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Using Graphs for the Analysis and Construction of
Permutation Distance-Preserving Mappings

Theo G. Swart, Hendrik C. Ferreira, Member, IEEE and Khmaies Ouahada

Abstract— A new way of looking at permutation distance-
preserving mappings is presented by making use of a graph
representation. The properties necessary to make such a graph
distance-preserving, are also investigated. Further, this new
knowledge is used to analyze previous constructions, as well as
to construct a new general mapping algorithm for a previous
multilevel construction.

Index Terms— Code constructions, distance-preserving map-
pings (DPMs), graphs, permutation coding

I. INTRODUCTION

Mappings from binary sequences of length n to permutation
sequences of length M are considered where the Hamming
distance between sequences in one set is preserved between
the respective sequences of the other set. Such mappings are
referred to as distance-preserving mappings (DPMs).

Since Vinck [1] suggested using permutation codes for
power-line communications and Ferreira and Vinck [2] used
distance-preserving mappings and permutation codes to create
permutation trellis codes, much research has been done on
permutation mappings [3]–[8].

In [2] and [3] a prefix construction was suggested to create
mappings, where an M + 1 mapping is created using an M
mapping. It was only explicitly shown to work for M ≤ 8,
but Chang et al. [4] generalized this to an algorithm that
produces mappings for any M . More mapping algorithms were
presented by Lee [5] and Chang [6].

Swart, de Beer and Ferreira [7] presented an upper bound on
the sum of the Hamming distances in a mapping, also showing
that none of the previous mappings attain this upper bound,
except for some trivial cases. Swart and Ferreira [8] proposed
a multilevel construction for mappings, showing that the sum
of the Hamming distances in almost all cases are larger than
that of previous mappings, as well as attaining the upper bound
for certain values of M .

Permutation DPMs are used for two main applications: to
create lower bounds for permutation arrays or to create error
correcting codes such as permutation trellis codes. Any DPM
that satisfies the distance-preserving property is sufficient for
new lower bounds on permutation arrays. However, since sev-
eral different mappings can be created for the same parameters,
it stands to reason that some might be better than others when

This paper was presented in part at the International Symposium on
Communication Theory and its Applications, Ambleside, England, July 2007.

T. G. Swart, H. C. Ferreira and K. Ouahada are with the Department
of Electric and Electronic Engineering Science, University of Johannesburg,
Auckland Park, 2006, South Africa. (e-mail: tgswart@postgrad.uj.ac.za, hc-
ferreira@uj.ac.za, ktouahada@postgrad.uj.ac.za).

error correcting are considered. For this reason, the upper
bound on the distance sum is used as a measure for correcting
capabilities, with mappings attaining or getting close to the
bound performing better than those that do not [7]. Although
it is not an absolute measure, it is a good starting point to look
for permutation DPMs with good error correcting capabilities.

Lee [9], [10] presented further mapping algorithms, where a
graph representation was used to illustrate how the new algo-
rithms work. These graphs led to the work we are presenting
here. Although mappings can be obtained for n 6=M , see [8],
we will restrict this work to the case where n =M .

In Section II we introduce definitions and notations to be
used, as well as examples of mappings and their algorithms.
The graph representation of permutations and DPMs is shown
in Section III, with previous constructions being used to further
illustrate its use. Section IV investigates the properties of such
mapping graphs, and this is used to analyze different known
mappings. In Section V the graphs are represented as trellises,
leading to a general algorithm for the multilevel construction
of [8]. Section VI concludes with some final remarks.

II. PRELIMINARIES

We begin with a brief overview of related definitions and
give a description of DPMs.

Let a binary code, Cb, consist of |Cb| sequences of length
n, where every sequence contains 0s and 1s as symbols.
Similarly, let a permutation code, Cp, consist of |Cp| sequences
of length M , where every sequence contains the M different
integers 1, 2, . . . ,M as symbols. The symmetric permutation
group, SM , consists of the sequences obtained by permuting
the symbols 1, 2, . . . ,M in all the possible ways, with |SM | =
M !.

Mappings are considered where Cb consists of all the
possible binary sequences of length n, with |Cb| = 2n, and Cp
consists of some subset of SM , with |Cp| = |Cb|. In addition,
the distances between sequences for one set are preserved
amongst the sequences of the other set.

Let xi be the i-th binary sequence in Cb. The Hamming
distance dH(xi,xj) is defined as the number of positions
in which the two sequences xi and xj differ. Construct a
distance matrix D whose entries are the distances between
binary sequences in Cb, where

D = [dij ] with dij = dH(xi,xj). (1)

Similarly, let yi be the i-th permutation sequence in Cp.
The Hamming distance dH(yi,yj) is defined as the number
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of positions in which the two sequences yi and yj differ.
Construct a distance matrix E whose entries are the distances
between permutation sequences in Cp, where

E = [eij ] with eij = dH(yi,yj). (2)

Let |E| be the sum of all the distances in E, with

|E| =
|Cb|∑
i=1

|Cb|∑
j=1

eij .

A DPM is created if eij ≥ dij for all i 6= j, with equality
achieved at least once.

Example 1: A possible mapping of n = 2→M = 3 is

{00, 01, 10, 11} → {123, 132, 213, 231}.

Using (1) and (2), for this mapping we obtain

D =


0 1 1 2
1 0 2 1
1 2 0 1
2 1 1 0

 and E =


0 2 2 3
2 0 3 2
2 3 0 2
3 2 2 0

 .
In this case all entries had an increase in distance, i.e. eij ≥
dij +1, for i 6= j and |E| = 28. Note that this is only used as
a simple example, as the first n =M example is for M = 4.

A binary sequence, x1x2 . . . xM , is used as input to an
algorithm, which then outputs the permutation sequence,
y1y2 . . . yM . This algorithm generally takes the following form

Input: (x1, x2, . . . , xM )
Output: (y1, y2, . . . , yM )
begin

(y1, y2, . . . , yM )← (1, 2, . . . ,M)
for i from 1 to M

if xi = 1 then swap(yf(i), yg(i))
end,

where swap(ya, yb) denotes the swapping of symbols in
positions a and b, and the functions f(i) and g(i) determine
the positions of the symbols to be swapped. We call an
algorithm of this form a simple algorithm (as used in [10]).

The ones in the binary input sequence thus determine which
swaps occur to generate the permutation sequence. This can
be represented with graphs, as we will do in the next section.

III. GRAPH REPRESENTATION OF PERMUTATION DPMS

All the M permutation positions and symbols are repre-
sented by placing them on a circle, with symbol i in position
yi, 1 ≤ i ≤M . Transpositions of symbols are then represented
by a connecting line between the two positions of the symbols
to be transposed, as in Fig. 1. For simplicity we omit the
position labels, yi, from the graphs to follow. In Fig. 2 the
graphs for 4 ≤M ≤ 9 are shown.

Using combinations of these transpositions one would be
able to generate all the possible permutation sequences from
the symmetric group, SM . Similar to choosing a subset of SM

to construct a DPM, a subset of the connecting lines in the
graph is used to construct a DPM. Therefore, DPM graphs
will be subgraphs of those in Fig. 2.
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Fig. 1. General graph representation for a permutation distance-preserving
mapping
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Fig. 2. Graph representation of all possible transpositions between symbols

To illustrate this, we make use of the Construction 2 algo-
rithm presented in [4], with the position function a constant 1.
In Fig. 3 we see the graph representation of this algorithm
for 4 ≤ M ≤ 9. A binary sequence of x1x2 . . . xM is
used as input. When xi = 1, the symbols connected to the
corresponding line in the graph is transposed, and this is done
in the order i = 1, 2, . . . ,M . When xi = 0, the symbols are
left unchanged.

This construction was based on the idea of the prefix
construction [2] where an M + 1 mapping is created from
an M mapping. This can clearly be seen in the figure, where
each successive graph makes use of the previous one, with the
transposition for 1 and M when xM = 1 being added each
time.

The mappings found by using the multilevel construction [8]
are illustrated in Fig. 4. A greater number of transpositions is
used in this case, as opposed to those in Fig. 3, and this results
in the sum of Hamming distances, |E|, being greater, as was
shown in [8].

Each input bit in Fig. 3 is only assigned a single transpo-
sition, while some of the input bits in Fig. 4 are assigned
more than one transposition. It is important to note that
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Fig. 3. Graph representation of DPMs from Construction 2 [4]
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Fig. 4. Graph representation of DPMs from multilevel construction [8]

the transpositions assigned with the same input bit are all
independent, therefore it does not matter in which order these
transpositions are done. This is as a result of the multilevel
construction where transpositions are obtained from different
levels.

IV. DPM GRAPH PROPERTIES

A useful property to analyze DPM graphs, is the symbol
path. This is the possible path that a symbol will follow to
appear in different positions. The following example shows
the steps followed to obtain the symbols paths.

Example 2: Consider the path that symbol 1 can follow in
the M = 8 multilevel mapping from Fig. 4. The possible paths,
followed according to the input bits, are shown in Fig. 5. At
first, symbol 1 only appears in position 1. If x1 = 1, then
swap(y1, y2)(y5, y6) is used, and it is possible for symbol 1
to also appear in position 2. Since it does not appear in either
position 5 or 6, these have no bearing on the path. For x2 = 1,
swap(y3, y4)(y7, y8) is used, but symbol 1 does not appear in
any of these positions. This procedure is followed for every
input bit, up to x8 = 1, where swap(y4, y8) is used, making
it possible for symbol 1 to appear in all the positions.
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Fig. 5. Symbol 1 path for M = 8 multilevel mapping [8]

By keeping track of which positions a symbol can appear in
during an algorithm, one can determine the symbol paths for
all of the symbols. The symbol paths for the M = 8 mapping
from Fig. 3 are shown in Fig. 6. Similarly, the symbol paths
for the M = 8 mapping from Fig. 4 are shown in Fig. 7.

In [8], it was established in a proof that the sum of the
Hamming distances contributed by symbols in position k, can
be calculated as

|E(k)| = 22n − (m2
k,1 +m2

k,2 + . . .+m2
k,M ), (3)

where mk,i denotes the number of times that symbol i appears
in position k. Thus, the total sum of Hamming distances in
the mapping is

|E| = |E(1)|+ |E(2)|+ · · ·+ |E(M)|.

The upper bound on |E| was calculated as

|Emax| =M [22n − (2αβ + β + α2M)], (4)

with α = b2n/Mc and β ≡ 2n(mod M). Briefly, for a
mapping to attain the upper bound, β of the symbols must
appear α + 1 times in a position and the remaining M − β
symbols must appear α times in the same position. Following
the same reasoning, a certain symbol must appear α+1 times
in β of the positions and α times in the remaining M − β
positions.

For a mapping to attain the upper bound (or get close to
it), the symbol paths should distribute the symbols as much as
possible. Clearly, the symbol paths in Fig. 6 do not connect
to all the possible positions, and therefore the distribution of
symbols is not optimal. In contrast, the symbol paths in Fig. 7



4

Symbol 1 Symbol 2 Symbol 3
1

3

5

7

2

4 6

8

x1

x3

x4 x5
x6

x7

x8 1

3

5

7

2

4 6

8

x2

x3

x4 x5
x6

x7

x8

Symbol 4 Symbol 5 Symbol 6
1

3

5

7

2

4 6

8

x5
x6

x7

x8 1

3

5

7

2

4 6

8

x6

x7

x8

Symbol 7 Symbol 8
1

3

5

7

2

4 6

8
x7

x8 1

3

5

7

2

4 6

8

x8

1

3

5

7

2

4 6

8

x1

x3

x4 x5
x6

x7

x8

1

3

5

7

2

4 6

8

x2

x3

x4 x5
x6

x7

x8

Fig. 6. Symbol paths for M = 8 Construction 2 mapping [4]
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Fig. 7. Symbol paths for M = 8 multilevel mapping [8]

connect to all the possible positions, resulting in a distribution
of symbols that lets this mapping attain the upper bound.

With the graphs, it can be shown that using a simple
algorithm, the upper bound will be reached for M = 2l and
that for other M values, it would be impossible. The following
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Fig. 8. M = 8 symbol 1 path with number of appearances
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Fig. 9. M = 7 symbol 1 path with number of appearances

example illustrates this.
Example 3: In Fig. 8, the symbol 1 path is shown for an

M = 8 multilevel mapping, with the number of times that
symbol 1 appears in each position at every stage. At the start,
all 256 sequences have symbol 1 in position 1. Since 128
binary sequences have x1 = 0 and 128 have x1 = 1, 128
permutation sequences will have symbol 1 in position 1 and
128 will have it in position 2 after swap(y1, y2). Of the 128
binary sequences with x1 = 0, 64 have x3 = 0 and 64 have
x3 = 1 and similarly for those with x1 = 1 and x4 = 0
or x4 = 1. Therefore, after swap(y1, y3) and swap(y2, y4),
symbol 1 will appear 64 times in positions 1, 2, 3 and 4. After
all the swaps are done, symbol 1 appears 32 times in all the
positions. Since α = 32 and β = 0 in (4), these are the exact
values required to attain the upper bound.

Fig. 9 shows the symbol 1 path for an M = 7 multilevel
mapping. The number of times that symbol 1 will appear in
a position is determined as previously. However, with α = 18
and β = 2, the upper bound can only be achieved if symbol 1
appears 19 times in two of the positions and 18 times in the
others and this is clearly not the case in this mapping. This
mapping cannot attain the upper bound on the sum of the
Hamming distances.

In general, substituting the symbol quantities into (3), it is
possible to calculate |E(k)|, 1 ≤ k ≤ M , without having to
calculate the distances between all sequences.

Proposition 1: Using a simple algorithm, DPMs can be
obtained which reaches the upper bound on the distance sum
when M = 2l, with l some positive integer. For other values
of M , it is impossible to reach the upper bound using a simple
algorithm.

Proof: Since xi = 0, 1 ≤ i ≤M , for half of the binary
sequences and xi = 1, 1 ≤ i ≤ M , for the other half, the
number of permutation symbols that will appear in a certain
position, using a simple algorithm, will always be a power of
two, such as 2n−j , 0 ≤ j ≤ n.

If M = 2l, with l some integer, then the upper bound in (4)
simplifies with α = 2n−l and β = 0. This means that all the
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symbols must appear 2n−l times in all the positions. This is
possible for a simple algorithm, since the symbols can appear
2n−j times in any position.

For any other M value, M 6= 2l, the upper bound can only
be attained if β symbols appear α+1 times in certain positions
and M−β symbols appear α times in the remaining positions.
Since α 6= 2n−j in this case, it is impossible to attain the upper
bound.

We can therefore conclude that a more complex mapping
algorithm would be necessary to produce mappings that attain
the upper bound for all values of M .

Looking at the symbol paths of the graphs presented so far,
one notices that the paths never merge at another position. This
is an important property for a DPM to build distance. Briefly, if
a symbol appears in the same position, but following different
paths, it means that the symbol does not build distance in that
position, although the input bits build distance since it is two
different paths. This is illustrated in the following example.
(These two mappings were used in [9] as examples of two
cyclic mappings, where one is a valid DPM and the other is
not.)

Example 4: Consider two M = 6 mappings, one that is
not a DPM in Fig. 10(a) and one that is a DPM in Fig. 11(a).
Their symbol 1 paths are shown in Fig. 10(b) and Fig. 11(b)
respectively.

In Fig. 10(b) it can be seen that the symbol 1 path
merges with itself in positions 1 and 6. In this mapping,
input sequences of 000000 and 111111 result in permutation
sequences of 123456 and 134562 respectively. Thus, a distance
of 6 between the binary sequences only maps to a distance of
5 between the permutation sequences. This is a consequence
of symbol 1 appearing in the same position, but following
different paths, or equivalently, having different input bits.

In contrast, the symbol 1 path in Fig. 11(b) shows no
merging and therefore symbol 1 cannot appear in the same
position, following two different paths, for two different input
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Fig. 10. M = 6 non-DPM with (a) graph representation and (b) symbol 1
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sequences.
Proposition 2: The symbol paths of a permutation DPM

graph constructed by a simple algorithm can never merge at
another position if there is no common input bit between the
two path segments.

Proof: Since two segments cannot have an input bit in
common, each input bit can be assigned to one swap only.
Consider any arbitrary symbol g path, which merges with itself
at another position, and break this path into two segments. Let
x = (x1, x2, . . . , xM ) be the input bits for the first segment
and let x′ = (x′1, x

′
2, . . . , x

′
M ) be the input bits for the second

segment. Let {a, b, c, . . .} be the set of indices for the input
bits that effect the first segment with 1 ≤ a < b < c <
· · · ≤ M , {a, b, c, . . .} ∈ N and let {a′, b′, c′, . . .} be the set
of indices for the input bits that effect the second segment
with 1 ≤ a′ < b′ < c′ < · · · ≤ M , {a′, b′, c′, . . .} ∈ N. With
no common input bit between the two segments, we have that
{a, b, c, . . .} ∩ {a′, b′, c′, . . .} = ∅.

For a < a′, the input bit in position a will play a role in
both segments. For the first segment, xa = 1 for the symbol
to move along the segment. For the second segment, x′a = 0
as the first segment will not be followed (the second segment
only begins when x′a′ = 1). Certain input bits play no role
in these two segments and can thus take on any binary bit,
denoted by ×, then

dH(x,x′) = dH(x1, x
′
1) + dH(x2, x

′
2) + · · ·

+ dH(xa, x
′
a) + · · ·+ dH(xa′ , x′a′) + · · ·

+ dH(xb, x
′
b) + · · ·+ dH(xb′ , x

′
b′) + · · ·

+ dH(xM , x
′
M )

= dH(×,×) + dH(×,×) + · · ·
+ dH(1, 0) + · · ·+ dH(×, 1) + · · ·
+ dH(1,×) + · · ·+ dH(×, 1) + · · ·
+ dH(×,×)

Now, two input sequences can always be chosen such that
the two segments are followed and dH(x,x′) =M . However,
symbol g appears in the same position but following different
segments, hence dH(y,y′) ≤ M − 1. Since dH(y,y′) <
dH(x,x′), this path cannot form part of a DPM algorithm.

This proposition is applicable to many of the mappings used
to construct permutation arrays, where it is sufficient for each
input bit to be assigned to one swap only, hence two segments
cannot have an input bit in common.

When there is a common input bit between the two segments
that merge, it could be possible to obtain a DPM, however
none has been found thus far. The reason for this is that the
two input sequences for the two segments have one bit that is
the same, since the input bit is present in both segments. The
corresponding permutation sequences also have one symbol
that is the same, since the symbols appear in the same position
when the two segments merge. Therefore it could be possible
to have binary and permutation sequences that satisfy the
distance-preserving criterion.

Another interesting observation from Fig. 10 and Fig. 11 is
that the same subgraph can result in mappings that is distance-



6

preserving and that is not distance-preserving, depending on
where the input bits are assigned. This also formed the basis
of the multilevel construction, where every mapping uses the
same subgraph, but the input bits can be assigned differently
to obtain numerous different mappings.

V. MAPPING ALGORITHM FOR MULTILEVEL
CONSTRUCTION

As an alternative, a trellis representation of the graphs can
be used. The different positions are shown as states, with the
input bits determining where the symbols will go to next.
Whenever an input bit is zero, the symbol in a specific position
stays in that position, and this is represented by the horizontal
branches. If an input bit is one, then it is possible for a symbol
to move to another position, and this is represented by the
diagonal branches. If no diagonal branch is present, then the
symbol stays in that position, irrespective of the input bit value.
This is illustrated in Fig. 12 for M = 4.

This led to the general algorithm for mappings attaining
the upper bound when M = 2l, derived from the multilevel
construction of [8]. The trellis diagrams for the M = 4, M =
8 and M = 16 multilevel mappings are shown in Fig. 13. By
looking at the trellises, one can see that the M = 8 trellis
is constructed by making use of two M = 4 trellises for the
x1 to x4 input bits. Branches are then added for the x5 to
x8 input bits. Similarly, the M = 16 trellis is constructed by
making use of two M = 8 trellises for the x1 to x8 input bits,
while branches are added for the remaining x9 to x16 input
bits. Larger mappings can then be constructed following this
same process.

The general algorithm in this case is

Input: (x1, x2, . . . , xM )
Output: (y1, y2, . . . , yM )
begin

(y1, y2, . . . , yM )← (1, 2, . . . ,M)
if x1 = 1 then
for i from 1 to M/4
swap(y4i−3, y4i−2)

if x2 = 1 then
for i from 1 to M/4
swap(y4i−1, y4i)

for i from 1 to L− 1
for j from 1 to 2i

if xj+2i = 1 then
for k from 1 to M/2i+1

p = j + 2i+1(k − 1)
swap(yp, yp+2i)

end.

Since the algorithm uses the multilevel construction from
[8], the resulting mapping will be a DPM and we will not
prove it again.

Using this algorithm, we can also obtain a general algorithm
to construct multilevel mappings for any M value. As exam-
ple, to obtain an M = 7 mapping, an M = 8 mapping can be
used, but with symbol 8 and position 8 removed. Therefore,
position 8 and any edges connecting to this position must be
removed. Similarly, position 8 and any branches in the trellis
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Fig. 12. M = 4 mapping with (a) graph representation and (b) trellis
representation

going to position 8 must be deleted. This is similar to the idea
of prefixing, where an M + 1 mapping is obtained from an
M mapping, except that in this case we are obtaining M − 1
mappings from M mappings. This can be verified by looking
at Fig. 4 and deleting position M to obtain the M−1 mapping.

Proposition 3: By deleting position M + 1 and any con-
necting lines in a multilevel DPM graph, the equivalent M
multilevel DPM graph is obtained.

Proof: The multilevel construction for M +1 makes use
of the identity permutation sequence, 012 . . .M , written in a
multilevel representation [8], with each symbol’s equivalent
binary representation written in columns. Binary ones in the
columns represent possible swaps that can be used. Therefore,
each column represents a symbol position in the DPM graph
and the ones in a column represent the connecting lines in the
DPM graph for that position.

Similarly, the multilevel construction for M makes use of
the identity permutation sequence 012 . . .M − 1, which is
obtained by deleting M from the M + 1 identity sequence,
thus deleting the M + 1-th column from the multilevel repre-
sentation, as well as any ones that were present in this column.
Equivalently, position M in the DPM graph is deleted, as well
as any connecting lines to this position.

Any random positions can be deleted to obtain different
mappings, however a DPM cannot always be guaranteed. As
example, consider deleting positions 4 and 8 from the M = 8
trellis in Fig. 13, to obtain an M = 6 mapping. After deleting
any connecting lines to these two positions, one will observe
that input bits x2, x4 and x8 have no swaps left. Two of these
can be deleted since only six input bits are needed, leaving
one input bit that is not building distance. In this case a DPM
is not obtained. Hence, if random positions are to be deleted,
careful consideration must be given to ensure that a valid DPM
results.

Returning to an algorithm for the general case, it is nec-
essary to modify the previous algorithm slightly, considering
that certain positions are removed. The general algorithm to
construct permutation DPMs from the multilevel construction,
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Fig. 13. Trellis representation for multilevel mappings attaining the upper bound
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is

Input: (x1, x2, . . . , xM )
Output: (y1, y2, . . . , yM )
begin

(y1, y2, . . . , yM )← (1, 2, . . . ,M)
if x1 = 1 then
for i from 1 to b(M + 2)/4c
swap(y4i−3, y4i−2)

if x2 = 1 then
for i from 1 to bM/4c
swap(y4i−1, y4i)

for i from 1 to L− 1
for j from 1 to 2i

if j ≤M − 2i then
if xj+2i = 1 then
for k from 1 to b(M − j + 2i)/2i+1c
p = j + 2i+1(k − 1)
swap(yp, yp+2i)

end.

This algorithm then produces mappings with the same |E|
values as those listed in [8] for the multilevel mappings. In
almost all cases these values are larger than those for previous
mappings.

VI. CONCLUSION

We have shown how the use of graphs can give new insight
into the analysis and construction of permutation DPMs. The
graphs can visually aid one in determining the positions of
symbols at certain stages in a mapping, as well as showing why
some mappings cannot be distance-preserving. These graphs
can also be used in the decoding of permutation codes obtained
from mapping algorithms [11].

Although the multilevel construction of [8] was flexible and
could produce numerous different mappings for the same M
value, some empirical work or computer searches were still
necessary to obtain the mappings. Using the trellis represen-
tation of the graphs, we were able to construct a general
algorithm for this construction, even though only a subset of
all the possible mappings are obtained for a certain M .
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