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Abstract

Matrix-valued analogues of the little q-Jacobi polynomials are introduced and studied. For the

2×2-matrix-valued little q-Jacobi polynomials explicit expressions for the orthogonality relations, Ro-

drigues formula, three-term recurrence relation and their relation to matrix-valued q-hypergeometric

series and the scalar-valued little q-Jacobi polynomials are presented. The study is based on a

matrix-valued q-difference operator, which is a q-analogue of Tirao’s matrix-valued hypergeometric

differential operator.

1 Introduction

Matrix-valued orthogonal polynomials were originally introduced by M.G.Krĕın in 1949, initially studying
the corresponding moment problem, see references in [3, 5], and to study differential operators and their
deficiency indices, see also [25]. Since then an increasing amount of authors are contributing to build up
a general theory of matrix-valued orthogonal polynomials (see for example [7, 14, 17, 23, 27], etc.).
In the study of matrix-valued orthogonal polynomials the general theory deals with obtaining appropriate
analogues of classical results known for (scalar-valued) orthogonal polynomials, and many results and
proofs have been generalized in this direction, see [6, 7] and the overview paper [5]. But also new features
that do not hold in the scalar theory have been discovered, like the existence of different second order
differential equations satisfied by a family of matrix orthogonal polynomials, see [10, 23]. The theory of
matrix-valued orthogonal polynomials has also turned out to be a fruitful tool in the solution of higher
order recurrence relations, see [12, 15].
For orthogonal polynomials the theory is complemented by many explicit families of orthogonal polyno-
mials, notably the ones in the Askey scheme and its q-analogue, see [21, 22], which have turned out to
be very useful in many different contexts, such as mathematical physics, representation theory, combi-
natorics, number theory, etc. The orthogonal polynomials in the (q-)Askey scheme are characterized by
being eigenfunctions of a suitable second order differential or difference operator, so that all these families
correspond to solutions of a bispectral problem. E.g., for the Jacobi polynomials this is the hypergeo-
metric differential operator and for the little q-Jacobi polynomials this is the q-hypergeometric difference
operator, see also [13, 20]. This is closely related to Bochner’s 1929 classification theorem of second order
differential operators having polynomial eigenfunctions, see [20] for extensions and references.
For matrix-valued orthogonal polynomials there is no classification result of such type known, so that
we have to study the properties of specific examples of families of matrix-valued orthogonal polyno-
mials. Already many examples are known, either from scratch, [11], related to representation theory
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e.g. [16, 23, 24] or motivated from spectral theory [15]. In most of these papers, the matrix-valued
orthogonal polynomials are eigenfunctions of a second order matrix-valued differential operator, so that
these polynomials are usually considered as matrix-valued analogues of suitable polynomials from the
Askey-scheme. The matrix-valued differential operator is often of the type of the matrix-valued hyperge-
ometric differential operator of Tirao [28] and this makes it possible to express matrix-valued orthogonal
polynomials in terms of the matrix-valued hypergeometric functions, see e.g. [24] for an example.
More recently, in [2] the step has been made to use matrix-valued difference operators and consider
corresponding matrix-valued orthogonal polynomials as eigenfunctions. Again these matrix-valued or-
thogonal polynomials can be seen as analogues of orthogonal polynomials from the Askey-scheme. In
this paper, motivated by [2], we study a specific case of matrix-valued orthogonal polynomials which
are analogues of the little q-Jacobi polynomials, moving from analogues of classical discrete orthogonal
polynomials to orthogonal polynomials on a q-lattice. As far as we are aware, these matrix-valued or-
thogonal polynomials are a first example of the matrix-valued analogue of a family of polynomials in the
q-Askey scheme. An essential ingredient in the study of these matrix-valued little q-Jacobi polynomials
is the second order q-difference operator (3.2). In particular this gives the possibility to introduce and
employ matrix-valued basic hypergeometric series in the same spirit as Tirao [28], which differs from the
approach of Conflitti and Schlosser [4].
The content of the paper are as follows. In Section 2 we recall the basics of the (scalar-valued) little
q-Jacobi polynomials and the general theory of matrix-valued orthogonal polynomials. In Section 3
we study the matrix-valued second order q-difference equations as well as under which conditions such
an operator is symmetric for a suitable matrix-weight function. In Section 4 we study the relevant q-
analogue of Tirao’s [28] matrix-valued hypergeometric functions. In Section 5 the 2 × 2-matrix-valued
little q-Jacobi polynomials are studied in detail. In particular, we give explicit orthogonality relations, the
moments, the matrix-valued three-term recurrence relation, expressions in terms of the matrix-valued
basic hypergeometric function, the link to the scalar little q-Jacobi polynomials, and the Rodrigues
formula for these family of polynomials.
It would be interesting to find a group theory interpretation of these matrix-valued little q-Jacobi poly-
nomials along the lines of [16, 23, 24] in the quantum group setting.

2 Preliminaries

2.1 Basic hypergeometric functions

We recall some of the definitions and facts about basic hypergeometric functions, see Gasper and Rahman
[13]. We fix 0 < q < 1. For a ∈ C the q-Pochhammer symbol is defined recursively by (a; q)0 = 1 and

(a; q)n = (1− aqn−1)(a; q)n−1, (a; q)−n =
1

(aq−n; q)n
, n ∈ N = {0, 1, 2, . . .}.

The infinite q-Pochhammer symbol is defined as

(a; q)∞ =

∞
∏

k=0

(1− aqk).

For a1, . . . , aℓ ∈ C we use the abbreviation (a1, a2, ..., aℓ; q)n =
∏ℓ

i=1(ai; q)n. The basic hypergeometric
series r+1φr with parameters a1, . . . , ar+1, b1, . . . , br ∈ C, base q and variable z is defined by the series

r+1φr

[

a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z

]

=

∞
∑

k=0

(a1, a2, . . . , ar+1; q)k
(q; q)k(b1, b2, . . . br; q)k

zk, |z| < 1.

The q-derivative Dq of a function f at z 6= 0 is defined by

(Dqf)(z) =
f(z)− f(qz)

(1 − q)z
,

2



and (Dqf)(0) = f ′(0), provided that f ′(0) exists. Two useful formulas are the q-Leibniz rule [13, Exercise
1.12.iv]

Dn
q (fg)(z) =

n
∑

k=0

[

n

k

]

q

Dn−k
q f(qkz)Dk

q g(z), (2.1)

and the formula

(Dn
q f)(z) =

1

(1 − q)nq(
n

2)zn

n
∑

j=0

(−1)n−j

[

n

j

]

q

q(
n−j

2 )f(qjz), (2.2)

where the q-binomial coefficient
[

n
k

]

q
is given by

[

n

k

]

q

=
(q; q)n

(q; q)k(q; q)n−k

.

The q-integral of a function f is defined as
∫ 1

0

f(z)dqz = (1 − q)

∞
∑

k=0

f(qk)qk,

whenever the series converges. The q-analogue of the fundamental theorem of calculus states
∫ 1

0

(

Dqf
)

(z)dqz = f(qx)|0x=∞ = f(1)− f(0), (2.3)

whenever all the limits converge.

2.2 The little q-Jacobi polynomials

Let 0 < a < q−1 and b < q−1. The little q-Jacobi polynomials are the polynomials defined by

pn(z; a, b; q) = 2φ1

[

q−n, abqn+1

aq
; q, qz

]

. (2.4)

The little q-Jacobi polynomials have been introduced by Andrews and Askey [1], see also [13, §7.3] and
[21, §14.12]. These polynomials satisfy the following orthogonality relation

〈pm(z, a, b; q), pn(z, a, b; q)〉 =
∞
∑

k=0

(aq)k
(bq; q)k
(q; q)k

pm(qk; a, b; q)pn(q
k; a, b; q) (2.5)

=
(abq2; q)∞
(aq; q)∞

(1− abq)(aq)n

(1 − abq2n+1)

(q, bq; q)n
(aq, abq; q)n

δm,n = hn(a, b; q)δm,n,

where δm,n is the Kronecker delta function and hn(a, b; q) > 0. If we need to emphasize the dependence
on a and b we write 〈·, ·〉(a,b). The moments of the little q-Jacobi polynomials are given by

mn(a, b) = 〈zn, 1〉(a,b) =
(abqn+2; q)∞
(aqn+1; q)∞

. (2.6)

The sequence of the little q-Jacobi polynomials satisfies the three term recurrence relation

−zpn(z; a, b; q) = Anpn+1(z; a, b; q)− (An + Cn)pn(z; a, b; q) + Cnpn−1(z; a, b; q) (2.7)

with

An = qn
(1 − aqn+1)(1− abqn+1)

(1− abq2n+1)(1− abq2n+2)
, Cn = aqn

(1 − qn)(1− bqn)

(1− abq2n)(1− abq2n+1)
.

They are also eigenfunctions of the second order q-difference operator

λnpn(z) = a(bq − z−1)(E1pn)(z)− ((abq + 1)− (1 + a)z−1)(E0pn)(z) + (1− z−1)(E−1pn)(z), (2.8)

where λn = q−n(1 − qn)(1 − abqn+1), pn(z) = pn(z; a, b; q) and Eℓ are the q-shift operators defined by
(Eℓp)(z) = p(qℓz).
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2.3 Matrix-valued orthogonal polynomials

We review here some basic concepts of the theory of matrix-valued orthogonal polynomials, also see
[5, 18, 26]. A matrix-valued polynomial of size N ∈ N is a polynomial whose coefficients are elements of
MatN (C). If no confusion is possible we will omit the size parameter N and write P[z] for the space of
matrix polynomials with coefficients in MatN (C) and Pn[z] for polynomials in P[z] of degree at most n.
The orthogonality will be with respect to a N ×N weight matrix W , that is a matrix of Borel measures
supported on a common set of the real line S, such that the following is satisfied:

1. for any Borel set A ⊆ S the matrix W (A) =
∫

A
dW (z) is positive semi-definite,

2. W has finite moments of every order, i.e.
∫

S
zndW (z) is finite for all n ≥ 0,

3. if P is a matrix-valued polynomial with non-singular leading coefficient then
∫

S
P (z)dW (z)P ∗(z)

is also non-singular.

A weight matrix W defines a matrix-valued inner product on the space P[z] by

〈P,Q〉 =

∫

S

P (z)dW (z)Q∗(z) ∈ MatN (C).

Note that for every matrix-valued polynomial P with non-singular leading coefficient, 〈P, P 〉 is positive
definite. A sequence of matrix-valued polynomials (Pn)n≥0 is called orthogonal with respect to the weight
matrix W if

1. for every n ≥ 0 we have dgr(Pn) = n and Pn has non-singular leading coefficient,

2. for every m,n ≥ 0 we have 〈Pm, Pn〉 = Γmδm,n, where Γm is a positive definite matrix.

Given a weight matrix W there always exists a unique sequence of polynomials (Pn)n≥0 orthogonal with
respect to W up to left multiplication of each Pn by a non-singular matrix, see [5, Lemma 2.2 and Lemma
2.7] or [18]. We say that a matrix-valued orthogonal polynomials sequence (Pn)n≥0 is orthonormal if
Γn = I for all n ≥ 0. We call (Pn)n≥0 monic if every Pn is monic, i.e. the leading coefficient of Pn is the
identity matrix.
A weight matrix W with support S is said to be reducible to scalar weights if there exists a non-singular
matrix K, independent of z, and a diagonal matrix D(z) = diag(w1(z), w2(z), . . . , wN (z)) such that for
all z ∈ S

W (z) = KD(z)K∗.

In this case the orthogonal polynomials with respect to W (z) are of the form

Pn(z) =











pn,1(z) 0 · · · 0
0 pn,2(z) · · · 0
...

...
. . .

...
0 0 · · · pn,N(z)











K−1

where (pn,i)n are the orthogonal polynomials with respect to Di,i(z) = wi(z) for i = 1, . . . , N . Therefore
weight matrices that reduce to scalar weights can be viewed as a set of independent scalar weights, so
they are not interesting for the theory of matrix orthogonal polynomials. In this paper S is countable
and assuming additionally that W (a) = I for some a ∈ S, by [19, Theorem 4.1.6] the weight matrix W

can be reduced to scalar weights if and only if W (x)W (y) = W (y)W (x) for all x, y ∈ S, also see [2, p.
43].
In the rest of this paper we only consider weight matrices such that dW (z) = 1

1−q
W (z)dqz and we assume

that W (qn) > 0 for all n ∈ N. These weight matrices are called q-weight matrices or just q-weights. The
matrix-valued inner product defined by such a q-weight is of the form

〈P,Q〉W =
1

1− q

∫ 1

0

P (z)W (z)Q∗(z)dqz =
∞
∑

n=0

qnP (qn)W (qn)(Q(qn))∗, (2.9)

whenever the series converges termwise.
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3 q-Difference operators

In order to study matrix-valued analogues of the little q-Jacobi polynomials appearing in the q-Askey
scheme we focus our attention on operators of the form

D = E−1F−1 + E0F0 + E1F1, (3.1)

where Fℓ(z) are matrix-valued polynomials in z−1 satisfying certain degree conditions assuring the preser-
vation of the polynomials, cf (2.8). In particular we are interested in operators having families of matrix-
valued polynomials as eigenfunctions,

(DPn)(z) = Pn(q
−1z)F−1(z) + Pn(z)F0(z) + P (qz)F1(z) = ΛnPn(z). (3.2)

It is important to notice that the coefficients Fℓ appear on the right whereas the eigenvalue matrix Λn

appears on the left, cf. [8].

3.1 q-Difference operators preserving polynomials

Suppose that there is a family of solutions of matrix-valued orthogonal polynomials to (3.2), then D

preserves polynomials and does not raise the degree of a polynomial. Theorem 3.1 characterizes the
q-difference operators with polynomial coefficients in z−1 preserving polynomials of degree n for all n.
Theorem 3.1 is an analogue of [2, Lemma 2.2] and [9, Lemma 3.2], where the proof is a slight adaptation
of [2, Lemma 2.2] and [9, Lemma 3.2].

Theorem 3.1. Let

D =

r
∑

ℓ=s

EℓFℓ, Fℓ ∈ Pn[z
−1]

with r, s integers such that s ≤ r. The following conditions are equivalent:

1. D : Pn[z] → Pn[z] for all n ≥ 0.

2. Fℓ(z) ∈ Pr−s[z
−1] for ℓ = s, . . . , r and

∑r
ℓ=s q

ℓkFℓ(z) ∈ Pk[z
−1] for k = 0, . . . , r − s.

To prove Theorem 3.1 we use Lemma 3.2.

Lemma 3.2. Let r, s and n be integers such that s ≤ r and 0 ≤ n. Let Gk(z) be matrix-valued
polynomials in z−1 of degree at most n for k = 0, . . . , r − s. The system of linear equations

r
∑

ℓ=s

qℓkFℓ(z) = Gk(z), 0 ≤ k ≤ r − s,

determines the functions Fℓ(z), ℓ = s, . . . , r, uniquely as polynomials in z−1 of degree at most n.

The proof is straightforward, see [9, Lemma 2.1], using the Vandermonde matrix.

Proof of Theorem 3.1. First we prove 1 ⇒ 2. For k = 0, . . . , r − s, let Gk(z) =
∑r

ℓ=s q
ℓkFℓ(z). If

0 ≤ n ≤ r − s, write P (z) = znI. Then

(DP )(z) =
r
∑

ℓ=s

(qℓz)nFℓ(z) = zn
r
∑

ℓ=s

qℓnFℓ(z) = znGn(z) ∈ Pn[z].

Since DP is a polynomial with dgr(DP ) ≤ dgr(P ), Gn is a polynomial in z−1 of degree at most n for
0 ≤ n ≤ r − s. By Lemma 3.2 Fℓ are actually polynomials in z−1 of degree at most r − s.
To prove 2 ⇒ 1, consider Gk(z) =

∑r
ℓ=s q

kℓFℓ(z), for k ≥ 0. Now Gk is a matrix-valued polynomial in
z−1. If 0 ≤ k ≤ r − s then, by 2, dgr(Gk) ≤ k and if k ≥ r − s + 1 then dgr(Gk) ≤ r − s. Now put
P (z) = znI so

DP (z) =

r
∑

ℓ=s

(qℓz)nFℓ(z) = zn
r
∑

ℓ=s

qℓnFℓ(z).

If 0 ≤ n ≤ r− s we have that
∑r

ℓ=s q
ℓnFℓ(z) is a polynomial in z−1 of degree at most n. Hence DP is a

polynomial of degree at most n. On the other hand if n ≥ r − s then
∑r

l=s q
ℓnFℓ(z) is a matrix-valued

polynomial in z−1 of degree at most r− s. Hence DP is also a polynomial in z of degree at most n.
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3.2 The symmetry equations

Symmetry is a key concept when looking for weight matrices having matrix-valued orthogonal polyno-
mials as eigenfunctions of a suitable q-difference operator. In Definition 3.3 we use the notation (2.9).

Definition 3.3. An operator D : P[z] → P[z] is symmetric with respect to a weight matrix W if
〈DP,Q〉W = 〈P,DQ〉W for all P,Q ∈ P[z].

Theorem 3.4 is a well-known result relating symmetric operators and matrix-valued orthogonal polyno-
mials, see [8, Lemma 2.1] and [18, Proposition 2.10 and Corollary 4.5].

Theorem 3.4. Let D be a q-difference operator preserving P[z], so that dgr(DP ) ≤ dgr(P ) for any
P ∈ P[z]. If D is symmetric with respect to a weight matrix W then there exists a sequence of matrix-
valued orthonormal polynomials (Pn)n≥0 and a sequence of Hermitian matrices (Λn)n≥0 such that

DPn = ΛnPn, ∀n ≥ 0. (3.3)

Conversely if W (z) is a weight matrix and (Pn)n≥0 a sequence of matrix-valued orthonormal polynomials
such that there exists a sequence of Hermitian matrices (Λn)n≥0 satisfying (3.3), then D is symmetric
with respect to W .

It should be observed that Theorem 3.5 is an analogue of a similar statement for differential operators
in [8, 18]. Also note that the q-difference operator D has has polynomial coefficients in z−1 (instead of
z), so that the essential condition is the preservation of the space of polynomials instead of the degree
condition, which is the essential condition in [8, 18].
Theorem 3.5 is an analogue of [11, Theorem 3.1] and [17, Section 4] for symmetric second order differential
operators.

Theorem 3.5. Let D be a q-difference operator preserving P[z] of the form (3.1) with Fℓ matrix-valued
polynomials in z−1. Let W be a q-weight matrix as in (2.9). Suppose that the coefficients Fℓ and the
weight matrix W satisfy the following equations

F0(q
x)W (qx) = W (qx)F0(q

x)∗, x ∈ N, (3.4)

F1(q
x−1)W (qx−1) = qW (qx)F−1(q

x)∗, x ∈ N\{0}, (3.5)

and the boundary conditions

W (1)F−1(1)
∗ = 0, (3.6)

q2xF1(q
x)W (qx) → 0, as x → ∞,

qx
(

F1(q
x)W (qx)−W (qx)F1(q

x)∗
)

→ 0, as x → ∞.

Then the q-difference operator D is symmetric with respect to W .

Proof. We assume that the operator D and the weight matrix W satisfy the symmetry equations (3.4),
(3.5) and the boundary conditions (3.6). For an integer M > 0, we consider the truncated inner product

〈P,Q〉MW =

M
∑

x=0

qxP (qx)W (qx)Q∗(qx).

It is clear that 〈P,Q〉MW → 〈P,Q〉W as M → ∞ for P,Q ∈ P[z]. Then

〈DP,Q〉MW =
M
∑

x=0

qx(DP )(qx)W (qx)Q∗(qx)

=

M
∑

x=0

qx
(

P (qx+1)F1(q
x) + P (qx)F0(q

x) + P (qx−1)F−1(q
x)
)

W (qx)Q∗(qx)

6



By a straightforward and careful computation using (3.4), (3.5) and the first boundary condition of (3.6)
we have

〈DP,Q〉MW − 〈P,DQ〉MW = qMP (qM+1)F1(q
M )W (qM )Q∗(qM )− qMP (qM )W (qM )F ∗

1 (q
M )Q∗(qM+1).

Write P (z) = P0 + zP1(z) and Q(z) = Q0 + zQ1(z) so that

〈DP,Q〉MW − 〈P,DQ〉MW = qMP0

(

F1(q
M )W (qM )−W (qM )F1(q

M )∗
)

Q∗
0 + remainder

where the remainder consists of terms of the form q2MR(qM )F1(q
M )W (qM )S(qM ) or its adjoint for

suitable matrix-valued polynomials R and S. TakingM → ∞ and using the last two boundary conditions
of (3.6) we get the result.

4 A matrix-valued q-hypergeometric equation

Motivated by Tirao [28] we define a matrix-valued analogue of the basic hypergeometric series. This
definition is different from that given by Conflitti and Schlosser [4], where some additional factorization
is assumed.
Consider the following q-difference equation on row-vector-valued functions F : C → CN .

F (q−1z)(R1 + zR2) + F (z)(S1 + zS2) + F (qz)(T1 + zT2) = 0. (4.1)

where R1, R2, S1, S2, T1, T2 ∈ MatN (C). The case N = 1 is the scalar hypergeometric q-difference
equation, see [13, Exercise 1.13].
Let F be a solution of (4.1) of the form F (z) = zµG(z) where

G(z) =

∞
∑

k=0

Gkzk, G0 6= 0, Gk ∈ C
N

The Frobenius method gives the recursions

0 = G0
(

q−µR1 + S1 + qµT1

)

,

0 = Gk
(

q−k−µR1 + S1 + qk+µT1

)

+Gk−1
(

q−k−µ+1R2 + S2 + qk+µ−1T2

)

, k ≥ 1.

The first equation implies det(q−µR1+S1+qµT1) = 0 and
(

G0
)∗

∈ ker(q−µ̄R∗
1+S∗

1+qµ̄T ∗
1 ). The solution

of the indicial equation det(q−µR1 + S1 + qµT1) = 0 is the set of exponents E. For each µ ∈ E we write
dµ = dim(ker(q−µ̄R∗

1 + S∗
1 + qµ̄T ∗

1 )) for the multiplicity of the exponent µ. In order to have analytic
solutions of (4.1) we require that 0 ∈ E. Moreover we assume that the multiplicity for 0 is maximal,
d0 = N , which implies S1 = −R1 − T1. Under this assumption E = {µ : det(q−µR1 − T1) = 0} ∪ {0}.
Since we are only interested in polynomial solutions, we only consider expansions around z = 0, but we
can also study solutions at ∞ in a similar fashion.
We specialize to the case R1 = −R2 = I;

F (q−1z)(1− z) + F (z)(−I − T1 + zS2) + F (qz)(T1 + zT2) = 0. (4.2)

For any G0 ∈ CN , G(z) =
∑∞

k=0 G
kzk is a solution of (4.2) if and only if

0 = Gk
(

(q−k − 1)I + (qk − 1)T1

)

+Gk−1
(

−q−k+1I + S2 + qk−1T2

)

, k ≥ 1.

Assuming σ(T1) ∩ q−N = ∅, the coefficients are

Gk =
qk

(q; q)k
G0

k
−→
∏

i=1

(

I − qi−1S2 − q2i−2T2

) (

I − qiT1

)−1
, k ≥ 1,

where

k
−→
∏

i=1

Ai = A1A2 . . . Ak is an ordered product. We summarize this discussion with Definition 4.1 and

Theorem 4.2.
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Definition 4.1. Let A,B,C ∈ MatN (C) where σ(C) ∩ q−N\{0} = ∅. Define

(A,B;C; q)0 = I,

(A,B;C; q)k = (A,B;C; q)k−1

(

I − qk−1A− q2k−2B
) (

I − qkC
)−1

, k ≥ 1.

Define the function 2η1 by

2η1

[

A,B

C
; q, z

]

=

∞
∑

n=0

(A,B;C; q)n
zn

(q; q)n
. (4.3)

Now (4.3) converges for |z| < 1 in the norm of MatN (C).

Theorem 4.2. Let A,B,C ∈ MatN (C) such that σ(C) ∩ q−N\{0} = ∅.

F (z) = F 0
2η1

[

A,B

C
; q, qz

]

, F 0 ∈ C
N as row-vector, (4.4)

is a solution of the matrix-valued q-difference equation

F (q−1z)(1− z) + F (z) (−I − C + zA) + F (qz) (C + zB) = 0, (4.5)

with condition F (0) = F 0. Conversely, any analytic solution F around z = 0 of (4.5) with initial
condition F (0) 6= 0 is of the form (4.4).

5 The 2× 2 matrix-valued little q-Jacobi polynomials

Based on [2, Theorem 4.2] we present a method to construct q-difference operatorsD and weight matrices
W satisfying the symmetry equations (3.4). By applying this method we construct a matrix analogue of
the scalar little q-Jacobi polynomials, and we give explicit expressions of the matrix-valued little q-Jacobi
polynomials in terms of the scalar ones. We also show how these matrix polynomials can be written as
a matrix-valued q-hypergeometric function, motivated by the work of Tirao [28].

5.1 The construction

Lemma 5.1 is an adapted version of [2, Theorem 4.2]. We omit the proof here because it is completely
analogous to that in [2].

Lemma 5.1. Let s be a scalar function satisfying s(qx) 6= 0 for x ∈ N\{0}. Assume that F1 and F−1

are matrix-valued polynomials satisfying

F1(q
x−1)F−1(q

x) = q|s(qx)|2I, ∀x ∈ N\{0}. (5.1)

Let T be a solution of the q-difference equation

T (qx−1) = s(qx)−1F−1(q
x)T (qx), x ∈ N\{0}, T (1) = I. (5.2)

Then the q-weight defined by W (qx) = T (qx)T (qx)∗ satisfies the symmetry equation

F1(q
x−1)W (qx−1) = qW (qx)F−1(q

x)∗, x ∈ N\{0}.

We are now ready to introduce 2×2 matrix-valued orthogonal polynomials related to a specific q-difference
operator.

Theorem 5.2. Assume a and b satisfy 0 < a < q−1 and b < q−1. For v ∈ C define matrices

K =

(

0 v(1− q)(q−1 − a)
0 0

)

, M =

(

1 v

0 0

)

, A = elog(q)M =

(

q −v(1− q)
0 1

)

.
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The q-difference operator given by

D = E−1F−1(z) + E0F0(z) + E1F1(z),

F−1(z) = (z−1 − 1)A−1, F0(z) = K − z−1(A−1 + aA), F1(z) = (az−1 − abq)A, (5.3)

is symmetric with respect to the matrix-valued inner product (2.9) where the weight matrix is given by

W (qx) = ax
(bq; q)x
(q; q)x

Ax(A∗)x, (5.4)

Moreover, the monic orthogonal polynomials (Pn)n≥0 with respect to W satisfy DPn = ΛnPn, with
eigenvalues

Λn =

(

−q−n−1 − abqn+2 v(1− q)(abqn+1 − q−1−n + q−1 − a)
0 −q−n − abqn+1

)

. (5.5)

Remark 5.3. These polynomials are a matrix-valued analogues of the little q-Jacobi polynomials and
for v 6= 0 they cannot be reduced to scalars. This follows from W (q0) = I and for v 6= 0 and x, y ∈ N\{0}
with x 6= y we have W (qx)W (qy) 6= W (qy)W (qx), as can be checked by substituting (5.9) in (5.4).

Proof. To prove the theorem we first prove that D preserves polynomials and then apply Theorem 3.5
to see that the operator is symmetric with respect to W . We proceed in three steps.
Step 1. D preserves polynomials and degree.
As polynomials in z−1, dgr(Fi) = 1 < 2, so that condition 2 for k = 1, 2 in Theorem 3.1 is satisfied.
Because dgr(F0 + F1 + F−1) = 0 condition 2 is also satisfied for k = 0 from which we conclude from
Theorem 3.1 that D : Pn[z] → Pn[z].
Step 2. Symmetry equations. F1(q

x−1)W (qx−1) = qW (qx)F−1(q
x) and F0(q

x)W (qx) = W (qx)F0(q
x)∗

Consider the function s(qx) = q−x
√

a(1− qx)(1− bqx). The function s satisfies s(qx) 6= 0 because
0 < a < q−1 and b < q−1, and by a direct computation we see that with this choice of s, (5.1) is satisfied.
The solution of (5.2) in this case is given by

T (qx) =

√

ax(bq; q)x
(q; q)x

Ax,

By Lemma 5.1 we can conclude that the symmetry equation, F1(q
x−1)W (qx−1) = qW (qx)F−1(q

x) holds
for W (qx) = T (qx)T (qx)∗ and x = 1, 2, . . . .
Note that T (qx) is invertible for all x ∈ N. The symmetry equation (3.4) is equivalent to showing that
the matrix T (qx)−1F0(q

x)T (qx) is Hermitian. Note that

T (qx)−1F0(q
x)T (qx) = A−x

(

K − q−x
(

A−1 + aA
))

Ax = A−xKAx − q−x
(

A−1 + aA
)

. (5.6)

Taking into account that A = elog(q)M and e−NxReNx =

∞
∑

k=0

(−1)kxk

k!
adkN R, we see that (3.4) holds if

and only if

A−xKAx − q−x
(

A−1 + aA
)

=

∞
∑

k=0

(−1)k log(q)kxk

k!

(

adkM K −A−1 − aA
)

is Hermitian for all x ∈ N, i.e. if and only if all coefficients adkM K −
(

A−1 + aA
)

are Hermitian.
For k = 0

V = K − aA−A−1 =

(

−aq − q−1 0
0 −a− 1

)

is Hermitian. Direct computation shows that V satisfies

adM V = MV − VM =

(

−aq − q−1 0
0 −a− 1

)

= V

9



i.e., V is a fixed point of adM .
On the other hand since A = e− log(q)M , we have adkM K = adkM (K − aA− A) = adkM V , so we get that
T (qx)−1F0(q

x)T (qx) = V q−x, which is a diagonal real matrix, hence Hermitian.
Step 3. Boundary conditions.
Since F−1(z) = (z−1 − 1)A−1, the first boundary condition F−1(1)W (1) = 0 holds.
To check the last boundary condition qx(F1(q

x)W (qx)−W (qx)F1(q
x)∗) → 0 as x → ∞, we calculate

Ax =

(

qx −v(1− qx)
0 1

)

, x ∈ Z. (5.7)

Then we have

qx(F1(q
x)W (qx)−W (qx)F1(q

x)∗) = qxax
(bq; q)x
(q; q)x

(aq−x − abq)
(

Ax+1(A∗)x −Ax(A∗)x+1
)

(5.8)

= q2x−1ax
(bq; q)x
(q; q)x

(aq−x − abq)A

(

0 −v(1− q)
v̄(1− q) 0

)

A∗.

Because a < q−1, (5.8) tends to 0 if x → ∞. It is easy to see that the second boundary condition
q2xF1(q

x)W (qx) → 0 as x → ∞ also holds.
We have proved that D : P[z] → P[z] is symmetric with respect to W and that D is an operator that
preserves polynomials and does not raise the degree. We are under the hypothesis of Theorem 3.4, and
we can conclude that the orthogonal polynomials with respect to W are common eigenfunctions of D.
Finally by equating the coefficients in the equation DPn = ΛnPn, for the monic sequence of orthogonal
polynomials with respect to W , we obtain the expression (5.5) for the eigenvalues Λn = −q−nA−1+K−
abqn+1A.

Proposition 5.4. The moments associated to (2.9) with W as in (5.4) are given by

Mn = 〈znI, I〉W =

(

mn(aq
2, b) −v(mn(a, b)−mn(aq, b))

−v(mn(a, b)−mn(aq, b)) mn(a, b)

)

,

where mn(a, b) are given in (2.6).

Proof. Using (5.7) we can write

Ax(A∗)x =

(

q2x −v(1− qx)
−v(1− qx) 1

)

. (5.9)

Substituting (5.9) in 〈xnI, I〉W =
∑∞

x=0 q
xax

(bq;q)x
(q;q)x

qnxAx(A∗)x, we get the result using (2.6).

5.2 Explicit expression of P
n

In this section we give an explicit expression of Pn in terms of scalar little q-Jacobi polynomials by
decoupling the matrix-valued q-difference operator (5.3).

Theorem 5.5. The monic matrix-valued orthogonal polynomials with respect to the matrix-valued inner
product (2.9) and weight matrix (5.4) are of the form

Pn(z) = N−1
n

(

κn
11pn(z; aq

2, b; q) κn
12pn+1(z; a, b; q) + κn

11(1− z)vpn(z; aq
2, b; q)

κn
12pn−1(z; aq

2, b; q) κn
22pn(z; a, b; q) + κn

21(1− z)vpn−1(z; aq
2, b; q)

)

,

where

Nn =

(

1 α

0 1

)

, α =
1− qn + aqn+1 − abq2n+2

1− abq2n+2
v = v

(

1 + qn
aq − 1

1− abq2n+2

)

,

pn(z; a, b; q) are the little q-Jacobi polynomials (2.4) and with coefficients

κn
11 = (−1)nq(

n

2) (aq3; q)n
(abqn+3; q)n

, κn
12 = (−1)n+1vq(

n+1

2 ) (aq; q)n+1

(abqn+2; q)n+1
, (5.10)

κn
21 = (−1)nξnavq

(n2)−n+2 (1− qn)(1 − bqn)

(1 − aq)(1− aq2)

(aq; q)n
(abqn+1; q)n

, κn
22 = (−1)nξnq

(n2) (aq; q)n
(abqn+1; q)n

,
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where

ξn =

(

1 + aq|v|2
(1− qn)(1 − bqn)

(1− abqn+1)(1− aqn+1)

)−1

.

Proof. Let us define P̃n = NnPn and notice that (Λ̃n)n≥0 = (NnΛnN
−1
n )n≥0 are diagonal. Then DP̃n =

Λ̃nP̃n = diag(−q−n−1 − abqn+2,−q−n − abqn+1)P̃n. Now write using (5.7)

P̃n(q
x) = NnPn(q

x) =

(

p̃n11(q
x) p̃n12(q

x)
p̃n21(q

x) p̃n22(q
x),

)

,

Qn(q
x) = P̃n(q

x)Ax =

(

qxp̃n11(q
x) p̃n12 − (1 − qx)vp̃n11(q

x)
qxp̃n21(q

x) p̃n22 − (1 − qx)vp̃n21(q
x)

)

=

(

rn11(q
x) rn12(q

x)
rn21(q

x) rn22(q
x)

)

, (5.11)

=⇒

(

p̃n11(q
x) p̃n12(q

x)
p̃n21(q

x) p̃n22(q
x)

)

=

(

q−xrn11(q
x) rn12(q

x) + v(q−x − 1)rn11(q
x)

q−xrn21(q
x) rn22(q

x) + v(q−x − 1)rn21(q
x)

)

,

Taking into account (5.6) and the proof of step 2 in the proof of Theorem 5.2 we obtain

(DP̃n)(q
x)Ax = P̃n(q

x−1)Ax(q−x − 1)A−1 + P̃n(q
x)Ax

(

A−xKAx − q−x(A−1 + aA)
)

+ P̃n(q
x+1)Ax(aq−x − abq)A

= (q−x − 1)Qn(q
x−1) +Qn(q

x)q−x

(

−(q−1 + aq) 0
0 −(1 + a)

)

+ (aq−x − abq)Qn(q
x+1)

= diag(−q−n−1 − abqn+2,−q−n − abqn+1)Qn(q
x). (5.12)

Since the eigenvalues as well as all the matrix coefficients involved are diagonal, (5.12) gives four uncou-
pled scalar-valued q-difference equations

rn11(q
x−1)(q−x − 1)− rn11(q

x)q−x(q−1 + aq) + rn11(q
x+1)(aq−x − abq) = −(q−n−1 + abqn+2)rn11(q

x),

rn21(q
x−1)(q−x − 1)− rn21(q

x)q−x(q−1 + aq) + rn21(q
x+1)(aq−x − abq) = −(q−n + abqn+1)rn21(q

x),

rn12(q
x−1)(q−x − 1)− rn12(q

x)q−x(1 + a) + rn12(q
x+1)(aq−x − abq) = −(q−n−1 + abqn+2)rn12(q

x),

rn22(q
x−1)(q−x − 1)− rn22(q

x)q−x(1 + a) + rn22(q
x+1)(aq−x − abq) = −(q−n + abqn+1)rn22(q

x),

that can be solved using (2.7). Using the first column of the last equation of (5.11) we obtain recurrences
for the polynomials p̃n11 of degree n and p̃n21 of degree n− 1, which gives the first column in

P̃n(z) =

(

κn
11pn(z; aq

2, b; q) κn
12pn+1(z; a, b; q) + κn

11(1 − z)vpn(z; aq
2, b; q)

κn
21pn−1(z; aq

2, b; q) κn
22pn(z; a, b; q) + κn

21(1− z)vpn−1(z; aq
2, b; q)

)

.

Since rn12, respectively rn22, are polynomial of degree n+1, respectively n, we find the explicit expression
for rn12 and rn22 in terms of little q-Jacobi polynomials from (2.7), so that (5.11) gives the result.
From the expression of the leading coefficient of P̃n, Nn, the coefficients κn

11 and κn
12 are determined and

we obtain (5.10). The expression of (Nn)22 gives the relation

κn
22 = (−1)nq(

n

2) (aq; q)n
(abqn+1; q)n

− κn
21vq

n−1 (1− aq)(1 − aq2)

(1− abqn+1)(1− aqn+1)
. (5.13)

Now we use orthogonality to determine completely κn
21 and κn

22,

〈P̃m, P̃n〉W =

∞
∑

x=0

(aq)x
(bq; q)x
(q; q)x

(

P̃m(qx)Ax
)(

P̃n(q
x)Ax

)∗

(5.14)

=

∞
∑

x=0

(aq)x
(bq; q)x
(q; q)x

Qm(qx)Q∗
n(q

x) = Hnδm,n,

where Hn is a strictly positive matrix and

Qm(qx)Q∗
n(q

x) =





rm11(q
x)rn11(q

x) + rm12(q
x)rn12(q

x) rm11(q
x)rn21(q

x) + rm12(q
x)rn22(q

x)

rm21(q
x)rn11(q

x) + rm22(q
x)rn12(q

x) rm21(q
x)rn21(q

x) + rm22(q
x)rn22(q

x)



 . (5.15)
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Combining (5.14) with entry (2, 1) of (5.15) we have

(Hn)21δm,n =

∞
∑

x=0

(aq)x
(bq; q)x
(q; q)x

(rm21r
n
11 + rm22r

n
12) = 〈rm21, r

n
11〉(a,b) + 〈rm22, r

n
12〉(a,b) (5.16)

= 〈κm
21zpm−1(z; aq

2, b; q), κn
11zpn(z; aq

2, b; q)〉(a,b) + 〈κm
22pm(z; a, b; q), κn

12pn+1(z; a, b; q)〉(a,b)

= κm
21κ

n
11〈pm−1(z; aq

2; b; q), pn(z; aq
2, b; q)〉(aq2,b) + κm

22κ
n
12〈pm(z; a, b; q), pn+1(z; a, b; q)〉(a,b).

Taking (m,n) 7→ (n, n − 1) and using the orthogonality relations (2.5) gives a linear relation, which
together with (5.13) determine κn

22 and κn
21 as given by (5.10). This completes the proof of the theorem.

Corollary 5.6. For the matrix-valued polynomials (P̃n)n≥0 as in the proof of Theorem 5.5 with diagonal
eigenvalues we have

〈P̃m, P̃n〉W = Hnδm,n,

where Hn is the diagonal matrix

Hn = diag(|κn
11|

2hn(aq
2, b; q) + |κn

12|
2hn(a, b; q), |κ

n
21|

2hn(aq
2, b; q) + |κn

22|
2hn(a, b; q)),

and hn(a, b; q) is defined in (2.5).

Proof. For m = n (5.16) shows (Hn)21 = 0. Similarly we compute (Hn)12 = 0. The entries (1, 1) and
(2, 2) can be found by straightforward calculations similar to entries (1, 2) and (2, 1).

5.3 The matrix-valued q-hypergeometric equation

Write P̃i,n for the i-th row of the matrix-valued polynomial P̃n. The equation DP̃n = Λ̃nP̃n can be
written as two decoupled row equations

DP̃i,n(z) = P̃i,n(q
−1z)F−1(z) + P̃i,n(z)F0(z) + P̃i,n(qz)F1(z) = λ̃i,nP̃i,n, (5.17)

where i = 1, 2, λ̃1,n = −q−n−1 − abqn+2, λ̃2,n = −q−n − abqn+1 and P̃i,n are the rows of the matrix

polynomials P̃n. We rewrite (5.17) by multiplying on the right by zA

P̃i,n(q
−1z) (1− z) + P̃i,n(z)

(

z (K − λi,nI)A−
(

I + aA2
))

+ P̃i,n(qz)
(

(a− abqz)A2
)

= 0. (5.18)

Proposition 5.7. The solution of (5.18) is

P̃i,n(z) = P̃i,n(0) 2η1

[

KA− λ̃i,nA,−abqA2

aA2
; q, qz

]

. (5.19)

Proof. Since 0 < a < q−1 we have σ(aA2) ∩ q−N\{0} = {a, aq2} ∩ q−N\{0} = ∅, so that we can apply
Theorem 4.2 on (5.18) to get (5.19).

Because P̃i,n are not only analytic row-vector-valued, but actually polynomials, we find conditions on

P̃i,n(0) in order for the series (5.19) to terminate. Writing P̃i,n(z) =
∑∞

k=0 G
k
i z

k we have

Gk
i =

q

1− qk
Gk−1

i (I − qk−1(K − λ̃i,n)A+ abq2k−1A2)(I − aqkA2)−1, (5.20)

and we must have Gn
i 6= 0 and Gn+1

i = 0. Therefore

(Gn
i )

t ∈ ker
(

(I − qn(K − λ̃i,nA) + abq2n+1A2)t
)

. (5.21)

The matrix is upper triangular and the (1, 1)-entry vanishes for λ1,n and the (2, 2)-entry vanishes for
λ2,n. Using the definition of Gk

i we can determine G0
2 completely up to a scalar, since all the matrices in

(5.20) are invertible for 1 ≤ k ≤ n. Because λ̃1,n−1 = λ̃2,n it is not possible to determine G0
1, since the

kernel in (5.21) is also non-trivial for n replaced by n− 1. . However adding the orthogonality relation
(5.14), we can determine G0

1. Therefore the coefficients of P̃i,n(0) are completely determined up to a
scalar by the fact that it is a orthogonal polynomial solution to (5.18).
Proposition 5.7 gives a way to write the orthogonal polynomials in a closed form. The matrix-valued
basic hypergeometric series expression of the polynomials might be useful to generalize the polynomials
to higher dimensions.
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5.4 The three term recurrence relation and the Rodrigues formula

The first goal in this section is to find the three term recurrence relation for P̃n;

zP̃n(z) = AnP̃n+1(z) +BnP̃n(z) + CnP̃n−1(z). (5.22)

By comparing the leading coefficients of (5.22) we read off

An = NnN
−1
n+1 =







1 −
qn(1 − q)(1− aq)(1 + abq2n+3)

(abq2n+2; q2)2
v

0 1






.

By a well-known argument

Cn = 〈P̃n, P̃n〉WA∗
n−1〈P̃n−1, P̃n−1〉

−1
W .

Therefore by Corollary 5.6 we can write Cn = HnA
∗
n−1H

−1
n−1. To find Bn we first remark that

P̃n(0) =

(

κn
11 κn

12 + κn
11v

κn
21 κn

22 + κn
21v

)

and det(P̃n(0)) = κn
11κ

n
22 − κn

21κ
n
12 > 0, because both terms are positive by Theorem 5.5. If we plug in

z = 0 in (5.22) we find

Bn = −AnP̃n+1(0)(P̃n(0))
−1 − CnP̃n−1(0)(P̃n(0))

−1.

Theorem 5.8 gives a Rodrigues formula for the matrix-valued little q-Jacobi polynomials.

Theorem 5.8. The expression

Pn(x) = q−xDn
q

(

axq(n+1)x(bq; q)x

(q; q)x−n

T (qx)R(n)T (qx)∗

)

W (qx)−1, (5.23)

defines a sequence of matrix-valued orthogonal polynomials with respect to (2.9) with weight matrix
(5.4), where

R(n) =





(1− aqn+2)(1 − abqn+3) + av2q2(1− qn)(1− bqn+1)

1− abq2n+3
0

−(1− qn)avq2 1− aqn+2



 .

Proof. Since the proof contains a couple of lengthy but direct calculations, we only give a sketch and
leave the details to the reader.

To see that (5.23) defines a family of orthogonal polynomials two things need to be proved. (1) For
all n ≥ 0, (5.23) defines a matrix-valued polynomial of degree n with non-singular coefficients. (2) The
polynomials defined by (5.23) are orthogonal with respect to the q-weight given by (5.4).
First step.
Let us write qxW (qx) = ρ(qx)T (qx)T (qx)∗, where ρ(qx) is the weight associated to the scalar little q-
Jacobi polynomials with parameters a and b. Using the q-Leibniz rule (2.1) and that T (qx)R(n)T (qx)∗

is a matrix-valued polynomial of degree 2 in qx we can write

Dn
q

(

axq(n+1)x(bq; q)x

(q; q)x−n

T (qx)R(n)T (qx)∗

)

W (qx)−1 (5.24)

= Dn
q

(

axq(n+1)x(bq; q)x

(q; q)x−n

)

(ρ(x))−1T (qx)R(n)T (qx)∗(T (qx)T (qx)∗)−1

+

[

n

1

]

q

Dn−1
q

(

ax+1q(n+1)(x+1)(bq; q)x+1

(q; q)x−n+1

)

(ρ(x))−1Dq (T (q
x)R(n)T (qx)∗) (T (qx)T (qx)∗)−1

+

[

n

2

]

q

Dn−2
q

(

ax+2q(n+1)(x+2)(bq; q)x+2

(q; q)x−n+2

)

(ρ(x))−1D2
q (T (q

x)R(n)T (qx)∗) (T (qx)T (qx)∗)−1.
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With the use of (2.2) and some lengthy calculations we can find polynomials tn, rn and sn of degree n

in qx such that

tn(q
x) = Dn

q

(

axq(n+1)x(bq; q)x

(q; q)x−n

)

ρ(qx)−1,

qxrn(q
x) = Dn−1

q

(

ax+1q(n+1)(x+1)(bq; q)x+1

(q; q)x+1−n

)

ρ(qx)−1,

q2xsn(q
x) = Dn−2

q

(

ax+2q(n+1)(x+2)(bq; q)x+2

(q; q)x+2−n

)

ρ(qx)−1.

Let us now focus on the matrix part of (5.24). By using the q-Leibniz rule, (2.2) and the fact that
T (qx+1) = T (qx)A we can write

Dq(T (q
x)R(n)T (qx)∗)(T (qx)∗)−1T (qx)−1 =

1

(1− q)qx
T (qx)R1(n)T (q

x)−1

D2
q(T (q

x)R(n)T (qx)∗)(T (qx)∗)−1T (qx)−1 =
1

(1− q)2q2x
T (qx)R2(n)T (q

x)−1,

where

R1(n) = R(n)−AR(n)A∗, R2(n) = R(n)− (1 + q−1)AR(n)A∗ + q−1A2R(n)(A∗)2.

In (5.24) we can now write

(T (qx)R(n)T (qx)∗) (T (qx)T (qx)∗)−1 = q−xA0(n) +B0(n) + qxC0(n)

Dq (T (q
x)R(n)T (qx)∗) (T (qx)T (qx)∗)−1 = q−2xA1(n) + q−xB1(n) + C1(n),

D2
q (T (q

x)R(n)T (qx)∗) (T (qx)T (qx)∗)−1 = q−3xA2(n) + q−2xB2(n) + q−xC2(n).

Tedious, although straightforward calculations, show that t0nA0(n) + r0nA1(n) + s0nA2(n) = 0, tnnC0(n) +
rnnC1(n) + snnC2(n) = 0 and tnnB0(n) + rnnB1(n) + snnB2(n) + rn−1

n C1(n) + sn−1
n C2(n) is non-singular.

This shows that (5.23) is a matrix-valued polynomial of degree n with non-singular leading coefficient.
Second step.
To prove that the sequence of polynomials given by (5.23) is orthogonal, we must prove that for n ≥ 1
and 0 ≤ m < n, 〈Pn, x

mI〉W = 0 holds.
In order to prove this we use Lemma 5.9, which will be proved later.

Lemma 5.9. For 1 < k < n,

Dn−k
q

(

ax+k−1q(n+1)(x+k−1)(bq; q)x+k−1

(q; q)x+k−n−1
T (qx+k−1)R(n)T (qx+k−1)∗

)

Dk
q (q

xm)

is zero for x = 0 and x → ∞.

By using the q-Leibniz rule (2.1), the formal identity given in (2.3) and Lemma 5.9, we get

〈Pn, z
m〉W =

∞
∑

x=0

Dn
q

(

axq(n+1)x(bq; q)x

(q; q)x−n

T (qx)R(n)T (qx)∗

)

qxm

= Dn−1
q

(

axq(n+1)x(bq; q)x

(q; q)x−n

T (qx)R(n)T (qx)∗

)

Dq(q
xm)|∞x=0

+

∞
∑

x=0

Dn−1
q

(

ax+1q(n+1)(x+1)(bq; q)x+1

(q; q)x+1−n

T (qx)R(n)T (qx)∗

)

Dq(q
xm)

=
∞
∑

x=0

Dn−1
q

(

ax+1q(n+1)(x+1)(bq; q)x+1

(q; q)x+1−n

T (qx)R(n)T (qx)∗

)

Dq(q
xm),
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By repeating this process we obtain

〈Pn, z
m〉 =

∞
∑

x=0

Dn−m−1
q

(

ax+m+1qn(x+m+2)(bq; q)x+m+1

(q; q)x+m+1−n

T (qx)R(n)T (qx)∗

)

Dm+1
q (qxm)qx = 0

because Dm+1
q (qxm) = 0. This gives the desired result.

Proof of Lemma 5.9. To see that the first boundary condition at x = 0 holds, we use the expression

1

(q; q)x−n

=
(qx−n+1; q)n

(q; q)x
,

which vanishes at x = 0. Any other quantity involved is bounded in x = 0, hence Lemma 5.9 holds in
this case.
For x → ∞, use that a < q−1 and so ax+k−1q(n+1)(x+k−1) tends to 0 when x tends to ∞. Since all the
other quantities remain bounded when x tends to ∞, we obtain the desired result.
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