
For Peer Review
 O

nly
 

 

 

 

 

 

Energy Generation from full strength Domestic Wastewater 

using a Sandwich Dual Chamber Microbial Fuel Cell with an 
uncatalyzed Mesh Current Collector Cathode 

 

 

Journal: International Journal of Green Energy 

Manuscript ID: IJGE-2015-0274 

Manuscript Type: Regular Paper 

Date Submitted by the Author: 02-Jun-2015 

Complete List of Authors: ADENIRAN, JOSHUA; UNIVERSITY OF JOHANNESBURG, CIVIL 

ENGINEERING TECHNOLOGY 
Huberts, Robert; UNIVERSITY OF JOHANNESBURG, CHEMICAL 
ENGINEERING TECHNOLOGY 
de Koker, Johan; UNIVERSITY OF JOHANNESBURG, SUSTAINABLE ENERGY 
TECHNOLOGY AND RESEARCH CENTRE, SeTAR 
AROTIBA, OMOTAYO; UNIVERSITY OF JOHANNESBURG, APPLIED 
CHEMISTRY 
VAN ZYL, ERICK; UNIVERSITY OF JOHANNESBURG, BIOTECHNOLOGY 
DU PLESSIS, SYDNEY; UNIVERSITY OF JOHANNESBURG,  

Keywords: 
Microbial Fuel Cells, power generation, domestic wastewater,  mesh current 
collector , cathode 

  

 

 

URL: http://mc.manuscriptcentral.com/green-energy  Email: x6li@mecheng1.uwaterloo.ca

International Journal of Green Energy



For Peer Review
 O

nly

1 

 

Energy Generation from full strength Domestic Wastewater using a Sandwich Dual 

Chamber Microbial Fuel Cell with an uncatalyzed Mesh Current Collector Cathode 

JA Adeniran
1
, R Huberts

2
*, JJ De-Koker

3
, OA Arotiba

4
, E Van-Zyl

5
 and S Du-Plessis

6
 

1
Department of Civil Engineering Technology, 

2
Department of Chemical Engineering Technology, 

3 
Sustainable 

Energy Technology and Research Centre, SeTAR ,
4
Department of Applied Chemistry ,

5
Department of Biotechnology 

and 
6
Metallurgy Department, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, 

South Africa. 

*Corresponding author: roberth@uj.ac.za 

Abstract 

A sandwich domestic wastewater fed dual-chamber microbial fuel cell (MFC) was designed for energy 

generation and wastewater treatment. Power density for the MFC increased with increasing domestic 

wastewater concentration, reaching a maximum of 251 mW/m
2
 for full strength wastewater (3400 mg/L 

chemical oxygen demand (COD)) at a current density of 0.054 mA/cm
2 

at an external resistance of 200Ω. 

These values dropped to 60 mW/m
2
 (76% lower) and 0.003 mA/cm

2
 using wastewater 91% diluted to 300 

mg/L COD.  Maximum removals were: of COD, 89%; nitrite, 60%; nitrate, 77%; total nitrogen, 36%; and 

phosphate, 26%. Coulombic efficiency ranged from 5% to 7%. The use of full strength domestic 

wastewater reduces cost, and with improved reactor design, the ultimate goal of large scale operation 

could be achieved. 
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1. Introduction 

In the early days of microbial fuel cell (MFC) research, most of the studies were carried out using the 

conventional dual-chamber MFC. However, the recent trend in MFC research involves the use of single-

chamber MFCs. This is in accordance with reports of higher power and current densities generated from 

single-chamber MFCs compared with dual-chamber MFCs. Higher internal resistance and electron 

acceptor limitations are among the major factors that restrict power generation in dual-chamber MFCs. In 

MFC studies, in a bid to increase power generation, the impact of various materials used in the 

construction of reactors has been investigated. The use of catalyzed cathodes built around mesh current 

collectors used in single-chamber MFCs has been reported to increase power generation significantly 

(Luo et al. 2011; Zhang et al. 2009, 2010, 2011). Mesh pore sizes also play an important role in increasing 

power density in MFCs. In a study by Zhang and coworkers (2011), the effect of cathode mesh pore size 

on power generation was ascertained, using five stainless steel meshes of different pore sizes (30, 50, 70, 

90 and 120), treated with poly(dimethylsiloxane) (PDMS) and Pt, as cathode in a single-chamber cubic-

shaped MFC. The results indicated direct proportionality between pores sizes and power density. Mesh 30 

recorded the highest maximum power density of 1616 ± 25 mW/m
2
,
 
while the lowest power density of 

599 ± 57 mW/m 
2
 was obtained with mesh 120 which has the smallest pore size. A further investigation 

into the use of these mesh pore sizes may be helpful in increasing the power generation and efficiency of 

MFCs.  

Despite the aforementioned advantages of single-chamber MFCs over dual-chamber MFCs, the 

shortcomings of lower coulombic efficiency (in comparison with dual chambers) (Zhang et al. 2009; Liu 

et al. 2004) and leakage of the anode solution through the cathode (Zhang et al. 2009) reported in single-

chamber MFCs need to be overcome to maximize the potential of MFC technology for energy generation 

and wastewater treatment. An improvement in the design of dual-chamber MFCs in terms of architecture 
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and materials of construction may be a viable alternative way of overcoming the limitations of single-

chamber MFCs. In this study, a dual-chamber MFC with reduced electrode spacing was developed and 

tested for energy generation from domestic wastewater. In addition, the impact of wastewater organic 

materials concentration (wastewater concentration) in the anode chamber on energy generation was 

ascertained.  

Mesh current collectors have been used previously as cathode electrodes in single-chamber MFC studies 

(Xia et al. 2013; Luo et al. 2011; Zhang et al. 2009, 2010, 2011). However, to the best of our knowledge, 

this is the first study involving a combined use of mesh current collector cathode electrode and sandwich 

electrodes architectures in a dual-chamber MFC.  

2. Materials and Methods 

2.1. Cathode 

The cathode was constructed from stainless steel mesh 20 type 304 (0.37 mm diameter, 0.90 mm opening, 

737 MPa tensile strength and 39% elongation). The stainless steel mesh was supplied by Ludowisi 

Meshcape, South Africa (SA). The cathode electrode was uncatalyzed, with a projected surface area of 36 

cm
2
, a thickness of 0.72 mm and a total weight of 6.60 g. Details of the mesh material used are provided 

in Table 1. 

(Table 1) 

2.2. MFC construction and operation 

 2.2.1. Sandwich Electrode Membrane Electrode Configuration, SEMEC 

A sandwich consisting of the anode (non-wet proof carbon fabric, 1071HCB, Avcarb, NJ), the proton 

exchange membrane (CMI 7000S, Membranes International Inc., NJ) and the cathode electrode was glued 

to the anode chamber (polyethylene wide-mouth bottle). This is illustrated schematically in Figure 1. The 

anode compartment had a total volume of 2000 mL and was filled with 1500 mL of domestic wastewater 
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(1500 mL empty bed volume). The anode electrode had a surface area of 36 cm
2
, and the sandwich 

weighed 10.6 g. Thereafter, the entire structure was placed in a temperature-regulated water bath 

(Ecobath, Labotech, South Africa) containing the cathode solution. The water bath’s in-built circulator 

replenished the dissolved oxygen used as the electron acceptor at the cathode. 

(Figure 1) 

2.2.2. MFC Operation 

The reactor was inoculated with primary sludge and domestic wastewater from Daspoort wastewater 

treatment works, Pretoria, South Africa and subsequently fed with domestic wastewater after a repeatable 

current production had been established. The reactor was a semi-continuous one operated on a long fed 

batch cycle (fed with 500 mL fresh influent once a week), at 35 °C. Hence a wastewater residence time of 

3 weeks was achieved.  The cathode solution was maintained at pH of approximately 1.88, while the 

anode solution was operated at an average pH of 7.5. The CODs of the influent and effluent were 

determined using HACH COD system (HACH Co., Loveland, CO., USA).  

2.3 MFC calculations and measurements 

The voltage (V) across the external resistor was measured at 5-minute intervals after a pseudo-steady state 

had been established. The power (�	 = 	 �����) and current (I =
	
��


���

) produced by the reactor were 

determined by measuring the potential across the external resistor, as described by Logan (2008) and 

Logan et al. (2006). ���� and ����  represent the cell potential (volts) and external resistance or load 

(ohm) respectively. Polarization and power density curves were obtained by varying the external circuit 

resistance from 2 400 Ω to 50 Ω in decreasing order. Power and current densities were normalized to the 

projected surface area of the cathode (36 cm
2
) at ���� 200 Ω, except when stated otherwise. 

The MFC internal resistance was calculated using the polarization slope method. This was achieved by 

calculating the slope of the polarization curve, using the formula given by Logan (2008): 
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∆Ι

∆Ε
=intR

                                                                                                                                              (1) 

where ∆Ε  is the change in voltage and ∆Ι  is the change in current. The columbic efficiency (CE) was 

determined from the COD removed per cycle of operation (Logan et al. 2006) using the following 

formula also given by Logan (2008): 

CODanes

bS

VFb

t
CE

∆

ΙΜ
=

I

                                                                                                      

(2) 

where �� is the molecular weight of substrate (g/mol), Ι  is the current density (mA/cm
2
), ��	 is the 

operation time (h), 	���� is the Faraday’s constant [(96500 C/ mole
-
) (8 mole

-
/ mol)], ��� is the volume of 

the anode (L) and ∆� ! is the change in COD (g/L). 

Electrochemical characterization (open circuit potential (OCP) and cyclic voltammetry) of the mesh 

electrode was conducted on an Ivium CompactStat potentiostat (Netherlands). A three-electrode system 

consisting of a stainless steel mesh (cathode in the MFC) as working electrode, a platinum counter 

electrode and an Ag/AgCl reference electrode (RE-5B; BASi; West Lafayette, IN) was employed. The 

tests were conducted using three different solutions. The first solution was a mixture of 50% cathode 

solution (water and sulphuric acid) and 50% 10 mM phosphate buffer solution (PBS) (made up of 

42HPONa  0.458 g/L + OHHPONa 242 .
 
0.245 g/L). The second solution consisted of 50% 50 mM 

PBS and 50% cathode solution, while the third solution was the cathode solution without a supporting 

electrolyte. The cyclic voltammetry scan rate was + 0.50 mV/s and the potential was scanned from + 1.0 

to - 0.4 V. 
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2.4. Nutrient removal analysis 

In order to determine the efficiency of the reactor for wastewater treatment, concentrations of nitrate, 

nitrite, total nitrogen and phosphate were analyzed in the influents and effluents using Hach techniques 

(HACH Co., Loveland, CO, USA.). Prior to the analysis, the samples were centrifuged to ensure 

homogeneity. All analyses were carried out in triplicate and the average reported to ensure reproducibility 

of the results. For nitrate (cadmium reduction method, 0.3–30.0 mg/L NNO
−

3 ); nitrite (ferrous sulphate 

method, nitriVer2 , 2–250 mg/L 
−

2NO reagent powder pillows); total nitrogen (persulphate digestion 

method, 2–150 mg/L N, test tube and vials) and phosphate (molybdovanadate method 0.3–45.0 mg/L 

−3

4PO , reagent solution), the methods indicated in the respective brackets were used for the analyses. 

The nutrient removals were determined using the formula: 

100
inf

inf
×

−
=

luent

effluentluent

removed
C

CC
C %                                                                                                       (3) 

 

where removedC  is the nutrient removed (%), luentCinf  is the influent nutrient concentration (mg/L) and 

effluentC  is the effluent nutrient concentration (mg/L). 

2.5. Wastewater Organic matter concentration measurement 

 The influent and effluent organic matter concentrations were determined by carrying out COD analysis, 

hence wastewater COD concentration was used as a measure of organic matter concentration in this 

study. The analyses were done in triplicate and the average reported, using the Hach COD system (Hach, 
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Loveland, CO, USA). The wastewater strength was varied from 3400 to 300 mg/L by dilution with 

deionized water to ascertain the effect of substrate organic matter concentration on power generation. The 

COD removal (%) was calculated using the formula: 

%100×
−

=

i

ei

r
X

XX
X                                                                                                                                          

(4) 

where "# is the COD removed (%), "$ is the influent COD (mg/L) and "� is the effluent COD (mg/L). 

2.6. Electron microscopy examination 

Scanning electron microscope (SEM) images of the anode were taken to observe biofilm growth using a 

VEGA3 TESCAN (TESCAN Brno-Kohoutovice, Czech Republic). The anode electrodes (working and 

control) were cut into small pieces (about 1 cm x 1 cm) and fixed overnight in 2.5% paraformaldehyde 

and 1.5% glutaraldehyde in 0.1 M cacodylate buffer, pH 7.4 at 4 °C. They were washed three times in the 

buffer, dehydrated in graded ethanol solutions and dried at the critical point using carbon dioxide (Liu & 

Logan 2004). Thereafter the samples were gold sputter-coated using an Emscope SC 500 gold coater. 

3. Results and Discussion 

3.1. Organic matter concentration and power generation 

The effect of wastewater COD concentration on power production was examined by comparing the power 

density at the highest substrate COD concentration (PDH) and the polarization (PCH) curves with those at 

the lowest COD concentration (PDL and PCL) (Figure 2(a)). The maximum power generation from the 

MFC at various COD concentrations is represented in Figure 2(b).  

Maximum power density of 251 mW/m
2
 and current density of 0.059 mA/cm

2
 were generated at the 

highest COD (3400 mg/L). In turn, the lowest power density (60 mW/m
2
) and current density (0.03 

mA/cm
2
) were generated when wastewater of the lowest COD concentration of 300 mg/L was fed (Figure 
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2(a)), representing a 76% drop in power density. Throughout the course of the experiments, a general 

trend of reduction in power production with COD reduction was observed (Figure 2(b)). This is similar to 

findings in previous studies (Zhong et al. 2011; Rodrigo et al. 2007) where high substrate concentration 

increased power density in MFCs. This finding is also consistent with findings in some previous studies 

that power generation in MFCs depends on wastewater concentration (Liu et al. 2005; Min et al. 2005). In 

the same vein, the observation is similar to reports of increased power generation with feed concentration 

(Moon et al. 2006), where highest power and current densities of 0.36 W/m
2
 and 1.6 A/m

2
 respectively 

were reported at the highest fuel concentration of 300 mg/L. The results, however, differ from the 

findings by Zhong et al. (2011) where COD concentration was found not to be the only limiting factor in 

power generation. In their study, Zhong and coworkers investigated power generation at three organic 

loading rates (OLRs), viz. 6.00, 3.20 and 1.55 kg COD m
-3

d
-1

. The lowest power density of 74.0 ± 1.8 

mW/m
2
 (0.65 ± 0.02 mW

-3
) was recorded at 6.00 kg COD m

-3
d

-1
, followed by 92.1 ± 3.3 mW/m

2
 (0.081 ± 

0.03 mW
-3

) at 1.55 kg COD m
-3

d
-1

, and with a maximum power density of 115.5 ± 2.7 mW/m
2
 (1.0 ± 0.02 

mW
-3

) being generated at 3.20 kg COD m
-3

d
-1

. It was reported that factors such as poisoning of the 

catalyst (Pt) at high organic matter concentration and fouling of the catalyst layer by biofilm could be 

partly responsible for the development. However, in this study no catalyst was applied to the electrodes, 

which could be responsible for the different observations. The maximum average power density of 251 

mW/m
2
 obtained in this study is higher than the power densities reported in previous natural wastewater-

fed dual-chamber MFC studies: 63 mW/m
2
 (Min & Logan 2004) using domestic wastewater in a flat plate 

MFC; 45 mW/m
2
 (Min et al. 2005) when swine wastewater was used as substrate; and 25 mW/m

2
 

(Rodrigo et al. 2007) using urban wastewater. 

(Figure 2a) 

(Figure 2b) 
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It can be seen from Table 2 that the maximum power density reported in this work compares favourably 

with that of most studies in which natural wastewaters were used as substrates in MFCs. This suggests 

that the sandwich dual-chamber MFC designed for this work is efficient in terms of power generation, 

taking into consideration the fact that dual-chamber MFCs are known to generate lower power densities 

than single-chamber MFCs (Logan 2008).  

(Table 2) 

 

3.2. Internal resistance 

The internal resistance (�$��) of the reactor was determined using the polarization slope method (Logan, 

2008). The internal resistances recorded were inversely proportional to the COD concentration (Figure 3), 

with the highest �$�� of 376 Ω recorded at 300 mg/L COD concentration and the minimum �$�� of 80 Ω 

at a COD concentration of 3400 mg /L. This is consistent with the results of Feng et al. (2008) who found 

that �$�� decreased with an increase in COD concentration. The minimum �$�� of 80 Ω is high compared 

with some of the previously reported results (Fan et al. 2007; Cheng et al. 2006), but lower than the 

1632 Ω reported by You et al. (2006) when permanganate was used as the electron acceptor in a dual-

chamber MFC. A maximum �$�� of 376 Ω was recorded in this study (Figure 3). This is higher than (159 

± 11 Ω, 184 ± 15 Ω and 216 ± 8 Ω) using lactic acid, acetic acid and ethanol respectively as substrates 

and equal to 376 ± 30 Ω (succinic acid substrate) reported in the study by Kiely and fellow workers 

(2011). However, it is significantly lower than 2769 ± 318 Ω obtained in the same study (Kiely et al. 

2011) when formic acid was used as a substrate. Bearing in mind that solution conductivity affects power 

generation in MFCs due to its impact on ionic flow (Logan 2012), and the fact that domestic wastewater 

is known for low conductivity, full-strength domestic wastewater (698 ± 81 µs/cm) was used as substrate 

in this study. The low substrate conductivity is believed to be responsible for the relatively high internal 

resistance (�$��). 

Page 9 of 31

URL: http://mc.manuscriptcentral.com/green-energy  Email: x6li@mecheng1.uwaterloo.ca

International Journal of Green Energy

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

10 

 

(Figure 3) 

 

From the polarization curve in Figure 4 it can be deduced that activation losses were prominent from 0 to 

0.033 mA/cm
2
, as depicted by the first high gradient (I) in region A. The ohmic region between 0.033 

mA/cm
2
 and 0.072 mA/cm

2
, denoted by region B, can be observed to be characterized by the relatively 

steady rise in gradient, and the mass transport losses can be observed from 0.072 to 0.127 mA/cm
2
, 

characterized by a steep rise in gradient (region C). The magnitude of the activation loss observed in this 

figure could be attributed to the use of an uncatalyzed electrode and the relatively high energy required 

for the oxidation and reduction reaction due to the high COD concentration of the wastewater (Logan 

2008). Ohmic losses represent one of the major challenges to be overcome in the design of a scalable 

MFC (Logan 2008). Although a sandwich MFC design known for reduced internal resistance (Liu et al. 

2004) was used for the experiments, the use of a membrane (PEM) in this study could be responsible for 

the relatively large interval of ohmic losses observed in the polarization curve in Figure 4 (Logan et al. 

2006). The observation of mass transport losses in the polarization curve is an indication of the need to 

improve the reactant and product flux on the electrodes (Logan 2008). 

(Figure 4) 

3.3. Nutrient removal and coulombic efficiency 

Table 3 presents the wastewater treatment efficiency using the percentage of nutrients removed as an 

indicator. We attribute the removal of nitrate and phosphate to a process caused by the bacteria 

consortium in our wastewater. The nitrate removal is also an indication of a de-nitrification process in our 

reactor.  

The reason for the relatively lower total nitrogen removal (36%), compared with nitrate (77%) and nitrite 

(66%), is not well understood at this stage. However, since total nitrogen contains both organically bound 

nitrogen and oxidizable nitrogen (nitrite and nitrate) we assumed that endogenous decay of the 
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microorganisms in the wastewater might have resulted in the release of organically bound nitrogen, as 

noted by Bahadoorsingh (2010). This happens during a long retention time and with a low ratio of 

substrate to microorganisms, leading to autolysis which causes a release of large quantities of organic 

matter (Miura et al. 2007). We hypothesize that the relatively long residence time of the wastewater in the 

MFC (3 weeks) could favour endogenous decay. This phenomenon will lead to the release of the 

organically bound nitrogen component of the total nitrogen, hence its relatively higher concentration in 

the effluent compared with nitrite and nitrate. 

A better measure of the extent of wastewater treatment in the MFC is COD measurement. A maximum 

COD removal of 89% was recorded in this study, signifying an efficient wastewater treatment. The high 

COD removal (89%) and low CE values (5–7%) also support the assumption of nutrient removal by 

bacteria, possibly other than the exoelectrogenic bacteria. A similar finding was made by He at al. (2005), 

who recorded a soluble chemical oxygen demand (SCOD) removal of 90% and CEs of 0.7–8.1% in an 

upflow MFC. The findings were attributed to oxidation of the anodic substrates by bacteria other than the 

exoelectrogens. 

(Table 3) 

From Figure 5 it can be seen that the CE during the course of the experiment ranged from 5 to 7%. The 

maximum CE was recorded between wastewater concentrations of 300 and 800 mg/L, with the lowest CE 

recorded between 2200 and 3400 mg/L. The relationship between CE and substrate concentration is 

inverse, which is similar to the observations by Min and coworkers (2005). The CE obtained in this study 

is poor (maximum of 7%) and this suggests that the reactor was not efficient in converting the organic 

matter in wastewater to energy. It is also an indication that the design needs to be further optimized for 

improved energy generation. The relatively longer cycle of operation (7 days) could be partly responsible 

for the low CE recorded because of the potential increase in oxygen influx to the anode due to the 

increase in operation time. This is consistent with the findings of Feng et al. (2008). Further efforts need 
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to be made to prevent the influx of oxygen into the anodic chamber to prevent scavenging of electrons by 

oxygen. 

(Figure 5) 

 

From Figure 6 it is evident that COD removal is proportional to wastewater concentration. The maximum 

COD removal of 89% was recorded at the highest COD concentration (3400 mg/L). This observation is 

consistent with the findings by Wang et al. (2008), where COD removal increased with wastewater 

concentration, resulting in a maximum COD removal of 87% at the highest wastewater COD 

concentration of 2339 mg/L. Also, considering the volume of wastewater in the anode chamber (1.5 L) 

and the fact that full-strength wastewater was employed (at the maximum COD concentration reported, 

3400 mg/L), this result shows the potential of the MFC as a wastewater treatment technique.  

(Figure 6) 

 

3.4. Electrochemical analysis 

The cathode OCP was 0.343 mV vs. Ag/AgCl. This result was higher than the cathode OCP of 0.230 V 

vs. Ag/AgCl reported by Liu and Logan (2004) when the MFC was operated without a PEM. An average 

OCV of 0.735 ± 0.1 V was recorded, a result that is fairly close to the maximum OCV of 0.8V reported in 

single-chamber MFCs using oxygen as electron acceptor (Cheng & Logan, 2007).  

The appearance of capacitive currents and faradaic peaks in the CV (Figure 7) suggests that the electrode 

(stainless steel mesh cathode) is conducting and is suitable for MFC application. 

(Figure 7) 

3.5. Scanning Electron Micrograph analysis of anode electrode 
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The scanning electron micrograph results of the surface morphology of the anode electrode are depicted 

in Figure 8. The result reveals the growth of biofilm on the working electrode (Figure 4.8A i, ii and iii) at 

different magnifications compared with none on the control electrode (Figure 4.8B i, ii and ii). This 

indicates the colonization of the electrode by the bacteria consortia in the wastewater (Park et al., 2005). 

The exoelectrogenic bacteria in the wastewater are believed to be responsible for the anodic oxidation 

reaction leading to electricity generation (Muthukumar & Sangeetha, 2014).  

(Figure 8) 

 

 

4.0. Conclusions 

A relatively low-cost sandwich dual-chamber microbial fuel cell (MFC) was constructed for energy 

generation and domestic wastewater treatment. The successful incorporation of the sandwich electrode 

membrane electrode configuration and an uncatalyzed mesh current collector cathode into the dual-

chamber MFC increased power production, wastewater treatment efficiency and at the same time reduced 

the cost. Furthermore, the use of a relatively larger reactor (1.5 L empty bed volume), compared with 

most of the MFCs reported in the literature, lends credence to the upscaling potential of this reactor for 

full-scale energy generation and wastewater treatment. 
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Figure 1 Schematic representation of MFC design 

Figure 2a Polarization and power curves at lowest and at highest COD 

Figure 2b Power density as a function of COD concentration 

Figure 3 Internal resistance relationship with substrate concentration 

Figure 4 Polarization curve of the MFC at the highest COD (3400 mg/L) 

Figure 5 Effects of wastewater COD concentration on CE and COD removal 

Figure 6 Wastewater concentration effect on COD removal 

Figure 7 CV of SS mesh cathode in cathode solution 

Figure 8 Scanning electron micrograph of anode (working electrode) inoculated with domestic 

wastewater (A) and (B) a control electrode (before inoculation) 

 

Table 1 Mesh material and chemical composition 

Table 2   Selected maximum power densities using natural wastewater in MFCs 

Table 3 Summary of the wastewater treatment efficiency analysis of the MFC 
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