
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/141320

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/43585417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/141320

Nominal Kleene Coalgebra

Dexter Kozen∗ Konstantinos Mamouras∗

Daniela Petrisan† Alexandra Silva†

February 18, 2015

Abstract

We develop the coalgebraic theory of nominal Kleene algebra, includ-
ing an alternative language-theoretic semantics, a nominal extension of the
Brzozowski derivative, and a bisimulation-based decision procedure for
the equational theory.

1 Introduction

Nominal Kleene algebra, introduced by Gabbay and Ciancia [12], is an alge-
braic formalism for reasoning equationally about imperative programs with
statically scoped allocation and deallocation of resources. The system consists
of Kleene algebra, the algebra of regular expressions, augmented with a bind-
ing operator ν that binds a named resource within a local scope.

Gabbay and Ciancia [12] proposed an axiomatization of the system consist-
ing of the axioms of Kleene algebra plus six equations capturing the behavior
of the binding operator ν and its interaction with the Kleene algebra opera-
tors. They also defined a family of nominal languages consisting of certain sets
of strings over an infinite alphabet satisfying certain invariance properties and
showed soundness of the axioms over this class of interpretations. Their anal-
ysis revealed some surprising subtleties arising from the non-compositionality
of the sequential composition and iteration operators.

In our previous work [15] we showed that the Gabbay-Ciancia axioms are
not complete for the semantic interpretation of [12], but we identified a slightly
wider class of language models over which they are sound and complete. The
proof of completeness of [15] consisted of several stages of transformations
to bring expressions to a certain normal form. Although the construction was
effective, one of the transformations required the intersection of several regular

∗Computer Science, Cornell University, Ithaca, New York 14853-7501, USA.
http://www.cs.cornell.edu/~kozen/, http://www.cs.cornell.edu/~mamouras/

†Intelligent Systems, Radboud University Nijmegen, Postbus 9010, 6500 GL Nijmegen, The
Netherlands. http://alexandrasilva.org, http://www.cs.ru.nl/D.Petrisan/

1

http://www.cs.cornell.edu/%7Ekozen/
http://www.cs.cornell.edu/%7Emamouras/
http://alexandrasilva.org
http://www.cs.ru.nl/D.Petrisan/

expressions, an operation known to produce a double-exponential increase in
size in the worst case [13], thus the construction is unlikely to give a practical
decision method.

In this paper, we investigate the coalgebraic theory of nominal Kleene al-
gebra. The motivation for this investigation is to understand the structure of
nominal Kleene algebra from a coalgebraic perspective with an eye toward
a more efficient decision procedure for the equational theory in the style of
[4, 5, 22, 23] for Kleene algebra and Kleene algebra with tests.

The paper is organized as follows. In §3 we introduce a new class of lan-
guage models consisting of sets of equivalence classes of ν-strings. A ν-string
is like a string, except that it may contain binding operators. Two ν-strings
are equivalent if they are provably so under the Gabbay-Ciancia axioms and
associativity. The equivalence classes of ν-strings over a fixed set of variables
form a nominal monoid. These language models are isomorphic to the free
language models of [15], thus giving a new characterization of the free models,
but more amenable for the development of the coalgebraic theory. The proof
of isomorphism is given in Appendix A.

In §4 we introduce nominal versions of the semantic and syntactic Brzo-
zowski derivatives. The derivatives are similar to their non-nominal counter-
parts, but extended to handle bound variables in such a way as to be invariant
with respect to α-conversion. The semantic derivative is defined in terms of
the new language model and characterizes the final coalgebra. We conclude
the section with a result that relates the algebraic and coalgebraic structure
and establishes the existence of minimal automata.

In §5 we describe a data representation for the efficient calculation of the
Antimirov derivative. The data representation is similar to that used in [7, 14]
and also related to constructions of [2, 25], but extended to handle the bind-
ing operator. The advantage of this representation is that data representing
repeated derivatives can be calculated once and for all in a preprocessing step;
thereafter, the derivatives are easily computed by table lookup. The prepro-
cessing step also gives a bound on the size of automata, and we use this to
prove that the equational theory is decidable in exponential space. The data
representation also provides a platform for the implementation of a bisimulation-
based decision procedure in the style of [4, 5, 22, 23] for Kleene algebra and
Kleene algebra with tests.

Related Work The notion of nominal sets goes back to work of Fraenkel and
Mostowski in the early part of the twentieth century. The notion was first ap-
plied in computer science by Gabbay and Pitts [10] (see [21] for a survey).

Recently, there have been many studies involving nominal automata, au-
tomata on infinite alphabets, and regular expressions with binders that are
closely related to the work presented here.

Montanari and Pistore [18, 19, 20] and Ferrari et al. [6] develop the the-
ory of history-dependent (HD) automata, an operational model for process calculi
such as the π-calculus. In these automata, there are mechanisms for explicit

2

allocation and deallocation of names and for explicitly representing the history
of allocated names. They work in a category of named sets, which except for
presentation is essentially equivalent to the category of nominal sets.

A closely related model is the family of finite memory automata of Francez
and Kaminski [8, 9]. These are ordinary finite-state automata equipped with a
finite set of registers. At any point in time, each register is either empty or con-
tains a symbol from an infinite alphabet. In each step, the automaton can copy
a symbol to a register, compare the contents of a register with an input symbol,
and reset a register to empty. The main result is an extension of the Myhill–
Nerode theorem for finite memory automata for languages that are invariant
under permutations of the infinite alphabet.

Bojanczyk, Klin, Lasota [3] undertake a comprehensive study of nominal
automata and discuss the relationships between previous models. They con-
sider nominal sets for arbitrary symmetries and develop nominal automata
theory in this framework. They identify the important notion of orbit-finiteness
as the appropriate analog of finiteness in the non-nominal case and show that
their definitions are equivalent to previous definitions of finite memory au-
tomata [8, 9]. They prove a nominal analog of the Myhill-Nerode theorem.
Their paper does not consider the relationship with regular expressions.

Kurz, Suzuki, Tuosto [16, 17] present a syntax of regular expressions with
binders and consider its relationship with nominal automata. Their syntax de-
parts from that of Gabbay and Ciancia in that they include includes operational
mechanisms for the dynamic allocation and deallocation of fresh names and
explicit permutations. Their semantics uses a name-independent combinato-
rial construct reminiscent of De Bruijn indices. They prove Kleene theorems
relating the syntax and semantics.

The most important distinguishing characteristic of our approach is that
both the algebraic and coalgebraic structure are nominal. Our syntax, based on
Kleene algebra with ν-binders as introduced by Gabbay and Ciancia [12], and
our final coalgebra semantics based on nominal sets of ν-strings, both carry a
nominal coalgebraic structure given by the syntactic and semantic Brzozowski
derivatives, and the interpretation map is the unique equivariant morphism to
the final coalgebra.

2 Background

This section contains an abbreviated review of basic material on Kleene alge-
bra, nominal sets, and the nominal extension of Kleene algebra (NKA) intro-
duced by Gabbay and Ciancia [12], but prior familiarity with nominal sets, KA,
and coalgebra will be helpful. For a more thorough introduction, the reader
is referred to [11, 21] for nominal sets, to [24] for Kleene (co)algebra, and to
[12, 15] for NKA.

Kleene Algebra (KA) is the algebra of regular expressions. A Kleene algebra
is any structure (K,+, ·,∗ , 0, 1) where K is a set, + and · are binary operations

3

on K, ∗ is a unary operation on K, and 0 and 1 are constants, satisfying the
following axioms:

x + (y + z) = (x + y) + z x(yz) = (xy)z x + y = y + x
1x = x1 = x x + 0 = x + x = x x0 = 0x = 0
x(y + z) = xy + xz (x + y)z = xz + yz 1 + xx∗ ≤ x∗

y + xz ≤ z ⇒ x∗y ≤ z y + zx ≤ z ⇒ yx∗ ≤ z 1 + x∗x ≤ x∗

where we define x ≤ y iff x + y = y. The axioms above not involving ∗ are
succinctly stated by saying that the structure is an idempotent semiring under
+, ·, 0, and 1, the term idempotent referring to the axiom x + x = x. Due to this
axiom, the ordering relation ≤ is a partial order. The axioms for ∗ together say
that x∗y is the ≤-least z such that y + xz ≤ z and yx∗ is the ≤-least z such that
y + zx ≤ z.

G-Sets A group action of a group G on a set X is a map G × X → X, written
as juxtaposition, such that π(ρx) = (πρ)x and 1x = x for π, ρ ∈ G and x ∈ X.
A G-set is a set X equipped with a group action G × X → X. The orbit of an
element x ∈ X is the set {πx | π ∈ G} ⊆ X. If X and Y are two G-sets, a
function f : X → Y is called equivariant if f ◦ π = π ◦ f for all π ∈ G.

The G-sets and equivariant functions form an elementary topos G-Set with
group action on coproducts, products, and exponentials defined by

π(in x) = in(πx) π(x, y) = (πx, πy) π() = () π f = π ◦ f ◦ π−1. (1)

In particular, for sets, πA = {πx | x ∈ A}. For x ∈ X and A ⊆ X, define

fix x = {π ∈ G | πx = x} Fix A =
⋂

x∈A fix x.

Note that Fix A and fix A are different: they are the subgroups of G that fix A
pointwise and setwise, respectively.

Nominal Sets Fix a countably infinite set A of atoms and let GA be the group
of all finite permutations of A (permutations generated by transpositions (a b)).
The set A is a GA-set under the group action πa = π(a). If X is another GA-
set, we say that A ⊆ A supports x ∈ X if Fix A ⊆ fix x. An element x ∈ X
has finite support if there is a finite set A ⊆ A that supports x. If x has finite
support, then there is a smallest set supporting x, called supp x. We write a#x
and say a is fresh for x if a 6∈ supp x. A nominal set is a GA-set X of which every
element has finite support. The nominal sets and equivariant functions form a
full subcategory Nom of G-Set.

The following lemma reviews some well known facts about nominal sets
and equivariant functions. Let ℘fin A denote the set of finite subsets of A.

Lemma 2.1

(i) fix πx = π(fix x)π−1 and Fix πA = π(Fix A)π−1.

4

(ii) supp : X → ℘fin A is equivariant: supp πx = π(supp x).

(iii) fix x ⊆ fix supp x.

(iv) If A, B ∈ ℘fin A and Fix B ⊆ fix A, then A ⊆ B.

(v) If f is an equivariant function, then supp f (x) ⊆ supp x.

Proof. (i)

ρ ∈ fix πx ⇔ ρπx = πx ⇔ π−1ρπx = x ⇔ π−1ρπ ∈ fix x ⇔ ρ ∈ π(fix x)π−1,

Fix πA =
⋂

x∈A
fix πx =

⋂
x∈A

π(fix x)π−1 = π(
⋂

x∈A
fix x)π−1 = π(Fix A)π−1.

(ii)

Fix supp x ⊆ fix x ⇒ π(Fix supp x)π−1 ⊆ π(fix x)π−1 ⇒ Fix (π supp x) ⊆ fix πx.

As supp πx is the smallest set supporting πx, we have supp πx ⊆ π(supp x). For
the reverse inclusion, supp π−1πx ⊆ π−1(supp πx)⇒ π(supp x) ⊆ supp πx.

(iii) πx = x ⇒ π(supp x) = supp πx = supp x ⇒ π ∈ fix supp x.
(iv) If a ∈ A− B, let b 6∈ A ∪ B. Then (a b) ∈ Fix B− fix A.
(v) We have π ∈ fix x ⇒ πx = x ⇒ π(f (x)) = f (πx) = f (x) ⇒ π ∈

fix f (x), so Fix supp x ⊆ fix x ⊆ fix f (x), so supp x supports f (x). Since supp f (x)
is the smallest set supporting f (x), supp f (x) ⊆ supp x. 2

The GA-sets A and ℘fin A are nominal sets with supp a = {a} and supp A =
A for a ∈ A and A ∈ ℘fin A. By Lemma 2.1(v), the only equivariant function
A→ A is the identity.

Expressions and ν-Strings NKA expressions are defined by the grammar

e ::= a ∈ A | e + e | ee | e∗ | 0 | 1 | νa.e.

The scope of the binding νa in νa.e is e. As a notational convention, we assign
the binding operator νa lower precedence than product but higher precedence
than sum; thus in products, scopes extend as far to the right as possible. For
example, νa.ab νb.ba should be read as νa.(ab νb.(ba)) and not (νa.ab)(νb.ba).
The set of NKA expressions over A is denoted Exp A.

The free variables FV(e) of an expression e are defined as usual, and the
group GA acts on Exp A by permuting the variables in the obvious way. For
example, (a b)νa.b = νb.a. Formally, e 7→ πe : Exp A → Exp A is the unique
homomorphic extension of π : A → A with respect to the signature of KA
and ν, and FV : Exp A → ℘fin A is the unique homomorphic extension of
a 7→ {a}, where the operations +, ·,∗ , 0, 1 in ℘fin A have meaning ∪,∪, id,∅,∅,
respectively, and νa.A = A − {a}. The relation ≡α of α-equivalence on Exp A

is defined to be the least congruence containing the pairs {e ≡α πe | π ∈
Fix FV(e)}. Let [e] denote the ≡α-congruence class of e.

5

Lemma 2.2 The ≡α-congruence classes of Exp A form a nominal set with supp [e] =
FV(e), and the function FV is well defined and equivariant on ≡α-classes.

Proof. The function FV : Exp A → ℘fin A is equivariant, because FV ◦ π
and π ◦ FV are homomorphisms that agree on the generating set A: FV(πa) =
π(FV(a)) = {πa}. The function FV is also well defined on ≡α-classes, because
if π ∈ Fix FV(e), then FV(πe) = πFV(e) = FV(e), therefore ≡α refines the
kernel of FV. Thus FV : Exp A/≡α → ℘fin A with FV([e]) = FV(e). Finally,
supp[e] ⊆ FV(e) since Fix FV(e) ⊆ fix [e], and FV(e) ⊆ supp[e] by Lemma 2.1(v)
and the fact that supp FV(e) = FV(e). 2

A ν-string is a string with νa binders; that is, it is an NKA expression with no
occurrence of +, ∗, or 0 modulo multiplicative associativity, and no occurrence
of 1 except to denote the null string, in which case we use ε instead.

x ::= a ∈ Σ | xx | ε | νa.x

The set of ν-strings over A is denoted Aν.

NKA Axioms The axioms proposed by Gabbay and Ciancia [12] are:

νa.(d + e) = νa.d + νa.e a#e⇒ νb.e = νa.(a b)e νa.νb.e = νb.νa.e
a#e⇒ (νa.d)e = νa.de a#e⇒ e(νa.d) = νa.ed a#e⇒ νa.e = e.

(2)

One can derive a normal form for ν-strings in which each binder νa binds a
variable immediately to its right [15].

Nominal ν-Monoids A nominal ν-monoid over A is a structure (M, ·, 1, A, ν)
with binding operation ν : A×M→ M such that

• (M, ·, 1) is a monoid with group action GA × M → M such that M is a
nominal set;

• the operation ν satisfies the axioms (2) (omitting the first, which is irrele-
vant as there is no + operation);

• the monoid operations and ν are equivariant, or equivalently, every π ∈
GA is an automorphism of M.

Nominal Kleene algebra (NKA) A nominal Kleene algebra over A is a structure
(K,+, ·,∗ , 0, 1, A, ν) with binding operation ν : A× K → K such that

• (K,+, ·,∗ , 0, 1) is a KA with group action GA × K → K such that K is a
nominal set;

• the operation ν satisfies the axioms (2);

6

• the KA operations and ν are equivariant in the sense that

π(x + y) = πx + πy π(xy) = (πx)(πy) π0 = 0
π(x∗) = (πx)∗ π(νa.x) = ν(πa).(πx) π1 = 1,

or equivalently, every π ∈ GA is an automorphism of K.

3 A Nominal Language Model

Let M be a nominal ν-monoid over A. Metasymbols m, n, . . . denote elements
of M. Let ℘ M denote the powerset of M. On ℘ M, define the KA operations
and group action

A + B = A ∪ B AB = {mn | m ∈ A, n ∈ B} A∗ =
⋃

k Ak 0 = ∅
1 = {ε} νa.A = {νa.m | m ∈ A} πA = {πm | m ∈ A}.

(3)

We say that A is uniformly finitely supported if
⋃

m∈A supp m is finite. Let

℘fs M = {A ⊆ M | A is finitely supported}
℘ufs M = {A ⊆ M | A is uniformly finitely supported}.

Lemma 3.1 ([11, Theorem 2.29]) For A ⊆ M, if A is uniformly finitely supported,
then A is finitely supported and supp A =

⋃
m∈A supp m.

The converse is false in general. Both ℘fs M and ℘ufs M are closed under
the operations (3).

Theorem 3.2 The set ℘ufs M with group action and KA operations (3) forms an
NKA.

Proof. The set ℘ufs M with the specified group action is evidently a nominal
set, and the KA axioms are satisfied because the KA operations are the standard
language-theoretic ones. For the axioms of (2),

νa.(A + B) = {νa.m | m ∈ A ∪ B}
= {νa.m | m ∈ A} ∪ {νa.m | m ∈ B} = νa.A + νa.B

νa.νb.A = {νa.m | m ∈ {νb.n | n ∈ A}} = {νa.νb.n | n ∈ A}
= {νb.νa.n | n ∈ A} = νb.νa.A

For the remaining axioms, assume a#A, that is, a#m for all m ∈ A.

νa.A = {νa.m | m ∈ A} = {m | m ∈ A} = A

νb.A = {νb.m | m ∈ A} = {νa.(a b)m | m ∈ A}
= {νa.n | n ∈ (a b)A} = νa.(a b)A

(νa.B)A = {(νa.m)n | m ∈ B, n ∈ A} = {νa.mn | m ∈ B, n ∈ A}
= {νa.m | m ∈ BA} = νa.BA.

7

The argument for A(νa.B) = νa.AB is similar.
Finally, the KA operations are equivariant, as

π(A ∪ B) = {πm | m ∈ A ∪ B}
= {πm | m ∈ A} ∪ {πm | m ∈ B} = πA ∪ πB

π(AB) = {πm | m ∈ AB} = {π(mn) | m ∈ A, n ∈ B}
= {(πm)(πn) | m ∈ A, n ∈ B} = {πm | m ∈ A}{πn | n ∈ B}
= (πA)(πB)

π(A∗) = π(
⋃
n

An) =
⋃
n
(πA)n = (πA)∗

π1 = π{ε} = {ε} = 1 π0 = π∅ = ∅ = 0.

2

3.1 Canonical Interpretation over Aν/≡
For x, y ∈ Aν, define x ≡ y if x and y are provably equivalent using the ax-
ioms (2) (omitting the first, which is irrelevant as there is no occurrence of +
in ν-strings) and the axioms of equality and congruence. Let [x] denote the ≡-
congruence class of x and Aν/≡ the ν-monoid of all such congruence classes.

The length of x ∈ Aν is the number of occurrences of symbols of A in x,
excluding binding occurrences νb. If x ≡ y, then x and y have the same length,
and an occurrence of a symbol in x is free iff the corresponding occurrence in
y is free. If both are free, then they are the same symbol. If both are bound,
then they can be different symbols due to α-conversion. If two ν-strings are
α-equivalent, then they are ≡-equivalent.

Lemma 3.3 Every m ∈ Aν/≡ is finitely supported, and supp[x] = FV(x).

Proof. As observed, equivalent ν-strings have the same free variables, thus
FV is well defined on Aν/≡. If π ∈ Fix FV(x), then πx ≡ x by α-conversion.
As this is true for any string equivalent to x, we have π[x] = [x], therefore
FV(x) supports [x] and supp[x] ⊆ FV(x).

For the reverse inclusion, we just note that FV : Aν/≡ → ℘fin A is equiv-
ariant and that supp A = A for A ∈ ℘fin A, and apply Lemma 2.1(v). 2

Lemma 3.4 The structure Aν/≡ is a nominal ν-monoid over A and satisfies the fol-
lowing universality property: For any other nominal ν-monoid M over A and any
equivariant set function h : A→ M, h extends uniquely to an equivariant homomor-
phism h : Aν/≡ → M.

8

Proof. The structure Aν/≡ is evidently a nominal ν-monoid over A. If M
is any other ν-monoid over A and h : A → M, then h extends uniquely and
homomorphically to h : Aν → M. It remains to show that h is equivariant
and well defined on ≡-classes. Equivariance follows from the fact that h ◦ π
and π ◦ h are homomorphisms that agree on the generating set A. Finally, to
show that h is well defined on ≡-classes, we need to show that ≡ refines the
kernel of h. This is true because it holds for the axioms of (2), and ≡ is the least
congruence containing these pairs. For example,

• h(νa.νb.x) = νa.νb.h(x) = νb.νa.h(x) = h(νb.νa.x); and

• a#y implies a#h(y) by Lemma 2.1(v), thus h(νa.xy) = νa.h(x)h(y) =
(νa.h(x))h(y) = h(νa.x)h(y) = h((νa.x)y).

2

Henceforth, let M = Aν/≡. The map L : Exp A→ ℘ M is defined to be the
unique homomorphism such that L(a) = {[a]} for a ∈ A. Explicitly,

L(e1 + e2) = L(e1) ∪ L(e2) L(e1e2) = {mn | m ∈ L(e1), n ∈ L(e2)}
L(e∗) = L(e)∗ =

⋃
k L(e)k L(0) = ∅ L(1) = {ε} (4)

L(a) = {[a]}, a ∈ A L(νa.e) = νa.L(e) = {νa.m | m ∈ L(e)}.

The following lemma guarantees the existence of an equivariant homomor-
phism L : Exp A/≡α → ℘ufs M.

Lemma 3.5 The map L is well defined and equivariant on ≡α-congruence classes and
takes values in ℘ufs M.

Proof. The image of L is contained in ℘ufs M since it holds for L(a) and
℘ufs M is closed under the operations (3). Equivariance follows from the fact
that L ◦ π and π ◦ L are homomorphisms that agree on the generating set A:
L(πa) = πL(a) = {[πa]}. To show that L is well defined on ≡α-classes, we
first observe that

supp L(e) =
⋃

m∈L(e)

supp m =
⋃

m∈L(e)

FV(m) ⊆ FV(e).

The first two equalities are from Lemmas 3.3 and 3.1, and the final inclusion is
easily shown by induction on the definition of L. Thus

Fix FV(e) ⊆ Fix supp L(e) ⊆ fix L(e).

If π ∈ Fix FV(e), then L(πe) = πL(e) = L(e). As ≡α is the smallest congruence
for which this is true, ≡α refines the kernel of L. 2

The following deconstruction lemma is important for our coalgebraic treat-
ment of §4.

9

Lemma 3.6

(i) If ax ≡ by, then a = b and x ≡ y.

(ii) If νa.ax ≡ νa.ay, then x ≡ y.

Proof. This follows from the normal form of [15]. For (i), the first symbol is
free and is uniquely determined, since no axiom of (2) or proof rule can alter
it, thus a = b. For (ii), the first symbol is bound to the initial νa. It is not
uniquely determined due to α-conversion. Once we have ax and ay in (i) or
νa.ax and νa.ay in (ii), the remaining reductions of [15] apply only to x and y,
thus reducing to normal form gives x ≡ y. 2

Lemma 3.6(ii) is somewhat delicate. Note that νa.x ≡ νa.y does not imply
x ≡ y in general: we have νb.ab 6≡ νb.ba, but νa.νb.ab ≡ νa.νb.ba by applying
the permutation (a b) and reversing the order of the bindings.

4 Coalgebraic Structure

We will presently define syntactic Brzozowski and Antimirov derivatives on
NKA expressions over A and a corresponding semantic derivative on sub-
sets of M. These constructs will be seen to comprise coalgebras for a Nom-
endofunctor K defined by

KX = 2× XA × [A]X, (5)

where the nominal set XA consists of finitely supported functions A→ X and
[A]X is the abstraction of the nominal set X; see [21] for a detailed account of
the abstraction functor on Nom. We recall here that the nominal set [A]X is
defined as the quotient of A× X by the equivalence relation given by (a, x) ∼
(b, y) if and only if for any fresh c we have (c a)x = (c b)y. Furthermore, the
abstraction functor [A](−) has a left adjoint A#(−) defined on objects by

A#X = {(a, x) | a#x}.

Hence a K-coalgebra is a tuple of the form (X, obs, cont, contν), where X is a
nominal set and

obs : X → 2 cont : X → XA contν : X → [A]X (6)

are equivariant functions, called the observation and continuation maps, respec-
tively. Using the cartesian closed structure on Nom and the adjunction A#(−) a
[A](−), the continuation maps are in one-to-one correspondence with maps
defined on A× X and A#X respectively.

cont : X → XA

cont[: A× X → X
contν : X → [A]X
cont[ν : A#X → X

10

To simplify notation, we write

conta : X → X, a ∈ A contνa : {s ∈ X | a#s} → X, a ∈ A (7)

for the uncurried continuation maps obtained by fixing the first argument to
a ∈ A. Intuitively, conta tries to consume a free variable a and contνa tries to
consume a bound variable a bound by νa. We will discuss the intuition behind
these constructs more fully and justify the typing (6) in Example 4.1 below.

It follows from (1) that the equivariance of the structure map (obs, cont, contν)
is equivalent to the properties

contπa ◦ π = π ◦ conta contνπa ◦ π = π ◦ contνa obs ◦ π = obs (8)

for all π ∈ GA.
Henceforth, the term coalgebra refers specifically to coalgebras for the Nom-

functor K in (5).

4.1 Semantic Derivative

Let M = Aν/≡. The semantic derivative is defined as a K-coalgebra with
carrier the nominal set ℘fs M:

(ε, δ, δν) : ℘fs M→ 2× (℘fs M)A × [A]℘fs M

where

ε(A) =

{
1, ε ∈ A,
0, ε 6∈ A

δa(A) = {m | am ∈ A}, a ∈ A

δνa(A) = {m | νa.am ∈ A}, a ∈ A.

The maps δa and δνa are well defined by Lemma 3.6.

Example 4.1 The a in δa and δνa play very different roles. Intuitively, δa(A)
tries to consume a free variable a at the front of strings in A. For example, for
b 6= a,

• δa({aa, bb}) = {a}

• δa({νb.ab}) = {νb.b}

• δa({νa.ab}) = ∅ (since the first letter of νa.ab is bound).

On the other hand, δνa(A) tries to consume a bound variable at the front of
strings in A and change the remaining variables bound by the same binder to
a. The bound variable need not be a, but it should be possible to change it to a
by α-conversion. For example, for b 6= a,

1. δνa({νa.aa}) = δνa({νb.bb}) = {a} (since νb.bb = νa.aa in Aν/≡)

2. δνa({νa.ab}) = {b}

11

3. δνa({νa.ba}) = ∅ (since the initial symbol b is not bound)

4. δνa({νb.ba}) = ∅ (since νb.ba 6= νa.am for any m ∈ Aν/≡)

5. δνa({(νa.aa)a}) = ∅ (since (νa.aa)a 6= νa.am for any m ∈ Aν/≡)

6. δνa({(νb.bb)b}) = {ab} (since (νb.bb)b = νa.aab in Aν/≡).

Examples 4 and 5 do not arise in our coalgebraic semantics, since δνa may only
be applied to A for which a is fresh due to the domain restriction in (7). If there
are free occurrences of a, one cannot α-convert to obtain a string of the form
νa.am, since those free occurrences would be captured. 2

Lemma 4.2

(i) δa(AB) = δa(A)B ∪ ε(A)δa(B)

(ii) δa(A∗) = δa(A)A∗

(iii) δa(νb.A) =

{
∅, b = a,
νb.δa(A), b 6= a.

Proof.

(i) δa(AB) = {m | am ∈ AB}
= {mn | am ∈ A, n ∈ B} ∪ {m | ε ∈ A, am ∈ B}
= {mn | m ∈ {m | am ∈ A}, n ∈ B} ∪ ε(A){m | am ∈ B}
= δa(A)B ∪ ε(A)δa(B).

(ii) δa(A∗) = {m | am ∈ A∗} = {m | am ∈ AA∗}
= {mn | am ∈ A, n ∈ A∗} = {mn | m ∈ {m | am ∈ A}, n ∈ A∗}
= δa(A)A∗.

(iii) We have δa(νa.A) = {m | am ∈ νa.A} = ∅, and for b 6= a,

δa(νb.A) = {m | am ∈ νb.A} = {m | am ∈ {νb.an | an ∈ A}}
= {m | am ∈ {a(νb.n) | an ∈ A}} = {νb.n | an ∈ A}
= νb.{n | an ∈ A} = νb.δa(A).

2

Lemma 4.3

(i) If a#AB, then δνa(AB) = δνa(A)B ∪ ε(A)δνa(B).

(ii) If a#A∗, then δνa(A∗) = δνa(A)A∗.

(iii) If a#νb.A, then δνa(νb.A) = νb.δνa(A) ∪ δa((a b)A).

12

Proof. (i) If a#AB, then a#B, and

δνa(AB) = {m | νa.am ∈ AB}
= {mn | νa.am ∈ A, n ∈ B, a#n} ∪ {n | ε ∈ A, νa.an ∈ B}
= {mn | m ∈ {m | νa.am ∈ A}, n ∈ B} ∪ ε(A){n | νa.an ∈ B}
= δνa(A)B ∪ ε(A)δνa(B).

The condition a#B is necessary: for A = {νa.aa} and B = {a}, we have AB =
{(νa.aa)a}, thus aa ∈ δνa(A)B but aa 6∈ δνa(AB).

(ii) If a#A∗, then a#A, and

δνa(A∗) = {m | νa.am ∈ A∗} = {m | νa.am ∈ AA∗}
= {mn | νa.am ∈ A, n ∈ A∗, a#n}
= {mn | m ∈ {m | νa.am ∈ A}, n ∈ A∗} = δνa(A)A∗.

Again, the condition a#A is necessary: for A = {νa.aa, a}, we have (νa.aa)a ∈
AA∗, thus aa ∈ δνa(A)A∗ but aa 6∈ δνa(AA∗).

(iii) Assume a#νb.A. By α-conversion, we can assume without loss of gen-
erality that b 6= a.

First we show the left-to-right inclusion. We have

δνa(νb.A) = {m | νa.am ∈ νb.A} = {m | ∃n ∈ A νa.am = νb.n}.

If νa.am = νb.n, the first letter of νb.n is bound, and it is either bound to the
initial νb or to something else. In the former case, we have n = bk for some k
and a#νb.n, so

νa.am = νb.n = νb.bk = νa.a(a b)k,

therefore m = (a b)k by Lemma 3.6, and

am = a(a b)k = (a b)n ∈ (a b)A.

In the latter case, n = νc.c` ∈ A for some c` and a#A. Let k = (a c)`. Then

νa.ak = νa.a(a c)` = (a c)νc.c` = (a c)n = n ∈ A

and νa.am = νb.n = νb.νa.ak = νa.a(νb.k), thus m = νb.k by Lemma 3.6.
Putting these together,

δνa(νb.A) = {m | νa.am ∈ νb.A} = {m | ∃n ∈ A νa.am = νb.n}
⊆ {νb.k | νa.ak ∈ A} ∪ {m | am ∈ (a b)A}
= {νb.k | k ∈ δνa(A)} ∪ {m | am ∈ (a b)A}
= νb.δνa(A) ∪ δa((a b)A).

For the right-to-left inclusion, if a#νb.A and b 6= a, we have

am ∈ (a b)A⇒ (a b)am ∈ A⇒ νa.am = νb.(a b)am ∈ νb.A
νa.ak ∈ A⇒ νa.a(νb.k) = νb.νa.ak ∈ νb.A

13

and hence

νb.δνa(A) ∪ δa((a b)A) = {νb.k | k ∈ δνa(A)} ∪ {m | am ∈ (a b)A}
= {νb.k | νa.ak ∈ A} ∪ {m | am ∈ (a b)A}
⊆ {m | νa.am ∈ νb.A} ∪ {m | νa.am ∈ νb.A}
= δνa(νb.A).

2

4.2 Brzozowski Derivative

The syntactic Brzozowski derivative is defined inductively on the set of α-
equivalence classes of NKA expressions Exp A/≡α. Like the semantic deriva-
tive, it can also be defined on a broader domain, but also will only make coal-
gebraic sense for the domain (6).

(E, D, Dν) : Exp A/≡α → 2× (Exp A/≡α)
A × [A](Exp A/≡α)

The continuation maps D and Dν can be further broken down as

Da : Exp A/≡α → Exp A/≡α Dνa : {e ∈ Exp A/≡α | a#e} → Exp A/≡α

for a ∈ A. We first define these maps on Exp A, then argue that they are well
defined on ≡α-classes.

E(e1 + e2) = E(e1) + E(e2) E(e1e2) = E(e1)E(e2) E(a) = E(0) = 0
E(1) = E(e∗) = 1 E(νa.e) = E(e)

Da(e1 + e2) = Da(e1) + Da(e2) Da(e1e2) = Da(e1)e2 + E(e1)Da(e2)

Da(e∗) = Da(e)e∗ Da(0) = Da(1) = 0

Da(b) =

{
1, b = a
0, b 6= a

Da(νb.e) =

{
0, b = a
νb.Da(e), b 6= a

Dνa(e1 + e2) = Dνa(e1) + Dνa(e2) Dνa(e1e2) = Dνa(e1)e2 + E(e1)Dνa(e2)

Dνa(e∗) = Dνa(e)e∗ Dνa(νb.e) = νb.Dνa(e) + Da((a b)e), b 6= a
Dνa(0) = Dνa(1) = Dνa(b) = 0

We can also define Dνa(νa.e) = Dνa(νb.(a b)e) for an arbitrary b such that b#e
and b 6= a, although strictly speaking this is not a function, since the choice
of b is not determined. However, the choice of b does not matter, as we are
considering expressions modulo α-equivalence. This will be treated formally
in Lemma 4.6.

Example 4.4 For b 6= a,

1. Dνa(νb.bb) = νb.Dνa(bb) + Da((a b)bb) = 0 + a = a.

14

2. Dνa(νa.aa) = Dνa(νb.bb) = a.

3. Dνa(νa.ab) = Dνa(νc.cb) = νc.Dνa(cb) + Da(ab) = 0 + b = b.

4. Dνa(νb.ba) = νb.Dνa(ba) + Da((a b)ba) = 0 + b = b.

Example 4 may seem incorrect, since the argument has a free variable a and the
result has a free variable b, but this situation will not arise in our coalgebraic
semantics, since Dνa will only be applied to e for which a is fresh. 2

Lemma 4.5 The derivatives are equivariant.

Proof. We show that the derivatives satisfy the properties (8). For the se-
mantic derivative (℘ M, ε, δ),

ε(A) =

{
1, ε ∈ A
0, ε 6∈ A

=

{
1, ε ∈ πA
0, ε 6∈ πA

= ε(πA)

π(δa(A)) = π({m | am ∈ A}) = {πm | π(am) ∈ πA}
= {πm | (πa)(πm) ∈ πA} = {n | (πa)n ∈ πA} = δπa(πA)

π(δνa(A)) = π({m | νa.am ∈ A}) = {πm | π(νa.am) ∈ πA}
= {πm | ν(πa).(πa)(πm) ∈ πA} = {n | ν(πa).(πa)n) ∈ πA}
= δνπa(πA).

Intuitively, the syntactic derivative in Brzozowski form (Exp A, E, D) satisfies
(8) as well, since the inductive definitions commute with permutations. The
only slightly subtle case is Dνa(νb.e) for b 6= a, which we argue explicitly:

π(Dνa(νb.e)) = π(νb.Dνa(e) + Da((a b)e))
= ν(πb).π(Dνa(e)) + π(Da((a b)e))

= ν(πb).Dνπa(πe) + Dπa(π(a b)π−1πe)
= ν(πb).Dνπa(πe) + Dπa((πa πb)πe)
= Dνπa(ν(πb).πe) = Dνπa(π(νb.e)).

Thus the semantic and syntactic derivatives are coalgebras over GA-Set of type
(6). The syntactic derivative is nominal, as expressions have finite support. 2

Lemma 4.6 The syntactic derivative is well defined modulo ≡α.

Proof. This is an inductive argument. The case Dνa(νb.e) for b 6= a is the
only interesting case. Suppose we have an α-conversion νb.e ≡α νc.(b c)e with
c#e and c 6= a. Since FV(Dνa(νb.e)) ⊆ {a} ∪ FV(νb.e), by Lemma 4.5,

Dνa(νb.e) ≡α (b c)Dνa(νb.e) = Dν(b c)a((b c)νb.e) = Dνa(νc.(b c)e).

2

15

Theorem 4.7 For all e ∈ Exp A and a ∈ A,

(i) ε(L(e)) = E(e)

(ii) δa(L(e)) = L(Da(e))

(iii) If a#e, then δνa(L(e)) = L(Dνa(e)).

Proof. (i) The maps ε ◦ L and E are homomorphisms that agree on the gen-
erators, therefore agree everywhere. Intuitively, E(e) is the value obtained by
substituting 0 for all letters a ∈ A occurring in e and simplifying.

(ii) For e ∈ {b, 1, 0}with b 6= a, we have Da(e) = 0 and L(e) ∈ {{b}, {ε},∅}.
In none of the three cases does L(e) contain an element of the form ax for a 6= b,
thus δa(L(e)) = ∅. In all three cases,

L(Da(e)) = L(0) = ∅ = δa(L(e)).

The remaining base case is Da(a). Here we have

L(Da(a)) = L(1) = {ε} = {x | ax ∈ {a}} = δa({a}) = δa(L(a)).

For sums,

L(Da(e1 + e2)) = L(Da(e1)) ∪ L(Da(e2))

= δa(L(e1)) ∪ δa(L(e2)) = δa(L(e1 + e2)).

For products, using (i) and Lemma 4.2(i),

L(Da(e1e2)) = L(Da(e1)e2 + E(e1)Da(e2)) = L(Da(e1))L(e2) ∪ E(e1)L(Da(e2))

= δa(L(e1))L(e2) ∪ ε(L(e1))δa(L(e2)) = δa(L(e1)L(e2))

= δa(L(e1e2)).

For star, using Lemma 4.2(ii),

L(Da(e∗)) = L(Da(e)e∗) = L(Da(e))L(e∗)
= δa(L(e))L(e)∗ = δa(L(e)∗) = δa(L(e∗)).

For ν, using Lemma 4.2(iii),

L(Da(νa.e)) = L(0) = ∅ = δa(νa.L(e)) = δa(L(νa.e))
L(Da(νb.e)) = νb.L(Da(e)) = νb.δa(L(e)) = δa(νb.L(e)) = δa(L(νb.e)).

(iii) The argument for 0,1, and + is the same as in (ii). For b,

L(Dνa(b)) = L(0) = ∅ = δνa({b}) = δνa(L(b)).

16

In the remaining cases, we use the fact that a#e implies a#L(e) (Lemmas
3.5 and 2.1(v)), so that Lemma 4.3 applies. For products, using (i) and Lemma
4.3(i),

L(Dνa(e1e2)) = L(Dνa(e1)e2 + E(e1)Dνa(e2))

= L(Dνa(e1))L(e2) ∪ E(e1)L(Dνa(e2))

= δνa(L(e1))L(e2) ∪ ε(L(e1))δνaL(e2)

= δνa(L(e1)L(e2)) = δνa(L(e1e2)).

For star, using Lemma 4.3(ii),

L(Dνa(e∗)) = L(Dνa(e)e∗) = L(Dνa(e))L(e∗) = δνa(L(e))L(e∗)
= δνa(L(e))L(e)∗ = δνa(L(e)∗) = δνa(L(e∗)).

For ν, using Lemmas 4.3(iii) and 3.5,

L(Dνa(νb.e)) = L(νb.Dνa(e) + Da((a b)e)) = νb.L(Dνa(e)) ∪ L(Da((a b)e))
= νb.δνa(L(e)) ∪ δa(L((a b)e)) = νb.δνa(L(e)) ∪ δa((a b)L(e))
= δνa(νb.L(e)) = δνa(L(νb.e)).

2

4.3 Antimirov Derivative

There is an analog of the Antimirov derivative for NKA of type

A : Exp A→ (℘Exp A)A+A

that corresponds to nondeterministic automata. It is defined inductively as
follows: for a, b ∈ A and e, e1, e2 ∈ Exp A,

Aa(e1 + e2) = Aa(e1) ∪Aa(e2)

Aa(e1e2) = Aa(e1){e2} ∪ E(e1)Aa(e2)

Aa(e∗) = Aa(e){e∗} Aa(0) = Aa(1) = ∅

Aa(b) =

{
{1}, b = a
∅, b 6= a

Aa(νb.e) =

{
∅, b = a
νb.Aa(e), b 6= a

Aνa(e1 + e2) = Aνa(e1) ∪Aνa(e2)

Aνa(e1e2) = Aνa(e1){e2} ∪ E(e1)Aνa(e2)

Aνa(e∗) = Aνa(e){e∗} Aνa(0) = Aνa(1) = Aνa(b) = ∅
Aνa(νb.e) = νb.Aνa(e) ∪Aa((a b)e), b 6= a.

Lemma 4.8 Dνa(e) = ∑Aνa(e).

17

4.4 Final Coalgebra

The nominal coalgebra (℘fs M, ε, δ, δν) is final among coalgebras for the Nom-
endofunctor K defined in (5). These are the coalgebras (X, obs, cont, contν) for
which X is a nominal set and obs, cont and contν are equivariant. Such a coal-
gebra can be viewed as an automaton with states X, transitions cont and contν,
and acceptance condition obs. The inputs to the automaton are elements of M.
Starting from a state s ∈ X, an element m ∈ M is accepted if Accept(s, m), where

Accept(s, ε) = obs(s) (9)
Accept(s, am) = Accept(conta(s), m) (10)

Accept(s, νa.am) = Accept(contνa(s), m), a#s. (11)

Clause (11) requires some explanation. We must choose a representative ele-
ment νa.am of the ≡-class such that a is fresh for s, so that contνa(s) will be
defined. It is always possible to find such an a, since the ≡-class is closed un-
der α-conversion and s has finite support. However, the result is independent
of the choice of a, as shown in part (ii) of the next lemma, so Accept(s, νa.am) is
well defined.

Lemma 4.9

(i) The acceptance function is equivariant:

Accept(πs, πm) = π(Accept(s, m)) = Accept(s, m).

(ii) If b#s and c#s, then

Accept(s, νb.bm) = Accept(s, νc.c(b c)m).

We do not explicitly require c#νb.bx in (ii); however, this is a consequence of (i)
and Lemma 2.1(v).

Proof. We prove (i) and (ii) by mutual induction on the length of the input
string. For the basis (i),

Accept(πs, πε) = obs(πs) = obs(s) = Accept(s, ε).

Case (i) for strings of the form bx or νb.bx depends on the induction hypothesis
(i) for strings x and case (ii) for νb.bx. Case (ii) for strings νb.bx depends on case
(i) for strings x.

Accept(πs, π(bx))
= Accept(πs, (πb)(πx)) = Accept(contπb(πs), πx)
= Accept(π(contb(s)), πx) = Accept(contb(s), x) = Accept(s, bx).

18

The induction hypothesis was applied in the next-to-last step.

Accept(πs, π(νb.bx)) = Accept(πs, ν(πb).(πb)(πx))
= Accept(contνπb(πs), πx), πb#πs (12)
= Accept(π(contνb(s)), πx), πb#πs
= Accept(contνb(s), x), b#s (13)
= Accept(s, νb.bx). (14)

We used (ii) in steps (12) and (14) for well-definedness, along with the fact that
freshness is equivariant, so that b#s iff πb#πs. The induction hypothesis (i) was
applied in step (13) for the shorter string x.

For case (ii), if b#s and c#s, apply (i) with π = (b c) on the shorter string x:

Accept(s, νb.bx) = Accept(contνb(s), x) = Accept((b c)contνb(s), (b c)x)
= Accept(contν(b c)b((b c)s), (b c)x)

= Accept(contνc(s), (b c)x) = Accept(s, νc.c(b c)x).

2

The unique coalgebra homomorphism from (X, obs, cont, contν) to the final
coalgebra is just the automata-theoretic language semantics:

Theorem 4.10 (Final coalgebra) The coalgebra (℘fs M, ε, δ, δν) is a final K-coalgebra.
The unique coalgebra homomorphism (X, obs, cont, contν) to the final coalgebra is
given by

LX : (X, obs, cont, contν)→ (℘fs M, ε, δ, δν) LX(s) = {m | Accept(s, m)}.

Moreover, the coalgebra homomorphism LExpA : Exp A/≡α → ℘fs M coincides with
the algebra homomorphism L : Exp A/≡α → ℘fs M defined in (4).

Proof. We have to check that for all e ∈ Exp A and a ∈ A,

(i) ε(LX(s)) = obs(s)

(ii) δa(LX(s)) = LX(conta(s))

(iii) δνa(LX(s)) = LX(contνa(s)), a#s

and LX is the unique map for which (i)–(iii) hold. The clauses (i)–(iii) are just
the acceptance conditions (9)–(11), respectively:

ε(LX(s)) = ε({m | Accept(s, m)}) = Accept(s, ε) = obs(s)

δa(LX(s)) = δa({m | Accept(s, m)}) = {x | ax ∈ {m | Accept(s, m)}}
= {x | Accept(s, ax)} = {x | Accept(conta(s), x)} = LX(conta(s)).

19

For (iii), assume a#s.

δνa(LX(s)) = δνa({m | Accept(s, m)}) = {x | νa.ax ∈ {m | Accept(s, m)}}
= {x | Accept(s, νa.ax)} = {x | Accept(contνa(s), x)}
= LX(contνa(s)).

One can show by induction on the length of ν-strings that x ∈ F(s) iff x ∈ LX(s)
for any other map F satisfying (i)–(iii), therefore LX is uniquely determined by
these properties.

Theorem 4.7 says that the algebra homomorphism L : Exp A/≡α → ℘fs M
defined in (4) satisfies properties (i)–(iii) for X = Exp A, therefore coincides
with LExpA. 2

A more standard construction of the final coalgebra computed via the final
sequence of the functor K [1] yields an equivalent presentation based on nor-
mal forms of ν-strings up to α-equivalence. However, this characterization is
more cumbersome algebraically, as it requires explicit α-conversion to define
sequential composition.

4.5 Automata Representation: Half of a Kleene Theorem

In this section we prove a theorem for NKA that relates the algebraic and coal-
gebraic structure. As noted in §4.4, a coalgebra can be regarded as an automa-
ton acceptor with states X, transitions cont, and acceptance condition obs. The
inputs to the automaton are elements of M. The state sets are nominal sets
and may be formally infinite, but still may be essentially finite in a sense to be
described next.

Following [3], we define the size of a coalgebra (X, obs, cont) to be the num-
ber of orbits of X under GA, where the orbit of s ∈ X is the set {πs | π ∈ GA}.
The orbit of s is the singleton {s} if supp s = ∅, otherwise it is infinite. The or-
bits partition X and determine an equivalence relation. The coalgebra is called
orbit-finite if the total number of orbits is finite.

Lemma 4.11 Let (X, obs, cont) be a coalgebra, s ∈ X, and a ∈ A.

(i) supp (contνa(s)) ⊆ {a} ∪ supp s.

(ii) If a ∈ supp s, then supp (conta(s)) ⊆ supp s.

(iii) If L(s) is uniformly finitely supported and m ∈ L(s), then supp m ⊆ supp s.

(iv) If a#s and L(s) is uniformly finitely supported, then conta(s) is a dead state (one
for which L(s) = ∅).

Proof. (i) Let π ∈ Fix({a} ∪ supp s). By (8),

π(contνa(s)) = contνπa(πs) = contνa(s),

20

thus π ∈ fix contνa(s). Since π ∈ Fix({a} ∪ supp s) was arbitrary, {a} ∪ supp s
supports contνa(s). Since supp (contνa(s)) is the least set supporting contνa(s),
supp (contνa(s)) ⊆ {a} ∪ supp s.

(ii) We have supp (conta(s)) ⊆ {a} ∪ supp s ⊆ supp s, the first inclusion by
the same argument as (i) and the second by the assumption a ∈ supp s.

(iii) By Lemma 3.1, supp m ⊆ supp L(s), and by Lemmas 2.1(v) and 4.9,
supp L(s) ⊆ supp s.

(iv) If m ∈ L(conta(s)), then am ∈ L(s), contradicting (iii). 2

Theorem 4.12 (Half Kleene) For every NKA expression e, there is a coalgebra X
with designated start state s such that LX(s) = L(e). The coalgebra has an orbit-
finite nondeterministic representation given by the Antimirov representation of the
Brzozowski derivatives of e.

Proof. The desired coalgebra is the subcoalgebra of (Exp A/≡α, E, D) gen-
erated by e. The designated start state is e. That this is correct is immediate
from Theorem 4.10. Orbit-finiteness of the Antimirov representation will fol-
low from the data representation to be developed in §5.1. 2

It is interesting that the Antimirov derivative gives an orbit-finite represen-
tation, whereas the Brzozowski derivative in general does not:

Example 4.13 Here is an example showing that the Antimirov derivatives of
an expression give an orbit-finite nondeterministic automaton, whereas the de-
terministic automaton given by the Brzozowski derivatives is not necessarily
orbit-finite. Consider the expression

e = (νa.a)∗(νa.a(νb.b)∗a).

This yields a nondeterministic automaton with

• states s0, s(a) for a ∈ A, t, and r corresponding to the subexpressions e,
(νb.b)∗a, 1, and 0, respectively;

• group action πs0 = s0, πs(a) = s(πa), πt = t, and πr = r;

• supports supp s0 = supp t = supp r = ∅ and supp s(a) = {a};

• observations obs(s0) = obs(s(a)) = obs(r) = 0 and obs(t) = 1;

• nondeterministic transitions contνa(s0) = {s0, s(a)} for a ∈ A, contνb(s(a)) =
s(a) for b#a, conta(s(a)) = t, and all other transitions going to a dead state
r (not shown).

s0 s(a) t
νa

νa

a

νb

21

This automaton is orbit-finite with four orbits, but the standard subset con-
struction would yield a non-orbit-finite deterministic automaton with a transi-
tion sequence

{s0}
νa−→ {s0, s(a)} νb−→ {s0, s(a), s(b)} νc−→ {s0, s(a), s(b), s(c)} νd−→ · · ·

corresponding to the Brzozowski derivative sequence

e νa−→ e + (νb.b)∗a

νb−→ e + (νb.b)∗b + (νb.b)∗a

νc−→ e + (νb.b)∗c + (νb.b)∗b + (νb.b)∗a νd−→ · · ·

The successive elements of these sequences have unboundedly large supports,
thus represent infinitely many orbits. 2

5 A Decision Procedure

5.1 Data Representation

We represent the Antimirov derivative in terms of spines. This representation
was used previously in [7, 14] and is also related to constructions of [2, 25].
Here we adapt it to the nominal setting by including the binding operator ν.

Roughly speaking, the spine related to an occurrence of a letter a in e is
obtained by collecting all the expressions appearing in e to the right of that
occurrence of a and all binders in whose scope that occurrence of a occurs.
Intuitively, the expressions appearing in e to the left of that occurrence of a
must be consumed before that occurrence of a can be consumed itself. The
spine represents the residual term that remains after that occurrence of a is
consumed.

The spines are defined inductively as follows:

R(e1 + e2) = R(e1) ∪ R(e2) R(e1e2) = R(e1){e2} ∪ R(e2)

R(e∗) = R(e){e∗} R(1) = R(0) = ∅ R(b) = {b}
R(νb.e) = νb.R(e).

The function R′ is defined in the same way except for the base case R′(b) = {1}:

R′(e1 + e2) = R′(e1) ∪ R′(e2) R′(e1e2) = R′(e1){e2} ∪ R′(e2)

R′(e∗) = R′(e){e∗} R′(1) = R′(0) = ∅ R′(b) = {1}
R′(νb.e) = νb.R′(e).

Lemma 5.1 The cardinalities of R(e) and R′(e) are at most the number of occurrences
of letters b ∈ A in e.

22

Proof. Easy induction on the definition. 2

Every element of R(e) is of the form

νa1.(νa2.(· · · (νan−1.(νan.aen)en−1) · · ·)e2)e1 (15)

and every element of R′(e) is of the form

νa1.(νa2.(· · · (νan−1.(νan.1en)en−1) · · ·)e2)e1 (16)

where n ≥ 0 and ei is either null or a subexpression of e. The occurrence of
a shown in (15) is the leftmost occurrence of a letter in the expression. This
letter is either bound by one of the νai or free. By α-renaming, we can assume
without loss of generality that the bound variables in each element of R(e) and
R′(e) are distinct and different from the free variables.

We now define two families of related sets S(e) and S′(e). These sets contain
all expressions obtained from some element of R(e) (respectively, R′(e)) by
deleting zero or more binders νb after α-conversion. Formally,

S(e1 + e2) = S(e1) ∪ S(e2) S(e1e2) = S(e1){e2} ∪ S(e2)

S(e∗) = S(e){e∗} S(1) = S(0) = ∅ S(b) = {b}
S(νb.e) = νb.S(e) ∪⋃

a(a b)S(e).

S′(e1 + e2) = S′(e1) ∪ S′(e2) S′(e1e2) = S′(e1){e2} ∪ S′(e2)

S′(e∗) = S′(e){e∗} S′(1) = S′(0) = ∅ S′(b) = {1}
S′(νb.e) = νb.S′(e) ∪⋃

a(a b)S′(e).

Thus every element of S(e) is of the form

νa1.(νa2.(· · · (νan−1.(νan.aen)en−1) · · ·)e2)e1 (17)

and every element of S′(e) is of the form

νa1.(νa2.(· · · (νan−1.(νan.1en)en−1) · · ·)e2)e1 (18)

where νai is either the binder νai or nothing, and ei is either null or a subex-
pression of e with some variables renamed. The occurrence of a shown in (17)
is the leftmost occurrence of a letter in the expression and would be the next
letter consumed by the derivative. This letter is either bound by one of the νai
or free. If free, the derivative Aa would simply delete that letter, giving (18).
If bound, the derivative Aνc would first α-convert the expression by applying
(a c), then delete the first letter c and its binder νc.

Unlike R(e) and R′(e), the sets S(e) and S′(e) are infinite. However, they
are orbit-finite, as each element of S(e) and S′(e) is obtained from an element
of R(e) or R′(e) by deleting some some subset of binders after α-conversion.
There are at most exponentially many subsets of binders that could be re-
moved, and every orbit contains a representative from the resulting set of ex-
pressions. Thus the number of orbits is at most exponential in the size of e.

23

Lemma 5.2 The maps S, S′, R, and R′ are equivariant.

Proof. Induction on the definition. The only slightly nontrivial case is νb.e.

S(π(νb.e)) = S(ν(πb).(πe))
= ν(πb).S(πe) ∪⋃

a(πa πb)S(πe)

= ν(πb).S(πe) ∪⋃
a π(a b)π−1π(S(e))

= π(νb.S(e)) ∪⋃
a π((a b)S(e))

= π(S(νb.e)).

2

Lemma 5.3 All derivatives of e are contained in S′(e), and S′(e) is closed under tak-
ing derivatives; that is,

(i) Aa(e) ⊆ S′(e);

(ii) Aνa(e) ⊆ S′(e);

(iii) if r ∈ S′(e), then Aa(r) ⊆ S′(e); and

(iv) if r ∈ S′(e), then Aνa(r) ⊆ S′(e).

Proof. (i) The proof is by induction on the structure of e.

Aa(e0 + e1) = Aa(e0) ∪Aa(e1) ⊆ S′(e0) ∪ S′(e1) = S′(e0 + e1)

Aa(e0e1) = Aa(e0){e1} ∪ Aa(e1) ⊆ S′(e0){e1} ∪ S′(e1) = S′(e0e1)

Aa(e∗) = Aa(e){e∗} ⊆ S′(e){e∗} = S′(e∗)

Aa(0) = Aa(1) = ∅ = S′(0) = S′(1)

Aa(b) ⊆ {1} = S′(b)

Aa(νb.e) = νb.Aa(e) ⊆ νb.S′(e) ⊆ S′(νb.e).

(ii) All cases are the same as in (i) except for b and νb.e. For b,

Aνa(b) = ∅ ⊆ {1} = S′(b).

For νb.e with b 6= a,

Aνa(νb.e) = νb.Aνa(e) ∪Aa((a b)e)

⊆ νb.S′(e) ∪ S′((a b)e)

= νb.S′(e) ∪ (a b)S′(e)

⊆ S′(νb.e).

(iii) If r ∈ S′(e0 + e1) = S′(e0) ∪ S′(e1), then either r ∈ S′(e0) or r ∈ S′(e1).
In either case, Aa(r) ⊆ S′(e0) ∪ S′(e1) = S′(e0 + e1).

24

If r ∈ S′(e0e1) = S′(e0){e1} ∪ S′(e1), then either r ∈ S′(e0){e1} or r ∈ S′(e1).
In the first case,

r = se1 ∧ s ∈ S′(e0)⇒ Aa(r) = Aa(s){e1} ∪ Aa(e1) ∧Aa(s) ⊆ S′(e0)

⇒ Aa(r) = Aa(s){e1} ∪ Aa(e1) ∧Aa(s){e1} ⊆ S′(e0){e1}
⇒ Aa(r) = Aa(s){e1} ∪ Aa(e1) ⊆ S′(e0){e1} ∪ S′(e1) = S′(e0e1).

In the second case, Aa(r) ⊆ S′(e1) ⊆ S′(e0e1).
If r ∈ S′(e∗) = S′(e)S′(e∗), then

r = se∗ ∧ s ∈ S′(e)⇒ Aa(r) = Aa(s){e∗} ∧ Aa(s) ⊆ S′(e)

⇒ Aa(r) = Aa(s){e∗} ⊆ S′(e){e∗} = S′(e∗).

The cases 0 and 1 cannot occur. For b,

r ∈ S′(b)⇒ r = 1⇒ Aa(r) = ∅ ⊆ {1} = S′(b).

For νb.e, suppose r ∈ S′(νb.e) = νb.S′(e) ∪ ⋃
c(c b)S′(e), with a 6= b. Either

r ∈ νb.S′(e) or r ∈ (c b)S′(e). In the first case,

r = νb.s ∧ s ∈ S′(e)⇒ Aa(r) = Aa(νb.s) = νb.Aa(s) ∧Aa(s) ⊆ S′(e)

⇒ Aa(r) = νb.Aa(s) ⊆ νb.S′(e) = S′(νb.e).

In the second case, if a = c,

r = (a b)s ∧ s ∈ S′(e)⇒ r = (a b)s ∧Ab(s) ⊆ S′(e)

⇒ Aa(r) = (a b)Ab(s) ⊆ (a b)S′(e) ⊆ S′(νb.e)

and if a 6= c,

r = (c b)s ∧ s ∈ S′(e)⇒ r = (c b)s ∧Aa(s) ⊆ S′(e)

⇒ Aa(r) = (c b)Aa(s) ⊆ (c b)S′(e) ⊆ S′(νb.e).

(iv) All cases are the same as in (iii) except for the case νb.e. For this case,
suppose r ∈ S′(νb.e) = νb.S′(e)∪⋃

c(c b)S′(e), where a 6= b. Either r ∈ νb.S′(e)
or r ∈ (c b)S′(e). In the first case,

r = νb.s ∧ s ∈ S′(e)⇒ Aνa(r) = Aνa(νb.s) = νb.Aνa(s) ∪Aa((a b)s)

∧ Aνa(s) ⊆ S′(e) ∧Ab(s) ⊆ S′(e)
⇒ Aνa(r) = νb.Aνa(s) ∪Aa((a b)s)

∧ νb.Aνa(s) ⊆ νb.S′(e) ∧Aa((a b)s) ⊆ (a b)S′(e)

⇒ Aνa(r) ⊆ νb.S′(e) ∪ (a b)S′(e) ⊆ S′(νb.e).

In the second case, we have r = (c b)s and s ∈ S′(e). If c 6= a,

r = (c b)s ∧ s ∈ S′(e)

⇒ r = (c b)s ∧Aνa(s) ⊆ S′(e)

⇒ Aνa(r) = Aνa((c b)s) = (c b)Aνa(s) ⊆ (c b)S′(e) ⊆ S′(νb.e).

25

If c = a and Aνa(r) is defined at all, then a#r and r = (a b)s, so b#s.

r = (a b)s ∧ s ∈ S′(e)

⇒ r = (a b)s ∧Aνb(s) ⊆ S′(e)

⇒ Aνa(r) = Aνa((a b)s) = (a b)Aνb(s) ⊆ (a b)S′(e) ⊆ S′(νb.e).

2

5.2 A Decision Procedure

Theorem 5.4 Equivalence of NKA expressions is decidable in deterministic exponen-
tial space.

Proof. Given an expression e, the Antimirov derivative determines a nomi-
nal nondeterministic coalgebra whose states are e and the spines S′(e). This is
an infinite set of states, but each element of S′(e) is obtained from an element
of S(e) by deleting the first occurrence of a letter, and each element of S(e) is
obtained from an element of R(e) by renaming and deleting some binders, thus
the set is orbit-finite.

As observed in §4.4, we can regard the Antimirov derivative structure as
represented by sets of spines. The Brzozowski derivative is a sum of elements
of the Antimirov derivative, each of which is a spine. Two expressions are
equivalent if the corresponding nondeterministic automata accept the same
language.

We now describe a nondeterministic procedure that looks for a violation of
bisimilarity between the two coalgebras corresponding to e1 and e2. The pro-
cedure guesses an input x ∈ Aν and verifies that it is accepted by e1 and not
by e2 (or vice versa, but assume the former without loss of generality). At any
point in time, it has a current spine of e1 (an element of S′(e1)) and a set of
spines of e2 (a subset of S′(e2)). The current spine s of e1 represents the cur-
rent state that the nondeterministic automaton corresponding to e1 would be
in after scanning an initial portion of the guessed input string x, and the set of
current spines r of e2 represent all possible states that the nondeterministic au-
tomaton corresponding to e2 could be in after scanning that same initial portion
of x. For each of the spines r of e2, the procedure maintains a partial matching
between the variables of s and those of r. The matching is determined by the
free variables of the original expressions, which must be paired in s and r, and
the free variables that have appeared by the elimination of a bound variable in
a contνa step, which are both a and which also must be paired. The nondeter-
ministic procedure accepts if ever the current state s of e1 is an accepting state,
that is, if obs(s) = 1, and all current states r of e2 are rejecting states, that is,
obs(r) = 0.

The exponential space bound on this procedure comes from the observation
that each spine can be represented in linear space, and if two current states r1,
r2 of e2 have the same partial matching with the current state s of e1 but are oth-
erwise the same up to renaming of free variables not paired with any variable

26

in s, only one of r1, r2 need be kept. The procedure will never take a transition
conta on one of those variables, because otherwise the machine corresponding
to e1 would reject by Lemma 4.11(iv). Thus there are only exponentially many
states of e2 that can correspond to the current state of e1 at any time. The actual
free variables themselves are not important, but only the partial matchings be-
tween the current state s of e1 and the current states r of e2. By renaming when
necessary, a pool of linearly many variables suffices.

The nondeterministic algorithm can be converted to a deterministic algo-
rithm using Savitch’s theorem. 2

The naive bound of exponential space may seem like a gross overestimate,
especially in light of Lemma 5.1. However, the following example shows that
it may be difficult to do better. Consider the behavior of the nondeterministic
decision procedure on two copies of the expression

νa1 . . . νan.(a1 + · · ·+ an)
na1a2 · · · an.

Say the procedure guesses the prefix (νa.a)n to try to separate the two copies of
the automaton. After scanning (νa.a)n, the first automaton will be in some state
b1b2 · · · bn, having appliedAνbi

for 1 ≤ i ≤ n. But the second automaton can be
in any one of n! inequivalent states bσ(1) · · · bσ(n), one for each permutation σ of
{1, . . . , n}, corresponding to the order in which the binders in the second copy
of the expression were eliminated. All these states of the second automaton
must be represented in the state of the nondeterministic procedure.

6 Conclusion and Open Problems

In this paper we have explored the coalgebraic theory of nominal Kleene alge-
bra. We have introduced a new family of semantic models consisting of sets
of nominal monoids and extended the coalgebraic structure of Kleene algebra
to the nominal setting using these models. We have developed nominal ver-
sions of the Brzozowski and Antimirov derivatives that accommodate bound
variables and are invariant with respect to α-conversion. We have proved a
theorem relating the algebraic and coalgebraic structure, namely that every ex-
pression gives rise to an equivalent automaton. We have used this relationship
to show that the equational theory can be decided in exponential space and
described an efficient data representation that is amenable to implementation.

This work raises several intriguing questions. Foremost among them is the
complexity of the equational theory. We have given a worst-case exponential-
space decision procedure. On the other hand, the best lower bound we have is
PSPACE-hardness, which follows from the PSPACE-completeness of the equiv-
alence problem for regular expressions [26]. We have not succeeeded in prov-
ing any tighter bounds, and we have no conjecture regarding the true complex-
ity of the problem.

Despite the high complexity of the worst-case upper bound, much like the
bisimulation-based algorithms for other KA-based systems [4, 5, 7, 22, 23], the

27

situation may not be so bad in practice. To actually attain the worst-case bound
would seem to require highly pathological examples that would be unlikely
to arise in practice. However, only implementation and experimentation can
confirm or refute this view. This would be an interesting direction for future
work.

Theorem 4.12 gives one direction of a Kleene theorem: expressions to au-
tomata. The converse is false, as the following example shows. Consider the
nominal coalgebra with states and group action

• s0(a) for all a ∈ A with π(s0(a)) = s0(πa),

• s1(a, b) for all a, b ∈ A, a 6= b with π(s1(a, b)) = s1(πa, πb), and

• s2 with πs2 = s2.

The transitions and observations are

contνb(s0(a)) = s1(a, b) obs(s0(a)) = 1
conta(s1(a, b)) = s0(b) obs(s1(a, b)) = obs(s2) = 0

for all a, b ∈ A. All other transitions go to the dead state s2.

s0(a)

s1(a, b)

s0(b)

s1(b, a)

νb a

νab

The coalgebra is orbit-finite with three orbits {s0(a) | a ∈ A}, {s1(a, b) | a, b ∈
A, a 6= b}, and {s2}. The supports are supp s0(a) = {a}, supp s1(a, b) = {a, b},
and supp s2 = ∅. The set of ν-strings accepted from state s0(a) is

{ε, νb.ba, νb.ba(νa.ab), νb.ba(νa.ab(νb.ba)), νb.ba(νa.ab(νb.ba(νa.ab))), . . .}

It can be shown using the normal form theorem of [15] that this set is not rep-
resented by any NKA expression, because it requires unbounded ν-depth.

Given that orbit-finite nominal automata are strictly more expressive than
NKA expressions, two questions arise:

1. Can we characterize the subclass of orbit-finite nominal automata that are
equivalent to NKA expressions? We conjecture that they are exactly those
automata accepting sets of ν-strings of bounded ν-depth, although we are
not sure how to characterize this class formally in a way that would lead
to a converse of Theorem 4.12.

2. Can we extend the syntax of expressions to capture sets of unbounded ν-
depth? The answer is yes: It is not difficult to show that orbit-finite nom-
inal automata are equivalent to orbit-finite systems of right-linear equa-
tions. For example, the system corresponding to the automaton above
would be

Xa = ε + νb.bYab Yab = aXb.

28

The set accepted by the automaton is the least solution of the system. This
gives a full Kleene theorem, but of course we are now left with the open
question of deriving proof rules for this new calculus and extending the
completeness result of [15].

3. Can we prove a Kleene theorem for the nominal DFA and NFA models
of Bojanczyk, Klin and Lasota [3]?

4. Can we use the coalgebraic setting to systematically develop a nominal
Chomsky hierarchy and (semi-)decision procedures for different classes
of languages?

The first two questions have an interesting interpretation in terms of the in-
tended application of NKA, which was originally proposed in [12] as a frame-
work for reasoning about dynamic allocation of resources. However, the ν-
operators in NKA expressions are statically scoped, so static may be the more
accurate adjective. The more expressive automata of [3, 8, 17, 19] and of this
paper may be the more appropriate vehicle for the study of dynamic allocation.

Acnowledgments

Thanks to Filippo Bonchi, Jamie Gabbay, Helle Hvid Hansen, Bart Jacobs, Tadeusz
Litak, Damien Pous, and Ana Sokolova for many stimulating discussions, com-
ments, and suggestions. This research was performed at Radboud University
Nijmegen and supported by the Dutch Research Foundation (NWO), project
numbers 639.021.334 and 612.001.113, and by the National Security Agency.

References
[1] Jiřı́ Adámek. On final coalgebras of continuous functors. Theor. Comput. Sci.,

294(12):3–29, February 2003.

[2] C. Allauzen and M. Mohri. A unified construction of the Glushkov, follow, and
Antimirov automata. MFCS 2006, LNCS 4162, 110–121.

[3] M. Bojanczyk, B. Klin, and S. Lasota. Automata theory in nominal sets. LMCS
10(3), 2014.

[4] F. Bonchi and D. Pous. Checking NFA equivalence with bisimulations up to con-
gruence. POPL 2013, 457–468.

[5] T. Braibant and D. Pous. Deciding Kleene algebras in Coq. LMCS 8(1:16):1–42,
2012.

[6] G. L. Ferrari, U. Montanari, E. Tuosto, B. Victor, and K. Yemane. Modelling fusion
calculus using HD-automata. CALCO 2005, LNCS 3629, 142–156.

[7] N. Foster, D. Kozen, M. Milano, A. Silva, and L. Thompson. A coalgebraic decision
procedure for NetKAT. POPL 2015, 343–355.

[8] N. Francez and M. Kaminski. Finite-memory automata. TCS 134(2):329–363, 1994.

29

[9] N. Francez and M. Kaminski. An algebraic characterization of deterministic regu-
lar languages over infinite alphabets. TCS 306(1–3):155–175, 2003.

[10] M. Gabbay and A. M. Pitts. A new approach to abstract syntax involving binders.
LICS 1999, 214–224.

[11] M. Gabbay. Foundations of nominal techniques: logic and semantics of variables
in abstract syntax. Bull. Symbolic Logic, 17(2):161–229, 2011.

[12] M. Gabbay and V. Ciancia. Freshness and name-restriction in sets of traces with
names. FoSSaCS 2011, LNCS 6604, 365–380.

[13] W. Gelade and F. Neven. Succinctness of the Complement and Intersection of
Regular Expressions. TACS 2008, Dagstuhl LIPIcs 1, 325–336.

[14] D. Kozen. On the coalgebraic theory of Kleene algebra with tests. Tech. Rep. http:
//hdl.handle.net/1813/10173, Cornell, March 2008.

[15] D. Kozen, K. Mamouras, and A. Silva. Completeness and incompleteness in nom-
inal Kleene algebra. Tech. Rep. http://hdl.handle.net/1813/38143, Cornell,
November 2014.

[16] A. Kurz, T. Suzuki, and E. Tuosto. A characterisation of languages on infinite
alphabets with nominal regular expressions. IFIP TCS 2012, LNCS 7604, 193–208.

[17] A. Kurz, T. Suzuki, and E. Tuosto. On nominal regular languages with binders.
FoSSaCS 2012, LNCS 7213, 255–269.

[18] U. Montanari and M. Pistore. History dependent automata. Tech. Rep. TR-11-98,
Computer Science, Università di Pisa, 1998.

[19] U. Montanari and M. Pistore. History-dependent automata: An introduction. SFM
2005, LNCS 3465, 1–28.

[20] M. Pistore. History Dependent Automata. PhD thesis, Università di Pisa, 1999.

[21] A. M. Pitts. Nominal Sets: Names and Symmetry in Computer Science, Cambridge Tracts
in Theoretical Computer Science 57, Cambridge University Press, 2013.

[22] D. Pous. Relational algebra and KAT in Coq, February 2013. Available at http:
//perso.ens-lyon.fr/damien.pous/ra.

[23] D. Pous. Symbolic algorithms for language equivalence and Kleene algebra with
tests. POPL 2015, 357–368.

[24] A. Silva. Kleene Coalgebra. PhD thesis, Radboud University Nijmegen, 2010.

[25] A. Silva. Position automata for Kleene algebra with tests. Scientific Annals of Com-
puter Science, 22(2):367–394, 2012.

[26] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time.
STOC 1973, 1–9.

A Isomorphism of AL and L

In this section we show that the interpretation L defined in §3.1 is isomorphic
to the alternative language interpretation AL presented in [15], which is a mi-
nor variant of the language interpretation of [12]. It was shown in [15] that the

30

http://hdl.handle.net/1813/10173
http://hdl.handle.net/1813/10173
http://hdl.handle.net/1813/38143
http://perso.ens-lyon.fr/damien.pous/ra
http://perso.ens-lyon.fr/damien.pous/ra

axiomatization of nominal Kleene algebra presented in [12] is sound and com-
plete for AL; thus ` e1 = e2 iff AL(e1) = AL(e2). The interpretation L gives an
alternative characterization of this model.

The interpretation AL was defined as follows. Let B = {p, q, . . .} be a
countably infinite set of atoms disjoint from A = {a, b, . . .}, and let GB be the
group of finite permutations of B. Metasymbols u, v, w, . . . represent strings in
(A ∪ B)∗ and FV(u) denotes the set of variables occurring in u (all of which
occur freely, as there are no ν-binders in (A∪ B)∗).

Let L denote the set of equivariant subsets of (A ∪ B)∗ with respect to GB ;
that is, sets A ⊆ (A∪ B)∗ such that πA = A for all π ∈ GB . The operations of
NKA are defined on L as follows:

AB = {uv | u ∈ A, v ∈ B, FV(u) ∩ FV(v) ∩ B = ∅}
A + B = A ∪ B A∗ =

⋃
k

Ak 0 = ∅ 1 = {ε}

νa.A = {(a p)u | u ∈ A, p ∈ B − FV(u)}, a ∈ A.

As shown in [15], the set L is closed under these operations.
We can interpret NKA expressions over A as elements of L. The inter-

pretation map AL : Exp A → L is the unique homomorphism with respect
to the above language operations such that AL(a) = {a} for a ∈ A. Note
that in this context, atoms p ∈ B do not appear in expressions, although
they do appear in their images under AL. For example, AL(νa.a) = B and
AL(νa.νc.abc) = {pbq | p, q ∈ B, p 6= q}.

Let Im AL ⊆ L and Im L ⊆ ℘ufs M denote the images of Exp A under AL
and L, repectively. We wish to show that Im AL and Im L are isomorphic. The
completeness result of [15] says that L : Exp A → Im L factors through Im AL
via AL and an epimorphism h : Im AL→ Im L:

ExpA

ImAL

Im LAL

L

h

We need only show that h is injective; that is, AL(e) is uniquely determined by
L(e). We show this in the next lemma.

Lemma A.1 AL(e) =
⋃
[x]∈L(e) AL(x).

Proof. The proof is by induction on e. The cases of +, ∗, 0, 1, and a ∈ A are
straightforward. For multiplication,

AL(e1e2) = {uv | u ∈ AL(e1), v ∈ AL(e2), FV(u) ∩ FV(v) ∩ B = ∅}
=

⋃
[x]∈L(e1)

⋃
[y]∈L(e2)

{uv | u ∈ AL(x), v ∈ AL(y), FV(u) ∩ FV(v) ∩ B = ∅}

=
⋃

[x]∈L(e1)

⋃
[y]∈L(e2)

AL(xy) =
⋃

[z]∈L(e1e2)

AL(z).

31

For ν,

AL(νa.e) = {(a p)u | u ∈ AL(e), p ∈ B − FV(u)}
=

⋃
[x]∈L(e)

{(a p)u | u ∈ AL(x), p ∈ B − FV(u)}

=
⋃

[x]∈L(e)

AL(νa.x) =
⋃

[y]∈L(νa.e)

AL(y).

2

We have shown

Theorem A.2 The structures Im AL and Im L are isomorphic.

It follows from the completeness result of [15] that ` e1 = e2 iff L(e1) =
L(e2).

32

	Introduction
	Background
	A Nominal Language Model
	Canonical Interpretation over A/

	Coalgebraic Structure
	Semantic Derivative
	Brzozowski Derivative
	Antimirov Derivative
	Final Coalgebra
	Automata Representation: Half of a Kleene Theorem

	A Decision Procedure
	Data Representation
	A Decision Procedure

	Conclusion and Open Problems
	Isomorphism of AL and L

