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We compute critical exponents of O(N)–models in fractional dimensions between two and four,
and for continuos values of the number of field components N , in this way completing the RG
classification of universality classes for these models. In d = 2 the N–dependence of the correlation
length critical exponent gives us the last piece of information needed to establish a RG derivation
of the Mermin–Wagner theorem. We also report critical exponents for multi-critical universality
classes in the cases N ≥ 2 and N = 0. Finally, in the large–N limit our critical exponents correctly
approach those of the spherical model, allowing us to set N ∼ 100 as threshold for the quantitative
validity of leading order large–N estimates.

Introduction

The understanding of universality – namely the inde-
pendence of the critical properties of a system from its
microscopic details – by means of the renormalization
group (RG) has been one emblematic example of the twist
of paradigm that such a technique has brought to mod-
ern physics. In Wilson’s general framework [1], the way
physics changes with respect to the energy scale is repre-
sented by a flow along a trajectory in a generalized theory
space, which is the space of all theories describing fluc-
tuations of a given set of degrees of freedom. Critical
phenomena arising in a physical system are understood
as described by theories that are fixed points of its RG
flow [1]. In this way different trajectories, corresponding
to different microscopic theories, which lie in the same
basin of attraction of a given fixed point, will describe
the same critical properties. Universality then tells us
that these are determined by few parameters, such as the
dimensionality, the symmetry group of the system and
the order of criticality. Each value of these parameters
defines a different universality class; classifying them is
tantamount to classifying all possible continuous phase
transitions that can occur in Nature.

Among the universal quantities characterising a phase
transition, a set of parameters which acts as a bridge
between theory and experiment is that of critical expo-
nents, which parametrize how certain measurable quan-
tities (such as specific heat, density, susceptibility and so
on) depend on temperature near a critical point. Being
universal observables, critical exponents are both a test
ground for theoretical methods and possible predictions
for, yet unobserved, phase transitions. Having a simple
mathematical tool to compute and predict these expo-
nents is thus an important theoretical and phenomeno-
logical task.

In this paper we compute the critical exponents of
O(N)–models in fractional dimensions between two and
four and for continuous values of the number of field
components N , starting from the basic principles of

Wilsonian RG in its modern functional realization [2, 3].
O(N)–models have many applications to low dimensional
systems: they can describe long polymer chains (N = 0),
liquid–vapor (N = 1), superfluid helium (N = 2), fer-
romagnetic (N = 3) and QCD chiral (N = 4) phase
transitions [3, 4].

The present work complements and completes the anal-
ysis and classification of universality classes of O(N)–
models made in [5] with the dependence of critical ex-
ponents ν, α, β, γ, δ on d and N , and provides as well
the last piece of information needed to give a RG proof
the Mermin–Wagner–Hohenberg (MWH) theorem [6, 7].
We also compute the critical exponents for many new
N ≥ 2 universality classes describing multi-critical mod-
els in fractional dimension 2 ≤ d ≤ 3. We remark that
the critical exponents that we compute are observables
for any value of d and N and as such are here first re-
ported. We also complement the analysis of the possible
multi-critical phases of polymeric systems, as found in our
previous work, by giving the critical exponents associated
to these phase transitions. Thus, if these phases can be
realised in some system, these can be seen as predictions
for parameters yet to be measured.

Scaling solutions and η

Our tool will be the running effective potential Uk(ρ),
which is a function of the O(N)–invariant ρ = 1

2ϕ
2, for

a constant field ϕ. In terms of dimensionless variables
Ũk(ρ̃) = k−dUk(ρ), with ρ̃ = k−(d−2+η)ρ, a scaling solu-
tion ∂tŨ∗(ρ̃) = 0 satisfies the following ordinary differen-
tial equation [2]:

−(d− 2 + η)ρ̃ Ũ ′∗ + d Ũ∗ =

cd(N − 1)
1− η

d+2

1 + Ũ ′∗
+ cd

1− η
d+2

1 + Ũ ′∗ + 2ρ̃ Ũ ′′∗
, (1)

where c−1d = (4π)d/2Γ(d/2 + 1). The anomalous dimen-
sion η fixes the scaling properties of the field at a partic-
ular fixed point; to lowest order its value is given by [3]:
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Figure 1: Correlation length critical exponent ν as a function
of d between two and three for N = 1, 2, 3, 4, 5, 10, 100. In the
inset we show the critical exponent in the range 3 ≤ d ≤ 4.

η = 4cdρ̃0Ũ
′′
∗ (ρ̃0)2/[1+2ρ̃0Ũ

′′
∗ (ρ̃0)]2 , with ρ̃0 the absolute

minimum of the fixed point potential Ũ ′∗(ρ̃0) = 0.

Every solution of (1), together with its domain of at-
traction, represents a differentO(N) universality class [5].
For every d and N one finds a discrete set of solutions cor-
responding to multi-critical potentials of increasing order,
i.e. with i minima, which describe multi-critical phase
transitions (in which one needs to tune multiple param-
eters to reach the critical point). For each of these it is
possible to obtain the anomalous dimension ηi(d,N) (we
define η ≡ η2) as a function of d and N , by means of
which we can follow the evolution through theory space
of the fixed point representing the i–th multi-critical po-
tential [8].

The analysis presented in [5] revealed that for d > 4
and for any N , in accordance with the Ginzburg criterion,
one finds only the gaussian fixed point (i = 1). (See [9]
for a discussion on the possible existence of non–trivial
universality classes in d ≥ 4 raised by [10]). Starting
at d = 4, the upper critical dimension for O(N)–models,
the Wilson–Fisher (bi-critical) fixed points (i = 2) branch
away from the gaussian fixed point. When d = 3 these
fixed points describe the known universality classes of the
Ising, XY, Heisenberg and other models. Approaching
d = 2 one clearly observes that only theN = 1 anomalous
dimension continues to grow: for all other values of N ≥
2 the anomalous dimension bends downward to become
zero exactly when d = 2. As explained in [5], this non-
trivial fact, not evident from the structure of equation (1)
alone, is the manifestation of the MWH theorem.

We now complement this analysis with the results for
the correlation length critical exponents νi(d,N) as a
function of d and N . We obtained results for the first
several multi-critical universality classes i = 2, 3, 4, 5, ....
Here we will only report in detail the analysis for the bi-
critical and tri-critical cases (i = 2, 3), and briefly com-
ment on the other multi-critical cases.

Eigen–perturbations and ν

The correlation length exponent νi is related to the
greatest negative (IR repulsive) eigenvalue y1,i of the
linearized RG transformation by νi = 1/y1,i (we define
ν ≡ ν2). In order to calculate it, we will use the eigen–
perturbation method described in [11]. As a starting
point, we expand the dimensionless effective potential as
follows:

Ũk = Ũ∗(ρ̃) + ε ũk(ρ̃) eyt ,

where Ũ∗(ρ̃) is a solution of the fixed point equation (1)
and ũk(ρ̃) is a perturbation around the solution whose
eigenvalue is y. Substituting this expression into the flow
equation, and considering only terms of first order in ε,
we obtain an equation for the perturbation:

(d+ y)ũk(ρ̃)− (d− 2 + η)ρ̃ ũ′k(ρ̃) =

−cd(N − 1)

(
1− η

d+ 2

)
ũ′k(ρ̃)

(1 + Ũ ′∗(ρ̃))2

−cd
(

1− η

d+ 2

)
ũ′∗(ρ̃) + 2ρ̃ ũ′′∗(ρ̃)

(1 + Ũ ′∗(ρ̃) + 2ρ̃ Ũ ′′∗ (ρ̃))2
. (2)

In order to solve this equation we need two initial con-
ditions. The first is obtained by noting that the per-
turbation equation (2) is linear, so we can require the
normalization condition ũk(0) = 1, while the second one
is imposed on ũ′k(0) form continuity at zero field:

(y + d)ũk(0) = −cd

(
1− η

d+2

)
N

(1 + Ũ ′∗(0))2
ũ′k(0) .

It should be noted that in the special case N = 0 the
continuity at zero field is given by ũk(0) = 0 and then
the normalization condition should be imposed on the
first derivative of the perturbation ũ′k(0) = 1.

A generic solution of equation (2) in the ρ → ∞ limit
behaves at leading order as:

ũk(ρ̃) = a(y)ρ
(d−y)

(d−2+η) + b(y)eCρ
2d

d−2+η
−1

,

where a(y), b(y) are two functions of the eigenvalue y and
C is a constant depending on d and η. This shows that in
the infinite field limit, the solution is a linear combination
of power-law and exponential diverging parts [11]. In
order to find the discrete set of eigenvalues that we need,
we have to require the solution to grow no faster than a
power-law, so the condition is just b(y) = 0.

Using this condition we found just one IR repulsive
eigenvalue for the bi-critical fixed point, two for the tri-
critical fixed point, three for the tetra-critical fixed point
and so on. In this way we were able to construct the
curves shown in Figures 1, 2, 4 and 5.

The proliferation of eigenvalues is due to the fact that
the i–th universality class has i−1 IR repulsive directions
in theory space, and thus we have i − 1 solutions with
negative eigenvalue in the perturbation equation (2). In
the following we will denote as yj,i the j–th eigenvalue of
the i–th universality class.
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As was already observed in [5], the vanishing of the
anomalous dimension, when combined with the behaviour
of the νi exponents, implies that there are no continuous
phase transitions for N ≥ 2 in d = 2. Consistently with
this argument, here we find that only the N = 1 model
has finite correlation length exponent in two dimensions,
in all other cases, N ≥ 2, ν blows up as d → 2. This
allows us to distinguish the spherical model, related to
the N → ∞ limit [12], from the gaussian model, both
having η = 0. In the N → ∞ limit instead we recover
the known exact relation ν(d,∞) = 1

d−2 [13].
Figure 2 shows η and y1,2 = 1/ν as function of N in the

interval between −2 ≤ N ≤ 2.5, for the two cases d = 2
and d = 3. The critical exponents are continuous in the
whole range and in particular around N = 0; this is an
indication that the N → 0 limit, relevant to the problem
of self avoiding random walks (SAW) [14], is well defined.

These curves represent a strong confirmation of the
MWH theorem: for N ≥ 2 both η(2, N) and y1,2(2, N)
vanish, while in d = 3 they have finite values; thus O(N)–
models with continuous symmetries cannot have a phase
transition in two dimensions. We remark that both ex-
ponents are necessary to distinguish between the case of
no phase transition, where we have seen both exponents
vanish, and the N =∞ case where, for example η(3,∞)
vanishes but y1,2(3,∞) attains a finite non–mean field
value. Our computation of ν(d,N) thus completes the
RG derivation of the MWH theorem started in [5] with
the analysis of η(d,N). In the limit N → −2 both expo-
nents attain their mean field values (namely η = 0 and
ν = 1/2), where indeed the model is know to have gaus-
sian critical exponents in both dimensions [15].

Our functions η(d, 1) and ν(d, 1) can be compared with
results from the bootstrap approach [16]. The anoma-
lous dimension compares fairly well considering that our
computation is based on the solution of a single ODE,
while the correlation length critical exponent is slightly
overestimated for d in the proximity of two. It will be in-
teresting to have bootstrap results for the N > 1 cases in
dimension other than three [17] and in particular to see
the emergence of the MWH theorem in this approach.

Finally, to our knowledge, our results are the only one
available in the literature regarding the full form of the
functions η(d,N) and ν(d,N), functions that are both
universal and in principle experimentally accessible for
any value of d and N .

Scaling relations and α, β, γ, δ

Having obtained ν and η as a function of d and N , we
can now use the standard scaling relations to obtain the
other critical exponents:

α = 2− νd β = ν
d− 2 + η

2

γ = ν(2− η) δ =
d+ 2− η
d− 2 + η

. (3)

Our results are shown in Figure 3 for 2 ≤ d ≤ 4 and for
N = 1, 2, 3, 4, 5, 10, 100.

ηd=2

ηd=3

1/νd=3

1/νd=2

�2 �1 0 1 2
0.0

0.5

1.0

1.5

2.0

N

Figure 2: Critical exponents η and y1,2 = 1/ν as a function
of N in two and three dimensions. The fact that the two
dimensional curves are zero for N ≥ 2 is the manifestation of
the MWH theorem.

The first thing we notice is that in the large–N limit
we smoothly recover the critical exponents of the spher-
ical model [12] α = 0, β = 1

2 , γ = 2
d−2 and δ = d+2

d−2 .
Our results indicate that the N = 100 case is perfectly
approximated by the spherical model, while already at
N = 10 deviations from this limit are appreciable. This
shows that, for the regards of computing critical quan-
tities, leading large–N estimates are quantitatively good
only for N of order 102 or larger [18].

For N = 1 and d = 2 our results can be compared
with the known exact Ising critical exponents found by
Onsager [19], which are ηex = 0.25, νex = 1, αex = 0,
βex = 0.125, γex = 1.75 and δex = 15. Our results are
ν = 1.33, η = 0.23, α = −0.65, β = 0.15, γ = 2.34 and
δ = 16.12.

Quantitative agreement is not excellent, as expected
by the simplicity of our approach, based entirely on the
solution of a single ODE (1) and the relative eigenvalue
problem (2). Still, the insights furnished by our study are
very valuable, since they offer a complete qualitative, and
almost quantitative, picture of the theory space of O(N)–
models as a function of both d and N . No other method,
to our knowledge, has a similar versatility. In any case,
once qualitative understanding has been achieved, one
can obtain arbitrarily good quantitative estimates by re-
sorting to higher orders of derivative expansion [20], of
which equation (1) represents just the zeroth order.

It is possible to find a better ν value in the N = 1 case
using a different definition for the anomalous dimension
[8] rather than the one we used [5]. This definition, which
is strictly valid only in the N = 1 case, gives a worse value
for η ' 0.4, but a much better result for ν = 1.01.

In d = 3 our N = 1 results are ν = 0.65 and η = 0.044,
to be compared with the best known results ν = 0.63
and η = 0.036 [21, 22]. As we see the agreement is much
better. This is due to the fact that the derivative expan-
sion can be considered as an expansion in terms of the
anomalous dimension: the error we commit will then be
of the order of the anomalous dimension, which is smaller
in d = 3 than in d = 2. As N grows quantitative esti-
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Figure 3: Critical exponents α, β, γ, δ of the bi-critical (Wilson–Fisher) universality class for N = 1, 2, 3, 4, 5, 10, 100. The
N = 1 curves reach a distinguished value at d = 2, while the N = 100 curve is practically equivalent to the exact large–N
spherical model limit (represented by dashed lines). The curves for all the other values of N interpolate between the two.

mates become better; we made comparisons in the cases
N = 2, 3, 4 and higher and we found good agreement with
best known values [21].

Tricritical universality class

In this case we have two IR repulsive eigenvalues of the
linearized flow, both shown in Figure 4 for 2 ≤ d ≤ 3, and
N = 1, 2, 3, 4. The exponent y1,3 = 1/ν3 is inverse corre-
lation length exponent; indeed at the upper tri-critical di-
mension, dc,3 = 3, it reaches its mean field value y1,3 = 2.
When N = 1 the exponent does not depart so much from
the mean field result as in the standard bi-critical case.
The d = 2 value we obtain is y1,3 = 1.90 to be compared
with the exact result [23] yex1,3 = 1.80, both rather close to
the mean field value. In the case of continuous symme-
tries (N ≥ 2) the tri-critical universality class disappears
in d = 2, and the y1,3 exponents correctly returns to their
mean field values for every N .

The y2,3 exponent, instead, describes the divergence
of the correlation length as a function of an additional
critical parameter. At the upper tri-critical dimension
the mean field result is y2,3 = 1. When N = 1 we find
in two dimensions y2,3 ' 0.4 which should be compared
with the exact value [23] yex2,3 = 0.8. In this case the

agreement is rather low, but this is not surprising since
we know that the LPA′ approximation is rather ineffi-
cient in d = 2. However it should be noted that even if
not quantitatively correct, these results can be used to
evaluate the crossover exponent φ =

y2,3
y1,3

. In d = 2 this
gives φ ' 0.2 which, despite the quantitative error, gives
a much better estimation than the ε–expansion, which
provides a negative value for this exponent at order ε2
[24]. For continuous symmetries, N ≥ 2, y2,3 vanishes in
d = 2, in the same way as the exponent y1,2 does in the
bi-critical case.

Higher multi-critical universality classes

The behaviour of the tri-critical case can be general-
ized to the other multi-critical universality classes. For
these classes with i > 3, we have that at the upper criti-
cal dimension, dc,i = 2+ 2

i−1 [8], all the i−1 IR repulsive
eigenvalues attain their mean field values. The largest
one will always be y1,i = 2, as in the standard bi-critical
case, with all the others having a mean field value smaller
than 2. For N ≥ 2 all the exponents, but the lowest one,
will have different values as a function of d < dc,i, all
remaining pretty close to the mean field value, which is
eventually recovered in d = 2. Conversely the lowest
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Figure 5: Critical exponents in the N = 0 case. In the main
plot are shown the values of νi in the range 2 ≤ d ≤ 3 for
the (from the bottom) bi-critical, tri-critical, tetra-critical and
penta-critical universality classes, corresponding respectively
to i = 2, 3, 4, 5. In the inset the corresponding values of ηi are
reported (in inverted order, from top to bottom).

eigenvalue will decrease monotonically until it vanishes
in d = 2. For N = 1 instead, all the multi-critical uni-
versality classes will still exist in d = 2 and thus all the
exponents will reach a finite non–mean field value, which
will be given by the relative CFT result.

The N = 0 case

Multi-critical scaling solutions are also found for N =
0, which survive in infinite number when d → 2 [5]. A
plot of ηi and νi for the first four universality classes
i = 2, 3, 4, 5 is shown in Figure 5; these are numerically
very similar to those of theN = 1 cases (see [5] and Figure
1 for the bi-critical class). This was indeed expected,
judging from Figure 2.

In d = 2 the exact results for (bi-critical) SAW [25],

which correspond to the N = 0 limit of O(N)–models
[14], together with scaling relations give: ηex = 5/24 '
0.208, νex = 3/4 = 0.75, αex = 0.5, βex = 5/64 ' 0.078,
γex = 43/32 ' 1.344, δex = 91/5 ' 18.2. We find a good
agreement: η = 0.232, ν = 0.801, α = 0.398, β = 0.093,
γ = 1.416, δ = 16.24. In d = 3 we can compare with
the Monte Carlo results [4]: ηMC = 0.028, νMC = 0.587,
αMC = 0.239, βMC = 0.302, γMC = 1.157, δMC = 4.837.
We find again a reasonably good agreement: η = 0.04,
ν = 0.597, α = 0.210, β = 0.310, γ = 1.169, δ = 4.769.
From these comparisons we see that the N = 0 estimates
are better than the N = 1 estimates, since also the N ≥
2 estimates are so, this indicates that the (bi-critical)
Wilson–Fisher universality class is the one for which our
estimates are poorer.

We are not aware of any known result regarding
multi-critical phase transitions of polymeric systems,
or any other model that belongs to one of the N = 0
multi-critical universality class. Our estimates for the
critical exponents are given in Figure 5 and to our
knowledge these result are novel predictions: it will be
interesting to find physical systems or theoretical models
described by these universality classes to test them.

Conclusions

In this paper we reported the computation of critical
exponents of O(N) universality classes as a function of
the dimension and of the number of field components.
The correlation length critical exponent ν was computed
by studying the eigenvalue problem obtained linearizing
the RG flow of the running effective potential around
the scaling solutions found in [5], representing the O(N)
multi-critical fixed point theories. From this and the pre-
vious knowledge of the anomalous dimensions, all the re-
maining exponents α, β, γ, δ were found using scaling
relations.

In particular we displayed the critical exponents for
the bi-critical (Wilson–Fisher) and tri-critical phase tran-
sitions for general d and N . Another result which is
new to our knowledge are the critical exponents for the
multi-critical classes in the N → 0 limit. These, via the
De Gennes correspondence [14], are universal, observable
quantities which can be associated to possible new phases
of polymeric systems. To the best of our knowledge, this
physics is yet to be observed.

One interesting feature which is worth mentioning is
that there is a correspondence between critical exponents
of models with short–range interactions in fractional di-
mension and models with long–range interactions in in-
teger dimension [26]. This means that our curves η(d,N)
and ν(d,N) have direct physical interpretation, not only
for systems in fractional dimensions, but as describing the
critical behaviour of models with long–range interactions
in two or three dimensions. In this case our universal re-
sults could be indirectly tested in the near future, both by
numerical simulations and laboratory experiments. Fur-
ther details on this correspondence can be found in [26].

By computing the function ν(d,N) we provided the
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information necessary to complete the RG proof of the
Mermin–Wagner–Hohenberg theorem, as put forward in
our previous work [5]. This constitutes a first important
example of how one can use RG equations to give pre-
cise statements on how universality classes depend on di-
mension and symmetry group parameters, a general and
fundamental problem whose solution has important ap-
plications in physical model building in both condensed
matter and high energy physics.

We conclude by stressing that here we explored just
the simplest realization of our method and this alone

allowed a complete qualitative understanding of O(N)
universality classes. We believe that its numerical re-
sults, where not fully satisfactory, can be fairly improved
in future extensions along the lines explained in the
text, and will ultimately lead to a definitive quantita-
tive understanding of critical properties of O(N)–models.
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