Radboud Repository

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link. http://hdl.handle.net/2066/142260

Please be advised that this information was generated on 2017-12-05 and may be subject to change.

THE STEREOCHEMISTRY OF THE FORMATION OF Δ^3 -1,3,4-THIADIAZOLINE-1-OXIOES AND EPISULFOXIDES FROM SULFINES AND 2-DIAZOPROPANE 1

L. Thijs, A. Wagenaar², Miss E.M.M. van Rens and B. Zwanenburg³.

Department of Organic Chemistry, University of Nijmegen,

Toernooiveld, Nijmegen, The Netherlands.

(Received in UK 16 July 1973; accepted for publication 31 July 1973)

Recently it was shown 4,5 that sulfines react readily with diazoalkanes to Δ^3 -1,3,4-thiadiazoline-1-oxides in a regiospecific cyclo-addition process. In one case an aliphatic sulfine gave with diazomethane an episulfoxide instead of a five-membered ring product. Although we were inclined to believe that the cyclization to thiadiazoline-oxides would be a stereospecific process, recent results with the 1,3-dipolar cyclo-addition reaction of sulfines with diphenylnitrilimine (a regiospecific, but non-stereospecific process) threw doubt on this anticipation. Therefore, the stereochemistry of the diazoalkane-sulfine cyclization reaction requires a closer examination.

On that account we studied the reaction of 2-diazopropane with the geometrical isomers of different types of sulfines. Treatment of these sulfines (see Table) with 2-diazopropane in ether or ether/dichloromethane at $-20^{\circ}-30^{\circ}$ resulted, after addition of pentane, in the crystallization of the desired 1:1 adducts in high yields. In all cases studied each of the geometrical isomers led to a single product which was distinctly different from that obtained from the other isomer (see Table). Particularly, the NMR spectra (CDCl $_3$) revealed that only one adduct was obtained from each of the isomeric sulfines. From the sulfines VI, VII and VIII only the E-isomer could be studied, since the Z-isomer was not accessible by exidation of the corresponding dithioester. Each of these sulfines gave only one cyclo-adduct in good yield.

The data presented in the Table allow the conclusion that the spatial arrangement of the S=O group and the substituents $\rm R_1$ and $\rm R_2$ is retained in the product. Hence, the cyclo-addition is a stereospecific process and most likely the product formation takes place in a concerted manner.

The isomeric mesityl-phenylsulfonyl-sulfines XIa and XIb reacted smoothly with 2-diazopropane in benzene/ether (1:1) at -10° . However, to our surprise an episulfoxide was isolated in 72.5% yield, instead of a five-membered ring product. From either of these isomeric sulfone sulfines the same 1:1 mixture of diastereomeric episulfoxides (m.p. $85-87^{\circ}$) was obtained, thus, indicating a non-stereospecific process (see Scheme). The mixture could not be separated because the com-

TABLE

	O, S R ₁ R ₂	+ CH ₃	N ₂ —	→	CH ₃ IIIN=N	uR ₂ *R ₁
	R ₁	R ₂	m.p.*	%	о 6СН _З	other NMR signals
Ia(<i>E</i>)	phenyl	o-tolyl	70 ⁰	83	1.27;2.00;	6.58-7.74(m)
Ib(Z)	o-tolyl	pheny1	75 ⁰	88	1.47;1.90; 2.19	6.99-7.72(m)
IIa(E)	phenyl	α-naphthyl	85 ⁰	87	1.60;2.41	arom. H
IIb(Z)	∝-naphthyl	phenyl	890	91	1.63;1.93	arom. H
IIIa(E)	p-toly1	p-chlorophenyl	80 ⁰	88	1.05;1.94; 2.29	6.85-7.68(m)
IIIb(Z)	p-chloro- phenyl	p-tolyl	76-77 ⁰	67	1.14;2.02; 2.40	6.83-7.63(m)
IVa(E)	phenyl	chloro	72-80 ⁰	56	1.80;1.93	7.52
IVb(Z)	chloro	phenyl	840	81	1.19;1.92	7.47
Va(<i>E</i>)	phenyl	phenylthio	65-67 ⁰	82	1.62;1.80	6.93-7.62(m)
Vb(Z)	phenylthio	phenyl	75-77 ⁰	68	1.09;1.89	6.85-7.67(m)
VIa(E)	anisyl	p-tolylthio	800	83	1.54;1.78; 2.30;3.78	6.90+7.46(AB,J 9Hz) 7.02+7.28(AB,J 7Hz)
VIIa(<i>E</i>)	phenyl	phenylsulfonyl	97 ⁰	75	1.72;2.03	7.20-7.67(m)
VIIIa(E)	anisyl	p-tolylsulfonyl	dec.	75	1.66;2.00; 2.36;3.78	6.83+7.44(AB,J 9Hz) 7.14+7.39(AB,J 9Hz)
IX	phenylthio	phenylthio	55 ⁰	58	1.37;1.54 (-30°)	6.74-7.81(m)
X	chloro	chloro	70 ⁰	44	1.66;1.85 (CCl ₄)	
	* All compounds show vigorous decomposition during melting.					

* All compounds show vigorous decomposition during melting. (Characteristic i.r. absorptions for these compounds were observed at 1060-1080 ($v_{\rm S=0}$) and 1560-1575 cm $^{-1}$ ($v_{\rm N=N}$))

pound could not withstand extensive chromatography.

The episulfoxide structure was assigned on the following grounds:a correct elemental analysis for $C_{19}H_{22}O_3S_2$, i.r. absorptions (in CS_2) at 1050 cm⁻¹ ($v_{S=0}$), 1150 and 1325 cm⁻¹ (v_{SO_2}) and signals in the NMR spectrum (CDCl $_3$) at δ 1.01, 1.40, 1.70 and 1.78 ppm for the methyl protons at C-2 (note the distinct different position of the methyl protons at C-2 in the thiadiazoline-oxide derived from VIIa), at δ 2.21 and 2.47 ppm for the methyls at C-2', at δ 2.16 and 2.34

No. 37

ppm for those at C-4', at δ 6.62 and 6.96 ppm for the protons at C-3' and at δ 7.18-7.80 ppm for the phenyl protons. Furthermore, oxidation of the product with *m*-chloroperbenzoic acid in ether at 20° gave 1-mesityl-2-methyl-1-phenylsulfonyl-1-propene (m.p. 120-122°) in 46% yield (oxidation to episulfone with subsequent extrusion of SO_2).

Bonini and Maccagnani⁷ found that aromatic sulfines such as diphenylsulfine and thiofluorenone-S-oxide react with phenyldiazomethane to give a triaryl substituted episulfoxide as a mixture of diastereomers (Z/E ratio ranging from 1:4 to 2:3 for the different aryl substituents). Thus, again a non-stereospecific formation of the three-membered ring.

To explain this remarkable difference in stereochemistry in the formation of thiadiazoline-oxides and episulfoxides, we suggest that the episulfoxide does not come about via an initially formed thiadiazoline-oxide, but most likely via a two step process in which firstly a nucleophilic attack of the diazocarbon at the sulfine sulfur provides a zwitter ionic diazonium compound (see Scheme). Subsequently, an internal 1,3-displacement of nitrogen produces the episulfoxide. Inspection of molecular models clearly reveals that steric crowding prevents the formation of a five-membered ring adduct and favors the less congested three-membered ring.

The mechanism in the Scheme is supported by the fact that we never found any indication of an episulfoxide formation from the thiadiazoline-oxides. However, these five-membered ring adducts are thermally rather unstable. Usually a retrocyclo-addition reaction to starting materials as observed for the adducts derived from Va, VIa and X takes place. In some cases a reverse retro-cyclo-addition reaction is observed as nicely exemplified by the adduct from IX. Warming this adduct in chloroform at 40° or at 25° in benzene/pentane, containing some silicagel, gave besides 60% of the sulfine IX a 30% yield of tetrakis(phenylthio)-ethene arising from bis(phenylthio)diazomethane via dimerization of bis(phenylthio)carbene.

3592 No. 37

With other sulfines having a bulky substituent attached to the sulfine function a deviating reaction pattern was observed. Z-mesityl-phenylsulfine did not react at all with 2-diazopropane, whereas the E-isomer was isomerized quantitatively to the Z-form. Similarly, E-mesityl-phenylthio-sulfine isomerized to the Z-isomer, while the Z-form did not react. This isomerization can be rationalized by assuming the formation of a zwitter ionic intermediate (see Scheme) which then splits off 2-diazopropane to give the thermodynamically 9 more stable sulfine isomer instead of forming the three-membered ring.

We conclude that the normal reaction of sulfines with diazoalkanes will be the concerted cyclo-addition to Δ^3 -1,3,4-thiadiazoline-1-oxides. Introduction of bulky substituents in either of the reactants will sterically hamper this cyclization to five-membered rings and give rise to alternative reaction routes of which the non-stereospecific formation of episulfoxides is the most interesting one.

References and notes

- Part XXII in the series "Chemistry of Sulfines", part XXI, Tetrahedron Lett., submitted for publication.
- 2. Department of Organic Chemistry, University of Groningen, The Netherlands.
- 3. To whom correspondence should be addressed.
- 4. B.F. Bonini, G. Maccagnani, A. Wagenaar, L. Thijs and B. Zwanenburg, J.C.S. Perkin I, 1972, 2490.
- 5. B. Zwanenburg, A. Wagenaar, L. Thijs and J. Strating, <u>J.C.S. Perkin I</u>, 1973, 73.
- 6. Part XXI in this series, see ref. 1.
- 7. B.F. Bonini and G. Maccagnani, Tetrahedron Lett., accompanying paper.
- 8. U. Schöllkopf and E. Wiskott, Angew. Chem. 75, 725 (1963).
- 9. The Z-isomers were formed when the E-isomers were allowed to stand in the refrigerator for several months.