraints on the loops that can be analysed, the authors claim that they
can handle 99% of all for-loops in a set of benchmarks. Soundness or verification
of the bounds are not discussed.

Abstract interpretation is also used in [DMBCS08], in combination with flow
analysis. Numerical bounds can be found for 84% of the loops in a benchmark
suite. The method works on C programs.

76 Test-based Inference of Polynomial Ranking Functions for Loops

Gulwani uses“off-the-shelf linear invariant generation tools” to compute sym-
bolic loop bounds in [Gul09]. The authors experiment with different counter in-
strumentation methods and a technique they named “control-flow refinement”.
Symbolic loop bounds are presented as right-hand sides of the inequations in
loop invariants. Inference of invariants is based on linear arithmetic, but some
limited use of non-linear terms is possible as well. Given a particular program,
the base arithmetic may be extended by a finite set of non-linear operators to-
gether with reasoning rules for them. The inference system, first, introduces a
fresh variable for each non-linear operator, then deals with linear combinations
of such variables (and usual arithmetic variables). The operators and the rules
are chosen e.g. by a user, who knows which sort of invariants one can expect in
the given code.

In a related article [GJK09], pattern-matching against known loop-iteration
lemmas is used to establish bounds for C and C++ programs. This last method
can find bounds for 93% of the loops in a significant Microsoft product.

In [BA09], Ben-Amram describes a method to derive global ranking func-
tions, based on Size-Change Termination. Such a ranking function is required
to decrease in each basic block of the program. He uses an abstraction called
Monotonicity Constraints and represents them as graphs. Various algorithms
are described that can be applied to these graphs to judge termination and
construct ranking functions.

Hunt et al. discuss the expression of manually conceived ranking functions
for Java loops in JML, their verification using KeY and the combination with
data-flow analysis in [HSST06]. This article is an important motivation for our
work. What is “missing” in the method is the automated inference of ranking
functions for loops, which we supply.

In [AAGP08], Albert et al. describe a system of generating and solving cost re-
currence relations. These relations define functions that represent upper bounds
on time or memory usage by a program. To solve a recurrence relation means
to find a closed, i.e. a recursion-free, form of the corresponding function. Terms
in the system represent monotonic real functions and, besides monotonically in-
creasing polynomials, may contain the exponent and the logarithmic functions.

5.6 Conclusions

We have presented a method of computing arbitrary degree ranking functions
for Java loops. By expressing these functions in JML, their correctness can be
proved, which is very valuable in safety-critical systems. While various other
methods for inferring loop-bounds exist, we are not familiar with any other
works on generating non-linear ranking functions for Java loops. Moreover, the
technique presented herein is largely complementary to other methods, since it
is more general and can solve certain more complex cases, such as quadratic
bounds. Using a prototype implementation, ranking functions can be inferred
for 66% of all loops in a set of case studies from actual safety-critical systems.

Chapter 6

ResAna: A Resource Analysis
Toolset for (Real-Time) Java

Abstract. For real-time and embedded systems limiting the consump-
tion of time and memory resources is often an important part of the
requirements. Being able to predict bounds on the consumption of such
resources during the development process of the code can be of great
value. In this paper we focus mainly on memory related bounds.
Recent research results have advanced the state of the art of resource
consumption analysis. In this paper we present a toolset that makes it
possible to apply these research results in practice for (real-time) sys-
tems enabling Java developers to analyse symbolic loop bounds, sym-
bolic bounds on heap size and both symbolic and numeric bounds on
stack size. We describe which theoretical additions were needed in order
to achieve this.
We give an overview of the capabilities of the ResAna toolset that is the
result of this effort. The toolset can not only perform generally applicable
analyses, but it also contains a part of the analysis which is dedicated to
the developers’ (real-time) virtual machine, such that the results apply
directly to the actual development environment that is used in practice.

6.1 Introduction

Both in industry and in academia there is an increasing interest in more detailed
resource analysis bounds than orders of complexity. In correctness verification
for industrial critical systems, the focus is often mainly on functional correctness:
does the program deliver the right output with the right input. However, for such
systems it is just as important to make sure that bounds for the consumption
of time and space are not exceeded. Otherwise, a program may not react within
the required time or it may run out of memory and come to a halt (making it
vulnerable to a Denial Of Service attack).

Traditionally, the focus has been on performance analysis taking time as
resource which is consumed. More recently, several researchers have produced

78 ResAna: A Resource Analysis Toolset for (Real-Time) Java

significant results in heap and stack bound analysis. In this chapter we focus on
such memory related resource analysis. The symbolic loop bound analysis part
however may be used both for memory and for time analysis.

Many real-time and embedded systems critically depend on operating within
a fixed amount of memory. Clearly, for such systems it can be important to know
an upper bound on the consumed memory. For safety critical applications it can
be essential. Programmers may be able to guess a bound and to prove it by
hand. That activity is quite tedious and error-prone. A tool that in many cases
is able to automatically infer bounds and prove them may be very helpful in the
software development process. This chapter presents such a tool.

For safety-critical applications often domain specific programming languages
are used that have strong support for loop bounding or regular programming
languages with strict coding conventions. In the recently finished EU Artemis
CHARTER (Critical and High Assurance Requirements Transformed through
Engineering Rigour) project, Realtime Java was considered as possible pro-
gramming language for safety-critical systems. Reasons for studying Realtime
Java include more possibilities for code reuse, more available tools and more pro-
grammers that are highly experienced in the use of the language. The ResAna
toolset, which is presented in this chapter, is one of the results of the CHARTER
project [dRH12, WW12, KSvG+12]. Together, the tools produced by the CHAR-
TER project provide a first step towards the use of general programming lan-
guages for safety-critical systems. For full deployment in safety-critical context
the CHARTER tool chain should be advanced further. For now, the ResAna
toolset can already be used in everyday practice, e.g. for inferring and proving
memory consumption properties of existing library functions and of non-critical
applications for which memory bounds are relevant like applications for mobile
devices. Another usage may be the development of prototype applications with
verified resource consumption properties. These prototypes can then be trans-
formed to the language that is in actual use for the safety-critical system. The
techniques presented in this chapter can in principle be used for other languages
too. Of course, that would require both an adaptation of the front-end of the
tool and of the annotation language that is used for expressing the properties.

Even if memory is abundantly available, applications can be hindered signif-
icantly when more memory is consumed than expected. Effectively the system
may come to a halt due to excessive swapping. Some Denial-Of-Service attacks
are based on this principle. A known upper bound of consumed memory may
prevent attacks of that kind.

A variety of memory analysis techniques have been developed independently
not only on the language level but also on the byte code level [AAGP11].
Researchers use polynomial interpolation [vKSvE08], reachability-bound analy-
sis [GZ10], amortization [HAH11], polynomial quasi-interpretation [Ama05] and
new language features such as programmer-controlled destruction and copying of
data structures [dDMP10]. Of course, such analyses are undecidable in general.
In practice, however, an increasingly large set of problems can be handled.

6.1. Introduction 79

This research builds upon earlier resource analysis work developed in the
Dutch NWO AHA project [vESvK+07], as well as on Chapter 5. In this chap-
ter, we focus on the Java language and on resource consumption properties
related to heap and stack usage. Using the scoped memory which is offered by
Realtime Java one can enforce memory bounds and facilitate simple mem-
ory management. However, in order to deal with more complex bounds, a more
thorough analysis is needed. While our research mainly focuses on Realtime
Java, the techniques and the tool described here are also applicable to regular
Java programs. The loop bound analysis provided by the ResAna tool can be
of further use both for deriving memory bounds and for deriving time bounds.
This chapter is an extended version of [KSvG+12]. How this chapter extends
[KSvG+12] is described in Section 6.6.

With the goals of making these results applicable in practice, our heap and
stack resource analysis goes beyond orders of complexity. We aim at obtaining
bounds that are expressions of relevant variables and parameters. If a resource
is consumed quadratically with respect to the value of a parameter x, then a
typical bound could be e.g. 2x2 − 4x+ 15 thus indicating the exact dependency
of the bound on the variable. In order to achieve that in practice, we developed
a tool, ResAna11, that contains a general process which has two phases.

Inference In the inference phase the ResAna tool analyses the Java source
of the program in order to propose a possible resource bound for the pro-
gram. It uses traditional analysis techniques like solving cost-relation systems
and a novel polynomial interpolation technique. This interpolation-based ap-
proach is very powerful. It allows also non-monotonic polynomial bounds to
be derived (the developer does not have to indicate the exact dependencies:
they are derived). The obtained result is added to the Java program via an
annotation using the JML specification language [LPC+07].

Verification Results are achieved by solving cost relations or by interpolating
polynomials. Solving cost relations is sound by construction. The use of in-
terpolation is not guaranteed to be sound. Therefore, the results achieved by
interpolation must be verified, e.g. by the KeY verification tool [BHS07] or
the QEPCAD algebraic decomposition tool [Bro03]. If the tool is not able
to verify them, one can proceed with a new inference phase with other user
options, such as e.g. trying a higher degree polynomial.

The ResAna tool supports three kinds of analysis.

Loop Bound Analysis An expression that gives a symbolic upper bound for
the number times a loop is executed may be derived and verified using the
integrated combination of the tools ResAna and KeY, as in Chapter 5.

Heap Bound Analysis An expression for a symbolic upper bound of the con-
sumed heap is derived using ResAna extended with a variant of the external

11 ResAna is open source software and can be downloaded from http://

resourceanalysis.cs.ru.nl/resana/.

http://resourceanalysis.cs.ru.nl/resana/
http://resourceanalysis.cs.ru.nl/resana/

80 ResAna: A Resource Analysis Toolset for (Real-Time) Java

tool COSTA [AAG+08]. The COSTA tool has been adapted to produce ac-
curate values for OpenJDK, as well as the real-time JamaicaVM virtual
machine [Sie02]. Furthermore, the capabilities of the COSTA tool have been
enlarged through the internal use of interpolation technology [MSvEPn12].

Stack Bound Analysis An expression for a symbolic upper bound of the
space for the stack is derived using ResAna with the enlarged COSTA
that provides an upper bound for the depth of recursive calls; this infor-
mation is used by the VeriFlux tool [HTS08] to obtain a numeric stack
bound.

These three kinds of analysis are integrated in a common program develop-
ment environment through an Eclipse plug-in, such that a developer can easily
switch between development and verification activities guaranteeing the memory
safety of critical real-time software applications.

In Section 6.2 loop bound analysis is described. Section 6.3 presents heap
bound analysis and the adjustments that have been made to make it applicable
in practice. Analysing stack bounds is discussed in Section 6.4. User experience
with ResAna is described in Section 6.5. Finally, in Sections 6.6 and 6.7, related
work is discussed and conclusions are drawn.

6.2 Loop-Bound Analysis

In order to prove the termination of a piece of software or, even harder, to cal-
culate bounds on run-time or usage of resources such as heap space or energy,
finding bounds on the number of iterations that the loops can make is a pre-
requisite. While in some cases a loop may iterate a fixed number of times, its
execution will often depend on program input. Therefore we consider symbolic
loop bounds, or ranking functions. In Chapter 5, a method for inferring poly-
nomial ranking functions for loops is presented. Here, we present a series of
extensions to that basic method.

In Section 6.2.1, the basic method is extended in order to deal with ranking
functions with rational or real coefficients. Section 6.2.2 presents an extension
for loops with branching inside the body. In Section 6.2.3, an extension which
handles loop guards which contain disjunctions is discussed. In Section 6.2.4 a
limitation to the extension for disjunctional loop guards and a solution are dis-
cussed. Another application of our polynomial interpolation method is discussed
in Section 6.3.1.

6.2.1 Ranking Functions with Rational or Real Coefficients

The ranking functions inferred by the basic method are polynomials with coef-
ficients that are natural, rational or real numbers. However, when a polynomial
has rational or real coefficients, its result is not necessarily a natural number,
which, of course, any estimate of a number of loop iterations must be. Consider
for instance the loop in Listing 6.1.

6.2. Loop-Bound Analysis 81

1 while (start < end) {
2 start += 4 ;
3 }

Listing 6.1: An example with a loop-bound function that is a polynomial over
rational coefficients

The exact number of iterations of this loop is given by d end−start4 e. In other
words, when end−start

4 does not equate to a natural number, for instance to 3
4 , it

must be ceiled. In general, when the coefficients of an inferred polynomial rank-
ing function RF (v̄) are not natural numbers, ceiling should be added as such:
dRF (v̄)e. Unfortunately, there is no ceiling operator in JML. KeY simply trun-
cates non-integer values after the decimal. We therefore chose to overestimate
ceiling by adding one to the KeY truncation: dRF (v̄)e ≤ RF (v̄) + 1.

When choosing test nodes for the loop in Listing 6.1 naively, for instance
(0,1), (1,2) and (1,3), an incorrect ranking function will be the result (in this
case the constant 1). We must take into account that if a variable v is updated by
increasing or decreasing by a constant step, the test-nodes must lie step apart.
In this example, if we pick test nodes (0,4), (4,8) and (4,12), then the correct
ranking function will be found.

6.2.2 Branching inside the loop body

The basic procedure finds correct ranking functions for most loops containing
branching, such as for example the one in Listing 5.2 (Chapter 5). However,
there are cases in which the basic procedure fails, because the different paths
affect the bound in different ways. Such a case is shown in Listing 6.2.

1 while (i > 0)
2 if (i > 100) i −= 10 ;
3 else i −= 1 ;

Listing 6.2: Example where the basic method supplies an incorrect ranking func-
tion. Therefore, branch-splitting is applied, yielding the pessimistic, but correct
ranking function i.

To solve this problem, we have invented branch-splitting. This procedure finds
ranking functions for loops where the if-statements, if they exist in a loop body,
have the following worst-case computation path (WCCP) property:

For each loop body, there is an execution path such that, for any collection of
values of the loop variables, if one follows this execution path in every loop itera-
tion one reaches the worst-case, i.e. the upper bound on the number of iterations.

82 ResAna: A Resource Analysis Toolset for (Real-Time) Java

The WCCP property is not checked by the loop bound inference procedure.
It is given here to specify the class of loops for which the procedure is successful.
Soundness of the result is ensured by verification using KeY.

By branch-splitting, we mean that we generate multiple new loops from the
original, one for each possible path. We then do the analysis for each of these
paths. The ranking function is then the maximum of all the inferred ranking
functions. Thanks to the WCCP property, we can easily find the ranking function
that always specifies the maximum, by supplying a set of values for the variables
(say, all ones) to all the ranking functions. For the example in Listing 6.2, this
yields the ranking function i.

6.2.3 Piecewise Ranking Functions for Loops with Disjunctive
Guards

In this section, we formally describe an extension to the basic procedure for
handling loops with disjunctions in their guards. The set of considered loops is
here thus extended to those with as guard any propositional logical expression
over arithmetical (in)equalities, including disjunctions. We will see that for those
loops for which the guard contains disjunctions, the ranking function will become
piecewise.

Note that in fact, any ranking function for a well-formed loop is a piecewise
one, since there is always the piece where the loop guard does not hold and the
loop iterates zero times. For instance, for the loop in Listing 5.1 (Chapter 5),
the ranking function is actually:{

15− i if (i < 15)
0 else

(6.1)

This is of course a trivial case. A more involved example of a loop for which
a piecewise ranking function can be defined is shown in Listing 6.3.

1 while ((i>0 && i<20) | | i>50) {
2 if (i>50) i−−;
3 else i++;
4 }

Listing 6.3: While loop with a piecewise ranking function.

Its ranking function is the following:
20− i if (i > 0) ∧ (i < 20)
i− 50 if i > 50

0 else
(6.2)

We will now formally define a generic method for inferring ranking functions
for loops with disjunctive guards. The first step is to transform the guard into
disjunctive normal form (DNF), using the laws of distribution and DeMorgan’s
theorems. Thereafter it has the form:

6.2. Loop-Bound Analysis 83

guard := conj | conj ∨ guard

conj := inequality | inequality ∧ conj

inequality := num1 b num2

where numi is a numerical program variable or constant and where operator
b := {<,>,=, 6=,≤,≥}.

Let ci represent a logical conjunction over numerical (in)equalities. We can
now split up the guard by applying the following function:

DNFsplit(c1∨. . .∨cn) :=

 ∧
ci∈CP

ci ∧
∧

cj∈Crest

¬cj

∣∣∣∣∣∣ CP ∈ P({c1, . . . , cn})\∅
Crest = {c1, . . . , cn}\CP

This transforms the condition c1 ∨ . . . ∨ cn into a set Pieces of 2n − 1 con-

junctive conditions. For instance, DNFsplit(i > 10 ∨ i < 3) yields three pieces:
i > 10∧¬i < 3, i < 3∧¬i > 10 and i > 10∧ i < 3. This set may be simplified us-
ing a Satisfiability Modulo Theories (SMT) solver. In this case, the negations can
be removed from the first two conditions. The third condition is unsatisfiable,
thus it may be removed altogether. We refer to the procedure of transforming a
guard into disjunctive normal form and separating the pieces as DNF-splitting.
The set Pieces defines the pieces of the piecewise polynomial ranking function.

After DNF-splitting, the basic method can be applied separately to each
of the pieces. If RFp is the polynomial ranking function inferred for a piece
p ∈ Pieces, then this yields the following piecewise ranking function:

RFp1 if p1

. . . if . . .
RFpm if pm
0 else

(6.3)

In this piecewise polynomial ranking function, m ≤ 2n − 1, because unsatis-
fiable pieces have been removed.

6.2.4 Condition Jumping

In this section we define a complication that may arise during DNF-splitting,
which we call condition jumping. We show how to detect its occurrence and how
to infer ranking functions even in the presence of condition jumping.

1 while ((i>0 && i<20) | | i>22) {
2 if (i>22) i−−;
3 else i+=4 ;
4 }

Listing 6.4: While loop with jumping between the disjunctive conditions.

84 ResAna: A Resource Analysis Toolset for (Real-Time) Java

Consider the loop in Listing 6.4. Naively, one could say that its ranking
function is the following:

d(20− i)/4e if (i > 0) ∧ (i < 20)
i− 22 if i > 22

0 else
(6.4)

But, what if i is 19, 15, or any n ∈ [1, 19] with n mod 4 = 3? Indeed, then
there is a shift from the first condition (0 < i < 20) to the second one (i > 22).
We call this condition jumping. Jumping from the second condition into the first
one is not possible in this case.

Because of the presence of condition jumping, regular DNF-splitting does
not suffice here. The set of nodes from which condition jumping occurs must be
considered as a separate piece, as follows:

d(20− i)/4e+ 1 if (i > 0) ∧ (i < 20) ∧ i mod 4 = 3
d(20− i)/4e if (i > 0) ∧ (i < 20) ∧ i mod 4 6= 3
i− 22 if i > 22

0 else

(6.5)

In the remainder of this section, we first describe a method to detect condition
jumping. This method is then applied in an algorithm which detects all nodes
for which jumping occurs, in order to infer a correct piecewise ranking function.

Detection of Condition Jumping using Symbolic Execution and SMT
Solving To detect condition jumping in the example in Listing 6.4, we first use
symbolic execution [Kin76] to construct an update function, which captures the
relation between the values of the program variables pre and post execution of
the loop body. We can then use this relation as input to an SMT solver and
search for a model for which one part of the loop guard is true pre-execution of
the loop body and another part is true post-execution.

Obtaining an update function. We will name the pre/post execution relation for
a variable v the nextv function. The function nexti :: Int→ Int for the loop in
Listing 6.4 can be determined by symbolically executing the loop with value αi
for i. This results in the following symbolic post-execution value, which we will
name φi:

φi(αi) =

{
αi − 1 if αi > 22

αi + 4 if ¬(αi > 22)
(6.6)

By replacing the α symbol by i, this easily translates to the nexti function we
were looking for:

nexti(i) =

{
i− 1 if i > 22

i + 4 if ¬(i > 22)
(6.7)

6.2. Loop-Bound Analysis 85

In general, such an update function can be derived by symbolic execution of
the loop body. Start by giving the variables v1 . . . vn symbolic values α1, . . . , αn.
If we restrict our method to loop bodies with polynomial effects, after the sym-
bolic execution of the loop body, each variable vi will have a value which is a
set of polynomials over the symbols α1, . . . , αn and constants, with associated
path conditions, which capture branching. Effectively, this is again a piecewise
polynomial. The function nextvi is now obtained by replacing the α’s by the
corresponding program variables in this piecewise polynomial.

Detecting condition jumping. SMT-LIB is a library of SMT background theories
and benchmarks [BST10]. It has a common file format for SMT problems, which
can be read by most SMT-solvers. An SMT-LIB script to detect jumping in the
example from Listing 6.4 is given in Listing 6.5. The function nexti :: Int→ Int
from Equation 6.7 is defined on line 2. Then on line 4 we define the condition ex-
pressing that jumping occurs for this example and on line 6 we check satisfiability
of this condition.

1 (declare−fun i () Int)
2 (define−fun nexti ((x Int)) Int

3 (ite (> x 22) (− x 1) (+ x 4)))
4 (assert (and (and (> i 0) (< i 20))
5 (> (nexti i) 22)))
6 (check−sat)
7 (exit)

Listing 6.5: SMT-LIB script to detect jumping in the code of Listing 6.4.

Let us now consider the general case. Condition jumping will be detected
pairwise for conditions with multiple disjunctions. Here we thus consider a single
condition-pair, i.e. a loop with guard b1 ∨ b2. Here b1 and b2 are conditions over
CV ⊆ LV ⊆ PV , where CV are the program variables in the condition, LV are
the program variables in the loop and PV are all program variables.

For each vi ∈ LV , we can define an associated function nextvi :: Tv1 → . . .→
Tvi → . . . → Tvn → Tvi , where Tvi is the type of vi and n = |LV |, which takes
the values of all v ∈ LV as the state and computes the value of v after a single
execution of the loop body in that state, by following the procedure described
in the previous paragraph. Once these functions have been derived, the question
whether jumping from b1 to b2 is possible can be answered by any SMT-LIB
conforming SMT-solver12 by determining the satisfiability of b1(v1, . . . , vn) ∧
b2(nextv1(LV), . . . , nextvn(LV)).

Generating Ranking Functions in the Presence of Condition Jumping
The SMT-LIB script in Listing 6.5 can be used to find a model for which jumping

12 For instance Z3, which can be used on-line at http://research.microsoft.com/

en-us/um/redmond/projects/z3/

http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/

86 ResAna: A Resource Analysis Toolset for (Real-Time) Java

occurs by adding the expression (get-value (i)). A model is an instantiation
of the variables for which the formula for which satisfiability is checked holds.
In the SMT-LIB script from Listing 6.5, a model for i is 19.

Subsequently, by adding the expression (assert (distinct i 19)), one
can search for models other than i = 19 for which jumping occurs. The an-
swer of the SMT solver is that the combination of propositions in this script is
unsatisfiable. Thus, i = 19 is the only possible model. We can now see if there
are any models from which the state i = 19 can be reached in a single iteration,
by changing line 6 to (= (nexti i) 19))). In the example, this will be the
model i = 15. Subsequently and similarly, we can search for other nodes that
can reach the state i = 19 in a single step, or that can reach the state i = 15.
By repeating these steps, we can find the set J = {3, 7, 11, 15, 19}. These are the
models from which jumping can occur.

In general, the method described above can be extended to detect all models
from which condition jumping can occur, by first finding all models that can
jump directly from b1 to b2 and then recursively finding models that can reach
a model from this first set. This can be done by implementing the following
algorithm around an SMT-solver. In this algorithm, J is the set of models of
which it is known that condition jumping occurs and Q is a queue of models.
We assume a function next :: M →M (where M is the type of a model), which
applies to each variable vi in a model v̄ its corresponding nextvi function.

1. Is there a model v̄ for which b1(v̄) ∧ b2(next(v̄)) ∧ v̄ 6∈ J?
• SAT → Add v̄ to J and Q, goto 1.
• UNSAT → Goto 2.

2. Q empty?
• Yes → Done.
• No → Goto 3.

3. For a model q̄ on the queue Q, is there a model v̄ for which b1(v̄)∧next(v̄) =
q̄ ∧ v̄ 6∈ J?
• SAT → Add v̄ to J and Q, goto 3.
• UNSAT → Remove q̄ from Q, goto 2.

After execution, J contains exactly all nodes for which jumping occurs. Since
here a queue is used, this algorithm implements a breadth-first search. This can
easily be adapted to a depth-first search by using a stack. Since the set of models
is finite, the algorithm will always terminate. It may however require |J | runs of
the SMT-solver, so one may choose to set an upper bound on the size of J and
abort (“give up”) early.

Now that we know J , we can split condition b1 into two: b1(v̄) ∧ v̄ ∈ J and
b1(v̄) ∧ v̄ 6∈ J . We can then apply the basic method to each of these disjunctive
pieces. This algorithm only detects jumping from one piece into another. It
should be applied iteratively over all the pieces, until no more jumping can
occur. Note that this approach does not terminate until all condition jumping
cases have been found. Since there are loops for which jumping occurs for every
value of for instance an integer, it should “give up” after an upper-bound on the
number of jumps is reached.

6.3. Heap-Space Usage Analysis 87

6.3 Heap-Space Usage Analysis

ResAna’s heap consumption analysis is based on the COSTA [AAG+08] tool,
which provides a generic analysis infrastructure for Java byte code. The symbolic
upper bound that COSTA generates for a method depends on the logical sizes of
the method’s arguments, structures pointed to by the object fields and the costs
of the called (library) methods. The (logical) size of an integer is the maximum
of the integer and 0, the size of an array is its length, the size of an object
is its maximal reference chain. These assumptions constitute the size model in
the COSTA terminology. For instance, let a method allocate n objects of class
X, where integer n is a parameter of the method. Then COSTA generates a
symbolic bound of the form nat(n) ∗ c(size(X)), where nat(n) is integer n its
logical size: max{n, 0} and c(size(X)) is the memory cost of creating an object
of type X.

COSTA implements different garbage collection models [AGGZ10]. This
functionality is retained in ResAna. Inside Java real-time threads no garbage
collection is used, so in ResAna a user can select to ignore garbage collec-
tion. For normal Java code one can select to use the garbage collection feature
of COSTA, which calculates an upper bound for all possible executions of a
program. First, for every method, the amount of memory that can escape the
method’s scope is deduced. Using this information, peak consumption cost rela-
tionships are calculated and solved, which give upper bounds on the amount of
memory used, even if using garbage collection.

We have added a number of improvements to the existing COSTA tool.
Firstly, the recurrence solver was improved with interpolation-based height anal-
ysis. Secondly, we have changed the calculation of bounds for arrays, from an
under-approximation to an over-approximation. Thirdly, the ability to calculate
concrete bounds for a number of Java Virtual Machines, like OpenJDK and Ja-
maicaVM, was added. And finally we added a post-processing step to simplify
the expressions, so a programmer can easily interpret the information.

6.3.1 Interpolation-based height analysis for improving a recurrence
solver

COSTA’s approach to resource analysis is based on the classical method devised
by Wegbreit [Weg75], which involves the generation of a recurrence relation cap-
turing the costs of the program being analysed, and the consequtive computation
of a closed form (non-recursive cost expression) which bounds the results of this
recurrence relation. In COSTA terminology, a recurrence relation is called a
Cost Relation System (CRS). The main feature that distinguishes CRSs from
the classical concept of recurrence relations is non-determinism: a CRS defining
the costs of a Java method may be defined by a set of equations guarded by
non-disjoint conditions. As an example, consider the loop in Listing 6.6.

88 ResAna: A Resource Analysis Toolset for (Real-Time) Java

1 while (x <= y) {
2 new Object () ;
3 if (. . .) x = x + 1 ; else y = y − 2 ;
4 }

Listing 6.6: Example loop.

We assume that the value of the if condition cannot be determined at com-
pile time. Its memory costs are described by the following (simplified) CRS:

T (x, y) = 0 {x > y} (6.8)

T (x, y) = c+ T (x+ 1, y) {x ≤ y} (6.9)

T (x, y) = c+ T (x, y − 2) {x ≤ y} (6.10)

where c denotes the constant c(size(java.lang.Object)), i.e. the memory cost
of creating an instance of Object. The COSTA system provides the recurrence
solver PUBS [AAGP11], which computes the following closed-form:

nat(y − x+ 1) ∗ c(size(java.lang.Object))
+ c(size(java.lang.Object))

This is an upper-bound to the values of T (x, y) given above.The resulting closed
form corresponds to the worst-case execution of the loop (i.e. when the if con-
dition always holds).

An important issue in the search of a closed-form of a CRS is to approximate
the maximum number of unfoldings that must be undergone in order to reach a
base case (height analysis). If we consider the CRS as a function being evaluated
in a non-deterministic way, the number of unfoldings is closely related with the
concept of ranking functions (see Chapter 5). For instance, in the CRS given
above we get the following unfolding sequence of length y − x+ 1:

T (x, y)→ T (x+ 1, y)→ T (x+ 2, y)→ · · · → T (y, y)︸ ︷︷ ︸
y−x+1 unfoldings

PUBS derives a ranking function for T by applying Podelski and Rybalchenko’s
method [PR04], which is complete for linear ranking functions. Unfortunately, it
fails when the number of unfoldings does not depend linearly on the arguments
of the CRS, as the following example shows:

R(x, y) = c {x = 0, y = 0} (6.11)

R(x, y) = c+R(x− 1, x− 1) {x > 0, y = 0} (6.12)

R(x, y) = c+R(x, y − 1) {x ≥ 0, y > 0} (6.13)

By equation (6.13) the variable y is decreased in every recursive call, until
it reaches zero. Then, by equation (6.12) it is set to x− 1, from which it starts

6.3. Heap-Space Usage Analysis 89

decreasing again. The worst-case evaluation of R(x, y) yields a chain of length
1
2x

2 + 1
2x+ y + 1, which does not depend linearly on (x, y).

We have extended the PUBS system so that it can infer polynomial ranking
functions via testing and polynomial interpolation, as has been explained in
Section 6.2. This extension was described in detail in [MSvEPn12]. It is described
briefly here, with an additional contribution of verification of the interpolation
results. The approach is, essentially, the same: choose a set of points (lying in a
NCA) in the domain of the relation defined by the CRS, evaluate the CRS at
these points, and find the interpolating polynomial. However, the evaluation of
a CRS is more involved than the evaluation of a program instrumented with a
counter, as it was done in Chapter 5. The main difficulty lies in non-determinism.
Assume we want to evaluate T (5, 9), where T is defined as in the CRS shown in
(6.8-6.10). We can unfold the definition of T (5, 9) by using (6.10) until we reach
a base case, so we get the following sequence:

T (5, 9)→ T (5, 7)→ T (5, 5)

This sequence is of length three, which is not maximal, since we could have
evaluated T by always using (6.9), so as to obtain a longer sequence:

T (5, 9)→ T (6, 9)→ T (7, 9)→ T (8, 9)→ T (9, 9)

T(x
0
,y

0
)

T(x
1
,y

1
)

T(x
2
,y

2
)

T(x
3
,y

3
)

B
1

B
2

B
3

T(x
4
,y

4
)

T(x
5
,y

5
)

Base cases x

y

B
1

B
2

B
3

B
4

Figure 6.1: Meaning of the Bi sets and their representation as convex polyhedra.

As a consequence of this, we would have to examine all the possible evalua-
tions of T (5, 9) in order to obtain the longest unfolding sequence. However, the
number of possible evaluations may be infinite even if the evaluation yields a
finite number of results. We have addressed this problem by evaluating the CRS
in a bottom-up way (Figure 6.1 left). We start from the set B1 of pairs (x, y)
such that the evaluation of T (x, y) does not fall into a recursive case. The longest
obtainable sequence in these cases is of length one. Now let us define the set B2

90 ResAna: A Resource Analysis Toolset for (Real-Time) Java

of pairs (x, y) such that the evaluation of T (x, y) falls into a recursive case, but
the recursive call belongs to B1. Thus we ensure that the evaluation of these
pairs does not require more than two unfoldings. By following this procedure
we obtain a sequence of sets {Bi} each of which can be described as a disjoint
union of convex polyhedra with the help of quantifier elimination techniques.
We use a gradient-based approach for selecting the interpolation nodes from the
Bi sets (Figure 6.1 right). The algorithm involves the search of climbing paths
starting at the B1 set, and minimizing the distance between Bi and Bi+1 for
each i ∈ N. It is possible that, given a point (x, y) in a set Bi, there are sev-
eral candidates in the next level Bi+1 lying at the same distance from (x, y). In
this case the climbing path forks, and the next interpolation nodes are searched
from all these candidates. The process ends when the interpolating polynomial
is uniquely determined.

Once we have found the interpolating polynomial on the set of test nodes,
we have to check whether the resulting bound is correct. This can be done as
follows: for each CRS the system can derive some predicates, whose satisfiability
is a sufficient condition guaranteeing that the polynomial is an upper bound to
the values of the CRS. These conditions involve inequalities between polynomial
expressions, which are decidable in Tarski’s theory of real closed fields. For in-
stance, the system would generate the following logical statement for checking
that y − x+ 1 is an upper bound to T (x, y):

∀x, y, x′, y′ : ((x ≤ y ∧ x′ = x+ 1 ∧ y′ = y) ∨ (x ≤ y ∧ x′ = x ∧ y′ = y − 2))
=⇒ y − x+ 1 ≥ 1 + y′ − x′ + 1

If these generated predicates hold, then y−x+1 is indeed an upper bound to
T (x, y). Our extension to PUBS delegates the task of checking such inequalities
to the QEPCAD tool [Bro03]. For instance, in our running example T (x, y) the
following script is generated13:

[Proving correctness of the bound corresponding to simpleLoop]

(x,y,x’,y’) -- Variables

0 -- Number of free variables in the formula

(A x) (A y) (A x’) (A y’)

[[[x >= 0 /\ y >= 0 /\ x’ >= 0 /\ y’ >= 0] /\

[[[(-1) x + 1 y’ >= (-2) /\ 1 x + (-1) x’ = 0 /\ 1 y + (-1) y’ = 2] \/

[(-1) x + 1 y’ >= 0 /\ 1 x + (-1) x’ = (-1) /\ 1 y + (-1) y’ = 0]]]]

==> [(-1) x + 1 y + 1 >= 1 + (-1) x’ + 1 y’ + 1]].

finish

For this script, QEPCAD yields the message An equivalent quantifier-free

formula: TRUE, which validates the inferred bound.

6.3.2 Correct array-size analysis

Due to the way memory is handled, an array header will always be included
with information about the array. As an array is a regular Java object the

13 Variables have been renamed for better readability.

6.3. Heap-Space Usage Analysis 91

array header also includes the normal object header. Almost all architectures
impose constraints on the memory allocator, e.g. memory allocators on the x86
architecture will allocate memory blocks in multiples 4 byte words. Although
fewer bytes are requested, the memory allocator will add padding to an object
that cannot be used for other purposes. This array header and padding need to
be taken into account, otherwise the bound would be an under-approximation.

For instance, all JamaicaVM allocations are in (multiple) blocks of 32 bytes,
considering the 32-bit version of JamaicaVM. If multiple blocks are needed they
are stored in a tree structure with the array content stored in the leafs of the
tree. The array header is 16 bytes long, so this leaves up to four pointers to the
tree structures. In partial trees (in which the number of elements is not 4× 8n),
nodes leading to unused array contents and unused array contents blocks are not
stored, e.g. 16 pointers (four bytes each) stored will take only three blocks: two
for the leafs and one intermediate block pointing to the leafs [Sie02]. An example
array structure is shown in Figure 6.2. COSTA takes into account neither the
array header, nor the structure needed to store the contents, nor padding. Only
the space needed by the array contents (object references and primitive types)
is included in the bound. This results in COSTA producing a bound for new

int[n] equal to n∗size(int), making it indistinguishable from the sequence new
int[1]; new int[n-1];, so neglecting to account for the extra array header,
padding and structure overhead. The (structure) overhead is dependent on the
virtual machine used. To deal with these deficiencies we implemented a special
mode in COSTA when generating a concrete bound for arrays in JamaicaVM,
as explained next.

a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

a[6]

a[7]

a[8]

a[1]

a[2]

a[3]

a[4]

a[5]

a[6]

a[7]

a[16]

a[1]

a[2]

a[3]

a[4]

a[5]

a[6]

a[7]

a[24]

a[1]

a[2]

a[3]

a[4]

a[5]

a[6]

a[7]

a[33]

a[1]

a[2]

a[3]

a[4]

a[5]

a[6]

a[7]

a[40]

a[1]

a[2]

a[3]

a[4]

a[5]

a[6]

a[7]

a[48]

a[1]

a[2]

a[3]

a[4]

a[5]

a[6]

a[7]

a[56]

a[57]

a[58]

a[59]

a[60]

a[61]

a[62]

a[63]

garbage collector

type

monitor

count

0..63

64..127

128..191

192..255

0..7

8..15

16..23

24..32

33..40

40..47

48..55

56..63

...

...

...

Figure 6.2: Graphical representation of a JamaicaVM array of size n, with 33 ≤
n ≤ 255, with a[i] representing the contents of the array. Allocating an array of
63 elements takes 10 blocks.

92 ResAna: A Resource Analysis Toolset for (Real-Time) Java

6.3.3 Virtual-machine specialisation by adding type-size information

COSTA has no knowledge of specific Java Virtual Machines like JamaicaVM.
Our approach is to replace in all the symbolic bounds generated by COSTA
the symbolic object sizes by the exact sizes of objects in bytes. The exact sizes
are retrieved from the target VM by means of a specially generated program.
For JamaicaVM, this generated program depends on the Scoped Memory ex-
tensions of Realtime Java. For other Java VMs we use the reflection API in
Java, which is more general and can be run on any VM which supports the
reflection API. We validated this method for OpenJDK, by interfacing directly
with the virtual machine by means of a (JNI) plugin.

For generating bounds for arrays allocated in an instance of JamaicaVM,
we adjusted COSTA to include an over-approximation. A simple way of cal-
culating the size of arrays, by means of the small recursive function defined in
Equation 6.14, could not be implemented in COSTA, because of the manner
COSTA represents and calculates the bounds internally. This recursive function
is valid for data types of four bytes14, which correspond to the size of pointers
used in the tree structure pointing to the leafs, resulting in a cleaner formula.

arrayblocks(n) =

{
n if n ≤ 8⌈
n
8

⌉
+ arrayblocks(

⌈
n
8

⌉
) otherwise

(6.14)

By transforming the formula to an over-approximation (by replacing dn8 e
with n+7

8), we were able to solve this new recurrence equation. The results in a
new formula, and after integrating adjustments for the start cases, is listed in
Equation 6.15. We have implemented this solution in our version of COSTA,
which is included in ResAna, so that analysing arrays now gives a correct over-
approximation.

arrayblocks(n) ≤ n+ 5

7
+ (log8 n+ 7) (6.15)

We have a similar formula for arrays in OpenJDK, which uses continuous
allocation with a small header by default (an array of n elements uses 4n+8 bytes,
on a 32 bits target architecture). For each new Java VM a new specialisation
for arrays needs to be added in order to correctly generate bounds for code using
arrays.

6.3.4 Simplification of bounds

COSTA internally calculates the symbolic bounds without considering the for-
mat of the expression. The produced expressions are not necessary user friendly,
for instance:
14 These results are valid for data-types with a representation of four bytes. Alternate

data-types (e.g. byte, char, short, double), can be calculated by multiplying the
input n by a factor of 1

4
, 1

2
, 1

2
, 2 respectively.

6.3. Heap-Space Usage Analysis 93

nat(n)∗
(nat(n) ∗ (c(size(java.lang.Object, 1))+

c(size(java.lang.Object, 2)))+
nat(n) ∗ (c(size(java.lang.Object, 1))+

c(size(java.lang.Object, 2)))+
nat(n) ∗ (c(size(java.lang.Object, 1))+

c(size(java.lang.Object, 2))))

We implemented a recursive descent parser with reductions of mathemati-
cal expressions in order to make the expressions generated by COSTA more
user readable. The result of an expression is not altered15, but the formula is
reordered and reduced to a more user friendly expression. The expression above
is transformed into:

6n2 ∗ size(java.lang.Object)

One can now easily see that the bound is quadratic. This simplification is built
into ResAna and applied to all user-visible expressions.

6.3.5 Example

The complexity of calculating Fibonacci numbers is well known. The run-time
complexity (in terms of methods calls) of calculating the nth Fibonacci value

using a double recursion is related to the golden ratio ϕ = 1+
√

5
2 , which re-

sults in a complexity of O(ϕn) method calls. Standard textbooks on complex-
ity analysis use over-approximation, which results in a complexity of O(2n)
for the same function. By adding an object allocation to each iteration, the
heap consumption should be the same as the run-time complexity. The resulting
code is given in Listing 6.7. Our tool annotates this function with the bound
(2n − 1) ∗ size(java.lang.Object), matching the expected bound.

1 int fib (int n) {
2 new Object () ;
3 if (n < 2) return n ;
4 return fib (n−1) + fib (n−2);
5 }

Listing 6.7: Adaptation of the double recursive Fibonacci function, allocating an
object in each call.

The nth Fibonacci number can also be calculated by using a single recursion,
for which the complexity should be O(n). The resulting code, with added object
allocations, is listed in Listing 6.8. This single recursive function is annotated by

15 Technically the output is altered a little bit as the allocation order, which only
matters internally, is neglected. The allocation order is included in the size construct
as the second argument. The nat function is also omitted for brevity, and should
always be applied to variables.

94 ResAna: A Resource Analysis Toolset for (Real-Time) Java

our tool with a bound of (n + 1) ∗ size(java.lang.Object), also matching the
expected complexity bound.

1 int fib_helper (int a , int b , int n) {
2 new Object () ;
3 if (n <= 0) return a ;
4 return fib_helper (b , a+b , n−1);
5 }
6 int fib (int n) {
7 return fib_helper (0 , 1 , n) ;
8 }

Listing 6.8: Adaptation of the single recursive Fibonacci function, allocating an
object in each call.

6.4 Stack-Size Analysis

The proposed method of stack analysis requires global knowledge of the program,
including its data. A data-flow-based static analyser VeriFlux is used to provide
this knowledge [HTS08] (see http://www.aicas.com/veriflux.html).

Analysis of recursive methods is a challenge in static evaluation of stack con-
sumption. To deal with it, VeriFlux’s stack-size analysis relies on recursion-
depth annotations. A recursion-depth annotation consists of an expression that
evaluates to a natural number that is an upper bound on the number of nested
recursive calls. Syntactically, recursion-depth annotations are provided as JML
measured_by clauses. A measured_by expression is a usual symbolic expression
like a.length - 1. VeriFlux outputs the stack bound in bytes, which is the num-
ber computed from the annotations and the input data of the main method. If
VeriFlux discovers recursive methods that do not carry a recursion depth an-
notation, it uses a default recursion depth, which is a positive natural number
or infinity. This number can be configured in the tool’s GUI. In case the default
recursion depth is configured to be infinity, the stack size analysis will report an
infinite stack size for all threads that call recursive methods that do not carry a
recursion-depth annotation.

Expressions for measured_by annotations are obtained using COSTA, which
computes both:

• A symbolic upper bound on the depth of recursion (i.e. a “ranking function”
for recursive calls) for a given method

• A symbolic upper bound on the number of calls of the method from itself.

The former corresponds to the height of the call tree, the latter represents
the number of the nodes in the call tree. For instance, the depth of recursion
for a typical implementation of the n-th Fibonacci number calculation belongs
to O(n), whereas the number of call belongs to O(2n). Both a ranking function

http://www.aicas.com/veriflux.html

6.4. Stack-Size Analysis 95

and a bound on the number of recursive calls, can be used as measured_by

expressions. The former and the latter coincide if the recursion branching factor
b < 2. The number of calls leads to exponential over-approximation when b ≥ 2.

Initially, COSTA did not output ranking functions, even though they were
a part of the tool its internal computations. The tool has been adjusted within
the CHARTER project by adding an option that allows ranking functions to be
shown.

Consider the method fib, computing the n-th Fibonacci number, in List-
ing 6.7. As expected, COSTA produces the ranking function nat(n − 1). This
represents the depth of the recursion tree. It is transformed by ResAna into
the annotation measured_by n-1. The upper bound on the number of recursive
calls that COSTA generates is 2 ∗ (2nat(n−1)− 1). This corresponds to the total
number of nodes in the recursion tree.

A Java VM has two stacks: a Java stack and a native one. Interpreted code
and dynamically generated code execute on the Java stack. External C libraries,
JIT compiled (Java) code and Java functionality implemented natively execute
on the native stack. Both have different stack usage characteristics. We consider
Java stack usage while running the virtual machine in interpreted mode. While
methods utilizing the native stack cannot be analysed automatically, the user
can specify bounds in their JML contracts.

Java applications typically call methods from libraries. To obtain good stack-
consumption bounds for such applications, one should provide stack-consumption
bounds for library methods. In principle, library methods are analysed by CHAR-
TER methodology in the same manner as applications, i.e. as the example above.
However, analysis of libraries requires additional technical overhead, because of
two issues: libraries are large and library methods may call native routines.

6.4.1 Adjustments for analysis of libraries

Since a call to a library-method typically amounts to long chains of calls to other
methods, the corresponding call graph becomes very large. The COSTA analysis
is based on call graphs, so obtaining resource bounds in this case becomes unfea-
sible. Computations take too much time and/or at the end one obtains a huge
unreadable symbolic expression. Therefore, when performing the stack analysis
on programs with library calls, it is best to begin with analysis of the methods
belonging to one strongly-connected component of the call graph16. From our
experience, COSTA performs it in reasonable time. After that, methods that
call the already analysed ones can be analysed. The annotations of the already
analysed methods can now be used as contracts. Eventually, all the library is
analysed in a bottom-up manner.

Technically, native stacks are needed to cope with methods that are com-
piled to native machine code (for optimization purposes) and with native meth-
ods that are called through the Java Native Interface JNI (in order to access

16 Recall that a strongly connected component of a directed graph is a sub-graph in
which for any two nodes a and b, there is a path from a to b and vice versa.

96 ResAna: A Resource Analysis Toolset for (Real-Time) Java

services provided by platform-specific native libraries). VeriFlux does not ad-
dress StackOverflowErrors due to overflows of native stacks. Since verification of
C native methods is beyond of scope of this work, one has to rely on the known
information about the behavior of these methods, i.e. corresponding contracts.

1 String toString (int i) {
2 if (i== Integer . MIN_VALUE) return " -2147483648" ;
3 int size = (i < 0) ? stringSize(−i) + 1 : stringSize (i) ;
4 char [] buf = new char [size] ;
5 getChars (i , size , buf) ;
6 return MyString . valueOf (buf , 0 , size) ;
7 }

Listing 6.9: The toString method from the Integer class in the Java standard
library.

As an example for both issues, consider the toString method, which be-
longs to the Integer class and maps an integer number to a string, shown in
Listing 6.9. Before running COSTA, place this method in the abstracted class
MyInteger, that contains only toString and the methods called from it. Create
the abstracted versions of the classes StringIndexOutOfBoundsException and
String, that contain the methods called from toString, and the ones called
from them, et cetera. COSTA produces a ranking function that symbolically
depends on the costs of two native methods: copyChars and cast2string. If
their contracts say that they do not call Java methods (which is, indeed, the
case for this example), their costs are turned into zeros by ResAna and the
final measured_by expression is 0. This result can be approved by an accurate
data-flow analysis of the method toString using pen and paper.

6.4.2 Stack-size analysis by VeriFlux

In this section we consider the principles on which the stack analysis of Veri-
Flux is based. VeriFlux computes an invocation graph, in which nodes cor-
respond to methods and edges represent method invocations. Recursive method
calls correspond to cycles in the graph. In order to eliminate cycles, one first
computes the strongly connected components (SCCs) of the invocation graph.
Each SCC with more than zero nodes is then replaced by a single node that is
annotated by the sum of the sizes of all stack frames that correspond to nodes
(i.e., method invocations) in that SCC, multiplied by the maximal recursion depth
over all the nodes (i.e., method invocations) in that SCC. The recursion depths
are computed by evaluating the measured_by annotations of invoked methods
or using the default recursion depth for methods that do not carry these anno-
tations. All nodes that are not in an SCC with more than zero nodes are simply
annotated by the size of the stack frame of the corresponding method invocation.

After merging each SCC, one is left with a directed acyclic graph (DAG),
where each node is annotated with a positive integer. Let this annotation be

6.4. Stack-Size Analysis 97

called the stack-frame size of the node. To obtain the final result, VeriFlux adds
the stack frame size of the node to the maximum of the (recursively computed)
stack sizes of its successor nodes. This can be achieved, for all nodes, in a depth-
first traversal of the DAG.

From the user perspective, VeriFlux performs stack analysis in the following
way. The tool starts from the main method and evaluates the measured_by

annotations of all called methods in an abstract environment. Variables (and
expressions) in this environment are evaluated to intervals that represent all
possible values they may have according to data-flow analysis. For instance a
variable n is replaced with the interval [0, 21] if data-flow analysis shows that
fib(n) will be called on n from 0 to 21.

The value that VeriFlux outputs is an upper bound on the used stack
in bytes, computed from the symbolic measured_by expressions and the input
data of the main method. Note that VeriFlux’s computation of the abstract
environment is approximate. In the worst case, VeriFlux may have computed
the abstract value ’Any’ for some of the variables that occur in the measured_by
expression. Then the concrete value of the measured_by expression evaluates
to ’Any’ as well. If a symbolic measured_by expression is not given, then a
concrete default bound is involved, given by the user. The correctness of this
given numerical upper bound is not checked, VeriFlux simply uses this value
in the analysis. The upper bounds computed by VeriFlux are not tight, i.e.,
they may be higher than necessary.

Now, proceed with the Fibonacci example. Let it be called from the main
method in Listing 6.10.

1 public static void main (String [] args) {
2 fib (2 1) ;
3 }

Listing 6.10: Main method calling the fib method.

VeriFlux computes the depth of recursion, which, as expected, is equal to
20. The upper bound on consumed stack space computed by VeriFlux is 1156
bytes. This consists of 20 stack frames for the fib method, which use 56 bytes
each, plus 36 bytes of stack space needed to call the method. Calling the same
method with n = 22 results in a bound of 1212 bytes. This means that a stack
overflow will not occur if 1156 and 1212 bytes of stack space are reserved for the
main thread in the first and in the second case respectively.

To deal with virtual method invocations, VeriFlux has an option ”resolve
opaque calls”. When switched on, it considers all possible implementations or
subclasses of a given interface or a superclass. If the analysis cannot resolve
which virtual method is actually called, the maximum over the stack sizes of
all those methods that are possibly called is used. Conceptually, the invocation
graph will then have edges from the caller to all possibly called methods.

98 ResAna: A Resource Analysis Toolset for (Real-Time) Java

6.5 User Experience

We have combined all the CHARTER verification tools in a VirtualBox image
for easy installation. This image, the Eclipse plug-in and the source code, can
be downloaded from the ResAna website17.

The Dutch National Aerospace Laboratory NLR has used the VirtualBox
image in the development of a safety-critical avionics application. Their experi-
ence is described in [WW12]. They have selected the Environment Control Sys-
tem (ECS) on board an aircraft for evaluating the CHARTER tool-chain. The
ECS is responsible for air conditioning and air pressurization. The application
is written in Realtime Java and runs on JamaicaVM.

Before using the CHARTER tools, NLR did not determine any ranking func-
tions for loops or memory-usage bounds, because manually devising them would
require a very large effort. Now, thanks to ResAna, these bounds can be inferred
relatively quickly, so the programmers now have a better understanding of the
workings and hardware-requirements of their software. They applied ResAna
for loop bound and heap space analysis. The tool was found to be easy to use.
Their industrial user feedback has led to several (small but important) improve-
ments of the ResAna tool. NLR has used the complete CHARTER tool-chain
in their evaluation. The use of the tool set resulted in a 21% decrease of the
required software engineering effort.

We ourselves have also conducted several case studies with respect to the loop
bound analysis. These are discussed in Section 5.4. Furthermore, during a course
on software analysis, for several consecutive years, we have asked Master students
to perform a series of exercises using ResAna. Students successfully used the tool
to infer ranking functions, heap bounds and stack bounds for various examples.
Also, they performed a small case study on the code of Pygmy (a small web
server). Again, ranking functions could be generated for roughly two thirds of
the loops. Similar exercises were also given to PhD students at the 2013 IPA18

school on Software Engineering and Technology, who found the tool to be very
useful.

6.6 Related Work

The polynomial interpolation based technique was successfully applied in the
analysis of output-on-input data-structure size relations for functions in a func-
tional language in [vKSvE08], [SvKvE07], [SvET11], [SvEvK09], [TSv09] and
[GSvE13]. This method can, for instance, be used to determine that if the
append function gets two lists of lengths n and m as input, it will return a
list of length n+m.

17 http://resourceanalysis.cs.ru.nl/resana/
18 Institute for Programming research and Algorithmics: http://www.win.tue.nl/ipa/

http://resourceanalysis.cs.ru.nl/resana/

6.6. Related Work 99

6.6.1 Loop-Bound Analysis

Hunt et al. discuss the expression of manually conceived ranking functions in
JML, their verification using KeY and the combination with data-flow analysis
in [HSST06]. What is “missing” in the method is the automated inference of
ranking functions, which ResAna supplies.

In [ABG+11], an approach that is similar to ours is taken, in the combination
of COSTA with the KeY tool. The results that COSTA gives are output as
JML annotations, that may then be verified using KeY.

Various other research results on bounding the number of loop iterations are
described in the literature. However, most approaches generate concrete (numer-
ical) bounds [ESG+07, LCFM09, DMBCS08], as opposed to symbolic bounds.
The methods that are able to infer symbolic loop bounds are limited to either
bounds that depend linearly on program variables (the procedure used in Re-
sAna infers polynomial bounds) [PR04] or that are constructed from monotonic
subformulae [Gul09, GZ10].

Several syntactical methods are discussed [FJ10, GJK09], which will be more
efficient for simple cases, but less general. Our procedure can be seen as comple-
mentary to those methods. In case a syntactical method is not applicable to a
certain loop, our more general method can be used.

To generate algebraic loop invariants, Sharma et al. [SGH+13] use a proce-
dure which, as our loop-bound inference algorithm, employs interpolation and
separated inference and verification phases. They refer to their algorithm as
guess-and-check, as it employs a non-sound inference phase and a verification
phase. In the inference phase, the program is executed on data from unit tests
and results are interpolated. For checking the invariants they use an SMT solver.
The main difference to our work is that they search for so-called algebraic invari-
ants, which are defined as algebraic equalities over program variables, whereas
we search for a specific variant (a ranking function) specifying the number of
remaining iterations of the loop, the value of which is required to decrease on
each iteration. This ranking function implies an algebraic inequality as invariant.

6.6.2 Time Performance Analysis

There are a number of parallels of our work with time performance analysis. This
can be average execution time analysis or, more common, Worst Case Execution
Time (WCET) analysis. As already mentioned, loop-bound inference can be
used for time analysis, in particular for WCET analysis. Depending on the cost
function associated with each iteration of the loop, one can compute a memory
bound or a timing bound. To properly use this for WCET analysis one has to
incorporate extra analysis of e.g. cache behaviour, context switches, et cetera,
to precisely approximate the WCET as is done in [WEE+08, RGBW07].

As memory allocators and cache policies are rather slow and unpredictable,
the number and the amount of memory allocated have an impact on perfor-
mance [RGBW07]. One has to resort to special means to alleviate these prob-
lems [HBHR11]. Our heap analysis can also be used to gain insight into the

100 ResAna: A Resource Analysis Toolset for (Real-Time) Java

allocations of a program. This can help reduce the number and amount of allo-
cations in a program, which can lead to smaller worst case execution times.

6.6.3 Heap-Space Usage Analysis

We have taken the COSTA system [AAG+08] as our point of reference. The
authors have recently improved [AGM11] the precision of PUBS, its recurrence
solver, by considering upper and lower bounds to the cost of each loop iteration.
In a different direction, COSTA has improved its memory analysis in order to
take different models of garbage collection into account [AGGZ10]. However, the
authors claim that this extension does not require any changes to the recurrence
solver PUBS. Thus, the techniques presented in Section 6.3.1 should fit with
these extensions.

In the field of functional languages, a seminal paper on static inference of
memory bounds is [HJ03]. A special type inference algorithm generates a set of
linear constraints which, if satisfiable, specify a safe linear bound on the heap
consumption. One of the authors extended this type system in [HH10, HAH11]
in order to infer multivariate polynomial bounds. Surprisingly, the constraints
resulting from the new type system are still linear.

6.6.4 Stack-Size Analysis

In practice, stack usage in Java is often measured by instrumenting or trans-
forming the source code so that it counts consumed resources (and computes
other relevant information) on the inputs of the original code. To our knowl-
edge, there are two commercial tools that perform Java stack analysis: Coverity
Static Analyzer and Klockwork, with its kwstackoverflow. Another tool, GNAT-
Stack, analyses object-oriented applications, automatically determining maxi-
mum stack usage on code that uses dynamic dispatching in Ada and C++.

In [WQQC10], a static stack-bound analysis for abstract Java bytecode is
described. The described method considers Java bytecode with recovered high-
level control structures (conditionals and while-loops). The inference process is
divided into three key stages: frame-bound inference, abstract-state inference and
stack-bound inference. Recall that a frame is a piece of stack reserved for each
method invocation. Each stage applies a corresponding set of inference rules. In
these rules the authors use Presburger (linear) arithmetic formulae to describe
states of programs. It is stated that an implementation is under development.

6.7 Conclusions and Future Work

To assist in making resource analysis practical, we have introduced new tech-
niques and combined these techniques in our new tool, ResAna. Complex loop,
heap and stack bounds can be inferred in an integrated way within the Eclipse
IDE. Bounds can be inferred that are specific for the underlying virtual machine
(shown both for JamaicaVM and OpenJDK).

6.7. Conclusions and Future Work 101

Obviously, a full resource analysis tool would also need to build in an elab-
orate time analysis. For now, we will rely on other tools to provide such in-
formation. The ability to infer resource bounds contributes to improving the
development process of producing real-time safety-critical systems both with
respect to ease of development and with respect to improved reliability. The
Dutch National Aerospace Laboratory (NLR) has successfully used ResAna
in the development of a demonstrator safety-critical Realtime Java avionics
application.

Future Work. A more thorough evaluation of ResAna would be very valuable.
A practical case study could point out weak points of the different analyses
and suggest directions for improvement. Furthermore, the capabilities of tim-
ing analysis tools could be incorporated in our tool or it could be made easy
to exchange information between our tool and timing analysis tools. Another
direction of future research could be to include work on other kinds of resources
that are consumed, e.g. also inferring and proving energy related properties of
Java programs might be important. Furthermore, one could define, instead of
a single overall memory bound for the complete run-time of a program, a time-
dependent memory bound which gives a bound for the consumption on a certain
moment in the execution of a program. Such a time-dependent bound is called
a live memory bound. Together with information on synchronisation moments,
this opens up the possibility to derive more precise memory bounds by adding
upper bounds of processes in the periods between synchronisation moments.

Acknowledgements

We would like to thank James Hunt, Isabel Tonin and Christian Haack of Aicas
for their help and insights in developing the stack-size analysis. Also, we would
like to thank Gosse Wedzinga and Klaas Wiegmink at NLR for their useful feed-
back on ResAna use in practice. We thank Sebastiaan Joosten for his valuable
advice on elements of this chapter. We would like to thank Samir Genaim for
his technical support regarding COSTA and we thank the anonymous reviewers
for their important suggestions.

Chapter 7

Conclusions

This thesis contributes a series of software analysis methods. The methods aid
in establishing program properties that are of particular interest for resource-
sensitive systems, such as wireless sensor nodes. Desirable properties are security,
functional correctness and efficient use of resources.

Security. It is shown how model-checking can be applied to reveal security vul-
nerabilities. A condition on implementation parameters of the Tamper-Evident
Pairing protocol is discovered that excludes a discovered vulnerability, enabling
secure implementation.

Functional correctness. A method is presented to improve the coverage of test-
cases that are generated using symbolic execution. Automatic test-case gener-
ation greatly reduces the manual effort required to adequately test (critical)
software. The presented method increases the proportion of program behaviours
that are activated by a generated test-set.

Efficient use of resources. First, an energy analysis method is presented, that
is based on Hoare logic. It is sound and implemented in the tool ECAlogic.
It represents a step towards energy-consumption analysis of software that is
attainable to average programmers. In this scenario, a complex and expensive
measurement set-up is only required to build hardware models, not to anal-
yse the software itself. Second, a method to infer polynomial ranking functions
for loops is presented. This method advances the state of the art by inferring
non-monotonic polynomial loop bounds. Finally, a heap space analysis and a
stack space analysis are presented, that enable bounding memory consumption
of Java programs. The presented heap space analysis, stack space analysis and
loop bound analysis are implemented in the tool ResAna. This represents a
step towards practical applicability of resource analysis. The Dutch National
Aerospace Laboratory (NLR) has successfully applied ResAna in the develop-
ment of a demonstrator safety-critical Realtime Java avionics application.

104 Conclusions

It can be critical to establish such properties of software, but it is a very
complex task in general. There is no “silver bullet” of software analysis, we must
pick the right tool for the right application. For most properties, automatic
inference is undecidable in general. It is therefore the aim to maximise the set
of analysable programs, inputs and properties.

Various aspects of this thesis will be combined in my new endeavour at
Carnegie-Mellon University. There, I will research the application of memory
and time analysis to detect security vulnerabilities within the Integrated Sym-
bolic Execution for Space-Time Analysis of Code (ISSTAC) project. Symbolic
execution will be combined with measures and cost models to compute worst-case
behaviour with respect to time and memory consumption. By solving the con-
straint (path condition) for a program to exhibit a certain worst-case behaviour,
vulnerabilities to denial-of-service attacks can be detected. By comparing time
and memory usage of different program paths, vulnerabilities to side-channel
attacks can be found. In this way, ISSTAC applies symbolic execution in the
context of resource analysis, in order to increase security. Within this project, I
expect to develop new applications and improvements for the analysis methods
presented in this thesis, as well as many novel methods, further advancing the
state of the art of practical software analysis.

Bibliography

[AAG+08] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. COSTA:
Design and implementation of a cost and termination analyzer for Java
bytecode. In F. de Boer, M. Bonsangue, S. Graf, and W. de Roever, edi-
tors, Proceedings of the 6th International Symposium on Formal Methods
for Components and Objects (FMCO’07), volume 5382 of Lecture Notes
in Computer Science, pages 113–132. Springer, 2008. Cited on pages 4,
40, 80, 87 and 100.

[AAGP08] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Automatic inference of
upper bounds for recurrence relations in cost analysis. In Proceedings of
15th International Static Analysis Symposium (SAS’08), pages 221–237,
2008. Cited on page 76.

[AAGP11] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form Up-
per Bounds in Static Cost Analysis. Journal of Automated Reasoning,
46(2):161–203, February 2011. Cited on pages 78 and 88.

[ABB+05] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuel-
lar, P. Drielsma, P. Heám, O. Kouchnarenko, J. Mantovani, S. Möder-
sheim, D. Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò,
and L. Vigneron. The AVISPA tool for the automated validation of inter-
net security protocols and applications. In K. Etessami and S. Rajamani,
editors, Computer Aided Verification, volume 3576 of Lecture Notes in
Computer Science, pages 281–285. Springer, 2005. Cited on page 14.

[ABG+11] E. Albert, R. Bubel, S. Genaim, R. Hähnle, G. Puebla, and G. Román-
Dı́ez. Verified resource guarantees using COSTA and KeY. In Proceedings
of the 20th ACM SIGPLAN workshop on Partial evaluation and program
manipulation, PEPM ’11, pages 73–76. ACM, 2011. Cited on page 99.

[ABH+07] D. Aspinall, L. Beringer, M. Hofmann, H.-W. Loidl, and A. Momigliano.
A program logic for resources. Theor. Comput. Sci., 389(3):411–445,
December 2007. Cited on page 40.

[ACC09] A. Armando, R. Carbone, and L. Compagna. LTL model checking for
security protocols. Journal of Applied Non-Classical Logics, 19(4):403–
429, 2009. Cited on page 25.

[AGGZ10] E. Albert, S. Genaim, and M. Gómez-Zamalloa. Parametric inference of
memory requirements for garbage collected languages. In J. Vitek and
D. Lea, editors, ISMM’10, pages 121–130. ACM, 2010. Cited on pages 87
and 100.

106 Bibliography

[AGM11] E. Albert, S. Genaim, and A. N. Masud. More precise yet widely applica-
ble cost analysis. In R. Jhala and D. A. Schmidt, editors, VMCAI’11, vol-
ume 6538 of Lecture Notes in Computer Science, pages 38–53. Springer,
2011. Cited on page 100.

[Alb10] S. Albers. Energy-efficient algorithms. Commun. ACM, 53(5):86–96,
2010. Cited on page 40.

[Ama05] R. M. Amadio. Synthesis of max-plus quasi-interpretations. Fundamenta
Informaticae, 65(1-2):29–60, August 2005. Cited on page 78.

[Atk10] R. Atkey. Amortised resource analysis with separation logic. In Proceed-
ings of the 19th European Conference on Programming Languages and
Systems (ESOP’10), volume 6012 of Lecture Notes in Computer Science,
pages 85–103, 2010. Cited on page 40.

[BA09] A. M. Ben-Amram. Size-change termination, monotonicity constraints
and ranking functions. In Computer Aided Verification, volume 5643 of
Lecture Notes in Computer Science, pages 109–123. Springer, 2009. Cited
on page 76.

[BC04] Y. Bertot and P. Castéran. Interactive theorem proving and program
development. Coq’Art: the calculus of inductive constructions. Springer,
2004. Cited on page 7.

[BCD+11] C. Barrett, C. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,
A. Reynolds, and C. Tinelli. CVC4. In G. Gopalakrishnan and S. Qadeer,
editors, Computer Aided Verification, volume 6806 of Lecture Notes in
Computer Science, pages 171–177. Springer, 2011. Cited on page 5.

[BD98] D. Bošnacki and D. Dams. Integrating real time into Spin: a prototype
implementation. In D. Bošnacki, editor, Enhancing State Space Reduction
Techniques for Model Checking. Springer, 1998. Cited on page 24.

[BEL75] R. S. Boyer, B. Elspas, and K. N. Levitt. SELECT—A formal system for
testing and debugging programs by symbolic execution. ACM SIGPLAN
Notices, 10(6):234–245, June 1975. Cited on page 5.

[BHS07] B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-
Oriented Software: The KeY Approach, volume 4334 of Lecture Notes in
Artificial Intelligence. Springer, 2007. Cited on pages 7, 63, 73 and 79.

[BK08] C. Baier and J. P. Katoen. Principles of Model Checking. MIT Press,
2008. Cited on page 6.

[Bla01] B. Blanchet. An Efficient Cryptographic Protocol Verifier Based on
Prolog Rules. In 14th IEEE Computer Security Foundations Workshop
(CSFW-14), pages 82–96, Cape Breton, Nova Scotia, Canada, June 2001.
IEEE Computer Society. Cited on page 14.

[BLL+96] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. Uppaal
— a Tool Suite for Automatic Verification of Real–Time Systems. In
Proceedings of the Third Workshop on Verification and Control of Hybrid
Systems, volume 1066 of Lecture Notes in Computer Science, pages 232–
243. Springer–Verlag, 1996. Cited on pages 6, 14 and 24.

[BPRT13] J. Backes, S. Person, N. Rungta, and O. Tkachuk. Regression verification
using impact summaries. In E. Bartocci and C. Ramakrishnan, editors,
Model Checking Software, volume 7976 of Lecture Notes in Computer
Science, pages 99–116. Springer, 2013. Cited on page 37.

[Bro03] C. W. Brown. QEPCAD B: a program for computing with semi-algebraic
sets using CADs. SIGSAM Bull., 37(4):97–108, December 2003. Cited
on pages 79 and 90.

107

[BST10] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version
2.0. In A. Gupta and D. Kroening, editors, Proceedings of the 8th Interna-
tional Workshop on Satisfiability Modulo Theories (Edinburgh, England),
2010. Cited on page 85.

[BTM00] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for
architectural-level power analysis and optimizations. SIGARCH Com-
put. Archit. News, 28(2):83–94, May 2000. Cited on page 40.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, POPL ’77, pages 238–252.
ACM, 1977. Cited on page 4.

[CE82] E. Clarke and E. Emerson. Design and synthesis of synchronization skele-
tons using branching time temporal logic. In D. Kozen, editor, Logics of
Programs, volume 131 of Lecture Notes in Computer Science, pages 52–
71. Springer, 1982. Cited on page 6.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
Trans. Program. Lang. Syst., 8(2):244–263, April 1986. Cited on page 6.

[CES09] E. M. Clarke, E. A. Emerson, and J. Sifakis. Model checking: Algorithmic
verification and debugging. Commun. ACM, 52(11):74–84, November
2009. Cited on page 6.

[CGK+11] C. Cadar, P. Godefroid, S. Khurshid, C. S. Păsăreanu, K. Sen, N. Till-
mann, and W. Visser. Symbolic execution for software testing in practice:
Preliminary assessment. In Proceedings of the 33rd International Confer-
ence on Software Engineering, ICSE ’11, pages 1066–1071. ACM, 2011.
Cited on pages 5 and 29.

[CGP99] E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT press,
1999. Cited on page 6.

[CKLP06] P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll. Beyond assertions:
Advanced specification and verification with JML and ESC/Java2. In
Formal Methods for Components and Objects 2005, Revised Lectures, vol-
ume 4111 of Lecture Notes in Computer Science, pages 342–363. Springer,
2006. Cited on page 62.

[CL87] C. K. Chui and M.-J. Lai. Vandermonde determinants and Lagrange
interpolation in Rs, volume 107 of Lecture Notes in Pure and Applied
Mathematics, pages 23–35. CRC Press, 1987. Cited on pages 63 and 64.

[Cla76] L. A. Clarke. A program testing system. In Proceedings of the 1976
Annual Conference, pages 488–491. ACM, 1976. Cited on page 5.

[Cok11] D. R. Cok. Openjml: Jml for java 7 by extending openjdk. In M. Bobaru,
K. Havelund, G. J. Holzmann, and R. Joshi, editors, NASA Formal Meth-
ods, volume 6617 of Lecture Notes in Computer Science, pages 472–479.
Springer, 2011. Cited on page 73.

[Coo71] S. A. Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the Third Annual ACM Symposium on Theory of Computing,
STOC ’71, pages 151–158. ACM, 1971. Cited on page 5.

[CS13] C. Cadar and K. Sen. Symbolic execution for software testing: Three
decades later. Commun. ACM, 56(2):82–90, February 2013. Cited on
page 5.

108 Bibliography

[CZSL12] M. Cohen, H. S. Zhu, E. E. Senem, and Y. D. Liu. Energy types. SIG-
PLAN Not., 47(10):831–850, October 2012. Cited on page 40.

[CZvD+09] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke.
A systematic survey of program comprehension through dynamic anal-
ysis. Software Engineering, IEEE Transactions on, 35(5):684–702, Sept
2009. Cited on page 3.

[DdM06] B. Dutertre and L. de Moura. The Yices SMT solver. Tool presen-
tation paper at http://yices.csl.sri.com/tool-paper.pdf, August
2006. Cited on page 5.

[dDMP10] J. de Dios, M. Montenegro, and R. Peña. Certified absence of dangling
pointers in a language with explicit deallocation. In 8th International
Conference on Integrated Formal Methods, IFM 2010, LNCS 6396, pages
305–319. Springer, 2010. Cited on page 78.

[DH76] W. Diffie and M. Hellman. New directions in cryptography. Information
Theory, IEEE Transactions on, 22(6):644 – 654, nov 1976. Cited on
pages 14 and 16.

[DL00] A. Dupuy and N. Leveson. An empirical evaluation of the MC/DC cov-
erage criterion on the HETE-2 satellite software. In Proceedings of the
19th Digital Avionics Systems Conference, 2000. Cited on page 3.

[dMB08] L. M. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In C. R.
Ramakrishnan and J. Rehof, editors, TACAS, volume 4963 of Lecture
Notes in Computer Science, pages 337–340. Springer, 2008. Cited on
page 5.

[DMBCS08] M. De Michiel, A. Bonenfant, H. Cassé, and P. Sainrat. Static loop bound
analysis of C programs based on flow analysis and abstract interpreta-
tion. In RTCSA ’08: Proceedings of the 2008 14th IEEE International
Conference on Embedded and Real-Time Computing Systems and Appli-
cations, pages 161–166, Washington, DC, USA, 2008. IEEE Computer
Society. Cited on pages 75 and 99.

[dRH12] M. J. de Mol, A. Rensink, and J. J. Hunt. Graph transforming Java
data. In Proceedings of the 15th International Conference on Fundamen-
tal Approaches to Software Engineering (FASE 2012), Talinn, Estonia,
volume 7212 of Lecture Notes in Computer Science, pages 209–223, Lon-
don, March 2012. Springer. Cited on page 78.

[Dri12] M. Drijvers. Model checking Tamper-Evident Pairing. Bachelor thesis,
Radboud University Nijmegen, 2012. Cited on page 24.

[ESG+07] A. Ermedahl, C. Sandberg, J. Gustafsson, S. Bygde, and B. Lisper. Loop
bound analysis based on a combination of program slicing, abstract in-
terpretation, and invariant analysis. In C. Rochange, editor, 7th Intl.
Workshop on Worst-Case Execution Time (WCET) Analysis, Dagstuhl,
Germany, 2007. Internationales Begegnungs- und Forschungszentrum für
Informatik (IBFI), Schloss Dagstuhl, Germany. Cited on pages 63, 75
and 99.

[FJ10] J. Fulara and K. Jakubczyk. Practically applicable formal methods. In
SOFSEM ’10: Proceedings of the 36th Conference on Current Trends in
Theory and Practice of Computer Science, pages 407–418. Springer, 2010.
Cited on pages 75 and 99.

[Flo67] R. W. Floyd. Assigning meanings to programs. Mathematical aspects of
computer science, 19(19-32):1, 1967. Cited on page 5.

http://yices.csl.sri.com/tool-paper.pdf

109

[GAZK11] S. Gollakota, N. Ahmed, N. Zeldovich, and D. Katabi. Secure in-band
wireless pairing. In Proceedings of the 20th USENIX conference on Secu-
rity, SEC’11, Berkeley, CA, USA, 2011. USENIX Association. Cited on
pages 8, 10, 14, 15, 18 and 19.

[GCB05] S. V. Gheorghita, H. Corporaal, and T. Basten. Iterative compilation for
energy reduction. Journal of Embedded Computing, 1(4):509–520, 2005.
Cited on page 40.

[GHH+14] A. Groce, K. Havelund, G. Holzmann, R. Joshi, and R.-G. Xu. Establish-
ing flight software reliability: testing, model checking, constraint-solving,
monitoring and learning. Annals of Mathematics and Artificial Intelli-
gence, 70(4):315–349, 2014. Cited on page 6.

[GJK09] S. Gulwani, S. Jain, and E. Koskinen. Control-flow refinement and
progress invariants for bound analysis. In PLDI’09: Proceedings of the
2009 ACM SIGPLAN conference on Programming language design and
implementation, pages 375–385. ACM, 2009. Cited on pages 76 and 99.

[GL11] P. Godefroid and D. Luchaup. Automatic partial loop summarization
in dynamic test generation. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis, ISSTA ’11, pages 23–33.
ACM, 2011. Cited on pages 30 and 36.

[Gla08] C. Gladisch. Verification-based test case generation for full feasible
branch coverage. In Sixth IEEE International Conference on Software
Engineering and Formal Methods, 2008. SEFM ’08., pages 159–168, 2008.
Cited on page 29.

[GSvE13] A. Gobi, O. Shkaravska, and M. van Eekelen. Higher-order size checking
without subtyping. In H.-W. Loidl and K. Hammond, editors, Proceedings
of the 13th International Symposium on Trends in functional Program-
ming (TFP2012), volume 7829 of Lecture Notes in Computer Science,
pages 53–68. Springer, 2013. Cited on page 98.

[Gul09] S. Gulwani. SPEED: Symbolic complexity bound analysis. In CAV ’09:
Proceedings of the 21st International Conference on Computer Aided Ver-
ification, pages 51–62. Springer, 2009. Cited on pages 62, 76 and 99.

[GZ10] S. Gulwani and F. Zuleger. The reachability-bound problem. In Proceed-
ings of the 2010 ACM SIGPLAN conference on Programming language
design and implementation, PLDI’10, pages 292–304. ACM, 2010. Cited
on pages 78 and 99.

[HAH11] J. Hoffmann, K. Aehlig, and M. Hofmann. Multivariate amortized re-
source analysis. In T. Ball and M. Sagiv, editors, Proceedings of the
38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL’11, pages 357–370. ACM, 2011. Cited on
pages 40, 78 and 100.

[HBHR11] J. Herter, P. Backes, F. Haupenthal, and J. Reineke. CAMA: A pre-
dictable cache-aware memory allocator. In Proceedings of the 23rd Eu-
romicro Conference on Real-Time Systems (ECRTS’11). IEEE Computer
Society, July 2011. Cited on page 99.

[HH10] J. Hoffmann and M. Hofmann. Amortized resource analysis with poly-
nomial potential. A static inference of polynomial bounds for functional
programs. In ESOP’10, volume 6012 of Lecture Notes in Computer Sci-
ence, pages 287–306. Springer, 2010. Cited on page 100.

[HJ00] M. Huisman and B. Jacobs. Java program verification via a Hoare
logic with abrupt termination. In T. Maibaum, editor, Fundamental

110 Bibliography

Approaches to Software Engineering, volume 1783 of Lecture Notes in
Computer Science, pages 284–303. Springer, 2000. Cited on page 5.

[HJ03] M. Hofmann and S. Jost. Static prediction of heap space usage
for first-order functional programs. In Proceedings of the 30th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL’03, pages 185–197. ACM Press, 2003. Cited on page 100.

[HJ04] G. Holzmann and R. Joshi. Model-driven software verification. In S. Graf
and L. Mounier, editors, Model Checking Software, volume 2989 of Lecture
Notes in Computer Science, pages 76–91. Springer, 2004. Cited on page 6.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576–580, 583, October 1969. Cited on
page 5.

[Hol97] G. Holzmann. The model checker Spin. IEEE Transactions on Software
Engineering, 23(5):279 –295, May 1997. Cited on pages 14 and 18.

[HP00] K. Havelund and T. Pressburger. Model checking Java programs us-
ing Java Pathfinder. Int. Journal on Softw. Tools for Tech. Transfer,
2(4):366–381, 2000. Cited on page 28.

[HSST06] J. J. Hunt, F. B. Siebert, P. H. Schmitt, and I. Tonin. Provably correct
loops bounds for realtime Java programs. In JTRES ’06: Proceedings
of the 4th international workshop on Java technologies for real-time and
embedded systems, pages 162–169. ACM, 2006. Cited on pages 74, 76
and 99.

[HTS08] J. J. Hunt, I. Tonin, and F. B. Siebert. Using global data flow analysis
on bytecode to aid worst case execution time analysis for real-time Java
programs. In JTRES ’08: Proceedings of the 6th international workshop
on Java technologies for real-time and embedded systems, pages 97–105.
ACM, 2008. Cited on pages 41, 80 and 94.

[HVCR01] K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and L. K. Rierson. A
practical tutorial on modified condition/decision coverage. NASA Langley
Research Center, Hampton, VA, USA, 2001. NASA Technical Memoran-
dum TM-2001-210876. Cited on page 3.

[JML06] R. Jayaseelan, T. Mitra, and X. Li. Estimating the worst-case energy
consumption of embedded software. In Proceedings of the 12th IEEE
Real-Time and Embedded Technology and Applications Symposium, pages
81–90. IEEE, 2006. Cited on page 40.

[JNM+06] M. N. O. Junior, S. Neto, P. R. M. Maciel, R. M. F. Lima, A. Ribeiro,
R. S. Barreto, E. Tavares, and F. Braga. Analyzing software performance
and energy consumption of embedded systems by probabilistic modeling:
An approach based on coloured Petri nets. In S. Donatelli and P. Thia-
garajan, editors, Petri Nets and Other Models of Concurrency - ICATPN
2006, volume 4024 of Lecture Notes in Computer Science, pages 261–281,
2006. Cited on page 40.

[KFR09] R. Kainda, I. Flechais, and A. W. Roscoe. Usability and security of out-
of-band channels in secure device pairing protocols. In Proceedings of the
5th Symposium on Usable Privacy and Security, pages 11:1–11:12. ACM,
2009. Cited on page 25.

[KHP+09] T. Kalibera, J. Hagelberg, F. Pizlo, A. Plsek, B. Titzer, and J. Vitek.
CDx: a family of real-time Java benchmarks. In Proceedings of the 7th

111

International Workshop on Java Technologies for Real-Time and Embed-
ded Systems, JTRES 2009, Madrid, Spain, September 23-25, 2009, pages
41–50. ACM, 2009. Cited on page 74.

[Kin76] J. C. King. Symbolic execution and program testing. Commun. ACM,
19:385–394, July 1976. Cited on pages 5 and 84.

[KLG+13] S. Kerrison, U. Liqat, K. Georgiou, A. S. Mena, N. Grech, P. Lopez-
Garcia, K. Eder, and M. V. Hermenegildo. Energy consumption analysis
of programs based on XMOS ISA-level models. In G. Gupta and R. Peña,
editors, Proceedings of the 23rd International Symposium on Logic-Based
Program Synthesis and Transformation (LOPSTR’13). Springer, 2013.
Cited on page 40.

[KMM00] M. Kaufmann, J. S. Moore, and P. Manolios. Computer-Aided Reasoning:
An Approach. Kluwer Academic Publishers, Norwell, MA, USA, 2000.
Cited on page 7.

[KPRT15] R. Kersten, S. Person, N. Rungta, and O. Tkachuk. Improving coverage
of test cases generated by Symbolic PathFinder for programs with loops.
SIGSOFT Softw. Eng. Notes, 40(1):1–5, January 2015. Cited on page 11.

[KPvv14] R. Kersten, P. Parisen Toldin, B. van Gastel, and M. van Eekelen. A
Hoare logic for energy consumption analysis. In Proceedings of the Third
International Workshop on Foundational and Practical Aspects of Re-
source Analysis (FOPARA’13), volume 8552 of Lecture Notes in Com-
puter Science, pages 93–109. Springer, 2014. Cited on page 11.

[KST+09] A. Kobsa, R. Sonawalla, G. Tsudik, E. Uzun, and Y. Wang. Serial hook-
ups: a comparative usability study of secure device pairing methods. In
Proceedings of the 5th Symposium on Usable Privacy and Security, pages
10:1–10:12. ACM, 2009. Cited on page 25.

[KSvG+12] R. Kersten, O. Shkaravska, B. van Gastel, M. Montenegro, and M. van
Eekelen. Making resource analysis practical for Real-Time Java. In
Proceedings of the 10th International Workshop on Java Technologies
for Real-time and Embedded Systems, JTRES ’12, pages 135–144. ACM,
2012. Cited on pages 12, 78 and 79.

[KvGD+13] R. Kersten, B. van Gastel, M. Drijvers, S. Smetsers, and M. van Eeke-
len. Using model-checking to reveal a vulnerability of Tamper-Evident
Pairing. In G. Brat, N. Rungta, and A. Venet, editors, Proceedings of the
5th NASA Formal Methods Symposium, number 7871 in Lecture Notes in
Computer Science, pages 63–77. Springer, May 2013. Cited on page 10.

[KvGS+14] R. W. Kersten, B. E. van Gastel, O. Shkaravska, M. Montenegro, and
M. C. van Eekelen. ResAna: a resource analysis toolset for (real-
time) JAVA. Concurrency and Computation: Practice and Experience,
26(14):2432–2455, 2014. Cited on pages 12 and 41.

[KWP07] C. Kuo, J. Walker, and A. Perrig. Low-cost manufacturing, usability, and
security: An analysis of Bluetooth Simple Pairing and Wi-Fi Protected
Setup. In S. Dietrich and R. Dhamija, editors, Financial Cryptography
and Data Security, volume 4886 of Lecture Notes in Computer Science,
pages 325–340. Springer, 2007. Cited on page 25.

[KZ08] A. Kansal and F. Zhao. Fine-grained energy profiling for power-aware
application design. SIGMETRICS Perform. Eval. Rev., 36(2):26–31, Au-
gust 2008. Cited on page 40.

[LCFM09] P. Lokuciejewski, D. Cordes, H. Falk, and P. Marwedel. A fast and precise
static loop analysis based on abstract interpretation, program slicing and

112 Bibliography

polytope models. In CGO ’09: Proceedings of the 7th annual IEEE/ACM
International Symposium on Code Generation and Optimization, pages
136–146, Washington, DC, USA, 2009. IEEE Computer Society. Cited
on pages 63, 75 and 99.

[Low98] G. Lowe. Towards a completeness result for model checking of security
protocols. In Proceedings of the 11th IEEE Computer Security Founda-
tions Workshop, pages 96 –105, June 1998. Cited on page 25.

[LPC+07] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller,
J. Kiniry, and P. Chalin. JML Reference Manual. Draft Revision 1.200,
February 2007. Cited on pages 71 and 79.

[Mar98] F. Martinelli. Partial model checking and theorem proving for ensuring
security properties. In Proceedings of the 11th IEEE Computer Security
Foundations Workshop, pages 44 –52, 1998. Cited on page 25.

[MG07] R. Mayrhofer and H. Gellersen. On the security of ultrasound as out-of-
band channel. In Proceedings of the 21st IEEE International Parallel and
Distributed Processing Symposium, pages 1–6, 2007. Cited on page 25.

[MGH07] R. Mayrhofer, H. Gellersen, and M. Hazas. Security by spatial reference:
Using relative positioning to authenticate devices for spontaneous inter-
action. In J. Krumm, G. Abowd, A. Seneviratne, and T. Strang, editors,
UbiComp 2007: Ubiquitous Computing, volume 4717 of Lecture Notes in
Computer Science, pages 199–216. Springer, 2007. Cited on page 25.

[ML08] M. Martin and M. S. Lam. Automatic generation of XSS and SQL in-
jection attacks with goal-directed model checking. In Proceedings of the
17th USENIX Security Symposium, pages 31–43. USENIX Association,
2008. Cited on page 25.

[MPR12] E. Mercer, S. Person, and N. Rungta. Computing and visualizing the
impact of change with Java PathFinder extensions. SIGSOFT Softw.
Eng. Notes, 37(6):1–5, November 2012. Cited on page 37.

[MSB11] G. J. Myers, C. Sandler, and T. Badgett. The art of software testing.
John Wiley & Sons, 2011. Cited on page 2.

[MSvE10] K. Madlener, S. Smetsers, and M. van Eekelen. A formal verification
study on the Rotterdam storm surge barrier. In J. Dong and H. Zhu,
editors, Formal Methods and Software Engineering, volume 6447 of Lec-
ture Notes in Computer Science, pages 287–302. Springer, 2010. Cited
on page 7.

[MSvEPn12] M. Montenegro, O. Shkaravska, M. van Eekelen, and R. Peña.
Interpolation-based height analysis for improving a recurrence solver. In
Proceedings of the 2nd Workshop on Foundational and Practical Aspects
of Resource Analysis (FOPARA’11), volume 7177 of Lecture Notes in
Computer Science, pages 36–53. Springer, 2012. Cited on pages 80 and 89.

[MW07] R. Mayrhofer and M. Welch. A human-verifiable authentication protocol
using visible laser light. In Proceedings of the Second International Con-
ference on Availability, Reliability and Security, pages 1143 –1148, April
2007. Cited on page 25.

[NMT+11] B. Nogueira, P. Maciel, E. Tavares, E. Andrade, R. Massa, G. Callou,
and R. Ferraz. A formal model for performance and energy evaluation
of embedded systems. EURASIP Journal on Embedded Systems, pages
2:1–2:12, January 2011. Cited on page 40.

[NNH99] F. Nielson, R. H. Nielson, and C. L. Hankin. Principles of Program
Analysis. Springer, second printing, 2005 edition, 1999. Cited on page 4.

113

[NRS14] A. Noureddine, R. Rouvoy, and L. Seinturier. Monitoring energy hotspots
in software. Automated Software Engineering, pages 1–42, 2014. Cited
on page 3.

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification
system. In Automated Deduction—CADE-11, pages 748–752. Springer,
1992. Cited on page 7.

[ORY01] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs
that alter data structures. In L. Fribourg, editor, Computer Science Logic,
volume 2142 of Lecture Notes in Computer Science, pages 1–19. Springer,
2001. Cited on page 5.

[Pau94] L. C. Paulson. Isabelle: A generic theorem prover, volume 828 of Lecture
Notes in Computer Science. Springer, 1994. Cited on page 7.

[PDEP08] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pǎsǎreanu. Dif-
ferential symbolic execution. In Proceedings of the 16th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering,
SIGSOFT’08/FSE-16, pages 226–237. ACM, 2008. Cited on page 37.

[Pie02] B. C. Pierce. Types and programming languages. MIT press, 2002. Cited
on page 4.

[PKvv13] P. Parisen Toldin, R. Kersten, B. van Gastel, and M. van Eekelen. Sound-
ness Proof for a Hoare Logic for Energy Consumption Analysis. Techni-
cal Report ICIS–R13009, Radboud University Nijmegen, October 2013.
Cited on pages 11, 43, 46, 51 and 54.

[PR04] A. Podelski and A. Rybalchenko. A complete method for the synthesis
of linear ranking functions. In B. Steffen and G. Levi, editors, Verifica-
tion, Model Checking, and Abstract Interpretation, volume 2937 of Lec-
ture Notes in Computer Science, pages 465–486. Springer, 2004. Cited
on pages 41, 88 and 99.

[PR10] C. S. Păsăreanu and N. Rungta. Symbolic PathFinder: Symbolic execu-
tion of Java bytecode. In Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, ASE ’10, pages 179–180.
ACM, 2010. Cited on pages 5 and 28.

[PV04] C. S. Păsăreanu and W. Visser. Verification of Java programs using sym-
bolic execution and invariant generation. In S. Graf and L. Mounier,
editors, Model Checking Software, volume 2989 of Lecture Notes in Com-
puter Science, pages 164–181. Springer, 2004. Cited on pages 29 and 32.

[QS82] J. Queille and J. Sifakis. Specification and verification of concurrent
systems in CESAR. In M. Dezani-Ciancaglini and U. Montanari, editors,
International Symposium on Programming, volume 137 of Lecture Notes
in Computer Science, pages 337–351. Springer, 1982. Cited on page 6.

[RA00] R. Ritchey and P. Ammann. Using model checking to analyze network
vulnerabilities. In Proceedings of the 2000 IEEE Symposium on Security
and Privacy, pages 156 –165, 2000. Cited on page 25.

[Ran10] P. Ranganathan. Recipe for efficiency: principles of power-aware com-
puting. Commun. ACM, 53(4):60–67, 2010. Cited on page 40.

[Rey02] J. C. Reynolds. Separation logic: A logic for shared mutable data struc-
tures. Proceedings of the 17th Annual IEEE Symposium on Symposium
on Logic in Computer Science, pages 55–74, 2002. Cited on page 5.

[RGBW07] J. Reineke, D. Grund, C. Berg, and R. Wilhelm. Timing predictability of
cache replacement policies. Real-Time Systems, 37(2):99–122, November
2007. Cited on page 99.

114 Bibliography

[RHC76] C. Ramamoorthy, S.-B. F. Ho, and W. Chen. On the automated genera-
tion of program test data. IEEE Transactions on Software Engineering,
SE-2(4):293–300, December 1976. Cited on page 5.

[RN05] G. Reeves and T. Neilson. The mars rover Spirit FLASH anomaly. In
Aerospace Conference, 2005 IEEE, pages 4186–4199, March 2005. Cited
on page 6.

[RPB12] N. Rungta, S. Person, and J. Branchaud. A change impact analysis to
characterize evolving program behaviors. In Proceedings of the 28th IEEE
International Conference on Software Maintenance (ICSM’12), pages
109–118, Sept 2012. Cited on page 37.

[SA02] F. Stajano and R. Anderson. The resurrecting duckling: security issues
for ubiquitous computing. Computer, 35(4):22 –26, apr 2002. Cited on
page 25.

[Sax10] E. Saxe. Power-efficient software. Commun. ACM, 53(2):44–48, 2010.
Cited on page 40.

[SC-11] SC-205/WG-71 Plenary. DO-178C Software Considerations in Airborne
Systems and Equipment Certification, December 2011. Cited on page 3.

[SC01] A. Sinha and A. P. Chandrakasan. JouleTrack: A web based tool for
software energy profiling. In Proceedings of the 38th Annual Design Au-
tomation Conference, DAC ’01, pages 220–225. ACM, 2001. Cited on
page 40.

[SCW+05] B. Schwarz, H. Chen, D. Wagner, G. Morrison, J. West, J. Lin, and
W. Tu. Model checking an entire Linux distribution for security viola-
tions. In Computer Security Applications Conference, 21st Annual, pages
10–22, 2005. Cited on page 25.

[SDF+11] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman. EnerJ: approximate data types for safe and general low-
power computation. SIGPLAN Not., 46(6):164–174, June 2011. Cited
on page 40.

[SEKA06] N. Saxena, J.-E. Ekberg, K. Kostiainen, and N. Asokan. Secure device
pairing based on a visual channel. In Proceedings of the 2006 IEEE
Symposium on Security and Privacy, pages 6 pp. –313, May 2006. Cited
on page 25.

[SGH+13] R. Sharma, S. Gupta, B. Hariharan, A. Aiken, P. Liang, and A. Nori. A
data driven approach for algebraic loop invariants. In M. Felleisen and
P. Gardner, editors, Programming Languages and Systems, volume 7792
of Lecture Notes in Computer Science, pages 574–592. Springer, 2013.
Cited on page 99.

[Sie02] F. Siebert. Hard Realtime Garbage Collection in Modern Object Ori-
ented Programming Languages. PhD thesis, University of Karlsruhe,
2002. Cited on pages 80 and 91.

[SJL+09] T. Schoofs, E. Jenn, S. Leriche, K. Nilsen, L. Gauthier, and M. Richard-
Foy. Use of PERC Pico in the AIDA avionics platform. In Proceedings of
the 7th International Workshop on Java Technologies for Real-Time and
Embedded Systems, pages 169–178. ACM, 2009. Cited on page 74.

[SKVE10] O. Shkaravska, R. Kersten, and M. Van Eekelen. Test-based inference of
polynomial loop-bound functions. In A. Krall and H. Mössenböck, ed-
itors, PPPJ’10: Proceedings of the 8th International Conference on the
Principles and Practice of Programming in Java, ACM Digital Proceed-
ings Series, pages 99–108, 2010. Cited on pages 12, 41 and 60.

115

[SKZS12] S. Schubert, D. Kostic, W. Zwaenepoel, and K. Shin. Profiling soft-
ware for energy consumption. In Proceedings of the 2012 IEEE Inter-
national Conference on Green Computing and Communications (Green-
Com), pages 515–522, November 2012. Cited on page 3.

[SNKvE14] M. Schoolderman, J. Neutelings, R. Kersten, and M. van Eekelen. ECA-
logic: Hardware-parametric energy-consumption analysis of algorithms.
In Proceedings of the 13th Workshop on Foundations of Aspect-oriented
Languages, FOAL ’14, pages 19–22. ACM, 2014. Cited on page 11.

[SPMS09] P. Saxena, P. Poosankam, S. McCamant, and D. Song. Loop-extended
symbolic execution on binary programs. In Proceedings of the Eighteenth
International Symposium on Software Testing and Analysis, ISSTA ’09,
pages 225–236. ACM, 2009. Cited on page 30.

[SVA07] J. Suomalainen, J. Valkonen, and N. Asokan. Security associations in
personal networks: A comparative analysis. In F. Stajano, C. Meadows,
S. Capkun, and T. Moore, editors, Security and Privacy in Ad-hoc and
Sensor Networks, volume 4572 of Lecture Notes in Computer Science,
pages 43–57. Springer, 2007. Cited on page 25.

[SvET11] O. Shkaravska, M. van Eekelen, and A. Tamalet. Collected size semantics
for functional programs over lists. In Proceedings of the 20th international
conference on implementation and application of functional languages,
IFL’08, pages 118–137. Springer, 2011. Cited on page 98.

[SvEvK09] O. Shkaravska, M. van Eekelen, and R. van Kesteren. Polynomial size
analysis of first-order shapely functions. Logic in Computer Science,
2:10(5), 2009. Cited on pages 41, 63, 64, 69 and 98.

[SvKvE07] O. Shkaravska, R. van Kesteren, and M. van Eekelen. Polynomial Size
Analysis for First-Order Functions. In S. R. D. Rocca, editor, Typed
Lambda Calculi and Applications (TLCA’2007), Paris, France, volume
4583 of Lecture Notes in Computer Science, pages 351–366. Springer,
2007. Cited on page 98.

[tBMB+13] S. te Brinke, S. Malakuti, C. Bockisch, L. Bergmans, and M. Akşit. A
design method for modular energy-aware software. In Proceedings of the
28th Annual ACM Symposium on Applied Computing, pages 1180–1182.
ACM, 2013. Cited on page 40.

[TC12] S.-L. Tsao and J. J. Chen. SEProf: A high-level software energy profiling
tool for an embedded processor enabling power management functions.
Journal of Systems and Software, 85(8):1757 – 1769, 2012. Cited on
page 40.

[tMB+14] S. te Brinke, S. Malakuti, C. M. Bockisch, L. M. J. Bergmans, M. Akşit,
and S. Katz. A tool-supported approach for modular design of energy-
aware software. In Proceedings of the 29th Annual ACM Symposium on
Applied Computing, SAC’14. ACM, 2014. Cited on pages 40 and 60.

[Trt13] M. Trt́ık. Symbolic Execution and Program Loops. PhD thesis, Faculty
of Informatics, Masaryk University, 2013. Cited on pages 29 and 36.

[TSv09] A. Tamalet, O. Shkaravska, and M. van Eekelen. Size analysis of algebraic
data types. In P. Achten, P. Koopman, and M. Morazán, editors, Trends
in Functional Programming, volume 9, pages 33–48. Intellect, 2009. Cited
on page 98.

[vESvK+07] M. van Eekelen, O. Shkaravska, R. van Kesteren, B. Jacobs, E. Poll, and
S. Smetsers. AHA: Amortized heap space usage analysis. In M. Morazán,

116 Bibliography

editor, Selected Papers of the 8th International Symposium on Trends
in Functional Programming (TFP’07), New York, USA, pages 36–53.
Intellect Publishers, UK, 2007. Cited on page 79.

[Vie11] S. Viehböck. Brute forcing Wi-Fi protected setup. http://sviehb.

files.wordpress.com/2011/12/viehboeck_wps.pdf, 2011. Cited on
pages 14 and 25.

[vKSvE08] R. van Kesteren, O. Shkaravska, and M. van Eekelen. Inferring static non-
monotonically sized types through testing. In 16th International Work-
shop on Functional and (Constraint) Logic Programming (WFLP’07),
Paris, France, volume 216C of Electronic Notes in Theoretical Computer
Science, pages 45–63, 2008. Cited on pages 63, 69, 78 and 98.

[vO01] D. von Oheimb. Hoare Logic for Java in Isabelle/HOL. Concurrency and
Computation: Practice and Experience, 13(13):1173–1214, 2001. Cited on
page 5.

[WEE+08] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström. The worst-case execution-
time problem—overview of methods and survey of tools. ACM Trans.
Embed. Comput. Syst., 7(3):36:1–36:53, May 2008. Cited on pages 41
and 99.

[Weg75] B. Wegbreit. Mechanical program analysis. Commun. ACM, 18(9):528–
539, 1975. Cited on page 87.

[WGR13] C. Wilke, S. Götz, and S. Richly. JouleUnit: A generic framework for
software energy profiling and testing. In Proceedings of the 2013 Work-
shop on Green in/by Software Engineering, GIBSE ’13, pages 9–14. ACM,
2013. Cited on page 3.

[Wi-06] Wi-Fi Alliance. Wi-Fi Protected Setup Specification, version 1.0h, 2006.
Cited on page 15.

[WJCD00] C. Ware, J. Judge, J. Chicharo, and E. Dutkiewicz. Unfairness and
capture behaviour in 802.11 adhoc networks. In Proceedings of the
2000 IEEE International Conference on Communications, pages 159–
163, 2000. Cited on page 15.

[WQQC10] S. Wang, Z. Qiu, S. Qin, and W.-N. Chin. Stack bound inference for ab-
stract Java bytecode. In Proceedings of the 2010 4th IEEE International
Symposium on Theoretical Aspects of Software Engineering, pages 57–66,
2010. Cited on page 100.

[WW12] G. Wedzinga and K. Wiegmink. Using CHARTER tools to develop a
safety-critical avionics application in Java. In Proceedings of the 10th
International Workshop on Java Technologies for Real-time and Embed-
ded Systems, JTRES ’12, pages 125–134. ACM, 2012. Cited on pages 78
and 98.

[XLXT13] X. Xiao, S. Li, T. Xie, and N. Tillmann. Characteristic studies of
loop problems for structural test generation via symbolic execution. In
IEEE/ACM 28th International Conference on Automated Software En-
gineering (ASE), pages 246–256, 2013. Cited on pages 28 and 29.

[ZBA+09] D. Zhurikhin, A. Belevantsev, A. Avetisyan, K. Batuzov, and S. Lee.
Evaluating power aware optimizations within GCC compiler. In GROW-
2009: International Workshop on GCC Research Opportunities, 2009.
Cited on page 40.

http://sviehb.files.wordpress.com/2011/12/viehboeck_wps.pdf
http://sviehb.files.wordpress.com/2011/12/viehboeck_wps.pdf

Summary

Practically every modern electronic device is controlled by software. It is important to
establish quality characteristics of this software, such as functional correctness, security
or the ability to function with limited resources. Failure of critical systems can be
financially costly or even lethal. Functional correctness and security are crucial for
safe operation. In a world that is quickly depleted of its resources, energy-efficiency is
vital. This thesis presents a series of software analysis methods, each of which aids the
verification or inference of one or more of the aforementioned quality characteristics.
It focuses on semantic analysis at compile-time and builds upon existing techniques
where possible.

Most of this research was done in the context of the GoGreen project, in which a
self-learning, secure and energy-efficient smart-home system is studied. Such a system
combines wireless sensor nodes to observe a house and the people within its walls
with intelligent algorithms that control heating, ventilation, lighting and appliances.
The focus in this thesis is on properties that are crucial for such a system: functional
correctness, security and efficient use of resources.

To protect the system and the privacy of its users, communication between devices
in the GoGreen system must be secured by encrypting the stream of information. To
enable this, the communicating parties must agree on a (pair of) key(s). Entering a
secret key on a wireless sensor node is impossible, due to its limited interface. A solution
is to use the Tamper-Evident Pairing protocol, which enables pairing of two devices by
pressing a (virtual) button on both devices within a certain time-frame. However, some
of the parameters needed to implement Tamper-Evident Pairing are under-specified.
In Chapter 2, model-checking is used to analyse Tamper-Evident Pairing and it is
discovered that the protocol has a security vulnerability if these parameters are not
chosen wisely. Model-checking is applied in an iterative fashion to discover what values
of the parameters result in a tamper-evident set-up. A constraint is formulated from
the results that excludes occurence of the vulnerability.

For embedded software it is extra important that it behaves according to specifi-
cation, because it can be very hard to update the software in case errors are detected
after release. It must therefore be thoroughly tested. Chapter 3 presents a method
to improve coverage of test cases generated by symbolic execution for programs with
loops. It works by disregarding constraints over symbolic variables while symbolically
executing the loop body, i.e. by taking the loop body out-of-context. This can pro-
duce models for symbolic variables that execute all branches within the loop body. The
symbolic variables can then be concretised to these values.

Wireless sensor nodes are typically battery-powered. The GoGreen system as a
whole is intended to save energy or at least be energy-neutral. It is thus crucial that
wireless sensor nodes are energy-efficient. The hardware of the wireless sensor nodes is

118 Summary

controlled by embedded software. It is therefore preferable to use energy-efficient imple-
mentations. Chapter 4 presents a Hoare logic for energy-consumption analysis. Given a
model of the energy-related behaviours of the hardware components, this analysis can
statically bound the energy consumption of software running on said hardware. The
method is sound and implemented in the tool ECAlogic.

Wireless sensor nodes typically wake up for a short time to do their work, then
go back into an energy-saving mode. Their program must be able to execute within
this time-frame. It is therefore important to bound execution time. As most of the
execution time of typical embedded programs is spent in loops, it is an important step
to bound loop iterations. Furthermore, loop bounds are a prerequisite for analysing
consumption of any resource, as a certain amount of resources (possibly bounded) can
be consumed on every iteration. Chapter 5 presents a novel method to infer polynomial
ranking functions for loops. It instruments the loop with a counter, then runs it for
a set of test inputs and interpolates a polynomial over the resulting iteration counts.
The set of test inputs is chosen such that it satisfies a condition that guarantees the
existence of a unique interpolating polynomial.

To be able to cheaply produce wireless sensor nodes, they must be equipped with
just as much memory as needed, not more. It is therefore important to be able to bound
memory consumption of their embedded software. Chapter 6 presents the tool ResAna
and the underlying resource analysis methods. The loop bound analysis method is fur-
ther extended with a way to deal with so-called condition jumping. A heap-space anal-
ysis is developed, using extensions of the resource analysis tool COSTA, which is based
on recurrence relation solving. COSTA is extended by applying the interpolation-based
ranking function inference method to recurrence relation solving, correcting its results
for arrays, simplifying its results and adding a specialisation for Aicas JamaicaVM.
Furthermore, a stack-space analysis is presented. This analysis uses COSTA to obtain
a measure for recursive functions (analogous to a ranking function for loops), then com-
bines this with data-flow analysis results and measured stack frame sizes from Aicas
VeriFlux to obtain a concrete upper bound on the consumed stack space.

This thesis contributes a series of software analysis methods. The methods aid in
the establishment of program properties that are of particular interest for resource-
sensitive systems, such as security, functional correctness and efficient use of resources.
All the presented automatic analysis methods have been implemented in tools.

Samenvatting

Praktisch elk modern elektronisch apparaat wordt aangestuurd door software. Het is be-
langrijk om bepaalde kwaliteitseigenschappen van deze software vast te stellen. Hierbij
kan gedacht worden aan functionele correctheid, aan het bestand zijn tegen aanvallen
van hackers en aan de mogelijkheid te functioneren binnen systeem dat beperkt is met
betrekking tot geheugen, energie en tijd. Het falen van bepaalde systemen kan kostbaar
of zelfs dodelijk zijn. Functionele correctheid en bestandheid tegen aanvallen zijn dus
cruciaal voor de veiligheid. In een wereld waarin grondstoffen in rap tempo verbruikt
worden is energie-zuinigheid geboden.

Het grootste gedeelte van dit onderzoek is gedaan binnen het GoGreen project. In
dit project wordt een zelf-lerend, veilig en energie-efficiënt domoticasysteem bestudeerd.
Een dergelijk systeem observeert een huis en de mensen die er wonen door middel van
draadloze sensormodules. De verzamelde data dient als invoer voor intelligente algo-
ritmes die verwarming, ventilatie, verlichting en huishoudelijke apparatuur aansturen.
Dit proefschrift presenteert een serie software analysemethoden die bijdragen aan het
vaststellen van kwaliteitseigenschappen die van belang zijn voor een dergelijk systeem:
functionele correctheid, bestandheid tegen aanvallen en efficiënt gebruik van beschik-
bare tijd, energie en geheugenruimte.

Om het systeem te beveiligen en de privacy van zijn gebruikers te waarborgen moet
de communicatie tussen de verschillende draadloze apparaten versleuteld worden. Om
dit mogelijk te maken, dient er een sleutel(paar) afgesproken te worden. Het invoeren
van een geheime sleutel op een draadloze sensor-module is onmogelijk vanwege de
interfacebeperkingen. Een oplossing voor dit probleem is het gebruik van het Tamper-
Evident Pairing protocol, waarbij een gebruiker op beide apparaten een (virtuele) knop
indrukt binnen een kort tijdsbestek. Helaas is een aantal parameters, die nodig zijn om
dit protocol te implementeren, niet gespecificeerd. In hoofdstuk 2 wordt een kwets-
baarheid ontdekt die optreedt indien deze parameters onzorgvuldig gekozen worden.
Deze kwetsbaarheid is gevonden door iteratieve toepassing van de model-checking tech-
niek. Er wordt een propositie opgesteld over de desbetreffende parameters, welke het
optreden van de kwetsbaarheid uitsluit.

Het kan erg lastig zijn om apparaten zoals draadloze sensormodules van nieuwe soft-
ware te voorzien. Voor software die is ingebed in een dergelijk apparaat is het daarom
bijzonder belangrijk dat deze functioneel correct is. Deze software dient dus uitgebreid
getest te worden. De symbolische executietechniek kan worden gebruikt om een testset
te genereren. In hoofdstuk 3 wordt een methode gepresenteerd die de dekking van de
gegenereerde testset met betrekking tot de geteste code verbetert voor programma’s
die loops bevatten. Deze aanpak werkt door de condities die zijn opgebouwd rondom
de symbolische variabelen even te negeren en de romp van de loop dus symbolisch te
executeren buiten zijn context. Dit leidt tot waarden voor de symbolische variabelen

120 Samenvatting

die het verwerken van alle paden binnen de loop garanderen. De symbolische variabelen
kunnen vervolgens naar deze waarden worden geconcretiseerd.

Draadloze sensormodules worden meestal van stroom voorzien door middel van
een batterij. Het is daarom cruciaal dat deze modules energie-zuinig functioneren. De
hardware van een dergelijke module wordt aangestuurd door software. Het verdient
daarom de voorkeur om energie-zuinige implementaties te gebruiken. In hoofdstuk 4
wordt een Hoare logica gepresenteerd waarmee een bovengrens kan worden bepaald
voor het energiegebruik van software, uitgaand van modellen van de hardware waarop
deze software wordt uitgevoerd. De soundness van de methode is wiskundig bewezen
en de methode is gëımplementeerd in de tool ECAlogic.

Draadloze sensormodules moeten hun werk meestal doen in korte actieve periodes,
waarna ze weer naar een slaapstand schakelen. Hun programma moet binnen dit korte
tijdsbestek uitvoerbaar zijn. Het is daarom van belang om een bovengrens aan de uitvo-
ertijd te bepalen. Een belangrijke stap hierin is het afleiden van een bovengrens aan het
aantal iteraties van loops. Bovendien is deze bovengrens een vereiste om de consumptie
van andere middelen als geheugen of energie binnen de loop te kunnen bepalen. Tij-
dens iedere iteratie kan er immers een bepaalde hoeveelheid van deze middelen gebruikt
worden. In hoofdstuk 5 wordt een nieuwe methode gepresenteerd, waarmee polynomi-
ale bovengrenzen aan het aantal iteraties van loops kunnen worden afgeleid. Er wordt
hiervoor een teller aan de loop toegevoegd, waarna de loop wordt uitgevoerd voor een
set invoerwaardes, waarna de resultaten worden gëınterpoleerd. De set invoerwaarden
wordt slim gekozen, waardoor er een unieke polynomiale interpolatie bestaat.

Om draadloze sensormodules goedkoop te kunnen produceren moeten deze worden
uitgerust met zo weinig mogelijk geheugen. Het is daarom van belang een bovengrens
te bepalen voor het geheugengebruik van hun software. In hoofdstuk 6 wordt de tool
ResAna gepresenteerd, evenals de onderliggende software analysemethoden. De loop
analyse uit hoofdstuk 5 wordt verder uitgebreid. Er wordt een heap analyse ontwikkeld
die is gebaseerd op de tool COSTA. Deze tool is werkt middels het oplossen van re-
currente betrekkingen en kan worden gebruikt voor de analyse van het gebruik van
geheugen, tijd en andere middelen, op basis van een kostenmodel. COSTA wordt uit-
gebreid met een toepassing van de interpolatiemethode op het oplossen van recurrente
betrekkingen. Verdere toevoegingen zijn een correctie van de resultaten voor arrays,
een simplificatie van de resultaten en een specialisatie voor de Aicas JamaicaVM. Er
wordt ook een stack analyse gepresenteerd. Deze gebruikt COSTA om een symbolische
bovengrens aan de recursie van methoden te bepalen. Deze wordt gecombineerd met
resultaten van data-flow analyse en gemeten groottes van stack-frames vanuit Aicas
VeriFlux om tot een concrete bovengrens te komen.

Dit proefschrift presenteert een serie software analysemethodes. Deze methodes
dragen bij aan de vaststelling van functionele correctheid, van bestandheid tegen aan-
vallen van hackers en van efficiënt gebruik van middelen als geheugen, energie en tijd.
Alle gepresenteerde automatische methodes zijn gëımplementeerd in software tools.

Curriculum Vitae

Rody Kersten

Born in Nijmegen, the Netherlands on May 29, 1983.

September 1995 - August 2001
Pre-university secondary education (VWO)
Nijmeegse Scholengemeenschap Groenewoud

September 2001 - January 2010
Master’s degree in Computer Science
Radboud University Nijmegen

September 2007 - June 2008
Software developer
EntiQ B.V.

June 2008 - April 2009
Freelance software developer

February 2010 - January 2011
Scientific programmer
Radboud University Nijmegen

February 2011 - August 2015
PhD candidate
Radboud University Nijmegen
Supervised by Prof. dr. Marko van Eekelen
Co-supervised by Dr. Sjaak Smetsers

July 2014 - September 2014
Research intern
NASA Langley Research Center, Hampton, VA, USA
Supervised by Dr. Suzette Person

February 2015 - August 2015
Assistant Professor
Open University of the Netherlands

October 2015 -
Research associate
Carnegie Mellon University, Silicon Valley Campus, Mountain View, CA, USA

Titles in the IPA Dissertation Series since 2009

M.H.G. Verhoef. Modeling and Vali-
dating Distributed Embedded Real-Time
Control Systems. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-01

M. de Mol. Reasoning about Functional
Programs: Sparkle, a proof assistant for
Clean. Faculty of Science, Mathematics
and Computer Science, RU. 2009-02

M. Lormans. Managing Requirements
Evolution. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2009-03

M.P.W.J. van Osch. Automated
Model-based Testing of Hybrid Systems.
Faculty of Mathematics and Computer
Science, TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant
Software Systems. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2009-05

M.J. van Weerdenburg. Efficient
Rewriting Techniques. Faculty of
Mathematics and Computer Science,
TU/e. 2009-06

H.H. Hansen. Coalgebraic Modelling:
Applications in Automata Theory and
Modal Logic. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2009-07

A. Mesbah. Analysis and Testing of
Ajax-based Single-page Web Applica-
tions. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2009-08

A.L. Rodriguez Yakushev. Towards
Getting Generic Programming Ready
for Prime Time. Faculty of Science,
UU. 2009-9

K.R. Olmos Joffré. Strategies for Con-
text Sensitive Program Transformation.
Faculty of Science, UU. 2009-10

J.A.G.M. van den Berg. Reasoning
about Java programs in PVS using JML.
Faculty of Science, Mathematics and
Computer Science, RU. 2009-11

M.G. Khatib. MEMS-Based Stor-
age Devices. Integration in Energy-
Constrained Mobile Systems. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2009-12

S.G.M. Cornelissen. Evaluating Dy-
namic Analysis Techniques for Program
Comprehension. Faculty of Electrical En-
gineering, Mathematics, and Computer
Science, TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-based
Network Intrusion Detection Systems.
Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2009-14

H.L. Jonker. Security Matters: Pri-
vacy in Voting and Fairness in Digital
Exchange. Faculty of Mathematics and
Computer Science, TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping Trust
Management. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2009-16

T. Chen. Clocks, Dice and Pro-
cesses. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2009-17

C. Kaliszyk. Correctness and Availabil-
ity: Building Computer Algebra on top of
Proof Assistants and making Proof Assis-
tants available over the Web. Faculty of
Science, Mathematics and Computer Sci-
ence, RU. 2009-18

R.S.S. O’Connor. Incompleteness &
Completeness: Formalizing Logic and
Analysis in Type Theory. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2009-19

B. Ploeger. Improved Verification
Methods for Concurrent Systems. Faculty

of Mathematics and Computer Science,
TU/e. 2009-20

T. Han. Diagnosis, Synthesis and Anal-
ysis of Probabilistic Models. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2009-21

R. Li. Mixed-Integer Evolution Strategies
for Parameter Optimization and Their
Applications to Medical Image Analysis.
Faculty of Mathematics and Natural Sci-
ences, UL. 2009-22

J.H.P. Kwisthout. The Computational
Complexity of Probabilistic Networks.
Faculty of Science, UU. 2009-23

T.K. Cocx. Algorithmic Tools for
Data-Oriented Law Enforcement. Faculty
of Mathematics and Natural Sciences,
UL. 2009-24

A.I. Baars. Embedded Compilers. Fac-
ulty of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access Con-
trol for Dynamic Collaborative Environ-
ments. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2009-26

J.F.J. Laros. Metrics and Visualisation
for Crime Analysis and Genomics. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2009-27

C.J. Boogerd. Focusing Automatic
Code Inspections. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2010-01

M.R. Neuhäußer. Model Checking
Nondeterministic and Randomly Timed
Systems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2010-02

J. Endrullis. Termination and Pro-
ductivity. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2010-03

T. Staijen. Graph-Based Specification
and Verification for Aspect-Oriented

Languages. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2010-04

Y. Wang. Epistemic Modelling and
Protocol Dynamics. Faculty of Science,
UvA. 2010-05

J.K. Berendsen. Abstraction, Prices
and Probability in Model Checking Timed
Automata. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2010-06

A. Nugroho. The Effects of UML Mod-
eling on the Quality of Software. Faculty
of Mathematics and Natural Sciences,
UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty of
Science, Mathematics and Computer Sci-
ence, RU. 2010-08

J.S. de Bruin. Service-Oriented Dis-
covery of Knowledge - Foundations, Im-
plementations and Applications. Faculty
of Mathematics and Natural Sciences,
UL. 2010-09

D. Costa. Formal Models for Compo-
nent Connectors. Faculty of Sciences, Di-
vision of Mathematics and Computer Sci-
ence, VUA. 2010-10

M.M. Jaghoori. Time at Your Service:
Schedulability Analysis of Real-Time and
Distributed Services. Faculty of Mathe-
matics and Natural Sciences, UL. 2010-11

R. Bakhshi. Gossiping Models: Formal
Analysis of Epidemic Protocols. Faculty
of Sciences, Department of Computer
Science, VUA. 2011-01

B.J. Arnoldus. An Illumination of
the Template Enigma: Software Code
Generation with Templates. Faculty of
Mathematics and Computer Science,
TU/e. 2011-02

E. Zambon. Towards Optimal IT Avail-
ability Planning: Methods and Tools. Fac-
ulty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2011-03

L. Astefanoaei. An Executable Theory
of Multi-Agent Systems Refinement. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2011-04

J. Proença. Synchronous coordina-
tion of distributed components. Faculty
of Mathematics and Natural Sciences,
UL. 2011-05

A. Moralı. IT Architecture-Based Con-
fidentiality Risk Assessment in Networks
of Organizations. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2011-06

M. van der Bijl. On changing models
in Model-Based Testing. Faculty of Elec-
trical Engineering, Mathematics & Com-
puter Science, UT. 2011-07

C. Krause. Reconfigurable Component
Connectors. Faculty of Mathematics and
Natural Sciences, UL. 2011-08

M.E. Andrés. Quantitative Analysis
of Information Leakage in Probabilistic
and Nondeterministic Systems. Faculty
of Science, Mathematics and Computer
Science, RU. 2011-09

M. Atif. Formal Modeling and Verifica-
tion of Distributed Failure Detectors. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2011-10

P.J.A. van Tilburg. From Computabil-
ity to Executability – A process-theoretic
view on automata theory. Faculty of
Mathematics and Computer Science,
TU/e. 2011-11

Z. Protic. Configuration management
for models: Generic methods for model
comparison and model co-evolution. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2011-12

S. Georgievska. Probability and Hid-
ing in Concurrent Processes. Faculty
of Mathematics and Computer Science,
TU/e. 2011-13

S. Malakuti. Event Composition Model:
Achieving Naturalness in Runtime En-
forcement. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2011-14

M. Raffelsieper. Cell Libraries and
Verification. Faculty of Mathematics and
Computer Science, TU/e. 2011-15

C.P. Tsirogiannis. Analysis of Flow
and Visibility on Triangulated Terrains.
Faculty of Mathematics and Computer
Science, TU/e. 2011-16

Y.-J. Moon. Stochastic Models for
Quality of Service of Component Connec-
tors. Faculty of Mathematics and Natural
Sciences, UL. 2011-17

R. Middelkoop. Capturing and Exploit-
ing Abstract Views of States in OO Ver-
ification. Faculty of Mathematics and
Computer Science, TU/e. 2011-18

M.F. van Amstel. Assessing and Im-
proving the Quality of Model Transforma-
tions. Faculty of Mathematics and Com-
puter Science, TU/e. 2011-19

A.N. Tamalet. Towards Correct Pro-
grams in Practice. Faculty of Science,
Mathematics and Computer Science,
RU. 2011-20

H.J.S. Basten. Ambiguity Detection for
Programming Language Grammars. Fac-
ulty of Science, UvA. 2011-21

M. Izadi. Model Checking of Component
Connectors. Faculty of Mathematics and
Natural Sciences, UL. 2011-22

L.C.L. Kats. Building Blocks for Lan-
guage Workbenches. Faculty of Electri-
cal Engineering, Mathematics, and Com-
puter Science, TUD. 2011-23

S. Kemper. Modelling and Analysis of
Real-Time Coordination Patterns. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2011-24

J. Wang. Spiking Neural P Systems.
Faculty of Mathematics and Natural Sci-
ences, UL. 2011-25

A. Khosravi. Optimal Geometric Data
Structures. Faculty of Mathematics and
Computer Science, TU/e. 2012-01

A. Middelkoop. Inference of Program
Properties with Attribute Grammars, Re-
visited. Faculty of Science, UU. 2012-02

Z. Hemel. Methods and Techniques
for the Design and Implementation
of Domain-Specific Languages. Faculty
of Electrical Engineering, Mathematics,
and Computer Science, TUD. 2012-03

T. Dimkov. Alignment of Organiza-
tional Security Policies: Theory and
Practice. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2012-04

S. Sedghi. Towards Provably Secure Ef-
ficiently Searchable Encryption. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2012-05

F. Heidarian Dehkordi. Studies on
Verification of Wireless Sensor Networks
and Abstraction Learning for System In-
ference. Faculty of Science, Mathematics
and Computer Science, RU. 2012-06

K. Verbeek. Algorithms for Car-
tographic Visualization. Faculty of
Mathematics and Computer Science,
TU/e. 2012-07

D.E. Nadales Agut. A Compositional
Interchange Format for Hybrid Systems:
Design and Implementation. Faculty of
Mechanical Engineering, TU/e. 2012-08

H. Rahmani. Analysis of Protein-
Protein Interaction Networks by Means
of Annotated Graph Mining Algorithms.
Faculty of Mathematics and Natural Sci-
ences, UL. 2012-09

S.D. Vermolen. Software Language
Evolution. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2012-10

L.J.P. Engelen. From Napkin Sketches
to Reliable Software. Faculty of

Mathematics and Computer Science,
TU/e. 2012-11

F.P.M. Stappers. Bridging Formal
Models – An Engineering Perspective.
Faculty of Mathematics and Computer
Science, TU/e. 2012-12

W. Heijstek. Software Architecture De-
sign in Global and Model-Centric Soft-
ware Development. Faculty of Mathemat-
ics and Natural Sciences, UL. 2012-13

C. Kop. Higher Order Termination. Fac-
ulty of Sciences, Department of Com-
puter Science, VUA. 2012-14

A. Osaiweran. Formal Development of
Control Software in the Medical Systems
Domain. Faculty of Mathematics and
Computer Science, TU/e. 2012-15

W. Kuijper. Compositional Synthesis of
Safety Controllers. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2012-16

H. Beohar. Refinement of Communi-
cation and States in Models of Embed-
ded Systems. Faculty of Mathematics and
Computer Science, TU/e. 2013-01

G. Igna. Performance Analysis of Real-
Time Task Systems using Timed Au-
tomata. Faculty of Science, Mathematics
and Computer Science, RU. 2013-02

E. Zambon. Abstract Graph Transfor-
mation – Theory and Practice. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2013-03

B. Lijnse. TOP to the Rescue – Task-
Oriented Programming for Incident Re-
sponse Applications. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-04

G.T. de Koning Gans. Outsmart-
ing Smart Cards. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-05

M.S. Greiler. Test Suite Comprehen-
sion for Modular and Dynamic Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2013-06

L.E. Mamane. Interactive mathemat-
ical documents: creation and presenta-
tion. Faculty of Science, Mathematics
and Computer Science, RU. 2013-07

M.M.H.P. van den Heuvel. Compo-
sition and synchronization of real-time
components upon one processor. Faculty
of Mathematics and Computer Science,
TU/e. 2013-08

J. Businge. Co-evolution of the Eclipse
Framework and its Third-party Plug-ins.
Faculty of Mathematics and Computer
Science, TU/e. 2013-09

S. van der Burg. A Reference Ar-
chitecture for Distributed Software De-
ployment. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2013-10

J.J.A. Keiren. Advanced Reduction
Techniques for Model Checking. Faculty
of Mathematics and Computer Science,
TU/e. 2013-11

D.H.P. Gerrits. Pushing and Pulling:
Computing push plans for disk-shaped
robots, and dynamic labelings for moving
points. Faculty of Mathematics and Com-
puter Science, TU/e. 2013-12

M. Timmer. Efficient Modelling, Gen-
eration and Analysis of Markov Au-
tomata. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2013-13

M.J.M. Roeloffzen. Kinetic Data
Structures in the Black-Box Model. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2013-14

L. Lensink. Applying Formal Methods
in Software Development. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2013-15

C. Tankink. Documentation and For-
mal Mathematics — Web Technology
meets Proof Assistants. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2013-16

C. de Gouw. Combining Monitoring
with Run-time Assertion Checking. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2013-17

J. van den Bos. Gathering Evidence:
Model-Driven Software Engineering in
Automated Digital Forensics. Faculty of
Science, UvA. 2014-01

D. Hadziosmanovic. The Process Mat-
ters: Cyber Security in Industrial Control
Systems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2014-02

A.J.P. Jeckmans. Cryptographically-
Enhanced Privacy for Recommender Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2014-03

C.-P. Bezemer. Performance Opti-
mization of Multi-Tenant Software Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2014-04

T.M. Ngo. Qualitative and Quantita-
tive Information Flow Analysis for Multi-
threaded Programs. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2014-05

A.W. Laarman. Scalable Multi-Core
Model Checking. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2014-06

J. Winter. Coalgebraic Characteriza-
tions of Automata-Theoretic Classes.
Faculty of Science, Mathematics and
Computer Science, RU. 2014-07

W. Meulemans. Similarity Mea-
sures and Algorithms for Cartographic
Schematization. Faculty of Mathematics
and Computer Science, TU/e. 2014-08

A.F.E. Belinfante. JTorX: Exploring
Model-Based Testing. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2014-09

A.P. van der Meer. Domain Specific
Languages and their Type Systems. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2014-10

B.N. Vasilescu. Social Aspects of Col-
laboration in Online Software Communi-
ties. Faculty of Mathematics and Com-
puter Science, TU/e. 2014-11

F.D. Aarts. Tomte: Bridging the Gap
between Active Learning and Real-World
Systems. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2014-12

N. Noroozi. Improving Input-Output
Conformance Testing Theories. Faculty
of Mathematics and Computer Science,
TU/e. 2014-13

M. Helvensteijn. Abstract Delta Model-
ing: Software Product Lines and Beyond.
Faculty of Mathematics and Natural Sci-
ences, UL. 2014-14

P. Vullers. Efficient Implementations
of Attribute-based Credentials on Smart
Cards. Faculty of Science, Mathematics
and Computer Science, RU. 2014-15

F.W. Takes. Algorithms for Analyzing
and Mining Real-World Graphs. Faculty
of Mathematics and Natural Sciences,
UL. 2014-16

M.P. Schraagen. Aspects of Record
Linkage. Faculty of Mathematics and
Natural Sciences, UL. 2014-17

G. Alpár. Attribute-Based Identity
Management: Bridging the Cryptographic
Design of ABCs with the Real World.
Faculty of Science, Mathematics and
Computer Science, RU. 2015-01

A.J. van der Ploeg. Efficient Abstrac-
tions for Visualization and Interaction.
Faculty of Science, UvA. 2015-02

R.J.M. Theunissen. Supervisory Con-
trol in Health Care Systems. Faculty of
Mechanical Engineering, TU/e. 2015-03

T.V. Bui. A Software Architecture
for Body Area Sensor Networks: Flex-
ibility and Trustworthiness. Faculty of
Mathematics and Computer Science,
TU/e. 2015-04

A. Guzzi. Supporting Developers’ Team-
work from within the IDE. Faculty
of Electrical Engineering, Mathematics,
and Computer Science, TUD. 2015-05

T. Espinha. Web Service Growing
Pains: Understanding Services and Their
Clients. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2015-06

S. Dietzel. Resilient In-network Aggre-
gation for Vehicular Networks. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2015-07

E. Costante. Privacy throughout the
Data Cycle. Faculty of Mathematics and
Computer Science, TU/e. 2015-08

S. Cranen. Getting the point — Obtain-
ing and understanding fixpoints in model
checking. Faculty of Mathematics and
Computer Science, TU/e. 2015-09

R. Verdult. The (in)security of pro-
prietary cryptography. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2015-10

J.E.J. de Ruiter. Lessons learned in the
analysis of the EMV and TLS security
protocols. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2015-11

Y. Dajsuren. On the Design of an Ar-
chitecture Framework and Quality Evalu-
ation for Automotive Software Systems.
Faculty of Mathematics and Computer
Science, TU/e. 2015-12

J. Bransen. On the Incremental Eval-
uation of Higher-Order Attribute Gram-
mars. Faculty of Science, UU. 2015-13

S. Picek. Applications of Evolutionary
Computation to Cryptology. Faculty of
Science, Mathematics and Computer Sci-
ence, RU. 2015-14

C. Chen. Automated Fault Localiza-
tion for Service-Oriented Software Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2015-15

S. te Brinke. Developing Energy-Aware
Software. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2015-16

R.W.J. Kersten. Software Analysis
Methods for Resource-Sensitive Systems.
Faculty of Science, Mathematics and
Computer Science, RU. 2015-17

	Title
	Acknowledgements
	Table of Contents
	Introduction
	Dynamic Analysis
	Testing
	Debuggers and Profilers

	Static Analysis
	Flow Analysis
	Hoare Logic
	Symbolic Execution
	Model-Checking
	Theorem Proving

	Motivation and Thesis Overview
	Security
	Functional correctness
	Energy efficiency
	Time efficiency
	Memory efficiency

	Contributions

	Using Model-Checking to Reveal a Vulnerability of Tamper-Evident Pairing
	Introduction
	Tamper-Evident Pairing
	The Tamper-Evident Announcement
	Receiving the Slots

	Modelling the Tamper-Evident Announcement in Spin
	Model Parameters
	Clock Implementation
	Model Processes

	Model-Checking Results
	Revealed Vulnerability in the TEA
	Varying the Values of the Model Parameters

	Related Work
	Conclusions

	Improving Coverage of Test-Cases Generated by Symbolic PathFinder for Programs with Loops
	Introduction
	Related Work

	Bounding Loops in SPF
	K-Bounded Unwinding
	Specifying Loop-Specific Bounds

	Concretising Loop Variables
	Example
	Annotations in SPF
	Limitations

	Conclusions

	A Hoare Logic for Energy Consumption Analysis
	Introduction
	Modelling Hybrid Systems
	Language
	Modelling Components
	Semantics

	Energy Analysis of Hybrid Systems
	Energy-Aware Semantics
	Energy-Aware Modelling
	A Hoare Logic for Energy Analysis

	Example: Wireless Sensor Node
	Soundness
	Implementation in ECAlogic
	Input Language ECA
	Component Models in ECM
	Tool Application

	Conclusions and Future Work

	Test-based Inference of Polynomial Ranking Functions for Loops
	Introduction
	Polynomial Interpolation
	Inference of Ranking Functions for Loops
	RF Inference: The Basic Method
	Expressing the RF in JML
	Complexity: Exponential in the Number of Variables

	Prototype and Case Studies
	Related Work
	Conclusions

	ResAna: A Resource Analysis Toolset for (Real-Time) Java
	Introduction
	Loop-Bound Analysis
	Ranking Functions with Rational or Real Coefficients
	Branching inside the loop body
	Piecewise Ranking Functions for Loops with Disjunctive Guards
	Condition Jumping

	Heap-Space Usage Analysis
	Interpolation-based height analysis for improving a recurrence solver
	Correct array-size analysis
	Virtual-machine specialisation by adding type-size information
	Simplification of bounds
	Example

	Stack-Size Analysis
	Adjustments for analysis of libraries
	Stack-size analysis by VeriFlux

	User Experience
	Related Work
	Loop-Bound Analysis
	Time Performance Analysis
	Heap-Space Usage Analysis
	Stack-Size Analysis

	Conclusions and Future Work

	Conclusions
	Bibliography
	Summary
	Samenvatting (Dutch Summary)
	Curriculum Vitae

