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Abstract
This paper presents a linguistically uninformed computational model for animacy classification.
The model makes use of word n-grams in combination with lower dimensional word embedding
representations that are learned from a web-scale corpus. We compare the model to a number of
linguistically informed models that use features such as dependency tags and show competitive
results. We apply our animacy classifier to a large collection of Dutch folktales to obtain a list
of all characters in the stories. We then draw a semantic map of all automatically extracted
characters which provides a unique entrance point to the collection.
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1 Introduction

For almost all species in the world, the capacity to distinguish animate objects from inanimate
objects is essential to their survival. Those objects could be prey, for example, or predators,
or mates. The fundamental nature that the distinction between animate and inanimate has
for humans is reflected in the fact that this division is acquired very early in life: children of
less than six months old are well able to distinguish the two categories from one another [16].
Moreover, recent brain research shows that the distinction appears in the organization of the
brain (e.g. [8]). For some researchers, this provides evidence for the idea that the division
between animate and inanimate is an innate part of how we see the world.

Although animacy may be a scalar rather than a strictly categorical distinction (see e.g.
the animacy hierarchy in [4] and research such as [25]), the animate/inanimate distinction
is traditionally taken as binary with regard to lexical items: something is either animate
(e.g. a human) or not (e.g. a chair). This standpoint has been challenged, however, by
researchers from different fields. Firstly, it has long been established in linguistic typology
that not all languages award animacy to the same entities in different grammatical categories.
As [4] notes, many languages, such as, for example, English, distinguish between human
and not-human in the choice of pronouns; other languages, such as Russian, distinguish
between animate (entailing humans and animals) versus non-animate (entailing everything
else) in their interrogative pronouns. This indicates different subdivisions of animacy in the
respective languages. Secondly, philosophers such as Daniel Dennett support the view that
animacy and aliveness are to be treated as epistemological stances rather than fixed states in
the world: not ineffable qualia but behavioral capacity defines our stance towards objects [6].
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In other words, depending on whether people think that an object is animate, they utilize
different cognitive strategies to explain and predict the actions of those objects. Finally,
evidence from psycholinguistic research has accumulated to support this view of animacy as
a cognitive viewpoint rather than an extra-perceptive absolute. Nieuwland & Berkum [15]
for example show that college student test subjects readily accept animate behavior from
inanimate objects within the proper contexts, and Vogels et al. [9] moreover emphasize the
relation between animacy and motion, showing that factors such as self-propelment play a
crucial role in recognizing or awarding animacy to certain objects. This is exemplified in the
opening of this well-known story:1

A farmer bought a pancake on the market. Once he got home, the farmer was
hungry and began to bake the pancake. The farmer tried one of his skillful flipping
techniques, but he failed and the pancake fell on the ground. Coincidentally, the door
of the kitchen was open and the pancake rolled out to the field, as hard as he could. . .

Although initially, based on their knowledge of the world, readers will regard the pancake
as inanimate, the self-propelled motion verb ‘rolled’ initiates our shift towards an animate
interpretation of the pancake. As readers (or listeners) of a story, we choose to view
participating objects at varying levels of abstraction in order to predict their behavior.
Dennett [6] defines three levels of abstraction: (1) the physical stance, (2) the design stance
and (3) the intentional stance. The physical stance deals with predictions about objects given
their physical properties. The design stance deals with concepts such as purpose, function or
design. The intentional stance is concerned with belief, thinking and intentions. These are all
cognitive strategies we use to predict and explain the actions of objects in our environment.
Interestingly, in the process of reading the opening of the story about the fleeing pancake,
readers and listeners experience the transition from one strategy to the next quite clearly.
Initially, the pancake is interpreted from a physical stance, or perhaps the more abstract
design stance in terms of the purpose (i.e. to stave off hunger). It is only at the last adverbial
phrase ‘as hard as he could’ that we start to wonder whether we should adopt to the yet
more abstract intentional stance and consider the pancake to be a rational agent.

Given the fundamental nature of the distinction between animate and inanimate, it is
perhaps not too surprising that it has proven to be useful in a variety of natural language
processing tasks dealing with e.g. anaphora resolution and dependency parsing [18, 11, 22].
Existing methods for the automatic labeling of text for animacy are usually rule-based,
machine-learning-based, or a hybrid of these methods. Common to most approaches is the
fact that they make use of semantic lexicons with information about animacy, as well as
syntactic cues in a text. Both feature types are relatively costly to obtain as they require
lexical resources or syntactic parsing systems, which, with the exception of a few languages,
are not readily available.

In this paper we present a new linguistically uninformed model to automatically label
texts for animacy. We show that we can do away with features that require syntactic parsing
or semantic lexicons while still yielding competitive performance. We focus on labeling
animacy in stories because stories pose some particularly interesting problems to automatic
systems of animacy recognition. As the example of the fleeing pancake already illustrated, in
stories any entity may at some point exhibit animate behavior, even when they are inanimate
in the ‘real’ world. Another example is the Sorcerer’s Apprentice sequence in Walt Disney’s

1 http://www.verhalenbank.nl/items/show/9636
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84 Animacy Detection in Stories

famous Fantasia, in which brooms display the ability to collect buckets of water. Such
examples, where pancakes, brooms and other entities act as animate beings, make a clear
case for developing dynamic, data driven systems that do not rely too much on static and
fixed world knowledge, but rather on immediate context.

The remainder of this paper is structured as follows. We will start with a short overview
of existing techniques for automatically labeling animacy in texts, including the definitions of
animacy used in these papers (§2). After a description of the corpus used in our study and
how the annotations of the corpus have been established (§3), we will give an account of our
computational models in Section 4. We report on the empirical results in Section 5. Next,
we provide an evaluation on a larger dataset, while also showing a real-world application
of our animacy detection system (§6). The final section offers our conclusions and possible
directions for future research.

2 Previous Work

A handful of papers deal with automatic animacy detection. Most approaches make use of
rule-based systems or machine learning systems with morphological and syntactic features.
[7] present a rule-based system that makes use of the lexical-semantic database WordNet.
They label each synset in WordNet for animacy. Using a variety of rules to detect the head
of an NP, they use the fraction of synsets in which a particular noun occurs to arrive at
a classification for animacy. [17] extend their previous algorithm by first determining the
animacy of senses from WordNet on the basis of an annotated corpus. They then apply
a k-nearest neighbor classifier using a number of lexical and syntactic features alongside
features derived from WordNet to arrive at a final animacy classification.

[19, 20, 21] present a number of animacy classifiers that make use of syntactic and
morphological features. These features include the frequency of analysis of the noun as
‘subject’ or ‘object’, the frequency of the occurrence of a noun in a passive by-phrase, and the
frequency of the noun as a subject followed by either animate personal pronouns or inanimate
personal pronouns. These features are then aggregated for each lemma after which a machine
learning system (decision tree or k-nearest neighbor classifier) is trained. A similar approach
is presented in [3]. In this study a Maximum Entropy classifier is trained on the basis of
three feature types: (1) bag-of-words with and without their corresponding Part-of-Speech
tags, (2) internal syntactic features such as the syntactic head and (3) external syntactic
features that describe the dependency relation of a noun to a verb (i.e. subject relation,
object relation etc.) This is the only study that makes use of a corpus fully labeled for
animacy. In an approach partially related to animacy detection, [10] attempt to extract the
cast (i.e. all characters) from a story. Similar to [3] they rely on dependency tags to extract
the subjects of direct and indirect speech.

[1] present a model that attempts to generalize the animacy information in a lexical-
semantic database of Dutch by augmenting ‘non-ambiguous’ animate entries with contextual
information from a large treebank of Dutch. They apply a k-nearest neighbor algorithm with
distributional lexical features that aim to capture the association between a verb or adjective
and a particular noun. The idea is that nouns that occur in similar contexts as animate
nouns are more likely to be animate than nouns that occur more frequently in contexts
similar to inanimate nouns.

[14] present an approach that combines a number of animacy classifiers in a voting scheme
and aims at an interpretable and correctable model of animacy classification. A variety
of classifiers is used, such as the WordNet-based approach of [7], named entity recognition
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systems, and dictionary sources.
The approaches mentioned above present us with a number of problems. First, nearly all

of them rely heavily on costly, linguistically informed features derived from lexical-semantic
databases or syntactic parsing. For most languages in the world, however, we cannot
rely on these resources, either because they do not exist, or because their performance is
insufficient. Second, animacy detection is often seen as a useful feature for a range of natural
language processing techniques, such as anaphora resolution and syntactic parsing. The
mutual dependence between these techniques and animacy detection, however, is in fact a
chicken-and-egg situation.

Another major problem with the approaches above is, as said earlier, that they are
lemma-based, which means that the models are generally insensitive to different usages
of a word in particular contexts. In other words, in most of the literature on automatic
animacy detection, a static, binary distinction is made between animate and inanimate. [3]
for example, define objects as animate if they are alive and have the ability to move under
their own will. [18] define animacy in the context of anaphora resolution: something is
animate “if its referent can also be referred to using one of the pronouns he, she, him, her,
his, hers, himself, herself, or a combination of such pronouns (e.g. his/her)”. However, as
was explained above, these definitions are not necessarily in line with current linguistic and
neurological research [15]. Similarly, they are not particularly applicable to the rich and
wondrous entities that live in the realm of stories. As was shown above, although a pancake
is typically not an animate entity, its animacy depends on the story in which it appears,
and even within the story the animacy may change. To accommodate this possibility, we
therefore choose to define animacy in terms of Dennett’s intentional stance, which is more
dynamic, and which ultimately comes down to the question whether “you decide to treat the
object whose behavior is to be predicted as a rational agent” [6, pp. 17]. Our system for
animacy detection therefore needs to be dynamic, data driven, and token-based. It may to
some extent rely, but cannot rely too heavily, on static world knowledge.

3 Data, Annotation and Preprocessing

To develop this dynamic data-driven system we use a corpus of Dutch folktales. As argued
in the introduction, our reason to use folktales is that, as [9] note, ‘In cartoons or fairy tales
[. . . ] inanimate entities or animals are often anthropomorphized’, which means that the
material could yield interesting cases of unexpected animacy, as is the case with the pancake
in The fleeing pancake and the broomsticks in Fantasia.

Our initial corpus consists of 74 Dutch stories from the collection Volkssprookjes uit
Nederland en Vlaanderen, compiled by [27]. The collection is composed of Dutch and
Flemish retellings of popular and widespread stories, including such tales as The Bremen
Town Musicians (ATU 130) 2 and The Table, the Ass, and the Stick (ATU 563), as well as
lesser-known stories such as The Singing Bone (ATU 780) and Cock, Hen, Duck, Pin, and
Needle on a Journey (ATU 210). This last story is again a clear example where otherwise
inanimate objects are animated, as it concerns the adventures of several household items,
such as a pin, a hackle, an egg, and a whetstone. A digital version of the collection is available
in the Dutch Folktale Database from the Meertens Institute (corpus SINVSUNV.20E).3

2 The ATU numbers refer to the classificatory system for folklore tales, as designed by Aarne, Uther and
Thompson [28].

3 See http://www.verhalenbank.nl
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Using a single collection for our corpus presents us with a helpful homogeneity with regard
to the editor, length of the stories, and language use, as well as exhibiting some content-wise
diversity among the collection, which contains fairytales and legends.

All together, the corpus consists of 74,504 words, from 5,549 unique words. Using the
annotation tool brat (brat rapid annotation tool), an online environment for collaborative
editing4, two annotators labeled words for animacy, within the context of the story.5 All
unlabeled words were implicitly considered to be inanimate. The following sentence provides
an example annotation.

(1) Jij
animate

smid,
animate

jij
animate

bent de sterkste; hou je
animate

vast aan de bovenste

takken, en dan ga jij
animate

kleermaker
animate

aan zijn
animate

benen hangen en zo gaan

we
animate

maar door

‘You, blacksmith, you are the strongest; hold on to the upper branches and then, you,
tailor, will grab his legs and so we go on. . . ’

Because we interpreted animacy within the context of the story, the same lexical item
could be labeled differently in different stories. For example, in the above-mentioned example
of the pancake, which occurs in SINVS076 in our corpus, the pancake is tagged consistently
as ‘animate’. In another story, SINVS042, where at one point a soldier is baking pancakes,
the pancakes do not act, and are thus not labeled as ‘animate’. The following sentences show
how this was employed in practice.

(2) Terwijl hij
animate

de pannekoek bakte, keek hij
animate

naar het ding, dat uit de

schouw gevallen was

‘While he was baking the pancake, he looked at the thing, which had fallen from the
hearth. . . ’

(3) Toevallig stond de deur van de keuken open en de pannekoek
animate

rolde naar buiten,

het veld in, zo hard hij
animate

maar kon.

‘Coincidentally the door of the kitchen was open and the pancake rolled outside, into
the field, as fast as it could’

This annotation resulted in 11,542 animate tokens of 743 word types, while implicitly
yielding 62,926 inanimate tokens from 5,011 unique inanimate words. Because of our context-
dependent approach, some words, such as pancake and egg, occurred in both animate types as
inanimate types, because they were labeled as both animate and inanimate in some cases in
our corpus. It is telling that of the animate tokens 4,627 (40%) were nouns and proper nouns,
while only 6,878 of the inanimate tokens (11%) are nouns. This shows that being a noun is
already somewhat of an indication for animacy. After tokenization with the tokenization

4 http://brat.nlplab.org
5 On the basis of five stories that were annotated by both annotators we computed an inter-annotator
agreement score (Cohen’s Kappa) of K = 0.95.

http://brat.nlplab.org
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module of the Python software package Pattern [5] we fed all stories to the state of the art
syntactic parser for Dutch, Alpino [2]. From the resulting syntactic parses, we extracted the
features for the linguistically informed models, see Section 4.3.

4 Experimental Setup

This section describes our experimental setup including the features used, the machine
learning models we applied, and our methods of evaluation.6.

4.1 Task description
We formulate the problem of animacy detection as a classification problem where the goal is
to assign a label at word level, rather than at lemma level. This label indicates whether the
word is classified as animate or inanimate.

4.2 Evaluation
Inanimate words far outnumber animate words in our collection (see §3). Reporting accuracy
scores would therefore provide skewed results, favoring the majority category. The relative
rarity of animate words makes evaluation measures such as the well-known F1-score more
appropriate. For this reason, we report on the precision, recall and F1-score [30] of both
classes for all experiments. Also, while in most of the literature on animacy detection results
are only presented for the classification of nouns or noun phrases, we will, while reporting on
nouns and noun phrases as well, additionally report on the results for all words in a text.

In real-world applications an animacy detection system will most likely be faced with
completely new texts instead of single words. It is therefore important to construct a training
and test procedure in such a way that it mimics this situation as closely as possible. If we
would, for example, make a random split of 80% of the data for training and 20% for testing
on the word level, we run the risk of mixing training data with test data, thereby making it
too easy for a system to rely on words it has seen from the same text. [3] fall into this trap
by making a random split in their data on the sentence level. In such a setup, it is highly
likely that sentences from the same document are present in both the training data and the
test data, making their evaluation unrealistic. To circumvent this problem, we split the data
at the story level. We make use of 10-fold cross-validation. We shuffle all stories, partition
them in ten portions of equal size. In ten iterations, each partition acts as a test set, and the
other nine partitions are concatenated to form the training set.

4.3 Features
We explore a range of different features and feature combinations including lexical features,
morphological features, syntactic features, and semantic features.

4.3.1 Lexical features
We take a sliding-window approach where for each focus word (i.e. the word for which we
want to predict whether it is animate or not) we extract both n words to the left and n

6 The data set and the code to perform the experiments are available from https://fbkarsdorp.github.
io/animacy-detection

CMN’15

https://fbkarsdorp.github.io/animacy-detection
https://fbkarsdorp.github.io/animacy-detection


88 Animacy Detection in Stories

words to the right, as well as the focus word itself. In all experiments we set n to 3. In
addition to the word forms, for each word in a window we also extract its lemma as provided
by the output of the syntactic parser Alpino.

4.3.2 Morphological Features
For each word we extract its part-of-speech tag. For reasons of comparability we choose
to use the tags as provided by Alpino, instead of a more specialized part-of-speech tagger.
Again, we take a sliding window approach and extract the part-of-speech tags for three words
left and right of the focus word, as well as the tag of the focus word itself.

4.3.3 Syntactic Features
We extract the dependency tag for each word and its n = 3 neighbors to the right and to the
left as provided by the syntactic parser Alpino. Animate entities tend to take the position
of subject or object in a sentence which is why this feature is expected and has proven to
perform rather well.

4.3.4 Semantic Features
The most innovative feature we have included in our model is concerned with semantic
similarity. In his Philophische Untersuchungen Wittgenstein already suggests that “Die
Bedeutung eines Wortes ist sein Gebrauch in der Sprache”7 (PI 43). This is reflected
by the well-known insight in computational linguistics that the meaning of words can be
approximated by comparing the linguistic contexts in which words appear. In other words:
words that often co-appear with the same set of words, will have a more similar meaning.
Recently, there has been a lot of interest in procedures that can automatically induce so-called
‘word embeddings’ from large, unannotated collections of texts (e.g. [13, 24]). These models
typically attempt to learn vector representation with less dimensions than the vocabulary
size for each word in the vocabulary which captures the typical co-occurrence patterns of a
word in the corpus. The similarity between words can then be approximated by applying
similarity metrics, such as the cosine metric, to these vectors of word embeddings.

We have trained word embeddings with 300 dimensions using the popular skip-gram
architecture [13] on the Dutch corpus of COW (COrpora from the Web). COW is a collection
of linguistically processed web corpora for English, Dutch, Spanish, French, Swedish and
German [26]. The 2014 Dutch corpus contains 6.8 billion word tokens. The idea behind
using the word embeddings is that similarities between animate words can be estimated by
inspecting the context in which they occur. From this follows, for example, that the word
embeddings of an animate word are more similar to those of other animate words, as opposed
to the embeddings of inanimate words.

To give an illustration of this idea, in Figure 1 we depict a two-dimensional Principle
Component Analysis (PCA) projection of the 300 dimensional word embedding vectors
for a number of typically animate and typically inanimate words. The horizontal gray
line in the plot illustrates the separability of the animate and inanimate words in the first
dimension of the PCA projection. It is interesting to observe that ghost is the one closest to
all other inanimate entities. Likewise, words such as castle, house or car are often used in
figurative language (metonymy), for example to refer to the people owning or living in the

7 The meaning of a word is its use in the language.
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Figure 1 Two-dimensional PCA projection of the 300 dimensional word embedding vectors for a
number of animate and inanimate words. The horizontal line illustrates the separability between
the two classes in the first dimension.

castle. Perhaps this ambiguous animacy position is responsible for their position in the first
dimension close to real animate entities.

4.4 Models

We employ a Maximum Entropy classifier with L2 regularization as implemented in [23]. In
all experiments, we set the regularization strength parameter C to 1.

We compare nine models in which we make use of different feature combinations: (1)
words, (2) words and Part-of-Speech tags, (3) words, Part-of-Speech tags and lemmata, (4)
words, Part-of-Speech tags, lemmata and dependency tags, (5) word embeddings and (6-9)
the features in model 1 to 4 with word embeddings.

Although our background corpus is sufficiently large to cover most words in an unseen
text, there will always be rare words for which we do not have learned word embeddings.
Therefore, in order to effectively make use of the word embedding vectors, we need a way
to deal with out-of-vocabulary items. We adopt a simple strategy where we make use of a
primary classifier and a back-off classifier. For models 6 to 9, we augment each word with
its corresponding 300 dimension word embeddings vector. In the case of out-of-vocabulary
words, we resort to a back-off model that contains all features except the word embeddings.
For example, a model that makes use of words and word embeddings, will make a prediction
on the basis of the word features alone. In case of the model that solely uses the embeddings
(model 5), the back-off classifier is a majority-vote classifier, which classifies unseen words as
inanimate.

CMN’15
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Table 1 Precision, Recall and F 1-score for animate and inanimate classes per feature setting for
all words.

inanimate animate

P R F1 P R F1

embeddings 0.98 0.99 0.98 0.93 0.89 0.91
word 0.96 0.99 0.98 0.94 0.78 0.85
word + embeddings 0.98 0.99 0.98 0.94 0.90 0.91
word + PoS 0.97 0.99 0.98 0.94 0.86 0.89
word + PoS + embeddings 0.98 0.99 0.99 0.94 0.91 0.93
word + PoS + lemma 0.97 0.99 0.98 0.94 0.86 0.90
word + PoS + lemma + embeddings 0.98 0.99 0.99 0.94 0.91 0.93
word + PoS + lemma + dep 0.97 0.99 0.98 0.94 0.86 0.90
word + PoS + lemma + dep + embeddings 0.98 0.99 0.99 0.94 0.92 0.93

5 Results

In Table 1 we present the results for all nine models on the complete data set. For each
model we report the precision, recall and F1-score for the animate words and the inanimate
words.

All models perform well on classifying inanimate words. However, since this is the
majority class, it is more interesting to compare the performance of the models on the
animate instances. It is interesting to observe that the ‘simple’ n-gram word model already
performs rather well. Adding more features, such as Part-of-Speech or lemmata, has a
consistently positive impact on the recall of the model, while leaving the precision untouched.
As can be observed from the table, employing the rather expensive dependency features
shows barely any improvement.

The model that only uses word embedding features is one of the best performing models.
This is a context-insensitive model that operates on the level of the vocabulary, which means
that it will predict the same outcome for each token of a particular word type. The high
precision and high recall show us that this model has acquired knowledge about which
words typically group with animate words and which with inanimate words. However, the
models that combine the word embeddings with the context sensitive features, such as word
n-grams or Part-of-Speech tags, attain higher levels of precision than the context-insensitive
model. The best performance is achieved by the model that combines the word features,
Part-of-Speech tags and the word embeddings. This model has an F1-score of 0.93 on
animate words and 0.99 on inanimate words. Adding more features does not result in any
more performance gain.

Table 2 zooms in on how well nouns and names are classified. The best performance is
again achieved by the model that combines the word features with the part-of-speech tags
and word embeddings, resulting in an F1-score of 0.92 for animate instances and 0.95 for
inanimate instances. The relatively lower score for the inanimate class can be explained by
the fact that relatively easy instances, such as function words, which are never animate, are
not included in the score now.
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Table 2 Precision, Recall, and F 1 score for animate and inanimate classes per feature settings
for all words tagged as noun.

inanimate animate

P R F1 P R F1

embeddings 0.90 0.96 0.92 0.93 0.85 0.89
word 0.78 0.98 0.87 0.96 0.60 0.74
word + embeddings 0.90 0.97 0.93 0.95 0.85 0.90
word + PoS 0.86 0.96 0.90 0.93 0.78 0.84
word + PoS + embeddings 0.93 0.96 0.95 0.95 0.90 0.92
word + PoS + lemma 0.87 0.96 0.91 0.94 0.80 0.86
word + PoS + lemma + embeddings 0.93 0.96 0.94 0.95 0.89 0.92
word + PoS + lemma + dep 0.87 0.96 0.91 0.93 0.80 0.86
word + PoS + lemma + dep + embeddings 0.93 0.96 0.95 0.95 0.90 0.92

6 A Semantic Map of Animate Entities in the Dutch Folktale
Database

Our approach to animacy classification appears to be successful. In this section we employ
our classification system to extract all animate entities from unannotated folktales from the
Dutch Folktale Database, all of which were not used in the previous experiment.8 The reason
for this is twofold. First, it allows us to further our evaluation of the classifier. In a classical
evaluation setup – as with our approach – it is general practice to train a computational
system on some training data. The performance of the system is then evaluated on a held-out
test set. Our annotated corpus contains a reasonably diverse set of stories in terms of
genre, yet it is fairly small and rather homogeneous in style. Even though we performed a
cross-validation experiment, there is a chance of ‘overfitting’ to the style of the subset of
folktales we trained on. The second reason for applying the classifier to such a large collection
is to enrich the collection with a character-based information layer, allowing researchers to
browse the collection in new ways.

6.1 Data

For our evaluation we make use of a sub-collection of folktales from the Dutch Folktale
Database. The complete collection consists of about 42,000 folktales [12], and contains
stories from various genres (e.g. fairytales, legends, urban legends, jokes, personal narratives)
in standard Dutch and Frisian, as well as in a number of dialectal variants. Every entry
in the database contains meta-data about the story, including language, collector, place
and date of narration, keywords, names, and sub-genre. For our paper we make use of
a sub-collection comprising 16,294 stories written in standard Dutch. The distribution of
genres in the subcollection is the following: urban legends (n = 2, 795), legends (n = 299),
jokes (n = 3, 986), personal narratives (n = 693), riddles (n = 1, 626), sagas (n = 6, 045) and
fairy tales (n = 832). We evaluate a random sample of this sub-collection (n = 212) in which
this genre distribution is taken into account.

8 http://www.verhalenbank.nl

CMN’15

http://www.verhalenbank.nl


92 Animacy Detection in Stories

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Pr

ec
isi

on

riddles (MAP=0.85)
sagas (MAP=0.89)
jokes (MAP=0.94)
personal narratives (MAP=0.88)
legends (MAP=0.89)
fairy tales (MAP=0.97)
urban legends (MAP=0.91)

Figure 2 Precision-Recall Curves and Mean Average Precision scores per genre.

6.2 Evaluation

Our definition of animacy allows us to utilize our animacy detection system to extract all
characters from a story in a similar vein as [10]. The system labels each noun and name
in a text for animacy. After removing duplicate words, this produces a set of words that
comprises the cast of a story. Without gold standard annotations, however, we can only
evaluate these character sets for precision and not for recall. An alternative approach is to
produce a ranking of all words in a story where the goal is to allocate the highest ranks to
animate entities. This allows us to evaluate individual rankings using Average Precision
which computes the average over precision scores at increasing points of recall. We compute
the Average Precision as follows:

AP =
∑n

k=1(P (k) × rel(k))
number of relevant items (1)

where k is the position in the ranked list of n retrieved items. P (k) represents the precision
at k and rel(k) = 1 if the item at k is relevant, rel(k) = 0 otherwise.

Per genre, a Mean Average Precision (MAP) can be computed as the normal average of
the AP values of all instances within the genre.

Naturally, with this evaluation method, we still need to manually evaluate the rankings.
By using a rank cutoff and evaluating a sample of all automatically annotated stories, we
reduce the costly manual labor to a minimum. We order all nouns and names in a story
using the output of the probabilistic decision function of the Maximum Entropy classifier.
After removing duplicate words, this produces a final ranking. The rankings are evaluated
with a rank cutoff at 50.
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6.3 Results
We present the results in Figure 2 in which we show the Precision-Recall curve as well
as the Mean Average Precision (MAP) score for each genre. The Precision-Recall curve
is obtained from computing precision-recall pairs for different probability thresholds. The
system performs well, especially on fairytales (MAP= 0.97) and jokes (MAP= 0.94).9 The
lowest performance is measured on riddles (MAP= 0.85). This lower score is partly due to the
system’s inability to position the word blondje (‘dumb blond’ with a pejorative connotation)
high up the ranking.

6.4 A Semantic Map of Characters
The word embeddings that we used as features for our animacy classifier can be employed to
describe the similarities and dissimilarities between the extracted animate entities. In Figure
3 we present a two-dimensional semantic map that depicts the (dis)similarities between all
extracted animate entities.10 The dimension reduction was performed using t-Distributed
Stochastic Neighbor Embedding (t-SNE) [29]. The coloring of the nodes was obtained by
applying a k-Means cluster analysis (k=8) to the word embeddings.

The map discloses a rich diversity of animate entities grouped into semantically coherent
clusters. The pink cluster on the far left represents a grouping of all kinds of animals. Note
that within this cluster there exist many subtle sub-clusters describing more specific positions
in the animal taxonomy, e.g. birds and livestock, marine life, and insects. The central
green cluster is occupied by characters of different professions. There is a large number
of characters from the hospitality industry, such as waiter and cook, as well as from the
transport sector, such as chauffeur and train conductor. One of the interesting groupings is
located at the very bottom of the map. This cluster describes magical, supernatural and
Christian characters (henceforth supernatural cluster). In Figure 4 we provide a detailed
view of this cluster.

The supernatural cluster is noteworthy because it is, like the animal cluster, highly
structured. Several clear hierarchically ordered clusters are discernible in Figure 4, with
several subgroups emerging. The lower right hand corner for example entails religious or
even Christian professions, such as ‘bishops’ and ‘vicar’. From there, a link is made via
‘catholics’ and ‘protestants’ to the more general ‘believers’ and ‘followers’. This mini-node
bifurcates into two different nodes. Firstly, in the middle-right, a cluster is found containing
words designating followers of different religions, such as ‘Jew’ and ‘Muslim’, which branches
of to the top right node, which is a ‘religious fringe’ node, containing ‘cult’, ‘satanist’ and
‘Freemasons’. It is interesting that ‘wicca’, which might be expected to be clustered in this
node, as it also represents an organized semi-religious group, is clustered rather with ‘magic’
and ‘witchcraft’ in the upper-left ‘magic’ cluster.

The other cluster connected to the ‘believers’ and ‘followers’-mini node is structurally
complex, starting with such terms as ‘people’ and ‘believers’, but also containing, strikingly,
‘Allah’. Taking into account that the Christian term ‘lord’ is clustered elsewhere, with
adjectives such as ‘compassion’ and ‘glory’, but also with ‘persecutors’, this means that
the two deities are embedded very differently. The cluster then continues through ‘Satan’

9 A MAP of 0.97 means that on average, nearly all actual cast members of a folktale are ranked on top,
with the first case of a non-animate entity entering the ranking at about rank 5 or 6 on average.

10Readers are invited to view an interactive version of the map at the following address: http://
fbkarsdorp.github.io/animacy-detection/.

http://fbkarsdorp.github.io/animacy-detection/
http://fbkarsdorp.github.io/animacy-detection/
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Figure 4 Detailed view of the ‘Supernatural’ cluster.

and ‘Lucifer’ to ‘angels’ and ‘guardian angels’. These words form again a bridge towards
more esoteric creatures, such as ‘nature spirits’, culminating in the far left ‘martians’ and
‘superman’. This cluster is connected to the upper left hand cluster, which contains traditional
magical creatures such as ‘werewolves’ and ‘dragons’.

In summary, the semantic map makes a case for the successfulness of our approach.
The word embeddings combined with the strength of t-SNE to position the characters on a
two-dimensional map, yield a powerful representation. The above description is only part of
the extremely rich network of associations this semantic map displays.

7 Concluding Remarks

The approach taken in this paper to create a model for animacy classification using lin-
guistically uninformed features proves to be successful. We compared the performance of
linguistically informed models (using features such as Part-of-Speech and dependency tags)
to models that make use of lower-dimensional representations of the data. With the exception
of the model that solely makes use of these representations, all models benefit from adding
these features. The model that requires the least linguistic information (word n-grams plus
word embeddings) outperforms all linguistically informed models (without embeddings). The
best results are reported by the model that combines word n-grams with Part-of-Speech
n-grams and word embeddings.

We have the following recommendation for future research. Natural language processing
models such as co-reference resolution or linguistic parsing could benefit from a module that
filters animate from inanimate candidate words. Since these models typically depend on
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linguistic features, it is important that additional features, such as animacy, are not dependent
on these features as well. Our linguistically uninformed model for animacy detection provides
such an independent module.

The digitalization of large-scale cultural heritage collections such as the Dutch Folktale
Database is often accompanied with traditional (text-based) search engines. We hope that
our example of a semantic map of characters inspires researchers to disclose such collections
in different and innovative ways.
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