
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a preprint version which may differ from the publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/141229

 

 

 

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/43585264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/141229


Observing Shape in Spacetime

Sean Gryb∗1,2

1
Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands

2Radboud University Nijmegen, Institute for Mathematics, Astrophysics and Particle Physics,
The Netherlands

August 19, 2014

Abstract

The notion of reference frame is a central theoretical construct for interpreting the
physical implications of spacetime diffeomorphism invariance in General Relativity.
However, the alternative formulation of classical General Relativity known as Shape
Dynamics suggest that a subset of spacetime diffeomorphisms — namely hypersurface
deformations — are, in a certain sense, dual to spatial conformal (or Weyl) invariance.
Moreover, holographic gauge/gravity dualities suggest that bulk spacetime diffeomor-
phism invariance can be replaced by the properties of boundary CFTs. How can these
new frameworks be compatible with the traditional notion of reference frame so fun-
damental to our interpretation of General Relativity? In this paper, we address this
question by investigating the classical case of maximally symmetric spacetimes with a
positive cosmological constant. We find that it is possible to define a notion of Shape
Observer that represents a conformal reference frame that is dual to the notion of iner-
tial reference frame in spacetime. We then provide a precise dictionary relating the two
notions. These Shape Observers are holographic in the sense that they are defined on
the asymptotic conformal boundaries of spacetime but know about bulk physics. This
leads to a first principles derivation of an exact classical holographic correspondence
that can easily be generalized to more complicated situations and may lead to insights
regarding the interpretation of the conformal invariance manifest in Shape Dynamics.
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1 Introduction

1.1 Coordinate Invariance and the Equivalence of Frames

Before getting to the primary purpose of this paper, let me first try to describe the main
problem to which the key results of this paper are meant to be addressed. Readers less
interested in philosophical motivations can skip this section and proceed directly to Sec-
tion 1.2 where the main results are introduced. In brief, the problem we will be concerned
with regards the precise content and, ultimately, interchangeability of the assumptions that
are made when making inferences about ‘when’ and ‘where’ some event, not in one’s im-
mediate neighbourhood, take place. In General Relativity, these assumptions are intimately
tied with the notion of a spacetime and spacetime diffeomorphism invariance, which is a
gauge symmetry of the theory. Consequently, coordinate values are taken to be ‘pure gauge’
within the formalism. Indeed, it is well-known that Einstein placed primary importance on
this fact [1], which he considered a key foundational principle of the theory. But how are
we to understand the physical significance of spacetime coordinate invariance in General
Relativity?

On the one hand, there is certainly something real about the hand of a clock pointing
to 3 (or 5 or whatever) just as there is something real in the observation that an object
has a width equal to 15 tick marks of a ruler. On the other hand, one always has the
freedom to label one’s clock differently — say by swapping the 3 with a 5 — or change the
increments of the tick marks of one’s ruler. As Kretschmann pointed out long ago [2], these
choices shouldn’t have any impact on objective facts about events. This objection raises
serious doubts as to Einstein’s intuition regarding the principle of general covariance and
its connection with coordinate invariance. There is, however, a more precise way to bring
Einstein’s intuition into a slightly more tenable position, which we will now briefly describe.

The key insight is to recognize the difference between the coordinate values, xµ, which
serve as arbitrary labels and have no physical significance, and the readings of real physical
clocks and rods, which are represented by the values of independent scalar fields, say Xa(xµ)
(where a = 1, . . . , 4) , within the theory and do have physical significance.1 It is what the
coordinate invariance of the theory implies for the properties of these scalar fields — i.e.,
that no particular configuration of Xa’s should be preferred over any other by the formalism
— that constitutes the physical content of this symmetry.

To formulate this position more concretely, we can define the useful theoretical construct
of a reference frame. Physically, a reference frame represents a system of ideal (non-colliding)
clocks and rods that is large enough and dense enough to measure times and locations of
events throughout some spatial region of interest. These ideal clocks and rods are assumed
to be identically constructed so that they can measure time and position accurately and
reproducibly throughout space. Moreover, a canonical clock synchronisation procedure must
be specified — perhaps by sending light signals back and forth between clocks and making
assumptions about the propagation of these light signals — allowing a local observer to infer
the readings and positions of distant clocks. Formally, the worldlines of these ideal clocks and

1In fact, it can easily be seen (see [3]) that identifying the xµ’s with physical observables leads to an
under-determination problem in the equations of motion due to the coordinate invariance of the equations
of motion.

3



rods are represented by a time-like congruence in a spacetime manifoldM. This congruence
defines a time-like vector field uµ through the tangents to its worldlines. In Appendix A, we
show explicitly how it is possible to extract physical clock and rod readings, Xa(xµ), from a
suitable time-like vector field uµ(xµ) and the conditions that need to be satisfied by uµ. An
excellent example implementing this idea is given by the Gaussian reference fluids considered
by Kuchař and Torre in [4].

We can now distinguish two distinct notions of “coordinate transformation”. The first
— understood as a passive transformation — entails keeping the same physical clocks and
rods while transforming the coordinates labels only, which corresponds to using different
conventions for making readings of the clocks and rods. The second — understood as an
active transformation — entails using identically constructed but physically distinct clocks
and rods in different states of motion while keeping the same conventions, i.e., the same co-
ordinate labels, for making readings. Clearly, the first notion corresponds to Kretschmann’s
notion and has no physical content while the second is more significant and does have phys-
ical consequences. That General Relativity exhibits an invariance under the second notion
of active coordinates transformations is guaranteed by two necessary ingredients: the first is
the variational principle of the theory, which varies over all possible configurations of both
matter fields and spacetime metrics, and the second is the coordinate invariance of the ac-
tion. It is the combination of these two properties of General Relativity that guarantee that
no reference frame is favoured a priori by the formalism.

To understand this, consider the case where the reference frame is represented by a
geodesic congruence given, for example, by a pressureless dust. These reference frames are
preferred by the formalism because of the equivalence principle: locally they are indistin-
guishable from the inertial frames of Special Relativity. However, as pointed out by [5], these
frames are only specified once the spacetime geometry has been determined by solving the
variational principle of the Einstein–Hilbert action, which varies over all possible matter and
geometry configurations. Furthermore, because the variational principle itself is diffeomor-
phism invariant, no choice of arbitrary labels can be used to single out a preferred reference
frame. Thus, the reference frames are not signed out by nomological law-like restrictions
(the variational principle) but rather contingent circumstance (the initial and boundary con-
ditions of the variational principle). It is in this way that General Relativity can be seen to
not privilege any particular choice of reference frame.

The purpose of this elaborate discussion is twofold. First, it is to point out the im-
portance of the notion of reference frame when formulating two key foundational principles
of General Relativity, namely: the equivalence principle and the physical principle behind
general coordinate invariance. Secondly, it is to point out the number of assumptions and
conventions that must be used to make these principles precise. Crucially, it is these as-
sumptions and conventions that frame our understanding of how a local observer infers clock
and rod readings for distant events. Given the number of assumptions and conventions of
this construction, it would not be a surprise if there existed a completely different set of
assumptions and conventions that could be used to make different, but physically equiva-
lent, coordinate assignments to distant events. This would lead to a very different kind of
reference frame than that entailed by General Relativity. Indeed, there would even be no
reason to expect that the symmetry group defining the equivalence class of new reference
frames should be that of active spacetime diffeomorphisms. Nevertheless, it could still be
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possible that this new notion of reference frame could define the same physics as the old one.
For this to be possible, what is needed is a way to map between the assumptions and

conventions of the old notion of reference frame to the assumptions and conventions of the
new notion of reference frame. Furthermore, this map should induce an isomorphism between
the coordinate assignments of the old formalism to those of the new one. This ensures that
events described by the old references frames are completely and uniquely described by
the new ones. An immediate consequence of this is that the symmetry group defining the
equivalence class of old frames should be isomorphic to the new symmetry group defining an
equivalence class of new frames. This is because the equivalence class itself has a physical
interpretation within the formalism: it represents the space of potential physical (albeit
hypothetical) reference frames. If a map between the old and new symmetry groups could
be understood explicitly, then the difference between the two formalisms would be purely
interpretive because the formalisms would only differ with regards to the conventions a local
observer uses to make inferences about the coordinates values of events of distant observers.

That such a new notion of reference frame exists is hinted at by a new theory of gravitation
known as Shape Dynamics [6, 7, 8, 9]. In this theory, the local symmetry group is not that of
spacetime diffeomorphisms but, rather, that of foliation-preserving (spatial) diffeomorphisms
and spatial local conformal (or Weyl) transformations. Shape Dynamics, thus, has a preferred
notion of simultaneity but a completely arbitrary notion of local scale. Despite this profound
difference from General Relativity, a vast number of solutions of Shape Dynamics can be
shown to be solutions of the Einstein equations when expressed using this preferred notion
of simultaneity. It would appear that the principle of spacetime general covariance can be
interchanged for the principle of spatial general covariance and local scale invariance. If one
accepts this, then it must also follow that the notion of reference frame — so intimately tied to
the physical principle behind spacetime general covariance — must be interchangeable with
a new notion of reference frame to be tied to the new physical principles behind by spatial
general covariance and local scale invariance. In fact, without such a new notion of reference
frame, the statement that the two formalisms are “dual” is put strongly into question given
the key role played by reference frames (and their equivalence) in the foundational principles
of General Relativity.

Unfortunately, the “duality” between Shape Dynamics and General Relativity is cur-
rently expressed only in terms of a gauge-theory inspired language of equivalence of Dirac
observables. Concretely (see [6, 7] for details), specific gauge fixings of both theories lead
to the same trajectory on phase space given some valid initial data. However, the founda-
tional principles and, more specifically, the physical significance of the local symmetries of
the action are very different in General Relativity compared with standard gauge theories
like Yang–Mills theory. In Yang–Mills theory, for example, the notion of reference frame
is completely unnecessary for understanding the significance of the gauge invariance of the
theory, which is purely associated with an indeterminacy in the mathematical formalism
used to model a physical system. It would appear that, without an explicit construction of a
Shape Dynamics’ reference frame and a map between this and a reference frame in General
Relativity, we have a strong reason to question whether there is a strict duality between
both formalisms.
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1.2 Shape Observers

We are now in a position to properly motivate the intentions of the current paper. Our
goal here will be to explore a bottom-up approach to constructing a new notion of reference
frame, which we will call a Shape Observer, that is intended to provide an appropriate notion
of observer for Shape Dynamics. We will see that requiring a strict notion of equivalence
between these Shape Observers and the reference frames of General Relativity leads to a
holographic correspondence in the sense of [10, 11].

To establish a notion of Shape Observer, we will consider the comments of the previous
section and make use of the well-known isomorphism between the global isometry group
of de Sitter (dS) spacetime in D + 1 dimensions, namely SO(D + 1, 1), and the conformal
group Conf(D) in D dimensional space.2 This will require that we consider spacetimes that
are such that local inertial observers see the dS metric rather than the Minkowski metric,
which is perhaps the case more relevant to experimental observations. For simplicity, we
will, in addition, restrict our attention to the maximally symmetric case. Consequently, we
will consider only the equivalence class of (global) inertial observers in dS spacetime. Since
these are related mathematically by the isometry group of dS, we can use the isormorphism
mentioned above to construct a notion of reference frame where equivalence classes of the
new frames are related by the transformations of the spatial conformal group. Because these
new frames are equivalent with regards to the scale of some collection of particles, the only
physically relevant information is contained in the scale-invariant ‘shape’ of the system. This
will define for us the notion of Shape Observer. Many of the mathematical structures enable
us to define these Shape Observers are discussed in [12].

The main difficulty posed in using the isomorphism mentioned above to construct a
notion of Shape Observer from the inertial observers of dS is that, while the isomorphism
exists at the abstract group level, finding an explicit map between the actions of the dS
group on spacetime and the conformal group on the Euclidean plane is much more difficult.
In particular, the role of time (which drops out of the action of the conformal group on the
plane) must be considered very carefully. The problem originates from the fact that the
notion of instantaneous configuration, which is necessary to define a shape, is ill-defined in
the spacetime picture because of relativity of simultaneity: different inertial observers won’t
agree on which instant should be used to define a shape.

To deal with this, we will make use of the properties of the conformal boundaries of dS
to establish a precise notion of what we will call shape freezing. We then make use of this
shape freezing to use the bulk action for free particles in dS to define the Hamilton–Jacobi
function for a conformally invariant and reparametrization invariant particle model on the
Euclidean plane. The reparametrization invariance is a consequence of the inferred role of
duration in the dual description. This gives us a holographically defined dual description
of a system of free particles in dS spacetime in terms of a conformally invariant system of
particles on the plane.

The holographic nature of the definition of Shape Observer provided is both interest-
ing and potentially troubling. It is interesting because, in searching for a notion of ref-
erence frame compatible with Shape Dynamics, we have naturally obtained a very simple

2We could have, in contrast, considered the isometry between the anti-de Sitter group and Conf(D−1, 1).
The results would be quantitatively similar but the physical interpretation would not be in terms of shapes.
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holographic duality where both sides of the duality are completely understood. Moreover,
straightforward generalizations are possible, such as adding interactions, considering a scalar
field, or quantizing the theory. This would allow an interesting testing ground for gaining a
deeper understanding of holographic dualities such as the AdS/CFT [13, 14] or the related
dS/CFT [15, 16] correspondences. On the other hand, the holographic properties of the de-
scription are potentially troubling because the duality between Shape Dynamics and General
Relativity itself is expressed as a bulk-bulk duality, and not a bulk-boundary duality like the
one presented here. The reliance in our formulation of Shape Observers on the properties
of the conformal boundaries of dS is completely unnecessary in the construction of Shape
Dynamics. Clearly, more work is necessary to see if this notion of Shape Observer can be
made relevant for a local notion of inertial reference frame in Shape Dynamics. However,
the results of this paper would seem to suggest that a strict equivalence between conformal
frames in Shape Dynamics and reference frames in General Relativity may not exist because
of a lack of representational equivalence between the relevant symmetry groups. If such an
equivalence does exist, then it would seem that we are in need of some new insight to help
make the connection. Without such an insight, one is led to conclude that the conformal
invariance of Shape Dynamics should be thought of more as a “complimentary” or “hidden”
symmetry of gravity rather than a “dual” symmetry to hypersurface deformations. A strict
duality would only be seen to apply in a holographic setting.

Lastly, we can justify the drastic simplification we have made in considering the max-
imally symmetric case by noting that rigorous clock synchronization procedures are only
really specifiable in the case where the metric is approximately Minkowski (the de Sitter
case we consider here is only slightly different in this regard). In this case, we can simply
rely on clock synchronization procedures used for Special Relativity. Thus, the maximally
symmetric case already has a lot of the important physics contained in it. Furthermore,
Einstein–Cartan formulations of gravity [17] and MacDowell–Mansuri-type approaches to
General Relativity [18, 19, 20, 21] show how the internal symmetry groups of the frame
fields can be related, via the equations of motion and the soldering equation, to infinitesimal
spacetime diffeomorphism invariance. Mathematically, this is perhaps because of the strong
connection implied by Cartan geometry [22] between the internal symmetry groups of the
frame fields and the local properties of the geometry (more on this is §4). Thus, there are
also mathematical reasons to argue for a strong connection between the internal symme-
tries of the frame fields, which are transformations relating local inertial observers, and the
properties of a curved geometry.

2 Prelimiaries: de Sitter Spacetime

To begin our presentation, we review the basics of dS spacetime and establish the notation
we will use for the remainder of the paper, highlighting the features we will need for our
construction of Shape Observers in § 3.
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2.1 Definition

dSD,1 spacetime is the maximally symmetric solution to the Einstein equation with positive
cosmological constant. It is most easily represented by an embedding into RD+1,1 where it
can be treated as the hyperboloid satisfying

gµνx
µxν = `2, (1)

where xµ are coordinates and gµν = diag(−1, 1, . . . , 1) the flat metric on RD+1,1, (with
µ, ν = 0, . . . D + 1). The dS radius ` is related to the cosmological constant, Λ, through

Λ = D(D−1)
2`2

. Using the coordinates xI = (x0, xI) in RD+1,1, where I = 1, . . . , D + 1, we can
choose a well-known embedding of the form

x0 = ` sinhα (2a)

xi = ` coshα rx̃i, (2b)

xd+1 = ` coshαw, (2c)

where α is a dimensionless hyperbolic angle, w picks out a preferred direction in the ambient
space, and r, w, and x̃i are chosen such that r2 + w2 = 1 and x̃ix̃jδij = 1. It follows from
these definitions that (rx̃i, w) are coordinates on the unit D-sphere, and can be expressed in
terms of the D angles ΩD, while x̃i are coordinates on the unit (D − 1)-sphere, and can be
expressed in terms of the D − 1 angles ΩD−1.

The preferred direction picked out by these coordinates will be understood as selecting
the South Pole at w = −1, r = x̃i = 0 as the location of a stationary observer, O. Using
the results of the Appendix, it is easy to see that O is inertial (and corresponds to the curve
traced out by Aµ = `

2
(−1,~0,−1) and Bµ = `

2
(1,~0,−1)). This leads to a simple interpretation

of these coordinates: they represent the coordinates attributed to events in dS spacetime in
the rest frame of an inertial observer at the South Pole. What this observer sees are events
occurring on a D-sphere that expands and contracts according to the hyperbolic cosine of
α, which, as can easily be shown, is proportional to the proper time, τ , along the particles
trajectory. Moreover, these coordinates are in one-to-one correspondence with the xµ’s that
satisfy (1), and thus represent a global embedding of the spacetime.

The metric in terms of the coordinates (2) is found by noting that the ambient metric

ds2 = −(dx0)2 + δIJdx
IdxJ (3)

leads to the induced metric

ds2 = `2
(
−(dα)2 + cosh2 α dΩ2

D

)
, (4)

where dΩD is the line element for the D-sphere. The global Killing vectors of this metric gen-
erate all the transformations that leave (1) invariant. These are, obviously, the SO(D+ 1, 1)
Lorentz transformations in the ambient spacetime and can be used to obtain the trajectory of
an arbitrary inertial observer by appropriately transforming the trajectory of the stationary
observer.
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The extrinsic curvature, KIJ , of the constant-α D-spheres can be calculated from the
metric (4),

KIJ = LnαgIJ =
`2 ΩD

IJ√
−g00

d

dα
cosh2 α (5)

= 2` coshα sinhαΩIJ . (6)

The York time on these hypersurfaces, given by

τYork =
D

2
gIJKIJ =

1

`
tanhα, (7)

is constant and monotonic. Thus, the coordinates (2) are closed, Constant Mean (extrinsic)
Curvature, or CMC, slices. Because the metric is invariant under ambient Lorentz transfor-
mations, all inertial observers related to O will also be closed and CMC. The significance of
this is that closed CMC slices are precisely the foliation condition, as shown in [6], where
General Relativity and Shape Dynamics are equivalent.

The CMC observer O provides a way of visualizing how the Lorentz transformations act
on the dS spacetime. By singling out this observer, we can identify the SO(D+ 1) subgroup
of SO(D + 1, 1) that preservers the CMC hypersurfaces. These are the symmetries which
act on dΩD, the metric on the D-spheres. This SO(D+ 1) subgroup, in turn, splits into the
SO(D) subgroup leaving O’s position fixed — representing rotations around this observer
— and the D-dimensional translations that shift O’s the position to different places on the
sphere — representing translations of O. The boost subgroup is harder to visualize because
it changes the definition of the constant-time hypersurfaces. For O (and O only), a w-boosts
parameterized by the hyperbolic angle ψ, acts in the following way:

x′µ(α) = Λµ
νx

ν(α) =

 coshψ 0 − sinhψ
0 0 0

− sinhψ 0 coshψ

 ` sinhα
0

` coshα

 =

 ` sinh(α− ψ)
0

` cosh(α− ψ).

 , (8)

which is a time translation α → α − ψ along O’s trajectory. The D remaining boosts
in the ambient spacetime can be interpreted as “boosts” in dS spacetime. However, it is
important to keep in mind that these ambient boosts only act on dS like “time translations”
and “boosts” for O. For other observers, their action is more complicated. Figure 1 shows
how a w-boost acts on all points of the dS hyperboloid. The effect of the other boosts can
be obtained by applying translations on the D-spheres.

To close this section, we note that dS spacetime has a particle and an event horizon due
to the presence of spacelike conformal boundaries in the past and future (which are reached
in infinite proper time). These can be seen by going to conformal time, T ,

sec

(
T

`

)
= coshα, (9)

where the metric takes the form

ds2 =
1

cos2 T
`

(
−dT 2 + `2dΩ2

D

)
(10)
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Figure 1: w-boosts applied to the dS hyperboloid for ψ = 0.5. The z-axis shows proper-time.

and −π
2
≤ T

`
≤ π

2
. Since conformal transformations do not affect null geodesics, we see

that π + 2T and π − 2T measure, respectively, the size of the particle and event horizons at
any point in the spacetime. The existence of these horizons will lead to the shape freezing
described in §3.1, which will be key to our construction. Since the range of T is only half
that of the range of angles on the D-sphere, a null geodesic can travel at most across half
of space, implying that the past horizon can only cover the whole of space on the future
conformal boundary.

2.2 Inertial Observers

The trajectories of inertial observers in dS are given by timelike geodesics. In Appendix B,
we compute the trajectories of arbitrary timelike geodesics in dS whose trajectories are given
by extremizing the action

S =

∫ xµ(t2)

xµ(t1)

dt
[

1
2
m
√
−ηµν ẋµẋν + λ

(
ηµνx

µxν − `2
)]
, (11)

which is taken to be the proper time along a geodesic between two points (xµ(t1), xµ(t2))
for some point particle of mass m. All coordinates are conveniently defined in the ambient
R(D+1,1) spacetime. The Lagrange multiplier λ enforces the constraint that these coordinates
are restricted to the dS hyperboloid in this ambient spacetime.

The solutions can be parametrized in terms of two null vectors — one ‘backward pointing’,
ξµin, and one ‘forward pointing’, ξµout — that obey the normalization condition

2ηµνξ
µ
inξ

µ
out = `2 . (12)

In terms of these, the general solution is

xµ(τ) = ξµoute
m
`
τ + ξµine

−m
`
τ , (13)
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using a proper-time parametrization, τ . A convenient and intuitive way to understand these
trajectories is to note that they are given by the intersection of the 2-plane going through the
origin that is spanned by ξµin and ξµout and the dS hyperboloid in the ambient spacetime, in
analogy to the great circles of a sphere. It is a relatively straightforward exercise to check that
the solution (13) is indeed tracing out the intersection this 2-plane with the dS hyperboloid.
Figure 2 shows an example of how a typical timelike geodesic can be constructed.

2.3 Euclidean De-Compactification

In order to establish a notion of Shape Observers, we will require a de-compactification of
the CMC D-spheres onto the Euclidean plane. This will both provide us with the ability to
define a traditional notion of “shape” for configurations of particles in the system and allow
us to study the action of the dS symmetries in terms of the action of the conformal group
on the plane. The particular de-compactification we will use is given by the coordinates, X i,
defined by

X i =
xi

x0 − xD+1
. (14)

These coordinates conveniently give us a bulk expression that reduce to a standard stere-
ographic projection of the D-sphere onto a plane on the boundary. To see that this is indeed
the case, note that (as is shown more explicitly in § 3) the dS hyperboloid becomes nearly
light-like in the ambient spacetime near the conformal boundary. In this limit, the size of
the projected sphere drops out of (14) because |x̄I | → |x̄0| due to the null condition. Thus,

X i →
¯̃xi

1− w̄
, for x0 > 0 (15a)

→ −
¯̃xi

1 + w̄
, for x0 < 0. (15b)

In the x0 < 0 case, the above equation represents a standard stereographic projection taken
with respect to the North Pole onto a plane passing through the equator. Conversely, in the
x0 > 0 case, the above equation represents a stereographic projection of the anti-podal point
to x̄I .3

This particular de-compactification will be interesting for our purposes because of its
transformation properties under infinitesimal Lorentz transformations. We represent these
by

xµ → xµ + ωµνx
ν , (16)

where ωµν = −ωνµ. Using the CMC observers described in the last section, we can interpret
these symmetries by how they act on the stationary observer O: ωij represent SO(D) ro-
tations of O on the CMC surfaces, ωiD+1 represent spatial translations of O on the sphere,
ω0

D+1 represents time translations of O along its trajectory, and ωi0 represent “boosts”. In

3There is a problem with these coordinates at x0−xD+1 = 0, but this will not be a concern for us because
we will mainly be interested in the dS boundaries where |x0 − xD+1| � `.
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Figure 2: Two views of an inertial observer’s worldline in dS. The worldline, in red, is
determined by the intersection of dS, in blue, with the span, in brown, of two backward and
forward pointing null vectors, in black.
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terms of the ambient coordinates, these transformations split up as:

x0 → x0 + ω0
jx

j + ω0
D+1x

D+1 (17a)

xi → xi + ωijx
j + ωi0x

0 + ωiD+1x
D+1 (17b)

xD+1 → xD+1 + ωD+1
jx

j + ωD+1
0x

0. (17c)

The decompactified coordinates are conveniently expressed in terms of the light cone
coordinates

x± = x0 ± xD+1, (18)

so that X i = xi

x−
.4 Under Lorentz transformations (16), x− transforms as

x− → x− − ωD+1
0x
− +

(
ω0

j − ωD+1
j

)
xj. (19)

while X i transforms as

X i → X i + ωijX
j + ωD+1

0X
i +

ωi0x
0 + ωiD+1x

D+1

x−
+
(
ωD+1

j − ω0
j

)
X iXj (20)

(where we used ωD+1
0 = ω0

D+1). The above transformations suggest the following definitions

d ≡ ω0
D+1 = ωD+1

0 ti ≡ 1

2

(
ωi0 − ωiD+1

)
si ≡ 1

2

(
ωi0 + ωiD+1

)
. (21)

These imply

ti =
1

2

(
ω0

i + ωD+1
i

)
si =

1

2

(
ω0

i − ωD+1
i

)
(22)

and

ωi0 =
(
si + ti

)
ωiD+1 =

(
si − ti

)
. (23)

In terms of these new quantities, we find

x− → x− − dx− + 2six
j (24)

X i → X i + ωijX
j + dX i + ti + sj

(
δij

(x0)2 − (xD+1)2

(x−)2
− 2X iXj

)
. (25)

The transformations above have a straightforward interpretation in terms of their action
on the decompactified coordinates X i. The ωij represent rotations and ti translations of X i

on the plane. The d’s represent dilations of X i while the si are still somewhat obscure. It
is straightforward to see that these will parametrize special conformal transformations near
the dS boundary where the ambient coordinates become null. However, in the bulk they
don’t admit such an interpretation.

4There is a dual set of coordinates Xi = xi

x+ , where the alternative light cone coordinate x+ transforms
with the opposite weight under dilations. The choice of x− versus x+ is purely conventional.
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2.4 An Obstacle for Bulk “Shape Observers”

Given the interpretation of (25) in terms of conformal symmetries, it is tempting to try to
use the X i’s to define a notion of bulk observer who only see shape information — expressed
in terms of the X i coordinates of some system of particles. However, there are several reasons
why this notion is inadequate.

Firstly, although the X i’s transform in the bulk under the similarity group (which is the
Galilean group plus dilatations), it also transforms under the unusual symmetry parametrized
by the si’s, which has no direct interpretation in terms of conformal symmetries. Simply
disregarding the symmetry is also not natural because it would restrict to only certain inertial
observers in dS spacetime.

Secondly, and more problematically, a shape must be defined at a particular instant. This
could be represented by a configuration of point particles with one set of X i coordinates per
particle at some time. However, there is no choice of time that would be invariant under
all the dS symmetries. This means that the time coordinates for different particles in the
configuration will transform differently under the bulk dS isometries. The x− coordinate, for
example — which is perhaps a natural choice from the conformal point of view — transforms
differently for different particles because of the last term in (25) (again, the special conformal
transformations are the problem).5 What this means is that different bulk inertial observers
don’t agree on what constitutes an instantaneous configuration, because they don’t share
the same notion of simultaneity.

The difficulty we are encountering is that, although there is a formal isomorphism between
the isometry group of dSD,1 spacetime and the conformal isometries of the Euclidean plane
R
D, the action of these groups on point particles in dS does not, in general, translate into

the action of the conformal group on the X i’s. Perhaps this could be cured by choosing
a different set of bulk coordinates?6 However, the dS symmetries also act on the time
coordinates of the particles, and this action cannot be represented in terms of the action of
the conformal group. This leads to a fundamental representational inequivalence between
the bulk dS isometries and the conformal group in the bulk. Fortunately, near the conformal
dS boundaries, the spacetime becomes indistinguishable from the ambient light cone in a
way we will state precisely below. In this region, the metric becomes degenerate in the time
direction defined by x−, leading to a phenomenon we call “shape freezing”. Thus, in these
regions, the dS isometries do act conformally on the configurations X i. In the next section,
we will spell this out explicitly and use these facts to define a notion of Shape Observer.

5There is also the problem that the spacetime metric is singular at x− = 0.
6In fact, the coordinate choice X̄i = xi

x0

γ −xD+1
, where γ =

√
(x0)2

(x0)2+`2 , does have the right transformation

properties in bulk. This can be seen by noting that these coordinates represent a projection of the dS
coordinates onto the light-cone, which is conformally invariant, in the ambient spacetime along surfaces of
constant x0.
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3 Holographic Shape Observers

The asymptotic regions of dS are defined, in the ambient coordinates, by the condition

(x0)2

`2
� 1. (26)

This defines two separate regions: the future conformal boundary, represented in these co-
ordinates by +x0/` � 1 and past conformal boundary, −x0/` � −1. In the following, we
will distinguish these two regions using a ± or ∓ notation, and adopt the convention (where
appropriate) that the top symbol refers to the future while the bottom symbol to the past.

In the limit (26), the ambient coordinates xµ become approximately null

xµxµ ≈ 0 (27)

as the dS hyperboloid becomes indistinguishable from the ambient light cone. Furthermore,
the spacetime metric becomes degenerate. This is most easily seen by first performing the
change of coordinates

xµ →
(
x+, x−, xi

)
, (28)

where the metric takes the form

g =

 0 −1
2

0
−1

2
0 0

0 0 δij

 . (29)

Then, the null condition
gµνx

µxν = −x+x− + xixi ≈ 0 (30)

can be used to solve for x+ in terms of the other components

x+ =
xixi
x−

. (31)

We can use this to express the ambient coordinates xµ in terms of the decompactified coor-
dinates X i and the light-cone coordinate x− as

xi = x−X i x0 = x−(X iXi + 1) xD+1 = x−(X iXi − 1) . (32)

In terms of these coordinates,

gµνdx
µdxν = (x−)2(dX i)2 . (33)

All terms containing dx− drop out, implying that the metric is degenerate in this direction.
This approximate degeneracy leads to important physical consequences that we will explore
in the next subsection.
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3.1 Shape Freezing

The phenomenon that we will call shape freezing will refer to a property of the dynamics
of particles in dS spacetime whereby the expansion of space is such that massive objects
are effectively ‘outrun’ by space in such a way that the shape created by configurations
of particles on the D-sphere becomes effectively frozen. Intuitively, this is because, at the
conformal boundary, the dS hyperboloid becomes closer and closer to the light-cone in the
embedding spacetime so that space is basically expanding at the ‘speed of light’. We can
make these statements precise by breaking the argument into three steps: i) first show that
all choices inertial observers are effectively equivalent in this region, or that foliation freezing
occurs, ii) then show how the configurations of a system of massive particles gets frozen
after decompactification, or that configuration freezing occurs iii) and, finally, show that
these frozen configuration are indeed invariant under conformal transformations, so that the
frozen configurations represent frozen shapes.

3.1.1 Foliation Freezing

Our first task is to show that the choice of inertial observer becomes irrelevant near the
conformal boundaries. This means that ambient boosts will no longer appreciably change the
notion of simultaneity of different boosted observers. To make this more precise, consider the
finite sized boost parametrized by ψ. Since ψ is finite, there always exists a time coordinate
α such that α� ψ. Since, using (2), we have

coshα =

√
1 +

(
x0

`

)2

≈ ±x
0

`
= ± sinhα. (34)

Furthermore, in the future boundary, eα � 1 while, in the past boundary, e−α � 1. Thus,

coshα ≈ ± sinhα ≈ 1

2
e±α. (35)

Without, loss of generality, we can consider a boost in the w-direction (since all other boosts
can be obtained through a translation on the D-sphere). Under such a boost, x0 transforms
as

sinhα =
x0

`
→ x0

`
coshψ +

xD+1

`
sinhψ (36)

= sinhα coshψ + w coshα sinhψ. (37)

A few simple rearrangements lead to

α→ α + ln (coshψ ± w sinhψ) . (38)

The linear term always dominates over the logarithm as can be seen by taking the limit
α� ψ � 1 and w = 1 (the largest value w can have). Then, we can similarly use

coshψ ≈ ± sinhψ ≈ e±ψ (39)
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so that
α→ α± 2ψ ≈ α. (40)

This means that one can always wait a sufficiently long time so that, α, will always dominate
over any finite boost ψ, implying that all physical inertial observers will effectively see the
same foliation at late times.

3.1.2 Configuration Freezing

In §2.3 we saw explicitly from equations (15) that

X i ≈ rx̃i

±1− w
, (41)

which is just the stereographic projection of the D-sphere near the conformal boundaries
onto a plane. From this expression, it is clear that, asymptotically, the X i’s loose their
x0-dependence, leading to a freezing out of configurations.

3.1.3 Shape Freezing

Using the bulk transformations properties of the X i under the ambient Lorentz transforma-
tions derived in §2.3, we can now take the asymptotic limit of these transformations. The
last term of equation (25) (which is the bulk transformation equation for the X i’s under the
dS isometries) can be re-written using the null condition (27), giving us

xIxI = (x0)2 − (xD+1)2. (42)

Then, the si term in equation (25), becomes

δijXkXk − 2X iXj, (43)

which is now the genuine generator of special conformal transformations. Thus, in this limit,
the bulk SO(D + 1, 1) transformations act like genuine conformal transformations.

If we now consider a system of many particles with coordinates xµΥ, where Υ = 1, . . . , n
labels the different particles, then the collection of such coordinates at some instant of time t,
defined by some timelike hypersurface, forms an instantaneous configuration of the system.
Near the conformal boundaries, since all timelike hypersurfaces formed by the constant
proper-time hypersurfaces of a congruence of inertial observers will effectively define the same
notion of time, the instantaneous configurations can simply be given by the decompactified
X i

Υ’s, which are time-independent. Because the X i
Υ’s are also conformally invariant in these

regions, the gauge-independent information given by these configurations is simply given by
the scale-invariant shape of the system. This leads directly to the notion of shape freezing
we were looking for.

This shape freezing is a direct result of the isomorphism between SO(D + 1, 1) and
Conf(D), but now the action of the ambient Lorentz transformations on the coordinates
xi can be mapped to the action of the conformal group on the decompactified coordinates
X i. This would not be possible without also having the notion of foliation freezing, so
that the X i’s can be treated as having roughly the same time parameter. What we find is
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(a) Boosts will stretch the xi’s leading to di-
latations of the Xi’s.

(b) Finite boosts don’t change appreciably
the notion of simultaneity near the bound-
ary.

Figure 3: The asymptotic “freezing-out” of shapes in dS. The green and red surfaces represent
a region of dS spacetime before and after boosting.

that the ambient Lorentz transformations are important enough to appreciably change the
spatial scale of the instantaneous configurations without appreciably changing the notion
of an instant. In Figure 3, these effects are illustrated for a finite boost ψ = 0.1α. The
spatial profiles near the boundary are noticeably effected by the boost — in a way that leads
to a representational isomorphism with the conformal group — while the instantaneous
hypersurfaces are hardly effected.

3.2 A Holographic Shape Dynamics Theory

Our strategy for defining a theory of dynamical conformally invariant shapes using the
physics of bulk inertial observers in dS spacetime will be to construct the Hamilton–Jacobi
function for the conformal theory by using the asymptotic properties of the bulk action
evaluated along a particular solution. Specifically, we will take the bulk action for massive
particles in dS spacetime and evaluate this when the trajectories start and end near the
conformal boundaries. Because of the shape freezing we discussed in the previous sections,
this will effectively give a function that depends on the initial, “in”, and final, “out”, shapes of
the system. As we will see, this function has all the same properties as the Hamilton–Jacobi
function for a conformally invariant theory.

To be precise, we define the Hamilton–Jacobi function, S, by summing over the proper
time along a geodesic (scaled appropriately by the mass) for an N -particle system, using
a particular notion of simultaneity, and then take the limit where the time function, t, on
our surfaces of simultaneity is large compared to the dS horizon scale, `. We then define
the decompactified coordinates X iΥ on the surfaces of simultaneity, where Υ = 1 . . . N is a
particle label, so that the dS isometries act like the conformal group. This leads formally to

S(X iΥ
in , X

iΥ
out) = lim

t0
`
→∞

N∑
Υ=1

∫ xµ(t0,Xout)

xµ(−t0,Xin)

dtΥ
m
2

√
gµν ẋ

µ
Υẋ

ν
Υ , (44)

where X iΥ
out/in represent the “in” and “out” shapes of the system. It will be convenient for

us to use as a time coordinate the light-cone coordinate t = x−, so that the |t|
`
→ ∞ limit
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corresponds to |x−| � `.
In an effort to reduce the notation, we will first consider the single particle case before

easily generalizing to the many particle case. Recall from the discussion in §2.2 and from
the results derived in Appendix B that a proper time parametrization of a geodesic observer
in dS has coordinates and velocity given by

xµ(τ) = ξµine
m
`
τ + ξµoute

−m
`
τ (45)

ẋµ(τ) =
m

`

[
ξµine

m
`
τ − ξµoute

−m
`
τ
]
. (46)

Inserting this into the action (44) (restricted to a single particle) gives straightforwardly

S =
m2

2
∆τ , (47)

highlighting that τ is just proportional to the proper time.
It remains to compute the difference in proper time between two arbitrary points in the

bulk (xµ1(τ1), xµ2(τ2)) lying along the same geodesic defined by the null vectors (ξµin, ξ
µ
out)

xµ1(τ1) = ξµine
m
`
τ1 + ξµoute

−m
`
τ1 (48)

xµ2(τ2) = ξµine
m
`
τ2 + ξµoute

−m
`
τ2 . (49)

Recalling from §2.2 that 2ξin · ξout = `2 (where we have used the notation A ·B = ηµνA
µBν)

and using the fact that these vectors are null, we find

x1 · x2

`2
= cosh m

`
(τ1 − τ2) . (50)

Thus,

∆τ = `
m

cosh−1
(x1 · x2

`2

)
(51)

or
S = m`

2
cosh−1

(x1 · x2

`2

)
. (52)

The next step is to express x1 · x2 in terms of the light-cone coordinate x− and the
decompactified coordinates X i before taking the asymptotic limit. To do this, we use the
metric (29), to obtain

x1 · x2 = −1
2

(
x+

1 x
−
2 + x−1 x

+
2

)
+ ~x1 · ~x2 , (53)

where ~x1 · ~x2 = δij x
i
1x

j
2. We can use the dS condition x · x = `2 to solve for the other

light-cone coordinate x+

x+ =
~x2 − `2

x−
=

1

x−

(
X2

(x−)2
− `2

)
. (54)

Using this and xi = X ix−, we find

x1 · x2 =
1

2

[
`2
(
(x−2 )2 + (x−1 )2

)
x−1 x

−
2

− x−1 x−2 (X1 −X2)2

]
. (55)
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If we take the limit in such a way that our future and past boundaries a defined symmetrically
about x− = 0; i.e., so that

x−2 = −x−1 ≡ t; (56)

then

S = m`
2

cosh−1
[

1
2

(
t
`

)2
(X1 −X2)2 − 1

]
. (57)

This integral is divergent as (t/`)� 1, or as ε = (`/t)→ 0. However, we can understand
the leading order behaviour of this divergence by making use of the well-known Laurent
series expansion

cosh−1 x = ln 2x−
∞∑
n=1

(
(2n)!

22n(n!)2

)
x−2n

2n

= ln 2x−
(

1
4
x−2 + 3

32
x−4 + . . .

)
. (58)

This leads to the following asymptotic expansion for S

S = m`
2

[
ln

(
(X1 −X2)2

ε2
− 2

)
− ε4

(X1 −X2)4
+ . . .

]
. (59)

Taking the ε→ 0 limit of the above expression allows us to identifyX i
1 → X i

in andX i
2 → X i

out.
If we then sum over many particles, we obtain

S(X iΥ
in , X

iΥ
out) = M`

[
− ln ε+ ln

(∏
Υ

∣∣∣ ~XΥ
in − ~XΥ

out

∣∣∣1/N)] , (60)

where ε =
∏

Υ εΥ
1/N is a global time parameter for the system and M = Nm is its total mass.

It can simply be used as a global time label provided one uses the relational transformation
properties under conformal transformations outlined in §3.3. The expression above is the
main expression we are looking for. Note the logarithmic divergence of S in proper time
characterized by the pole −M` ln ε, which will be important for our considerations in §3.3.

We can further analyse the behaviour of the boundary theory by taking the lowest order
terms of the Hamilton–Jacobi equations of motion for this system, in a case of a single particle
(for simplicity). This is trivial because the Hamilton–Jacobi function, S, has already been
computed. We find

~P =
∂S

∂ ~X2

≈ m`

(
~X2 − ~X1

)
(X2 −X1)2

[
1

1− 2ε2

(X2−X1)2

]
+ . . .

≈ m`

(
~X2 − ~X1

)
(X2 −X1)2

. (61)

Note that, to leading order, the ε dependence drops out of the equations of motion although
it persists in S. This is the signature that we have a reparametrization invariant theory on
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the boundary (see the §3.3 for a more substantive discussion on this point). Furthermore,

the momentum constants of motion ~P obey identities in this limit:

P 2 − m2`2

∆X2
= 0. (62)

This has the same form as the Hamilton–Jacobi equation for a scale-invariant particle which
has a Hamiltonian constraint of the form

p2 − m2`2

q2
= 0. (63)

These identities mean that P 2 cannot be determined uniquely in terms of the initial data
for the theory. This is a further indication of a reparametrization invariant theory, where
the indeterminacy is associated with the freedom to choose an arbitrary reference clock with
which to define velocities for the system.

3.3 Conformal Invariance

As will be shown in detail in the coming §3.3, the logarithmic divergence m` ln ε is crucial
for the conformal invariance of the classical theory. Thus, any renormalization of the bound-
ary theory, which would subtract off such a divergence, will necessarily break conformal
invariance. Thus,

The boundary expansion of the action (52) can be expressed in a Lorentz invariant way
by noting that the inner product xin·xout

`2
� 1 near the boundary. If we are only interested in

the leading order contribution, then we have from (52) and (58)

S ≈ m`
2

ln
(

2
xin · xout

`2

)
, (64)

where we are restricting to the single particle case again for simplicity of notation. In this
limit, we can express the inner product xin ·xout using the fact that xµin and xµout become null.
In this limit, we have again that x+ = x−X2 and that

xin · xout = −1
2

(
x+

inx
−
out + x−inx

+
out

)
+ ~xin · ~xout

= −x
−
inx
−
out

2
(Xin −Xin)2 . (65)

Thus,

S ≈ m`
2

ln

[
−x

−
inx
−
out

`2
(Xin −Xout)

2

]
, (66)

which is valid only near the boundary. This expression allows us to consider the case where
x−1 6= −x−2 , but still very large.

It is now a straightforward exercise to check the conformal invariance of (66). Since S

is a function only of the particle separations | ~Xin − ~Xout|, we immediately have that it is
invariant under the Euclidean subgroup of the conformal group. The invariance of S under
dilatations and special conformal transformations requires the transformation properties of
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x− under the dS isometries. These can easily be worked out from the transformations (24)
and the relations (32) and are given by

x− → x−
(
1− d+ 2siX

i
)
, (67)

where d is the dilatation parameter and si is the infinitesimal parameter for special conformal
transformations.

For dilatations, we can exponentiate (67) (with si = 0) to find that x− → e−dx−. Simi-
larly, exponentiation of (25) (with only d non-zero) gives X i → edX i. From this, it is clear
that (66) is invariant.

For special conformal transformations, it is easiest to work with infinitesimal transfor-
mations since the formal exponentiation of (67) is non-trivial for si 6= 0. If we set d = 0 and
use

X i → X i + sj
(
δijX2 − 2X iXj

)
, (68)

then it is a short calculation to verify that (66) is invariant. Thus, we have explicitly verified
that S is conformally invariant near the boundary, as expected.

It is clear from the above derivation that the conformal invariance of S depends impor-
tantly on the transformation properties of the time function x−. One might then be curious
about the role of x− in the boundary theory. However, we can see from the form of (66)
that the logarithm allows us to write the Hamilton–Jacobi function of the boundary theory
in the form

S = f(x−in, x
−
out) + g(Xin, Xout) . (69)

Because x− plays the role of time in the boundary theory, this takes the form of a Hamilton–
Jacobi function of a theory with a Hamiltonian that is time independent.

Indeed, the conformally invariant boundary theory we have defined is one where the time
function is reparametrization invariant. This is seen by the fact that the momenta (61)
obey quadratic identities (62) and, thus, only pick out directions and not absolute speeds on
configuration space. The fact that S is only invariant under dilatations if the time variable
is appropriately rescaled, implies that, in the dual theory, invariance under dilatations must
be accompanied by an appropriate reparametrization. This property can be seen, in the
scale-invariant theory defined by the Hamiltonian constraint

H = p2 − m2`2

q2
, (70)

because the generator of dilatations
D = p · q (71)

only commutes weakly with the Hamiltonian constraint

{D,H} = 2H . (72)

Thus, a dilatation is only preserved by the time evolution for a given parametrization.
One final point is that the logarithmically divergent term

m`
2

ln

(
x−inx

−
out

`2

)
(73)
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in (66) could be regulated by adding an appropriate counter term to the action, but this
counter term will necessarily break conformal invariance. This is, again, because the trans-
formation properties of x− are necessary for the invariance of S under dilatations and special
conformal transformations. The quantity m`

2
is, thus, somewhat reminiscent of a conformal

anomaly. It would be interesting to investigate, in a quantum field theoretic generalization
of this model, whether this divergence can indeed be related to a conformal anomaly in the
boundary CFT.

3.4 Physical Interpretation

The procedure of the previous section outlines an exact duality between two classical systems
that are mathematically equivalent. This duality is holographic in a sense very similar to the
AdS/CFT correspondence [13, 14] — although here it is more like a dS/CFT correspondence
[15, 16] — in that, on one side of the duality, there is a spacetime theory and, on the other
side, there is a boundary theory invariant under conformal transformations. The spacetime
we have chosen is maximally symmetric, so that our model is much simpler than most
standard holographic models, and the bulk ismoetries map to conformal transformations of
the boundary theory.

Because we have a precise and exact duality, we can ask about the physical relation-
ship between these two theories. Unfortunately, any physical connection between the two
theories appears to be extremely non-local. This comes from the physical interpretation of
the coordinates X i on the future versus the past boundary. Between these boundaries, the
stereographic projection of a point goes to the projection of its antipodal point. Because, as
was already discussed, only null geodesics can traverse exactly half the sky, it is ensured that
the proper time between events with asymptotic coordinates X i

in = X i
out is zero. Thus, a

particle at rest in the dual theory corresponds to a null geodesic in the bulk. Consequently,
the faster a particle moves in the bulk theory, the slower it moves in the boundary the-
ory. Clearly, the trajectories of particles in both theories vary dramatically. It is only the
asymptotic configurations that should match up and, even then, only with their antipodal
points. In general, the evolution of the particles in the dual theory is determined by the
entire evolution of the bulk system.

The interpretation of the symmetries of both theories can also be investigated. In the
bulk theory, the spacetime isometries are conventionally attributed to some canonical choice
of rods and clocks for physical reference frames moving differently with respect to each other.
For example, otherwise identical reference frames moving with different velocities correspond
to boosted observers. In the dual boundary theory, the bulk isometries are mapped to con-
formal symmetries of the Hamilton–Jacobi functional. In the case of dilatations and special
conformal transformations, there is an accompanying time reparametrization. However,
these time reparametrizations are global and, consequently, there is only a single notion of
simultaneity. Instead, relativity of simultaneity has been replaced with a relative notion of
scale. In the boundary theory, we have conformal reference frames that agree on a global
notion of time, but disagree about their conventional choice of scale. This interchangeability
of the notions of relative time and relative scale is an important feature both of holographic
dualities — where it is manifest as holographic renormalization — and shape dynamics —
where it is appears through the symmetry trading of local hypersurfaces deformation and

23



local Weyl transformations. The physical mechanism behind this is very interesting and will
constitute the subject of future investigations.

4 Shape Dynamics and Generalizations

In this section, we will briefly comment on the potential relationship between the duality
presented here and the duality between General Relativity and Shape Dynamics. In both
dualities, there exists a notion of interchangeability between relative time and relative scale.
However, while the later is a spatially local duality, in that it involves symmetry transforma-
tions that are independent at different points in space, the former is purely global: the spaces
considered are homogeneous and the symmetries transformations are global isometries. This
suggests that there might exist a natural generalization of this model which promotes the
global symmetries to local ones.

Cartan geometry [22] is a natural mathematical tool that could be used for performing this
generalization. The idea behind it is to use a model geometry, which can be any homogeneous
space, to build general curved geometries that look locally like the homogeneous model space
chosen. In the case of GR, dS spacetime itself can be used a model space (see [20] for a
description of how this possible). However, the asymptotic coordinatesX i are representations
of the projective light-cone (as described above), which represents a homogeneous space of
its own. Perhaps there is a way to describe Shape Dynamics in terms of a Cartan geometry
modelled off the projective light-cone? Some progress has already been made in this direction
[23, 12], but several obstacles still remain. If this program were successful, then the present
work could illustrate how it might be possible to construct local reference frames for Shape
Dynamics by relating them to local reference frames in GR, which are well understood.
However, the holographic nature of the correspondence presented here seems incompatible
with the duality between Shape Dynamics and GR. Although this duality is non-local in
space, it does not appear to be non-local in time also, in contrast to the holographic duality
presented here. This would seem to suggest that there may be a key insight missing in
connecting Shape Dynamics to GR through Cartan geometry.

The main difficulty presents itself in finding an exact representational equivalence be-
tween the conformal and spacetime symmetries. Insisting on this in the way we have ap-
proached the problem here has led directly to a holographic picture instead of a bulk-bulk
duality. This is because we were able to make use of the shape freezing near the conformal
boundaries of dS to establish our correspondence. In the bulk, boosts invariably change the
definition of simultaneity making the notion of instantaneous shape ambiguous. We are then
led to conclude that, without some further insight, it may be more appropriate to think
of the relationship between conformal symmetries and hypersurface deformations more as
“complimentary” or “hidden” symmetries of gravity, rather than strictly “dual”.

Other generalizations of our model are possible. A straightforward thing to do would
be to add interactions of the bulk theory to see how this might effect the Hamiltonian of
the dual theory. A slightly more ambitious, but still very manageable, generalization would
be to consider matter fields in the bulk. A bulk scalar field would be extremely interesting
to study in the dual framework. Quantization is a further option. In this case, the role
of ~, which we have completely ignored in our discussions so far, could be studied directly
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and compared with the usual results known from gauge/gravity dualities. Finally, lifting
the condition of homogeneity of the spacetime could be explored (this is notwithstanding
the Cartan geometric methods discussed above). The main difficulty for our context here
is that asymptotic dS spacetimes exhibit a supertranslation ambiguity when appropriate
fall-off conditions are imposed on the spacetime metric. This allows for a larger, infinite
dimensional symmetry group that presents additional complications.

5 Conclusions

We have presented a model, inspired by the duality between Shape Dynamics and Gen-
eral Relativity, where a bulk theory of free particles in dS spacetime can be mapped to a
reparametrization and conformally invariant theory on the conformal boundaries of dS. The
bulk dS ismoetries map to conformal symmetries in the dual theory. This map is interpreted
as a correspondence between bulk inertial reference frames and boundary conformal refer-
ence frames, who only see the scale-invariant information about the instantaneous shape of
the particle system. This leads to a definition of Shape Observers who are dual to inertial
observers in the spacetime picture. The correspondence is holographic and reminiscent of
the AdS/CFT correspondence, where the bulk asymptotic form of the on-shell action is used
to define the Hamilton–Jacobi functional of the dual conformal theory. Many different gen-
eralizations have been suggested that could incrementally lead to a deeper understanding of
holographic dualities. The point to emphasise is that the correspondence is both precise and
exact, so that both sides of the duality can be worked out explicitly. Although the duality
presented shares many important features with the Shape Dynamics/GR duality — such as
the interchangeability of relative scale and relative time — the holographic nature of the
duality, which does not seem to be a necessary feature of Shape Dynamics, suggests that
there are still key insights that are missing in order to link the two approaches. There seems
to be more work to be done before connecting this bottom-up approach to a full explanation
of the connection, alluded to in the introduction, between the physical role played by space-
time general covariance in General Relativity and the role of spatial general covariance and
local scale invariance in Shape Dynamics. This will be the subject of future investigations.
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A Physical Clock and Rod Readings from Reference

Frames

A reference frame is formally represented by a congruence whose worldlines are the integral
curves of a time-like vector field uµ in a spacetime manifold M. In this section, we briefly
sketch an explicit construction for extracting a particular set of physical clock and rod
readings — represented by the scalar fields Xa, where a = 1, . . . , 4 — and the conditions
under which this can be done. This is meant to be a proof of principle to illustrate one way
in which such a decomposition could be done. Such a construction is certainly not unique
and, moreover, we do not even claim that there is a simple physical interpretation for our
decomposition. For a different decomposition in terms of “velocity potentials” motivated by
analogies with fluid dynamics, see [24].

For our construction, we are interested in physical reference frames that a realistic local
observer could use to make time and positions readings for events in some spacetime region.
We will thus make the physical assumption that the boundary conditions of the spacetime
region of interested are such that one can apply a Hodge decomposition to the vector field
uµ. Technically, this requires that the region be defined on a Sobolev space, but practically
this restriction is physically mild. In Minkowski space, the Hodge decomposition is nothing
more than the usual Hemholtz decomposition of a vector field. A second requirement for the
Hodge decomposition is the existence of a spacetime metric. We therefore need to assume
some alternative means of measuring the spacetime metric in order to apply our construction.

Given these requirements, we can use the spacetime metric to construct the 1-form u =
uµ ⊗ dxµ, where uµ = gµνu

ν . Then, the (unique) Hodge decomposition takes the form

u = u‖ + u⊥ , (74)

where u‖ = δα, u⊥ = dβ, d is the exterior derivative, and δ is the co-differential defined
by δ = (−1)k ?−1 d ?, where k is the grading of the differential form it acts on and ? is
the Hodge product.7 The co-differential involves the use of the Hodge product and thus
requires knowledge of the spacetime metric. Because u⊥ is an exact form, it is hypersurface
orthogonal by Frobenius’ theorem. The hypersurfaces, Σ, it defines label constant values of
the scalar β, which we can identify as the time X4 = β. The pullback of u‖ onto Σ can be
used to define a new 1-form v on Σ. Now, a Hodge decomposition can be similarly performed
on v giving

v = v‖ + v⊥ , (75)

where v‖ = δσ and v⊥ = dρ. Again, because v⊥ is hypersurface orthogonal, it can be used
to foliate Σ by constant ρ surfaces. This can be used to define one of the spatial coordinate
scalars X1 = ρ. We can proceed in a similar fashion, taking pullbacks onto hypersurfaces
and performing the Hodge decomposition, to construct the remaining two scalars X2 and
X3. This completes our construction.

The requirements for performing this decomposition are now clear. We need: i) the
appropriate boundary conditions for applying the Hodge decomposition, ii) knowledge of

7Given certain global conditions, u‖ may also contain a harmonic function γ such that ∆γ = 0, where ∆
is the Laplacian.
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the spacetime metric, iii) that at no stage of the process the perpendicular component of the
decomposed vector field be zero. The last requirement simply means that the vector field uµ

must have its maximum number of independent components so that 4 independent scalars
can be formed from it. A nice example that concretely implements a decomposition of this
form is the Gaussian reference fluid of Kuchař and Torre presented in [4].

B Timelike Geodesics in de Sitter

In this appendix, we compute the timelike geodesics for dS spacetime by extremizing the
proper length, S, along some trajectory ẋµ(t)

S =

∫ xµ(t2)

xµ(t1)

dt
[

1
2
m
√
−ηµν ẋµẋν + λ

(
ηµνx

µxν − `2
)]

(76)

between two points xµ(t1) and xµ(t2), where all coordinates, xµ, are defined in the ambient
R

D+1,1. The Lagrange multiplier λ enforces the constraint that the trajectory remain on the
dS hyperboloid. This can be taken as the action, S, for some point particle of mass m in dS.

Hamiltonian methods are particularly convenient for dealing with constrained systems
of the form (76), by making use of the Dirac algorithm (see [25] for a description). We will
begin the construction of the Hamiltonian by defining the momenta

pµ =
∂S

∂q̇µ
=
−mηµν ẋ

ν√
−ηµν ẋµẋν

, pλ =
∂S

∂λ̇
= 0 , (77)

which obey the primary constraints

H ≡ ηµνpµpν +m2 ≈ 0 , pλ ≈ 0 . (78)

The second constraint is second class wrt the Hamiltonian H = pµq̇
µ + pλλ̇−S and leads to

the secondary constraint
G = ηµνx

µxν − `2 ≈ 0 . (79)

After a simple (and standard) redefinition of the Lagrange multiplier λ and using the lapse
multiplier, N , the resulting Hamiltonian is

H = N
(
ηµνpµpν +m2

)
+ λ

(
ηµνx

µxν − `2
)
. (80)

However, this is still not the total Hamiltonian of the system because these constraints are
not first class: {

x2 − `2, p2 +m2
}

= 4x · p , (81)

where we have used the abbreviations x2 ≡ ηµνx
µxν , p2 ≡ ηµνpµpν , and x · p = xµpµ. We,

thus, obtain the further constraint

D ≡ xµpµ ≈ 0 , (82)
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which, in turn, is second class wrt both primary constraints:

{H, D} =
{
p2 +m2, q · p

}
= −2p2 ≈ −2m2 (83)

{G,D} =
{
x2 − `2, q · p

}
= 2x2 ≈ 2`2. (84)

An efficient way to treat this second class system is to define the Dirac bracket for one of
the second class pairs and then use the remaining constraint as the first class Hamiltonian,
computing Hamilton’s equations using the appropriate Dirac bracket for the second class
system. To do this, we will first construct the Dirac bracket for the second class pair (G,D).
The Poisson bracket (84) has the trivial inverse 1

2`2
. We can then use the standard definition

of the Dirac bracket to obtain

{f, g}Db = {f, g} −
{
f, x2 − `2

}
1

2`2
{x · p, g} − (f ↔ g), (85)

for two arbitrary phase space functions f and g. This leads to the modified symplectic
structure

{xµ, pν}Db = δµν +
1

2`2
{xµ, x · p}

{
x2 − `2, pν

}
(86)

= δµν +
xµxν
`2

(87)

and

{pµ, pν}Db = − 1

2`2

[{
pµ, x

2 − `2
}
{x · p, pν} − {pµ, x · p}

{
x2 − `2, pν

}]
(88)

=
1

`2
[xµpν − pµxν ] (89)

= 2
x[µpν]

`2
. (90)

Also, {xµ, xν} = 0.
Using this new symplectic structure, we can use the strong equations x2 = `2 and x·p = 0

then work out Hamilton’s equations for the first class Hamiltonian

H = N(p2 +m2) . (91)

These are:

ẋµ = {xµ, H}Db (92)

= 2N
(
pµ + xµ

x · p
`2

)
(93)

= 2Npµ , (94)

and

ṗµ = {pµ, H}Db (95)

=
2N

`2

[
xµp

2 − pµx · p
]

(96)

=
2Nm2

`2
xµ . (97)
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They combine to give
d2xµ

dτ 2
=
m2

`2
xµ, (98)

where dτ = 2Ndt is the proper time along the trajectory.
Solutions of these equations of motion must solve the initial data constraint p2 +m2 = 0

on top of the strong equations x2 = `2 and x · p = 0. The last part of the gauge invariance is
the reparametrization invariance of the curve, which can be fixed by restricting to a proper
time parametrization. In term of the proper time, the most general solution to (98) is

xµ(τ) = Aµe
m
`
τ +Bµe−

m
`
τ , (99)

for some integration constants Aµ and Bµ that we will interpret shortly.

pµ = ẋµ(τ) =
m

`

[
Aµe

m
`
τ −Bµe−

m
`
τ
]
. (100)

Note that other parametrizations are, of course, possible. This will only change the relations
between and interpretation of the integration constants.

The general solutions here must obey the initial value constraints and the gauge fixing
conditions. These simply put restrictions on the integration constants, which can easily be
worked out. If we first consider the initial value constraint p2 + m2 = 0 and the strong
equation x2 − `2 = 0, we find that the combination

`2

m2

(
p2 +m2

)
−
(
x2 − `2

)
= 0 (101)

implies that

2A ·B = `2 . (102)

Similarly, the combination

`2

m2

(
p2 +m2

)
+
(
x2 − `2

)
= 0 (103)

implies

A2e2
m
`
τ +B2e−2

m
`
τ = 0 . (104)

Using the fact that the additional strong equation

x · p = 0 (105)

implies

A2e2
m
`
τ −B2e−2

m
`
τ = 0 , (106)

we immediately find

A2 = B2 = 0 . (107)

Thus, Aµ and Bµ are two null vectors normalized such that 2A · B = `2. Because of the
Lorentzian signature, this normalization requires that Aµ and Bµ be pointing in opposite
directions in time. We can, thus, pick Aµ to be ‘backward pointing’ while Bµ is ‘forward
pointing’. Furthermore, since as t → +∞, xµ → Aµ and as t → −∞, xµ → Bµ, these null
vectors represent ‘ingoing’, ξµin and ‘outgoing’, ξµout, directions on the D-sphere at past and
future null infinity, respectively. See Figure 2 in the text for a visual representation of these
solutions.
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