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Abstract.

Accurate investigations of quantum level energies in molecular systems are shown

to provide a test ground to constrain the size of compactified extra dimensions.

This is made possible by the recent progress in precision metrology with ultrastable

lasers on energy levels in neutral molecular hydrogen (H2, HD and D2) and the

molecular hydrogen ions (H+
2 , HD+ and D+

2 ). Comparisons between experiment and

quantum electrodynamics calculations for these molecular systems can be interpreted

in terms of probing large extra dimensions, under which conditions gravity will become

much stronger. Molecules are a probe of space-time geometry at typical distances

where chemical bonds are effective, i.e. at length scales of an Å. Constraints on

compactification radii for extra dimensions are derived within the Arkani-Hamed-

Dimopoulos-Dvali framework, while constraints for curvature or brane separation are

derived within the Randall-Sundrum framework. Based on the molecular spectroscopy

of D2 molecules and HD+ ions, the compactification size for seven extra dimensions (in

connection to M-theory defined in 11 dimensions) of equal size is shown to be limited

to R7 < 0.6µm. While limits on compactification sizes of extra dimensions based on

other branches of physics are compared, the prospect of further tightening constraints

from the molecular method is discussed.
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1. Introduction

A standard description of the World is usually presented in terms of the observable

3+1 spatio-temporal dimensions. At the same time string theories have been developed,

seeking to produce a consistent description of the Standard Model of physics including

the phenomenon of gravity, which appear to be most consistent if large numbers of

dimensions are postulated. A 26-dimensional space-time was deemed necessary for

bosonic strings [1] and a ten-dimensional one for type-II [2, 3] and heterotic strings [4].

The latter theories are closely related to a mysterious theory called M-theory, which

lives in 11 dimensions [5]. In contrast, classical physics requires 3 spatial dimensions,

e.g. to accommodate Newton’s inverse square law as argued already by Immanuel Kant.

Ehrenfest has shown that atoms only exhibit stable orbits in a 3-dimensional space [6].

These contradictions between requirements from classical and quantum physics for a

3-dimensional space and the possibility of a theory involving higher dimensions were

already resolved in 1926 by Klein invoking the concept of compactification [7].

In the present study the accurate results from precision measurements on molecules

are exploited to constrain existing theories on higher dimensions. For molecular systems,

state-of-the-art quantum level calculations of the molecular ions H+
2 , HD

+, and D+
2 ,

all fundamental three-particle Coulomb systems, have reached the precision that the

uncertainty becomes limited by the precision at which values of the fundamental

mass ratios mp/me and mn/mp are known [8, 9, 10], although the recently improved

determination of mp/me [11] demonstrates active progress on the experimental side.

While experiments on the ro-vibrational spectrum of the H+
2 isotopomer are still under

way [12] the small dipole moment of the HD+ isotopomer has enabled the accurate study

of electric-dipole-allowed transitions in various bands [13, 14, 15].

In recent years great progress has also been made on the calculation of level energies

in the neutral hydrogenic molecules. Accurate Born-Oppenheimer energies have been

calculated for the electronic ground state of H2, HD and D2 [16], as well as non-

adiabatic interactions [17, 18] and relativistic and quantum electrodynamical (QED)

corrections [19, 20]. Now a full set of ro-vibrational level energies of all quantum states up

to the dissociation limit is available for all three isotopomers [21, 22]. These calculations

on the ground electronic quantum levels were tested in experiments measuring the

dissociation limits of H2 [23], D2 [24], and HD [25]. Further they were compared to

experimental values for the fundamental vibrational splitting in H2 and the hydrogen

isotopomers [26, 27], to a measurement of the first overtone in H2 [28, 30] and D2 [29],

a measurement of the second overtone in H2 [31, 32], and measurements of highly

excited rotational levels in H2 [33]. The results from the variety of experimental

precision measurements on both the ionic and neutral hydrogen molecules are generally

in excellent agreement with the QED-calculations, within combined uncertainty limits

from theory and experiment.

The agreement between experiment and first-principles calculations on quantum

level energies of molecules has inspired an interpretation of these data that goes
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beyond molecular physics. Since weak, strong and (Newtonian) gravitational forces

have negligible contributions to their quantum level structure, electromagnetism is the

sole force acting between the charged particles within light molecules, and QED is the

fully-encompassing framework to perform calculations. This makes it possible to derive

bounds on possible fifth forces between hadrons from molecular precision experiments

compared with QED-calculations [34, 35].

Theories of higher dimensions were developed with the goal to resolve the hierarchy

problem, i.e. the vast difference of scales between that of electro-weak unification (1

TeV) and that of the Planck scale (1016 TeV), where gravity becomes strong. By

permitting the leakage of gravity into higher dimensions while keeping the particles

and the three forces of the Standard Model in 3+1 dimensions, and invoking a

compactification range for the extra dimensions exceeding 3+1, two different testable

theories were phrased by Arkhani-Hamed, Dimopoulos, and Dvali [36] and by Randall

and Sundrum [37, 38]. The mathematical formalisms of these theories can be applied to

molecular physics test bodies, from which constraints on the compactification distances

can be deduced for the former, while constraints on the brane separation or curvature

can be derived for the latter. That is the subject of the present paper.

2. The ADD-model

It is the intention of the theory formulated by Arkani-Hamed, Dimopoulos, and

Dvali [36], referred to as ADD-theory, to establish an effective Planck scale to coincide

with the electro-weak scale by allowing gravity to propagate in extra dimensions. The

three forces of the Standard Model, tested at very short distances in particle and atomic

physics experiments, are considered to act locally within a 3-brane (3 spatial dimensions

and a time dimension) embedded in a higher dimensional bulk, where gravity may act

allowing for gravitons to escape. By this means in ADD the hierarchy problem is

nullified, and the so-called desert range between the electro-weak scale (MEW) of 1 TeV

and the Planck scale (MPl) of 10
16 TeV avoided. The extension of the extra dimensions

is necessarily limited, in the case of flat metrics considered in ADD, since experiments of

the Cavendish-type have proven that gravity obeys the Newtonian 1/r potential beyond

the range of 1 cm [39]. Hence, the extra dimensions are considered to be compactified

within a range parameter Rn. While in principle the extra dimensions could exhibit

differing range parameters, in the ADD-formalism and in the present analysis such

difference is not made.

The Newtonian gravitational potential may be written as:

VN(r) = −G
m1m2

r
= −

m1m2

M2
Pl

1

r
h̄c (1)

with the Planck mass defined asM2
P l = h̄c/G in SI units. In the following discussions, we

adopt the natural units h̄ = c = 1 and drop the (h̄c)-factor in the potentials. The extra

n spatial dimensions proposed in the ADD theory result in a modification of Newtonian
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gravity, for distances shorter than the compactification length range, that is consistent

with Gauss law:

VADD = −
m1m2

Mn+2
(4+n)

1

rn+1
, (2)

where the subscript 4 represents the known (3 + 1) spacetime dimensions, and

M(4+n) is the full higher-dimensional Planck mass. For separations larger than the

compactification length, r > Rn, the ADD potential should be in correspondence with

the Newtonian 1/r-form

VADD = −
m1m2

Mn+2
(4+n)(Rn)n

1

r
. (3)

To be more precise, (Rn)
n should be the compactified volume of the extra dimensions Vn,

thus a factor of order unity might be included for a specific compactification geometry.

The Planck mass MPl is then related to the higher-dimensional mass M(4+n) via:

M2
Pl = Mn+2

(4+n)(Rn)
n. (4)

Thus the fundamental mass M(4+n) may still be small and MPl becomes large due to the

compactified volume of extra dimensions. Arkani-Hamed et al. have shown that if the

fundamental mass is taken as MEW one extra dimension would have a range of order

1010 km to account for the weakness of gravity. This is incompatible with experimental

evidence. But for two extra dimensions Rn would be of sub-millimeter size [36], thus at

a range where Newtonian gravity is not firmly tested. In our present study we will not

set a certain energy scale, and in particular we do not assume that M4+n ∼ MEW. Our

goal is to constrain Rn from molecular physics experiments without theoretical prejudice

regarding the fundamental mass scale.

While dealing with molecules the unit attraction of gravity can be chosen as that

between two protons and a dimensionless gravitational coupling strength is defined as:

αG = Gm2
p/h̄c (5)

Note that this particular choice of the gravitational coupling constant is equivalent to

specifying αG = (mp/MPl)
2 = 5.9× 10−39. Then the Newtonian attraction between two

particles consisting of N1 and N2 protons or neutrons (mn ≃ mp is adopted) can be

written as:

VN(r) = −αGN1N2
1

r
(6)

From Eq. (4), the ADD-potential of Eq. (2) within the compactification radius r < Rn

may be rewritten as:

VADD(r) = −αGN1N2R
n
n

1

rn+1
, (7)

while this potential reduces to normal Newtonian gravity VN for the range outside the

compactification length range r > Rn.
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HD+ v=0, J=2

H2 v=1, J=0

H2 v=0, J=0
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Figure 1. Wave functions for H2 in the electronic ground state with v = 0, J = 0 and

v = 1, J = 0, and for the HD+ v = 0, J = 2 quantum state.

For molecules this gravitational potential has an effect on the level energy of a

molecular quantum state with wave function Ψ(r), to be written as an expectation

value:

〈VADD〉 = − αGN1N2

[
∫ ∞

Rn

Ψ∗(r)
1

r
Ψ(r)r2dr

+Rn
n

∫ Rn

0
Ψ∗(r)

1

rn+1
Ψ(r)r2dr

]

(8)

Note that the wave functions are given along a single coordinate r, i.e. the vibrational

coordinate, that probes the gravitational forces between nucleons. Here the nuclear

displacement is separated from electronic motion and the wave function Ψ(r) represents

the probability that the nuclei in the molecule are at internuclear separation r. The

first integral term represents the ordinary gravitational attraction, which is for protons

8× 10−37 times weaker than the electrostatic repulsion, and can therefore be neglected.

The second integral represents the effect of modified gravity and is evaluated using

accurate wave functions for H2. The wave functions of the H2 ground electronic state

for the v = 0 and 1 levels are shown in Fig. 1. In practice, the integration is performed

up to r = 10 Å since the wave function amplitude is negligible beyond that. Also at

shorter distances r < 0.1 Å the wave function amplitude becomes negligible, for which

reason the second integral in Eq. (8) converges without additional assumptions. The

HD+ v = 0, J = 2 ground electronic state wave function is also displayed in Fig. 1

showing the larger internuclear distance of the ion with respect to the neutral.

For transitions between quantum states Ψ1 and Ψ2, as in spectroscopic transitions
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in molecules, a differential effect must be calculated:

〈∆VADD(n,Rn)〉 = −αGN1N2R
n
n

[〈

Ψ1

∣

∣

∣

∣

1

rn+1

∣

∣

∣

∣

Ψ1

〉

−
〈

Ψ2

∣

∣

∣

∣

1

rn+1

∣

∣

∣

∣

Ψ2

〉]

(9)

This equation represents the expectation value for a high-dimensional gravity

contribution to transitions in molecules. Here the ADD-expectation value is written

explicitly as a function of the two relevant parameters: the number n of extra spatial

dimensions and the compactification scale Rn. From Eq. (9), it is clear that a stronger

effect can be expected if the difference in wave functions of the two states Ψ1 and Ψ2 is

greater. For this reason, measurements on the dissociation limit in molecules, where Ψ1

is lowest energy bound state and Ψ2 is the non-interacting two-atom limit at r = ∞,

are the most sensitive probes.

3. The Randall-Sundrum models

Let us now consider the Randall-Sundrum scenarios, RS-I and RS-II, to approach the

physical description of extra dimensions in an alternative manner [37, 38]. In these

scenarios, the particles and interactions of the Standard Model are confined in the SM-

brane, separated by some distance yc from another (hidden) 3-brane along one extra

dimension y. The branes and the bulk are sources of gravity that were shown to produce

an Anti-de-Sitter metric:

ds2 = e−2k|y|ηµνdx
µdxν + dy2, (10)

where exp(−k|y|) is a so-called warp factor and k is the bulk curvature [37]. The

warped metric differentiates the RS models from the ADD model with a flat metric

where k = 0. Thus, the exponential warp factor in the RS scenarios solves the hierarchy

problem alternatively, without requiring large extra dimensions as assumed in the ADD

model.

In the RS scenarios the modified gravitational potential between two masses

separated by a distance r in the SM-brane can be expressed as:

VRS(r) = −G
m1m2

r
(1 + ∆RS) , (11)

where ∆RS is the correction to the Newtonian potential. Callin [40] computed the

potential in the framework of the RS-I scenario, obtaining for short distances:

∆RS−I(r) ≃
4

3πkr

1− e−2kyc

1 + 1
3
e−2kyc

, kr ≪ 1. (12)

Here one can distinguish two regimes, kyc ≪ 1 and kyc ≫ 1, with the result up to the

leading order:

∆RS−I(r) ≃























2yc
πr

+ ..., kyc ≪ 1,

4
3πkr

+ ..., kyc ≫ 1.

(13)



Constraints on extra dimensions from precision molecular spectroscopy 7

It turns out that the RS potential for long distances (kr ≫ 1) is not applicable to

molecules and is not considered further.

In the RS-II scenario, the hidden 3-brane is chosen to be infinitely far (yc → ∞)

from the SM-brane resulting in an effective model with a single 3-brane (SM-brane)

in the bulk. This solution thus offers the existence of extra dimensions that do not

require compactification in contrast to the ADD model. For short distances in the

RS-II scenario, Callin and Ravndall [41] obtained

∆RS−II(r) =
4

3πkr
+ ..., kr ≪ 1, (14)

for the RS correction. Note the correspondence of Eq. (14) with that of Eq. (13) for

kyc ≫ 1, which is expected since the latter RS-I condition implies the transition to

RS-II at infinite brane separation.

From these RS potential corrections, the expectation values of the leading-order

shifts of transitions in molecules, in the short distance separation (kr ≪ 1) regime, are

therefore:

〈∆VRS(k)〉 = αGN1N2F
(

4

3πk

) [〈

Ψ1

∣

∣

∣

∣

1

r2

∣

∣

∣

∣

Ψ1

〉

−
〈

Ψ2

∣

∣

∣

∣

1

r2

∣

∣

∣

∣

Ψ2

〉]

, (15)

where F = (1 − e−2kyc)/(1 + 1
3
e−2kyc) for RS-I and F = 1 for RS-II. Using these

expressions, limits on the curvature k or the brane separation yc based on molecular

spectroscopy data can be derived.

4. Constraints on higher dimensions from molecular data

In the previous section, the expectation value for a higher-dimensional gravity

contribution to a transition frequency in a molecule was presented for both ADD and RS

approaches to higher dimensions. This expectation value is interpreted as a contribution

to the binding energy of molecules in certain quantum states. This rationale will be

used to derive constraints on characteristic parameters underlying the extra-dimensional

theories, the compactifictaion range Rn for the ADD scenario and the warp factor k or

brane separation yc for the RS scenario(s).

In Table 1 a compilation is made of a comparison between theoretical and

experimental values obtained in recent experiments for hydrogen neutral molecules

and hydrogen molecular ions, and the stable isotopomers containing deuterons. Ro-

vibrational transitions in the ground electronic state are indicated by the change

in vibrational quantum number v, while D0 denotes the dissociation energy of the

ground electronic state. In the Table the agreement between theory and experiment

is represented by the combined uncertainty δE with:

δE =
√

δE2
exp + δE2

theory, (16)

where δEexp and δEtheory signify uncertainties of theory and experiment. On all but

two cases the values for δE were found to be larger than the discrepancies between

theory and experiment, denoted by ∆E = Eexp − Etheory, while the H2 v = 0 → 1 is
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Table 1. Data from recent precision measurements of vibrational energy splittings

as well as the dissociation energy D0 in neutral and ionic molecular hydrogen and

their isotopomers. Adapted from Ref. [34] and updated with most recent data. ∆E

represents the deviation between theory and experiment, while δE represents the

combined uncertainties, cf. Eq. (16).

species transition ∆E (cm−1) δE (cm−1) Ref.

H2 v = 0 → 1 0.000 24 0.000 17 [26, 27]

v = 0 → 2 0.000 4 0.002 0 [28, 30]

v = 0 → 3 -0.000 6 0.002 5 [31, 32]

D0 0.000 0 0.001 2 [23]

HD v = 0 → 1 0.000 11 0.000 23 [26, 27]

D0 0.000 9 0.001 2 [25]

D2 v = 0 → 1 -0.000 02 0.000 17 [26, 27]

v = 0 → 2 -0.000 5 0.001 [29]

D0 0.000 5 0.001 1 [24]

HD+ v = 0 → 1 -0.000 005 2 0.000 002 0 [14, 42]

v = 0 → 4 0.000 009 0.000 017 [13]

within two standard deviations (∆E < 2 δE). From these results it is concluded that

QED-theory for these molecular systems is in very good agreement with observations.

Recent calculations by Korobov et al. [42] result in an increased discrepancy with the

experimental results of Bressel et al. [14] at the level of 2.6 standard deviations, and we

do not include the HD+ v = 0 → 1 values in the comparisons.

The agreement between theory and experiment for molecular systems is now

translated into a constraining relation for higher dimensions in the ADD framework:

〈∆VADD(n,Rn)〉 < δE. (17)

As a first example we take the measurement on the fundamental vibration in the H2

molecule. This is one of the most accurately measured numbers in neutral molecules,

while also the QED-calculations for this fundamental rotationless transition are more

accurate by an order of magnitude with respect to the absolute binding energies, because

of cancellation of errors for non-rotating molecules [26]. Constraints on Rn can be

derived via:

(Rn)
n <

δE

αGN1N2∆
(18)

with ∆ the difference in expectation values over the wave function densities between

v = 0 and v = 1 vibrational states in the molecule:

∆ =

[

〈

1

rn+1

〉

Ψ1

−
〈

1

rn+1

〉

Ψ0

]

(19)

The wave functions for the lowest vibrational states, in the case of H2 and for

J = 0, as obtained from ab initio calculations [21, 22] are plotted in Fig. 1. Since

the wave functions are located in the same region of space the fundamental vibrational
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δE / VN

H2 (v=0 to 1)

n=1

n=2

n=3

n=8 n=7 n=6 n=5 n=4

V
A
D
D
 /
 V
N

1

10
6

10
12

10
18

10
24

10
30

Rn (m)

10−9 10−6 10−3 1

Figure 2. (Color online) Limit on the compactification range Rn as derived from the

measurement of the fundamental vibration in the H2 molecule [26] in comparison with

the ADD-formalism.

transition in the hydrogen molecule (v = 0 → v = 1) probes only a differential effect.

The resulting constraints on Rn from the measurement of the fundamental vibration in

the H2 molecule for the range of extra dimensions n = 1 − 8 are presented in Fig. 2.

The sloping lines in Fig. 2 represent calculated VADD/VN for different n and Rn values.

The horizontal dashed line δE/VN indicates limits from molecular spectroscopy. Hence,

for certain numbers of extra dimensions n, Rn is constrained to be less than the value

where the VADD/VN and δE/VN intersect in the graph. Constraints on Rn, obtained

from a comparison with the fundamental vibrational transition of H2 are presented in

Table 2.

The experimental as well as the theoretical results for the fundamental vibration in

the hydrogen molecule are known to the 10−4 cm−1 level, an order of magnitude more

accurate than the values for the binding energies [26, 27]. However, for a comparison of

dissociation limits it is no longer a small difference along the internuclear coordinate axis

that is probed, but the difference between the 1 Å molecular scale and infinite atomic

separation. The expectation value for the ADD-contribution to the binding energy of

the lowest bound state in the H2 molecule, or the D0 binding energy, is:

〈∆VADD(n,Rn)〉 = αGN1N2R
n
n

〈

1

rn+1

〉

Ψ0

(20)

By comparing to the experimental findings on D0(H2) [23] this leads to another set of

constraints on Rn for n extra dimensions, which are also listed in Table 2.

The method was further applied to the fundamental vibration of HD and D2, where

the experimental and theoretical uncertanties are similar to those in H2. Although the
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Table 2. Constraints on the size Rn of compactified dimensions (in units of m) as

derived from a number of molecular features: (i) the fundamental (0 → 1) vibration in

H2, (ii) the dissociation limit D0 of H2, (iii) the dissociation limit of D2, and (iv) the

(4-0) R(2) ro-vibrational transition in HD+. The constraints are derived within the

ADD-framework assuming that n extra dimensions are of equal size. The corresponding

higher-dimensional Planck length RPl,(4+n) (in units of m) and Planck mass M(4+n)

(in units of GeV) are also tabulated, where the smallest values for RPl,(4+n) and the

highest value for M(4+n) is taken from the examples.

n Rn RPl,(4+n) M(4+n)

H2 (1-0) H2 D0 D2 D0 HD+ (4-0) (m) (GeV)

2 2.2 × 104 1.0 × 104 4.8 × 103 2.8 × 103 2.1 × 10−16 9.3 × 10−1

3 7.7 × 10−1 1.9 × 10−1 1.2 × 10−1 1.0 × 10−1 3.0 × 10−15 6.5 × 10−2

4 1.1 × 10−3 8.5 × 10−4 5.9 × 10−4 7.0 × 10−4 1.8 × 10−14 1.1 × 10−2

5 3.3 × 10−5 3.2 × 10−5 2.4 × 10−5 3.1 × 10−5 5.8 × 10−14 3.4 × 10−3

6 3.4 × 10−6 3.7 × 10−6 2.9 × 10−6 3.0 × 10−6 1.4 × 10−13 1.4 × 10−3

7 6.9 × 10−7 7.8 × 10−7 6.4 × 10−7 6.3 × 10−7 2.8 × 10−13 7.1 × 10−4

heavier masses of the isotopomers improve the constraints obtained from H2, as expected

from Eq. (18), the HD and D2 fundamental vibration constraints are still less stringent

compared to that from the H2 dissociation limit. The results obtained for D2 dissociation

energy [24] lead to the tightest constraints on Rn from the neutrals as listed in Table 2,

which scale by a factor (1/4)1/n relative to H2 due to the mass difference.

The experimental accuracy for the HD+ molecular ion transitions is an order

magnitude better than the corresponding neutral molecule system that stems mostly

from the possibility of trapping the ionic species. The theoretical calculation for the

three-body HD+ level energies is also more accurate than those of the neutral molecular

hydrogen. However, the internuclear separation of HD+ (∼ 1.1 Å) is greater than that

of neutral hydrogen molecules (∼ 0.76 Å) as shown in Fig. 1. Thus the neutrals are

inherently more sensitive as the wave functions probe shorter internuclear distances

compared to their ionic counterparts. The constraints for Rn derived from the HD+

(v = 0, J = 2 → v = 4, J = 3) ro-vibrational transition from Koelemeij et al. [13] are

listed in Table 2. In the table, the Rn constraints from D2 D0 are the most stringent for

n = 4, 5, 6 extra dimensions while the constraints from HD+ are the most constraining

for n = 2, 3, 7. The higher-dimensional Planck mass M(4+n) and corresponding Planck

length RPl,(4+n) derived from the tightest Rn constraints obtained in this study are also

listed in Table 2.

Similarly, we derive constraints pertaining to corrections in the RS scenario with

one extra dimension, and the combined uncertainty δE for a specific molecular transition

〈∆VRS(k)〉 < δE. (21)

Using the combined uncertainties for the D0(D2) study, we present constraints for the

RS schemes. For the RS-I scenario in the short distance (kr ≪ 1) regime, we obtain

constraints for the brane separation of yc < 1 × 1018 m in the limit kyc ≪ 1 using
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Eq. (13). In the limit kyc ≫ 1 in Eq. (13), a constraint for the inverse of the curvature

of 1/k < 2 × 1018 m is obtained. For the RS-II model, we obtain constraints for the

inverse of the curvature 1/k < 2× 1018 m for kr ≪ 1 from Eq. (15).

5. Comparison with other constraints

The constraints obtained from molecular systems probe length scales in the order of

Angstroms. This complements bounds probing subatomic to astronomical length scales

obtained from other studies using distinct methodologies. Length scales of several

hundred nanometers to microns are probed in Casimir-force studies using cantilevers [43]

or atomic-force microscopy [44]. The micrometer to millimeter range are probed in

torsion-balance type experiments, with the tightest constraint obtained by Kapner et

al. [45] for a single extra dimension of R1 < 4.4 × 10−5 m. The centimeter to meter

separations are accessed by Cavendish- or Eötvös-type investigations in the laboratory,

while astronomical scales can be probed in satellite or planetary orbits that also serve

to constrain the universality of free fall and deviations from the gravitational inverse-

square law [39]. Constraints for the RS-theories are obtained by Iorio [46] using data

from orbital motions of satellites or astronomical objects, with the tightest constraint

for the inverse of the curvature of 1/k < 5 m obtained from the motion of the GRACE

satellite. The latter constraint is in the kr ≫ 1 regime of Eq. (14) and probes a different

distance range to that of molecules (kr ≪ 1).

Precision spectroscopies of hydrogen [47, 48] and muonic atoms [49, 50] have been

interpreted along the same lines in terms of the ADD-model [51] resulting in typical

constraints of R3 < 10−5 m. The interpretation is not straightforward because of

the proton size puzzle [52]; in fact, the argument has been turned around, where the

existence of extra dimensions are instead invoked as a possible solution to the puzzle [53].

In the treatment of atoms, some assumptions had to be made on the wave function

density at r = 0, typical for the s-states involved, causing problems in calculating

the second integral of Eq. (8) over the electronic wave function that has a significant

wave function amplitude at r = 0 in atoms. Note that these difficulties are absent in

molecules, as the molecular wave function probes the 0.1 - 5 Angstrom distance range.

To probe length scales in the subatomic range, one is ultimately limited by the

increasing contributions from nuclear structure and the strong interaction, e.g. in

neutron scattering studies [54]. In contrast to QED calculations, the most accurate

lattice-QCD calculation of light hadron masses only achieves relative accuracies in the

order of a few percent. Nevertheless, the smaller nucleon size presents higher sensitivity

to effects of ADD-type interactions, and constraints for the size of extra dimensions

may be extracted. The general method for molecules presented here may be applied

to a comparison of ab initio lattice-QCD calculations with the measurements of light

hadron masses. The corresponding QCD test probes length scales of the size of a nucleon

at ∼ 10−15 m. The ab initio calculations of Dürr et al. [55] for the nucleon mass are

estimated to be accurate to around 50 MeV/c2 while the experimental mass values are
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accurate to 20 eV/c2. The calculated nucleon mass, with 3% relative accuracy, is the

isospin average of proton mp and neutron mn masses, while mp is known experimentally

to be 0.1% smaller than mn. Constraints based on experimental nucleon masses and

QCD theory have not been explored, but we produce here a rough first estimate by

assuming that the three constituent quarks each have an effective mass that is 1/3 of

the nucleon mass, and have separation distances ∼ rp. Analogous to Eq. (17) for QED

interactions in molecules, the expectation value for an ADD contribution on the mass

of the proton can be written as VADD(p)/c
2 < δmp, yielding a bound for the case of 7

extra dimensions of R7 < 2.4× 10−10 m.

In high-energy particle collisions, higher-dimensional gravitons may be produced

that could escape into the bulk, leading to events with missing energy in (3+1)-

dimensional spacetime [36, 56, 57]. Based on this premise of an energy loss mechanism

the phenomenology of the SN 1987A supernova was investigated, imposing limits on

extra dimensions of R2 < 3 × 10−6 m, R3 < 4 × 10−7 m, and R4 < 2 × 10−8 m [58].

Similarly, from a missing energy analysis of proton colliding events at LHC, a constraint

for R2 < 3.2×10−4 m can be extracted from theM4+n = 1.93 TeV bound for n = 2 given

in Ref. [59]. For comparison, the Planck energy scale in (4 + n) dimensions in Table 2

turns out to be in the range between 1− 1000 MeV, but are derived from a completely

independent methodology. Also for n > 2, the bounds derived from LHC are nominally

more stringent than those from molecules. However, additional assumptions beyond the

ADD potential in Eq. (2), e.g. the fundamental quantization of gravity, the existence

and propagation of gravitons in (4 + n) dimensions and postulating the existence of

massive new particles, are necessary for an effective theory [56, 57] to interpret the

LHC missing energy signals. Such assumptions are not needed for the molecular physics

bounds, which are not sensitive to physics at very short distances.

6. Conclusion and outlook

The alternative approaches to constraining compactification radii for extra dimensions,

partially surveyed here, are all complementary as they probe different length and

energy scales. Some approaches serve to produce tighter limits, however, often at the

expense of additional assumptions. In the present study, a constraint is derived on

compactification scales of extra dimensions from precision measurements on molecules,

leading to straightforward interpretations. Molecules, in particular the lightest ones

as neutral and ionic molecular hydrogen, exhibit wave functions representing the

internuclear distances, with amplitudes confined to the range 0.1− 5 Å. Current state-

of-the-art experiments on neutral molecular hydrogen determine vibrational splittings

on the order of 10−4 cm−1, or 3 MHz [26]. Since the lifetimes of ro-vibrational quantum

states in H2 are of the order of 106 s [60], measurements of vibrational splittings on

the order of 1014 Hz could in principle be possible at more than 20-digit precision,

which leaves room for improvement “at the bottom” of over 10 orders of magnitude,

if experimental techniques can be developed accordingly. Similar improvements in
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theory would make these molecular systems an ideal test ground for constraining or

detecting higher dimensions, as well as fifth forces [34]. After having performed a 15-

digit accuracy calculation on Born-Oppenheimer energies [16], calculations of strongly

improved accuracy have just been published [61], while improved calculations of non-

adiabatic corrections are underway [62]. Immediate improvements, based on existing

technologies, on the experimental accuracies of the dissociation limits in the neutral

hydrogen and its isotopomers [63] and the spectroscopy of HD+ [12, 64, 65], were

discussed recently.
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