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Abstract— A new way of analyzing permutation distance-
preserving mappings is presented by making use of a
graph representation. The properties necessary to make
such graphs distance-preserving and how this relates to
the total sum of distances that exist for such mappings,
are investigated. This new knowledge is used to analyze
previous constructions, as well as showing the existence or
non-existence of simple algorithms for mappings attaining
the upper bound on the sum of distances. Finally, two
applications for such graphs are considered.

1. Introduction
Mappings from binary sequences of length n to per-

mutation sequences of length M are considered where
the Hamming distance between sequences in one set is
preserved between the respective sequences of the other
set. Such mappings are referred to as distance-preserving
mappings (DPMs).

Vinck [1] suggested using permutation codes for
power-line communications and subsequently Ferreira
and Vinck [2] used distance-preserving mappings and
permutation codes to create permutation trellis codes.
This provided the inspiration for more research on per-
mutation mappings [3]–[9].

In [2] and [3] a prefix construction was suggested
to create mappings, where an M + 1-length mapping
is created using an M -length mapping. It was only
explicitly shown to work for M ≤ 8, but Chang et al.
[4] generalized this to an algorithm for any M , followed
by mapping algorithms from Lee [5] and Chang [6].

Lee [7], [8] presented mapping algorithms where a
graph representation was used to illustrate how the new
algorithms work. These graphs led to the work we are
presenting here.

Swart and Ferreira [9] presented an upper bound
on the sum of the Hamming distances in a mapping,
also showing that none of the previous mappings attain
this upper bound, except for some trivial cases. They
further proposed a multilevel construction for mappings,
showing that the sum of the Hamming distances in almost
all cases are larger than that of previous mappings, as
well as attaining the upper bound for certain values of
M . Although mappings can be obtained for n 6= M , see
[9], we will restrict this work to the case where n = M .

In Section 2 we introduce definitions and notations
to be used, as well as examples of mappings and their

algorithms. The graph representation of permutations and
DPMs is shown in Section 3, with previous construc-
tions being used to further illustrate its use. Section 4
investigates the properties of such mapping graphs while
Section 5 provides two applications for such graphs.

2. Preliminaries
We begin with a brief overview of related definitions

and give a description of DPMs.
Let a binary code, Cb, consist of |Cb| sequences of

length n, where every sequence contains 0s and 1s as
symbols. Similarly, let a permutation code, Cp, consist
of |Cp| sequences of length M , where every sequence
contains the M different integers 1, 2, . . . ,M as sym-
bols. The symmetric permutation group, SM , consists
of the sequences obtained by permuting the symbols
1, 2, . . . ,M in all the possible ways, with |SM | = M !.

Mappings are considered where Cb consists of all
the possible binary sequences with |Cb| = 2n, and
Cp ⊆ SM with |Cp| = |Cb|. In addition, the distances
between sequences for one set are preserved amongst
the sequences of the other set.

Let xi be the i-th binary sequence in Cb. The Hamming
distance dH(xi,xj) is defined as the number of positions
in which the two sequences xi and xj differ. Construct
a distance matrix D whose entries are the distances
between binary sequences in Cb, where

D = [dij ] with dij = dH(xi,xj). (1)

Similarly, let yi be the i-th permutation sequence in
Cp. The Hamming distance dH(yi,yj) is defined as the
number of positions in which the two sequences yi and
yj differ. Construct a distance matrix E whose entries
are the distances between permutation sequences in Cp,
where

E = [eij ] with eij = dH(yi,yj). (2)

Let |E| be the sum of all the distances in E, with

|E| =
|Cb|∑
i=1

|Cb|∑
j=1

eij .

A DPM is created if eij ≥ dij , ∀i 6= j, with equality
achieved at least once.
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Example 1 A possible mapping of n = 2→M = 3 is

{00, 01, 10, 11} → {123, 132, 213, 231}.

Using (1) and (2), for this mapping we obtain

D =


0 1 1 2
1 0 2 1
1 2 0 1
2 1 1 0

 and E =


0 2 2 3
2 0 3 2
2 3 0 2
3 2 2 0

 .

In this case all entries had an increase in distance, i.e.
eij ≥ dij + 1, for i 6= j and |E| = 28. Note that this
is only used as a simple example, as the first n = M
example is for M = 4. 2

A binary sequence, x1x2 . . . xM , is used as input to an
algorithm, which then outputs the permutation sequence,
y1y2 . . . yM . This algorithm generally takes the following
form

Input: (x1, x2, . . . , xM )
Output: (y1, y2, . . . , yM )
begin

(y1, y2, . . . , yM )← (1, 2, . . . ,M)
for i from 1 to M

if xi = 1 then swap(yf(i), yg(i))
end,

where swap(a, b) denotes the transposition of symbols
in positions a and b, and the functions f(i) and g(i)
determine the positions of the symbols to be swapped.
We call an algorithm of this form a simple algorithm (as
used in [8]).

The ones in the binary input sequence thus determine
which swaps occur to generate the permutation sequence.
This can be represented with graphs, as we will do in
the next section. More complex algorithms, such as the
construction in [5] and Construction 2 from [6] cannot
be represented in this manner.

3. Graph Representation of Permuta-
tion DPMs

All the M symbol positions are represented by placing
them on a circle. Transpositions of symbols are then rep-
resented by a connecting line between the two symbols’
positions to be transposed. In Fig. 1(a) the graphs for
4 ≤ M ≤ 9 are shown. Note that for simplicity in the
graphs we only use the position index, such as 3 instead
of y3.

Similar to choosing a subset of SM to construct a
DPM, a subset of the connecting lines in the graph is
used to construct a DPM. Therefore, DPM graphs will
be subgraphs of those in Fig. 1(a).

To illustrate this, we make use of the Construction 2
algorithm presented in [4], with the position function a
constant 1. In Fig. 1(b) we see the graph representation
of this algorithm for 4 ≤M ≤ 9. A binary sequence of
x1x2 . . . xM is used as input. When xi = 1, the symbols

connected to the corresponding line in the graph are
transposed, and this is done in the order i = 1, 2, . . . ,M .
When xi = 0, the symbols are left unchanged. The
section determining swaps in the algorithm would be

if x1 = 1 then swap(y1, y2)
if x2 = 1 then swap(y3, y4)
if x3 = 1 then swap(y1, y3)
if x4 = 1 then swap(y2, y4)
for i from 5 to M

if xi = 1 then swap(y1, yi).

This construction was based on the idea of the prefix
construction [2] where an M + 1-length mapping is
created from an M -length mapping. This can clearly be
seen in the figure, where each successive graph makes
use of the previous one, with the swap for 1 and M + 1
when xM+1 = 1 being added to the M -length graph.

The graphs for Constructions A–C of Lee [8] are
shown in Fig. 1(c). Construction A generates mappings
for M even, Construction B generates mappings for
M = 4z +1 and Construction C generates mappings for
M = 4z − 1, with z some integer. We see in Fig. 1(c)
that all the graphs for M even, have the same structure
and the graphs for M = 5 and M = 9 have the same
structure. Note that in the case of M = 4z + 1, xj

and x′
j labels are present. Both are used when xj = 1,

however, the swap for xj is done first, followed by the
swap for x′

j . For M = 4z + 1 it is a bit more complex:
for M = 7 the x′

6 swap comes directly after the x4

swap. The rest of the swaps then follow in the normal
order. (Note that the input bit subscripts are relabeled,
compared to the original algorithm, so they follow in the
same order that the swaps must be done. This in no way
affects the distance between sequences.)

The mappings found by using the multilevel construc-
tion [9] are illustrated in Fig. 1(d). A greater number of
transpositions is used in this case, as opposed to those
in Fig. 1(b) and (c), with certain input bits assigned
to multiple swaps. This results in these mappings’ |E|-
values being greater [9].

4. DPM Graph Properties
A useful property to analyze DPM graphs, is the

symbol path. This is the possible path that a symbol
will follow to appear in different positions. The following
example shows the steps to obtain the symbols paths.

Example 2 Consider the path that symbol 1 can follow
in the M = 8 multilevel mapping from Fig. 1(d). The
possible paths, followed according to the input bits, are
shown in Fig. 2. At first, symbol 1 only appears in
position 1. If x1 = 1, then swap(y1, y2)(y5, y6) is
used, and it is possible for symbol 1 to also appear in
position 2. Since it does not appear in either position 5
or 6, these have no bearing on the path. For x2 = 1,
swap(y3, y4)(y7, y8) is used, but symbol 1 does not
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Fig. 1. Graph representation of (a) all possible transpositions between symbols, (b) DPMs from Construction 2 [4], (c) DPMs from
Constructions A–C [8] and (d) DPMs from multilevel construction [9]
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Fig. 2. Steps to determine symbol 1 path for M = 8 mapping from multilevel construction [9]

appear in any of these positions. This procedure is
followed for every input bit, up to x8 = 1, where
swap(y4, y8) is used, making it possible for symbol 1
to appear in all the positions. 2

By keeping track of which positions a symbol can
appear in during an algorithm, one can determine the
symbol paths for all of the symbols. The symbol paths
for the M = 8 mapping from Fig. 1(b) are shown in
Fig. 3(a), those for the M = 8 mapping from Fig. 1(c)
are shown in Fig. 3(b) and those for the M = 8 mapping
from Fig. 1(d) are shown in Fig. 3(c).

In [9], the upper bound on |E| was calculated as

|Emax| = M [22n − (2αβ + β + α2M)], (3)

with α = b2n/Mc and β ≡ 2n(mod M). Briefly, for
a mapping to attain the upper bound, β of the symbols
must appear α+1 times in a position and the remaining
M−β symbols must appear α times in the same position.
Following the same reasoning, a certain symbol must
appear α + 1 times in β of the positions and α times in
the remaining M − β positions.

For a mapping to attain the upper bound (or get close
to it), the symbol paths should distribute the symbols as
much as possible. Clearly, the symbol paths in Fig. 3(a)
and (b) do not connect to all the possible positions, and
therefore the distribution of symbols is not optimal. In
contrast, the symbol paths in Fig. 3(c) connect to all the
possible positions, resulting in a distribution of symbols
that lets this mapping attain the upper bound.
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Fig. 3. Symbol paths for M = 8 mappings from (a) Construction 2 [4], (b) Constructions A–C [8] and (c) multilevel construction [9]

With the graphs, it can be shown that using a simple
algorithm, the upper bound will be reached for M = 2l

and that for other M values, it would be impossible. The
following example illustrates this.

Example 3 In Fig. 4, the symbol 1 path is shown for an
M = 8 multilevel mapping, with the number of times
that symbol 1 appears in each position at every stage. At
the start, all 256 sequences have symbol 1 in position 1.
Since 128 binary sequences have x1 = 0 and 128 have
x1 = 1, 128 permutation sequences will have symbol 1
in position 1 and 128 will have it in position 2 after
swap(y1, y2). Of the 128 binary sequences with x1 = 0,
64 have x3 = 0 and 64 have x3 = 1 and similarly for
those with x1 = 1 and x4 = 0 or x4 = 1. Therefore, after
swap(y1, y3) and swap(y2, y4), symbol 1 will appear 64
times in positions 1, 2, 3 and 4. After all the swaps are
done, symbol 1 appears 32 times in all the positions. For
this case these are the exact values required to attain the
upper bound, with α = 32 and β = 0 in (3).

Fig. 5 shows the symbol 1 path for an M = 7
multilevel mapping. The number of times that symbol 1
will appear in a position is determined as previously.
However, with α = 18 and β = 2, the upper bound can
only be achieved if symbol 1 appears 19 times in two of
the positions and 18 times in the others and this is clearly
not the case in this mapping. This mapping cannot attain
the upper bound on the sum of the Hamming distances.2

Proposition 1 Using a simple algorithm, DPMs can be
obtained which reaches the upper bound on the distance
sum when M = 2l, with l some positive integer. For
other values of M , it is impossible to reach the upper
bound using a simple algorithm. 2

PROOF Since xi = 0, 1 ≤ i ≤M , for half of the binary
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sequences and xi = 1, 1 ≤ i ≤ M , for the other half,
the number of permutation symbols that will appear in
a certain position, using a simple algorithm, will always
be a power of two, such as 2n−j , 0 ≤ j ≤ n.

If M = 2l, with l some integer, then the upper bound
in (3) simplifies with α = 2n−l and β = 0. This means
that all the symbols must appear 2n−l times in all the
positions. This is possible for a simple algorithm, since
the symbols can appear 2n−j times in any position.

For any M 6= 2l, the upper bound can only be attained
if β symbols appear α + 1 times in certain positions
and M − β symbols appear α times in the remaining
positions. Since α 6= 2n−j in this case, the upper bound
cannot be attained. �

We can therefore conclude that a more complex map-
ping algorithm would be necessary to produce mappings
that attain the upper bound for all values of M .



In [9] it was established in the proof of (3) that the
sum of the Hamming distances contributed by symbols
in position k, can be calculated as

|E(k)| = 22n − (m2
k,1 + m2

k,2 + . . . + m2
k,M ), (4)

where mk,i denotes the number of times that symbol i
appears in position k. Hence, the total sum of Hamming
distances in the mapping is

|E| = |E(1)|+ |E(2)|+ · · ·+ |E(M)|.

Substituting the symbol quantities (as in Example 3)
into (4), it is possible to calculate |E(k)|, 1 ≤ k ≤
M . This method can thus be used to calculate |E|, an
alternative to calculating all the distance entries in E and
summing it.

Looking at the symbol paths of the graphs presented
so far, one notices that the paths never merge at another
position. This is an important property for a DPM to
build distance. Briefly, if a symbol appears in the same
position, but following different paths, it means that the
symbol does not build distance in that position, although
the input bits build distance since it is two different paths.
This is illustrated in the following example. (These two
mappings were used in [7] as examples of two cyclic
mappings, where one is a valid DPM and the other is
not.)

Example 4 Consider two M = 6 mappings, one that
is not a DPM in Fig. 6(a) and one that is a DPM in
Fig. 6(c). Their symbol 1 paths are shown in Fig. 6(b)
and (d) respectively.

In Fig. 6(b) it can be seen that the symbol 1 path
merges with itself in position 1. In this mapping, input
sequences of 000000 and 111111 result in permutation
sequences of 123456 and 134562 respectively. Thus, a
distance of 6 between the binary sequences only maps
to a distance of 5 between the permutation sequences.
This is a consequence of symbol 1 appearing in the same
position, but following different paths, or equivalently,
having different input bits.

In contrast, the symbol 1 path in Fig. 6(d) shows no
merging and therefore symbol 1 cannot appear in the
same position, following two different paths, for two
different input sequences. 2

Proposition 2 The symbol paths of a permutation DPM
graph can never merge at another position. 2

PROOF Consider any subgraph of a mapping graph,
where an arbitrary symbol path, say the symbol a path,
merges with itself at another position. First consider the
shortest merging path with only three positions, say a,
b and c, as well as the input bits xixjxk that affect the
path of symbol a. If xi = 1, then use swap(ya, yb), if
xj = 1, then use swap(yb, yc) and if xk = 1, then use
swap(ya, yc). For input 000, the output is abc and for
input 111, the output is acb, resulting in a distance of 3

(c) (d)(a)
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Fig. 6. M = 6 (a) non-DPM graph representation, (b) non-DPM
symbol 1 path, (c) DPM graph representation and (d) DPM symbol 1
path

between binary sequences and a distance of 2 between
permutation sequences. Therefore, this subgraph could
not form part of a DPM graph.

For each path segment (or swap) added to the path,
another input bit is necessary. If θ swaps are necessary to
return symbol a to its original position, θ input bits, each
equal to 1, is necessary to effect that path. Therefore, a
distance of θ between binary sequences will only have
a corresponding maximum distance of θ − 1 between
permutation sequences, and can thus not form part of a
DPM graph. �

Another interesting observation from Fig. 6 is that the
same subgraph can result in mappings that is distance-
preserving and that is not distance-preserving, depending
on where the input bits are assigned. This also formed
the basis for the multilevel construction of [9], where
every mapping uses the same subgraph, but the input bits
can be assigned differently to obtain numerous different
mappings.

5. Other Applications
In addition to using this new knowledge to analyze

existing mappings, it can also be used for other applica-
tions. We will briefly discuss two such applications. The
details are not covered as research is ongoing on both
applications.

5.1. New decoding algorithm
In [1]–[3] it was discussed how permutation codes

can be used in conjunction with M -ary FSK to provide
time and frequency diversity for very noisy power-line
communication channels. In essence, each permutation
symbol is represented by one of the M frequencies in one
of M time slots. At the receiver, a threshold detector for
each frequency outputs a one when the signal is over the
threshold, and a zero otherwise. Thus a binary M ×M
matrix is received with a single one in each row and each
column. Noise on the channel will then cause errors in
this matrix.

In [2] and [3] convolutional codes are combined with
DPMs to form permutation trellis codes. A disadvantage
is that the decoder becomes non-standard and complex
when high rate convolutional codes are used. Also,
should another convolutional code be used, even by



simple puncturing, the entire decoder and DPM must be
changed.

Using this new algorithm, the convolutional code and
DPM are kept separate, thus forming an inner and outer
code. Standard convolutional decoders can then be used
and the rates can easily be changed using puncturing.

The DPM graph is similar to a state machine in that
the input bits determine in what state the machine will
be, in our case it determines in which positions the
permutation symbols will appear. Each received one in
the M ×M matrix represents a permutation symbol in a
certain position, whether received correctly or not. This
can be used in conjunction with the graph to determine
an estimate of the input bits for each received symbol.
The estimates for all symbols are then used to determine
what the input bits were.

5.2. New constructions
While the multilevel mappings from [9] attain higher

distance sums than previous mappings, a general map-
ping algorithm was not known. However, using the
graphs, in particular a trellis-like representation of the
graphs, a general algorithm can be obtained for the case
where M = 2l, with l some integer.

In Fig. 7 the trellis representation of the M = 4 and
M = 8 graphs from Fig. 1(d) is shown. An input bit is
assigned to each interval. (This representation also makes
it clear in what order the input bits are considered.)
As before, if the input bit is one, then the symbols are
swapped as shown by the diagonal branches, otherwise
the symbols stay in the same positions.

The general algorithm is based on the fact that the
trellis for M = 2l is derived from the trellis for M ′ =
2l−1. In Fig. 7 it can be seen that the M = 4 trellis is
used twice in the M = 8 trellis: for symbols 1 to 4 with
input bits x1 to x4 and again for symbols 5 to 8 with
input bits x1 to x4. In addition, swap(i− 4, i) is added
for input bit xi, 5 ≤ i ≤ 8. Similarly, the M = 16 trellis
is derived by using two M = 8 trellises: for symbols 1
to 8 with input bits x1 to x8 and again for symbols 9 to
16 with input bits x1 to x8. In addition, swap(i− 8, i)
is added for input bit xi, 9 ≤ i ≤ 16.

In general, the M = 2l trellis is constructed by using
the M ′ = 2l−1 trellis for symbols 1 to M ′ with input bits
x1 to xM ′ and again for symbols M ′+1 to M with input
bits x1 to xM ′ . To this swap(i−M ′, i) for input bit xi,
M ′ + 1 ≤ i ≤M are added. The explicit algorithm will
not be presented here because of length restrictions.

6. Conclusion
We have shown how the use of graphs can give new

insight into the analysis of permutation DPMs and serve
as a compact representation of mapping algorithms. The
graphs can visually aid one in determining the positions
of symbols at certain stages in a mapping, as well
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Fig. 7. M = 4 and M = 8 trellis representation of multilevel DPMs

as showing why some mappings cannot be distance-
preserving.

It also provides an alternative method to calculate the
sum of distances for permutation mappings, moreover
showing that for certain M it is impossible for simple
algorithms to generate mappings that can attain the upper
bound on the distance sum.

Finally, the mapping graphs can be used to decode
mappings obtained from existing mapping algorithms, as
well as to construct new mapping algorithms.
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