
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a preprint version which may differ from the publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/142201

 

 

 

Please be advised that this information was generated on 2018-07-07 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/43586978?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/142201


Symmetry effects on spin switching of adatoms
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Abstract

Highly symmetric magnetic environments have been suggested to
stabilize the magnetic information stored in magnetic adatoms on a
surface. Utilized as memory devices such systems are subjected to
electron tunneling and external magnetic fields. We analyze theo-
retically how such perturbations affect the switching probability of
a single quantum spin for two characteristic symmetries encountered
in recent experiments and suggest a third one that exhibits robust
protection against surface induced spin flips. Further we illuminate
how the switching of an adatom spin exhibits characteristic behavior
with respect to low energy excitations from which the symmetry of the
system can be inferred.

Recently, single magnetic atoms on surfaces, or so-called magnetic adatoms,
have gained a lot of interest for spin-based information storage and pro-
cessing [1, 2, 3]. These concepts are mostly based on strong magnetic
anisotropy energy [4, 5], which reduces spin degeneracy at zero magnetic
field, thereby defining preferential spatial orientations of the spin. While
magnetic anisotropy introduces an energy cost for magnetization rever-
sal, countless studies have illustrated that in the presence of strong mag-
netic anisotropy, individual magnetic adatoms still exhibit rather short life-
times [6, 7, 8] owing to the interplay of the hybridization of the moment
bearing orbitals and the underlying substrate. Such observations question
the role of both tunneling electrons as well as substrate electrons in dynami-
cal processes of the atomic spin [9, 10, 11, 12, 13, 5]. In order to enhance the
dynamic stability of such adatoms, strong magnetic coupling between indi-
vidual spins can be utilized to protect the total spin from fluctuations [2, 14].

A different approach, that stabilizes a single magnetic moment of an
adatom, was utilized by a particular choice of both spin and underlying
substrate symmetry [3]. In particular for a three-fold symmetric system
with the net magnetic moment S = 8 of a holmium adatom, it is possible
to protect the spin, in the absence of perturbations, from single electron
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induced spin reversal. It is yet unknown how perturbations, like current-
based read out or static magnetic fields which break the symmetry of the
system, effect the symmetry caused stability of the spin in such quantum
systems.

Here we approach this question with a focus on the prospects of using
a specific symmetry to protect a spin from switching. We extract the effec-
tive switching rate between the high-spin ground states via all possible spin
paths, as experimentally manifested in two-state telegraph noise, utilizing a
master equation approach. With comparative analysis we show how a sin-
gle spin on two-, three- and four-fold symmetric substrates [15] responds to
temperature, external magnetic field, as well as inelastic tunneling electrons.
Higher symmetries are not part of our discussion since they are difficult to
realize experimentally. We find that the three- and four-fold symmetric sys-
tems are both protected against single electron induced ground state switch-
ing. Since this protection relies on time-reversal symmetry in the three-fold
symmetric system it is highly sensitive to external magnetic fields. In the
four-fold case the protection even holds for broken time-reversal symmetry
and thus makes it more robust against magnetic fields. On the other hand
both systems respond clearly to changes in the energy of tunneling electrons
since low energy paths for spin switching between the ground states become
accessible. Although spin-flip processes are always possible for the two-fold
symmetric system, its dependence on external perturbations is much weaker.

Such different behavior can be attributed to the symmetry dependent
interaction with the underlying crystal field. By expanding the crystal field
in terms of spherical harmonics, the interaction with the net spin Ŝ of mag-
netic atoms or clusters can be expressed by various power of spin operators,
the so-called Stevens operators [16]. To leading order, the spin Hamiltonian
(Ĥχ) can be described by a uniaxial anisotropy term proportional to Ŝ2

z and
multiaxial terms which are proportional to powers of the raising/lowering
operators, Ŝ+/−. In the following the index χ ∈ {2 , 3 , 4} is used to label
the two-, three- and four-fold symmetric Hamiltonian respectively, and we
use ∆01 to denote the first excitation energy at zero magnetic field for each
symmetry.

For the two-fold symmetry we can write

Ĥ2 = D2 Ŝ
2
z + B̃Ŝz + E2 (Ŝ2

+ + Ŝ2
−) (1)

where D2 is the uniaxial anisotropy, B̃ = µBgB/~ the Zeeman energy,
E2 the biaxial or transversal anisotropy and the total spin S2 . The biaxial
anisotropy term is the lowest order contribution leading to mixing of Ŝz
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Figure 1: (color online). Energy levels of Ĥ2 (a left), Ĥ3 (a center) and Ĥ4

(a right) as a function of the expectation value 〈ψsχ,i|Ŝz|ψsχ,i〉. The parabola
indicates the anisotropy barrier. The red, green, blue and black lines indicate
s = −, s = +, s = 0 and s = 1 respectively. (b) The different possible
paths for spin reversal are illustrated, namely from left to right electron
induced switching or ladder transitions over the barrier, quantum tunneling
of magnetization, ground state switching, and shortcut tunneling.

eigenstates. Eigenstates |ψs2 ,i〉 of Ĥ2 can be separated in two subgroups
s ∈ {+,−}, where i is the label within these groups.

For a half integer spin they are a linear combination of Ŝz eigenstates
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|ψ+
2 ,i〉 =

bS2 c∑
n=0

c+i,n|S2 − 2n〉 (2)

|ψ−2 ,i〉 =

bS2 c∑
n=0

c−i,n| − S2 + 2n〉 (3)

with real coefficients c±i,n. We choose a half integer spin number S2 =
15/2 for the two-fold symmetric system motivated by a Fe cluster on Cu(111)
substrate [14]. For D2 < 0 all eigenvalues align along an inverted parabola
with respect to the associated expectation value of 〈Ŝz〉 as depicted in
Fig. 1(a) where the two subgroups of eigenstates are explicitly differenti-
ated by color. Due to Kramers theorem [17, 18], direct tunnel coupling
between the ground states is forbidden such that 〈ψ±2 ,0|Ŝz|ψ∓2 ,0〉 = 0. Ex-
change interaction with a single conduction electron leads in lowest order
to spin flips which are described by the matrix elements of Ŝ±. Theses
so called spectral weights are part of the rates we derive for the master
equation used to describe the interaction with the conduction electrons. A
single electron can induce a transition between the ground states, since for
example the matrix element 〈ψ+

2 ,0|Ŝ+|ψ−2 ,0〉 gives a non-zero value at zero

magnetic field and is proportional to (E2/|D2 |)7, as depicted in the upper
inset of Fig. 2, which can be attributed to the mixing of Ŝz eigenstates by
biaxial anisotropy. With increasing magnetic field |B̃| the probability for
the ground state transition induced by a single electron increases further, as
shown in Fig. 2.

For the three-fold symmetry we can write,

Ĥ3 = D3 Ŝ
2
z + B̃Ŝz (4)

+ E3

(
Ŝz(Ŝ

3
+ + Ŝ3

−) + (Ŝ3
+ + Ŝ3

−)Ŝz

)
.

Here we include only the lowest non-vanishing order of multiaxial anisotropy,
which we refer to as the hexaxial anisotropy quantified by its coefficient E3 .
The eigenstates |ψs3 ,i〉 divide in three subgroups s ∈ {+,−, 0} for an integer

spin and can also be expanded in Ŝz eigenstates.
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|ψ+
3 ,i〉 =

b2S3 /3c∑
n=0

c+i,n|S3 − 3n〉 (5)

|ψ−3 ,i〉 =

b2S3 /3c∑
n=0

c−i,n| − S3 + 3n〉 (6)

|ψ0
3 ,i〉 =

bS3 /3c∑
n=d−S3 /3e

c0i,n|3n〉 (7)

The states are shown color coded in Fig. 1(a) for D3 < 0. Unlike the
two-fold case, there is a class of eigenstates s = 0 which form ”within”
the potential barrier meaning 〈ψ0

3 ,i|Ŝz|ψ0
3 ,i〉 = 0 and show tunnel splitting

at zero magnetic field. With a spin number S3 = 8, as motivated by the
Ho adatom on Pt(111) [3], direct tunneling between the ground states is
avoided. In contrast to the two-fold symmetric system, single electron in-
duced tunneling between ground states is forbidden if the spin is not an
integer multiple of 3. Without breaking time-reversal symmetry the matrix
elements 〈ψ∓3 ,0|Ŝ+|ψ±3 ,0〉 = 〈ψ∓3 ,0|Ŝ−|ψ±3 ,0〉 vanish [3]. As a result, the sym-
metry of the system protects a given ground state spin from reversal due
to single electron fluctuations which is the distinguishing feature of Ĥ3 as
compared to Ĥ2 . To investigate the stability of this symmetry related pro-
tection, we apply a ubiquitous magnetic field which breaks the crystal field
symmetry. Fig. 2 shows the increasing probability for switching between the
ground states with a single electron with respect to the magnetic field, even
in the presence of a small field. The linear increase of switching probability
for small magnetic fields is depicted in the lower inset of Fig. 2 and defines
the lower boundary for the switching probability at finite magnetic field.
As compared to the quadratic dependence of the biaxial case, this linear
behavior witnesses a much stronger sensitivity and a breakdown of the sym-
metry protection. This needs to be considered if a stray field or neighboring
magnetic atoms are present in a spintronic device.

To lowest non-vanishing order the four-fold symmetric system results in

Ĥ4 = D4 Ŝ
2
z + B̃Ŝz + E4 (Ŝ4

+ + Ŝ4
−) (8)

with E4 being the coefficient of the multiaxial anisotropy. If the spin
is larger than 1 the eigenstates |ψs4 ,i〉 can be arranged in four subgroups
s ∈ {+,−, 0, 1}. In this case and an odd integer spin the eigenstates are
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Figure 2: y(x) := |〈ψ+
χ,0|Ŝ+|ψ−χ,0〉|/~, as a function of magnetic field x :=

B̃/∆01, where E2/|D2 | = 0.1 is colored solid blue, E3/|D3 | = 0.002 dotted
red and arbitrary E3/|D3 | dash-dotted green. (upper inset) displays the
offset of y at x = 0 as a function of the biaxial anisotropy E2 . (lower
inset) shows the linear slope of y at x = 10−5 as a function of the hexaxial
anisotropy E3 .

|ψ+
4 ,i〉 =

bS4 /2c∑
n=0

c+i,n|S4 − 4n〉 (9)

|ψ−4 ,i〉 =

bS4 /2c∑
n=0

c+i,n| − S4 + 4n〉 (10)

|ψ0
4 ,i〉 =

b(2S4−1)/4c∑
n=0

c0i,n|S4 − 1− 4n〉 (11)

|ψ1
4 ,i〉 =

b(2S4−3)/4c∑
n=0

c1i,n|S4 − 3− 4n〉. (12)
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For spin S4 = 1 subgroup |ψ1
4 ,i〉 would not exist. The eigenstates la-

beled with s = 0 and 1 are similar to the ones ”within” the barrier of the
three-fold symmetry. Spin switching in a four-fold symmetric system has
been studied experimentally by placing a Co atom on the oxygen site of a
MgO(100) substrate [5]. For a spin of S = 3/2 we do not expect protection
of the equilibrium state by symmetry and therefore focus on odd integer
spin systems. Usually, the effective spin of an adatom can not be inferred
from its free magnetic moment due to surface hybridization and screening
of the magnetic moment. Without referring to a specific experimental setup
we choose a spin of S4 = 7 for the following considerations. First it should
be of comparable size with the other systems, second it needs to be an in-
teger spin in order to protect it from induced ground state switching with
a single electron and third it must be an odd integer to have the ground
states belonging to different subgroups. Similar to the three-fold, the four-
fold symmetric system is protected against single electron induced ground
state switching since 〈ψ∓4 ,0|Ŝ+|ψ±4 ,0〉 = 〈ψ∓4 ,0|Ŝ−|ψ±4 ,0〉 vanishes for arbitrary
magnetic field and is shown in Fig. 2. It can be shown analytically from
equation 10 and 9 or by looking at the subgroups in Fig. 1 that at least
two coherent electron processes with Ŝ2

± are needed to cause induced tun-
neling between the ground states. These processes are highly improbable in
the case of weak tunnel coupling which is considered during the following.

The reversal of the spin between the two ground states is induced by
elastic and inelastic spin flips with conduction electrons. Having a scanning
tunneling microscope in mind, the conduction electrons are generated from a
spin polarized tip and a non-magnetic substrate. They interact with the spin
Ŝ via exchange interaction described by an Appelbaum Hamiltonian [19]

Ĥt =
1

2

∑
rr′kk′σσ′

vrvr′a
†
rkσ~σσ,σ′ · Ŝar′k′σ′ , (13)

with the annihilation (creation) operators a
(†)
rkσ in tip r = T and substrate

r = S and the vector of Pauli matrices ~σσ,σ′ associated with the spin of the
tunneling electrons with momentum k. In a perturbative expansion up to
fourth order in the coupling vr and tracing over the electron reservoir degrees
of freedom [11] a master equation

dPα
dt

=
∑
β

(WαβPβ −WβαPα) (14)

for the reduced density matrix can be derived. It describing changes in
the occupation probability of Ĥχ eigenstates. Within the rates
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Wαβ = π
∑

rr′∈{tip,sub}
|vrvr′ |2Σrr′

αβ ζ
(
µr − µ′r −∆αβ

)
(15)

including the spectral weight Σrr′
αβ and the energy selection rule ζ(x) =

x
1−exp(− x

kbT
) . The argument of ζ includes the chemical potential µr associated

with an electron reservoir (tip or substrate) and the energy difference ∆αβ =
εα − εβ between eigenstates |α〉 and |β〉. The spectral weight

Σrr′
αβ = |〈α|Ŝ+|β〉|2ρr↓ρr′↑ + |〈α|Ŝ−|β〉|2ρr↑ρr′↓ (16)

+|〈α|Ŝz|β〉|2
(
ρr↑ρr′↑ + ρr↓ρr′↓

)
,

includes matrix elements of spin operators Ŝ±, standing for a change of
the single spins orientation. The spin densities ρrσ describes whether the
conduction electron has flipped its spin or remained in the same orientation
during tunneling. The reservoir polarization Pr =

ρr↑−ρr↓
ρr↑−ρr↓ is choses to be

zero for the unpolarized substrate and 0.1 for the tip. We consider the case
in which renormalization of energy levels from scattering on electrons [20]
can be neglected. This means the tunnel coupling has to be sufficiently
small compared to the temperature. Under this condition an electron bath
does not destroy the coherence between the Ŝz states contributing to the

|ψ0/1
χ,i 〉 groups. By solving the master equation we identify the dominant

switching rate Γ between the two polarized spin states |ψ+
χ,0〉 and |ψ−χ,0〉. All

possible paths are included in the switching rate and can be characterized
as depicted in Fig. 1(b). Each path is effected differently by external pertur-
bations such as temperature, applied voltage or magnetic field. This makes
their contribution to the total switching rate Γ distinguishable in specific
parameter regimes. All rates will be given in units of the total spin flip rate
Γ0 = π~2v2T v2S(ρT↑ρS↓ + ρT↓ρS↑)/|Dχ|(2Sχ − 1) for electrons inelastically
tunneling from the tip to the surface.

In all three cases at least 2Sχ sequential spin flip processes are needed to
surmount the anisotropy barrier along the spin ladder. Nevertheless, due to
strong relaxation generated by substrate electrons, typically more electrons
are needed. Moreover, each electron requires a minimum energy of ∆01 for
an inelastic scattering event with the adatom spin S, which corresponds to
the first excitation energy of the spin system. Such electron energies are
generated either by the applied voltage eV between the tip and substrate
or from temperature kBT . With just uniaxial anisotropy and with small
temperatures kbT � ∆01 a threshold voltage eV = ∆01 denotes the onset of
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spin switching due to the aforementioned ladder processes as shown in Fig. 3
(bright region). The system with the largest spin S3 = 8 shows the smallest
switching rate, since more inelastic excitations are needed to reverse the spin
due to the larger number of ladder states.

At zero voltage and constant kbT/∆01 temperature induced transitions
between the ground and the first excited state allow switching even below
the first excitation energy eV = ∆01 as depicted in Fig. 3 (greyed region).
The mixing of Ŝz eigenstates with multiaxial anisotropy leads to an increase
of the rate between the ground and the first excited state. Additionally
the energy levels of the spin states are shifted by the multiaxial anisotropy
which has an effect on the rates between excited states.

Especially for the three- and four-fold symmetric system the excited

states |ψ0/1
χ,i 〉 become accessible and establish an extra switching path that is

absent under two-fold symmetry. For the four-fold symmetry the switching
is dominated by a path via the first excited state. Therefore changes of the
spectrum or mixing of high energy spin states with E4 has only a small
effect on the switching rate.

A single electrons that induces elastic quantum tunneling between the
ground states mainly originates from the unpolarized substrate since the
relative coupling vT /vS � 1 is much stronger. Rates between two degenerate
states for an unpolarized substrate become

Wψ∓χ,iψ
±
χ,i
∝
(
|〈ψ∓χ,i|Ŝ+|ψ±χ,i〉|2 + |〈ψ∓χ,i|Ŝ−|ψ±χ,i〉|2

)
kbT (17)

and represent transitions due to electron-induced quantum tunneling. A
single electron can transfer its spin to induce a transition between the ground
states since they are a mixture of Ŝz eigenstates. For half integer adatom
spin a single electron can always induce transitions between the two highest
lying degenerate states. From the rate one can distinguish two situations for
which transitions between lower lying degenerate spin states are forbidden:
(i) the complete absence of multiaxial anisotropy. (ii) the symmetry of the
system prohibits electron induced quantum tunneling as is the case with
the three- and four-fold symmetry in combination with a certain choice of
spin. S3 being not an integer multiple of three and S4 being an odd integer
leads protection caused by symmetry. While this protection is observed in
the lifetime in ref. [3] for the three-fold symmetric system it has not been
studied yet for four-fold symmetry.

Fig. 4 depicts the effect of electron-induced quantum tunneling on the
switching rate for all systems as a function of temperature. At kbT >
0.15∆01, thermally induced switching over the barrier results in Arrhenius-

9



0.0 0.5 1.0 1.5 2.0 2.5 3.0

eV/∆01

10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

100
Γ
/
Γ

0
Eχ/|Dχ|

0.1

0.05

0

0.005

0.001

0

0.002

0.0001

0

Figure 3: (color online). Switching rate Γ between the ground states as
a function of applied bias voltage eV between the tip and the surface.
The results for Ĥ2 are colored blue, for Ĥ3 red and Ĥ4 green. Multiax-
ial anisotropy Eχ/|Dχ| allows temperature induced excitations below the
threshold voltage eV = ∆01 marked by the gray region. (|vT |/|vT | = 0.15,
B̃ = 0, kBT = 0.05∆01)

like behavior. The largest effect of electron-induced quantum tunneling can
be seen at temperatures kBT < 0.1∆01 (inset of Fig. 4) in which thermal ex-
citations can be neglected for the chosen multiaxial anisotropy values. The
absence of magnetic field results in the highest degree of degeneracy. For
Ĥ2 multiple channels for electron induced quantum tunneling are accessi-
ble due to a finite voltage 1.5eV/∆01. For Ĥ3 on the other hand electron
induced quantum tunneling is forbidden due to symmetry and a plateau
appears for temperatures kBT < 0.1∆01. The same plateau appears for Ĥ4 .
This makes the three- and four-fold symmetric system more robust than the
two-fold against surface electron-induced switching in the low temperature
regime. For three-fold symmetry this statement only holds in the absence
of perturbations breaking time-reversal symmetry while the protection by
the four-fold symmetry is valid even with magnetic field and can be seen in
Fig. 2 and shown below in Fig. 6(b).

At larger magnetic fields, namely B̃ ≈ ∆01, relaxation channels via tun-
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Figure 4: (color online). Temperature dependence of switching rate Γ at
eV = 1.5∆01. The results for Ĥ2 are colored blue, for Ĥ3 red and Ĥ4

green. The inset magnifies the low temperature region and is normalized to
Γ̃ = Γ(kbT = 0.05∆01). (|vT |/|vT | = 0.15, B̃ = 0)

nel mixed spin states open resulting from quantum tunneling of magnetiza-
tion [21]. A finite Eχ is needed in order to obtain this mixing. The stronger
the mixing the more robust is the relaxation channel against variation of the
magnetic field from the resonance condition. This is manifested in Fig. 5 as
peaks in the switching rate. For E2/|D2 | = 0.05 eigenstates are only weakly
perturbed Ŝz eigenstates, however at |B̃| = ∆01 all unperturbed states cross
pairwise leading to an efficient mixing in the presence of finite E2 . Ĥ2 has
the strongest mixing between spin states at the top of the barrier.

Although for the four-fold symmetric system mixing appears also at the
top of the barrier, the resonance condition is shifted to |B̃| = 2∆01. This
is because twice the magnetic field in units of ∆01 is needed for aligning
states of the same subgroup and to ensure efficient mixing. The character-
istic peak, present at zero magnetic field, can be related to inelastic elec-

tron induced short cut tunneling created by states from the subgroup |ψ0/1
χ,i 〉

as depicted in Fig. 1(b). The largest contribution to switching via quan-
tum tunneling of magnetization in Ĥ3 results from mixing of spin states in
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the valley of the barrier namely |ψ±3 ,0〉 and |ψ∓3 ,1〉, if |ψ∓3 ,0〉 is the ground
state. For E3/|D3 | = 0.01 a single resonant tunneling channel emerges
at |B̃| ≈ 0.45∆01. Since for E3/|D3 | = 0.01 the hexaxial anisotropy al-
ready shifts the energy levels, the resonance conditions occur at different
magnetic fields. This leads to a sequence of single channels that open for
relaxation. Lowering the anisotropy to E3/|D3 | → 0.002 has two effects: (i)
the resonance peaks from quantum tunneling of magnetization shift to the
resonance condition of the unperturbed system |B̃| = ∆01. (ii) an underly-
ing substructure becomes visible with a central resonance peak that can be
related to inelastic electron induced short cut tunneling created by states
from the subgroup |ψ0

3 ,i〉. The side peak at |B̃| ≈ 1.2∆01 comes from a short
cut that is reestablished with magnetic field. The features in Fig. 5 can
be used to differentiate between the different symmetries. The absence of a
central resonance peak makes it possible to distinguish the two-fold from the
three- and four-fold symmetric system. The presence of a resonance peak
from quantum tunneling of magnetization at B̃ < ∆01 is a indication for
a three-fold symmetric system since the peak appears at higher magnetic
fields for the four-fold symmetric system.

Fig. 6 shows the disappearance of the central resonance from short cut
tunneling at small voltages. If the electron energy, resulting from voltage and
temperature, exceeds the threshold ∆01 inelastic scattering can lead to the
first and second excitation and thus switching becomes effective through the
shortcuts. Below the threshold voltage and with exponentially suppressed
thermal excitations the switching rate goes to zero since the ground state
switching is prohibited by symmetry. In the case of Ĥ2 the rate would not go
to zero since electron induced ground state switching is alway present. For
Ĥ3 a finite magnetic field destroys the time-reversal symmetry and thus an
increasing switching rate is observed even though excitations are suppressed.
Above the threshold voltage the switching rate Γ decreases with magnetic
field since the eigenstates |ψ0

3 ,i〉 become well separated on both sides of the
anisotropy potential and the short cut is closed. Same behavior can be seen
for Ĥ4 if the electrons have enough energy for the first excitation. Below
the threshold, when this is exponentially suppressed, the four-fold symmetric
system shows a broad range of magnetic fields where the spin is symmetry
protected from switching. For a device that utilizes the symmetry of the sys-
tem to have a stable orientation of the spin we would therefore recommend a
four-fold symmetric system with odd integer spin. Still, accompanied with
the protection by symmetry is the possibility of switching via low energy
paths through the anisotropy barrier. Only if thermal excitations can be
suppressed the protection mechanism can be used efficiently.
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Figure 5: (color online). Switching rate Γ in dependence of magnetic field
at eV = 1.5∆01 and kbT = 0.05∆01. The results for Ĥ2 are colored blue, for
Ĥ3 red and Ĥ4 green. The center resonance is a result of short cut tunneling
and becomes visible for Ĥ3 at E3/|D3 | < 0.01. The narrow resonance for
the three-fold symmetry belongs to quantum tunneling of magnetization and
shifts from |B̃|/∆01 ≈ 0.45 to 1.0 with the change of hexaxial anisotropy.
The broad side peak is due to restored short cut tunneling by magnetic field.
The tip polarization is 10%.

In conclusion we compared the qualitative behavior of the switching rate
between two polarized states of a single spin in a two-, three- and four-fold
symmetric system with respect to external perturbations such as magnetic
field, temperature and spin excitations due to conduction electrons. We
found that the protection against ground state transitions, induced by a
single electron, in the three-fold symmetric system can be destroyed by
a magnetic field. The four-fold symmetric system also has a protection
against single electron induced ground state transitions which is independent
of magnetic field. This makes the switching in the three-fold symmetric
system more sensitive to time-reversal symmetry breaking in contrast to the
two- and four-fold symmetric systems. Transitions to excited spin states,
via inelastically tunneling electrons, make multiple fast paths for switching
across the anisotropy barrier accessible. The three- and four-fold symmetry
provide rapid switching through short cuts in the barrier that are missing
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Figure 6: (color online). The switching Γ rate at Eχ/|Dχ| = 0.002 as
a function of magnetic field for (a) three-fold and (b) four-fold symmetry.
Decreasing voltage eV/∆01 ∈ {1, 0.8, 0.6, 0.2} is shown in decreasing order of
the rate. The tip polarization is 10% and the temperature is kBT = 0.01∆01.

under two-fold symmetry. The characteristic behavior makes it possible to
distinguish the symmetry by measuring the switching rate as a function of
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