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ABSTRACT
Recent work by Levitan et al has expanded the long–term photometric database for AM CVn stars. In par-

ticular, their outburst properties are well–correlated with orbital period, and allow constraints to be placed
on the secular mass transfer rate between secondary and primary if one adopts the disk instability model
for the outbursts. We use the observed range of outbursting behavior for AM CVn systems as a func-
tion of orbital period to place a constraint on mass transferrate versus orbital period. We infer a rate
∼5 × 10−9M⊙ yr−1(Porb/1000 s)−5.2. We show the functional form so obtained is consistent with the
recurrence time–orbital period relation found by Levitan et al using a simple theory for the recurrence time.
Also, we predict their steep dependence of outburst duration on orbital period will flatten considerably once
the longer orbital period systems have more complete observations.
Subject headings:accretion, accretion disks – binaries: close – novae, cataclysmic variables – stars: individual

(AM Canum Venaticorum)

1. INTRODUCTION

Cataclysmic variables (CVs) are semi–detached binaries
consisting of interacting stars in which a Roche–lobe filling
secondary transfers matter to a more massive, and also more
compact primary. The dwarf novae (DNe) constitute a sub-
class further characterized by semiregular outbursts of several
magnitudes, recurring on timescale of days to years (Warner
1995a). The novalikes reside at higher mass transfer rates and
do not show DN outbursts. The limit cycle accretion disk in-
stability model (DIM) has been successful in explaining the
outbursts (Smak 1984). CVs evolve to shorter orbital periods,
driven by angular momentum loss (AML) from a combination
of a magnetic wind from the secondary star and gravitational
radiation (Knigge, Baraffe, & Patterson 2011= KBP). Al-
though the DIM is generally agreed to be the correct explana-
tion for DN outbursts, mainly because the observed dividing
line between steady and outbursting systems (i.e., DNe and
novalikes) agrees with theory (Smak 1983b), further progress
has come slowly. For instance, any theory for the recurrence
time for DN outbursts (Cannizzo, Shafter, Wheeler 1988=
CSW) is muddied by the fact that the outburst properties at a
given orbital period exhibit a wide scatter (Warner 1995a).

The AM CVn stars are a subset of CVs at very short or-
bital period, less than an hour, whose spectra are dominated
by helium (Nelemans 2005, Solheim 2010). The prototype,
AM CVn, was discovered neary fifty years ago (Smak 1967).
Paczyński (1967) proposed the system to be a short orbital
period binary with two degenerate, He-rich stars with a pe-
riod evolution driven by gravitational wave radiation (GWR),
but he considered detached rather than semi-detached bina-
ries. Motivated by observational inferences of mass transfer
in AM CVn, namely rapid photometric flickering (Warner &
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Robinson 1972), Faulkner et al. (1972) presented the first
self–consistent model for AM CVns, correctly taking into ac-
count their semi–detached nature.

The coincidence in stable periodic variations in spectral
lines with photometric variations can sometimes be used to
obtain orbital periods, and the weak X–ray emission indicates
a white dwarf (WD) primary accretor rather than a neutron
star (Nather et al. 1981, Patterson et al. 1993, Groot et al.
2001). AM CVn stars are thought to have evolved beyond the
minimum orbital period which divides nondegenerate and de-
generate secondaries. The systems span a wide range in mass
transfer rateṀT . In fact, in the AM CVn stars one sees a
range spanning not only the high to intermediate range equiv-
alent to the novalike→ DNe transition in normal hydrogen–
containing CVs, but also a range spanning intermediate to low
ṀT values. For the lowṀT systems the disk is too cool to
have DIM outbursts.

In some sense the AM CVn stars are a better laboratory for
the DIM than normal DNe because less scatter is expected in
their ṀT values at a given orbital period, given that GWR
is the sole AML mechanism. KBP find that the normal (i.e.,
solar composition) short orbital period DNe below the period
gap must have AML enhanced by a factor∼2.47 above that
given solely by GWR in order to produce the observed period
gap. This only applies to an ensemble average; as with the
DNe above the gap, the outburst properties of systems below
the gap show considerable scatter at a given orbital period.In
addition,ṀT varies by more than four orders of magnitude
across the range of orbital periods in the AM CVn systems,
which makes orbital period–dependent properties of the out-
bursts more noticeable.

Amassing a large database for AM CVn stars has been ham-
pered by their faintness. Now, thanks to the results of dedi-
cated transient surveys, an avalanche of new systems and data
on outbursting behavior has become available. Levitan et al.
(2015) present the results of a comprehensive study of AM
CVn systems over nearly 10 yr. They present outburst data
on 32 systems with known orbital periods, ranging from 5 to
65 min. A similar study with a slightly smaller sample was
presented by Ramsay et al. (2012).

http://arxiv.org/abs/1502.01304v1
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In Section 2 we discuss the DIM in the context of AM CVn
accretion disks. In Section 3 we look at the recurrence time
for superoutbursts, and in section 4 the superoutburst dura-
tion. Section 5 summarizes our findings.

2. THE DIM IN AM CVN SYSTEMS

2.1. Background

A calculation of the vertical structure of geometrically thin
disks reveals the steady state physics underlying the limitcy-
cle behavior. the vertical structure as effective temperature
Teff versus surface densityΣ (Meyer & Meyer-Hofmeister
1981, Cannizzo & Wheeler 1984). One finds a hysteretic rela-
tion between midplane temperatureTmid and surface density
Σ, or equivalently, between effective temperatureTeff andΣ.
Each radiusr and viscosity parameterα value has its own S–
curve. A parameterization of the results of these calculations
allows a determination of the surface densities at the max-
ima and minima in the S–curve,Σmax(r, α) andΣmin(r, α),
as well as other physical quantities associated with these ex-
trema, like midplane and effective temperature. One relates
the local accretion rate toTeff,max andTeff,min using the stan-
dard Shakura & Sunyaev (1973) relation

σTeff
4 =

3

8π

GṀM1

r3
. (1)

In the DIM, gas accumulates in quiescence and accretes
onto the central object in outburst. (e.g., Cannizzo 1993a,
Lasota 2001 for reviews). The phases of quiescence and out-
burst are mediated by the action of heating and cooling fronts
that transverse the disk and bring about phase transitions be-
tween low and high states, consisting of neutral and ionized
gas, respectively. During quiescence, when the surface den-
sity Σ(r) at some radius within the disk exceeds a critical
valueΣmax(r), a transition to the high state is initiated; dur-
ing outburst, whenΣ(r) drops below a different critical value
Σmin(r), a transition to the low state is initiated. Low→high
transitions can begin at any radius, whereas high→low transi-
tions begin at the outer disk edge.

This situation comes about because of the following: In
quiescence the disk is very non–steady so that mass accumu-
lates in the outer regions. The surface density distribution
is bounded byΣmax(r), which increases with radius. (Both
Σmax(r) andΣmin(r) scale close to linearly withr.) In the
outburst disk, however,Σ(r) ∝

∼
r−3/4. The accretion disk

mass is conserved, i.e., the disk mass accumulated by the
end of quiescence∆Mcold is the same as that in the hot disk
∆Mhot immediately after the heating transition has occurred.
Therefore there must be a substantial redistribution ofΣ(r)
– from a profile∝

∼
r in quiescence to∝

∼
r−3/4 in outburst.

SinceΣ(r) is smallest at large radii in the outbursting disk,
and sinceΣ(r) < Σmin(r) is the condition for the cooling
transition to begin, cooling fronts are always initiated inthe
outer disk.

One can define a “maximum mass”∆Mmax ≡
∫

2πrdrΣmax(r) that the disk could possibly achieve during
the accumulation phase, i.e., quiescence. Obviously one can-
not haveΣ(r) > Σmax(r) in quiescence or else the instability
would have already been triggered. In practice, time depen-
dent calculations show that the true disk mass at the end of
quiescence∆Mcold is typically ∼1/10 − 1/3 of the “maxi-
mum mass” (e.g., Cannizzo 1993b). Therefore one may write
∆Mcold = f∆Mmax, with f ≃ 1/10− 1/3.

Levitan et al. (2015) restrict their attention to superout-
bursts in their outburst statistics. These are analogous to
long outbursts in DNe above the period gap (van Paradijs
1983); most of the mass accumulated during quiescence ac-
creted onto the primary before the disk shuts off. For nor-
mal, “short” outbursts, only a few percent of the stored gas
accretes onto the central object: the thermal time scale of thin
disk is short compared to the viscous time scale, and the cool-
ing front that is launched from the outer edge of the disk al-
most as soon as the disk enters into outburst traverses the disk
and reverts it back to quiescence. For disks that have been
“filled” to a higher level with respect to∆Mmax, the surface
density in the outer disk can significantly exceed the critical
surface densityΣmin. In order for the cooling front to be-
gin, however, the outer surface densityΣ(router) must drop
belowΣmin(router). Disks in this state generate much longer
outbursts, with slower “viscous” plateaus, because the entire
disk must remain in its high, completely ionized state until
enough mass has been lost onto the primary for the condition
Σ(router) < Σmin(router) to be satisfied.

Various studies have investigated the DIM in AM CVn sys-
tems (Smak 1983a, Cannizzo 1984, Tsugawa & Osaki 1997 =
TO97, El–Khoury, & Wickramasinghe 2000, Menou, Perna,
& Hernquist 2002, Lasota, Dubus, & Kruk 2008= LDK,
Kotko et al. 2012= KLDH). These investigations generally
consist of first calculating the steady state accretion diskstruc-
ture by integrating the vertical structure equations to param-
eterize the S–curve relation between surface densityΣ(r, α)
and effective temperatureTeff(r, α), and then using scalings
for the steady state physics as input into a time dependent
model to calculate light curves. TO97 did not solve the full
set of equations for the vertical structure but rather prescribed
a functional form for the fluxF (z). We restrict our consider-
ation of the scalings to the two most recent studies LDK and
KLDH, which integrate the complete set of structure equa-
tions and present a complete set of scalings for both the local
minima and maxima inΣ.

As a model for the mass–losing secondaries in AM CVns,
Deloye et al. (2005) calculate pseudo–evolutionary sequences
for donors with varying degrees of degeneracy. In their Fig-
ure 2 they calculate tracks in thėMT–Porb plane for four
isotherms based on central donor temperaturesTc ranging
from 104 K to 107 K, assuming a constant primary mass
0.6M⊙. They also indicate the upper and lower bounds of
the instability strip for the DIM taken from TO97. For their
two lowest tracks,Tc = 104 K and106 K, the instability strip
spans roughly the correct (i.e., observed) period range. Their
tracks do not represent true evolutionary sequences sinceTc

is taken to be constant along a track.

2.2. Instability Criteria as Power Law Scalings

The range of mass transfer from the secondary star feeding
into the outer diskṀT which allows for unstable behavior,
i.e., dwarf nova outbursts, is set by the local stability criteria
at the inner and outer edge of the accretion disk.

KLDH calculate many S–curves for accretion disks relevant
for ultracompact binaries with no hydrogen,X = 0. The ba-
sic finding is that the steady state scalings for the DIM are
shifted to higher surface densities and temperatures. They
present three sets of scalings for (i)Y = 1, (ii) Y = 0.98,
Z = 0.02, and (iii) Y = 0.96, Z = 0.04. Their results
are given in terms ofα, r, andM1. The range for unsta-
ble disk behavior is determined by the S–curve for the in-
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ner and outer disk radii. IfṀT > ṀT,2 ≡ Ṁmin, outer,
the rate of accretion associated with the minimum inΣ at
router, the disk will be stable in the high, ionized state. If
ṀT < ṀT,1 ≡ Ṁmax, inner, the rate of accretion associated
with the maximum inΣ atrinner, the disk will be stable in the
low state.

The KLDH scalings are not convenient; for comparison
with observations we must replace disk radiusr with orbital
periodPorb in the KLDH scaling forṀT,2, and with the pri-
mary radius in theṀT,1 scaling. We follow TO97 in making
these conversions:

(1) For the outer scaling,̇MT,2, we relate the outer disk ra-
diusrouter to orbital period using Figure 5 from van Haaften
et al. (2012). We identify the Roche lobe radiusRL1 with
router and fit a simple power–law toRL1/a as a function
of the mass ratioq = m2/m1.5 The semi–major axis isa.
Over the relevant range0.01 <

∼
q <
∼

0.03 we fit RL1/a ≃

0.85(q/0.01)−0.06. Based on the results of van Haaften et al.
(2012) we adopt a fiducial secondary starm2(Porb) relation

m2 = 0.038

(

Porb

1000 s

)−1.3

(2)

(see their Sect. 2.3), corresponding toR2 ∝
∼

M−0.18
2 , which

gives, using Kepler’s law,

ro,10 = 1.18m0.39
1 (1 + q)1/3

(

Porb

1000 s

)0.74

, (3)

wherero,10 = router/10
10 cm.

(2) For the inner scaling,̇MT,1, we adopt the standard inner
boundary zero torque condition (Shakura & Sunyaev 1973)
for which the maximum effective temperature

Teff(max) = 0.488

(

3GMwdṀ

8πσRwd

)1/4

(4)

is reached at 49/36 times the inner edge, taken to be the pri-
mary radius. (The “max” in this equation refers to the local
radial maximum inTeff in a steady state disk due to the in-
ner boundary condition, not the local maximum inΣ in the
S–curve.) ThusṀT,1 is enhanced by a factor(0.488)−4 and
evaluated at(49/36)Rwd.

For the primary mass–radius relation, we fit a power law
to Eggleton’s scaling of a zero–temperature WD, i.e., for
which the ratio of atomic number to atomic weightZ/A =
1/2 (Rappaport et al. 1987, see their eqn. [19], with
MCh = 1.44M⊙). Taking the scaling relevant for a He
WD (van Haaften et al. 2012, see their eqn. [25], with
Mp = 5.66×10−4M⊙), we tabulate values forx = logMWD

andy = logRWD over the range of interest,0.5 < m1 < 0.7,
and fit a least squares power lawRWD = 108.80 cmm1

−0.62.
Over the fit range this relation gives a maximum deviation
< 1.5% from the Eggleton scaling.

Applying these conversions to the scalings given in KLDH
(and ignoring the weakα dependencies) we obtain scalings
for ṀT,1 andṀT,2 relevant for their three compositions (i)
Y = 1, (ii) Y = 0.98, Z = 0.02, and (iii) Y = 0.96, Z =

5 We useM1 andM2 to refer to the primary and secondary masses in cgs
units, andm1 andm2 to indicateM/M⊙.

TABLE 1
KLDH- BASED COEFFICIENTS FOR LOCAL EXTREMA

comp. ṀT,1,0 ṀT,2,0 ǫ1m1 ǫ2m1 ǫq ǫp
(M⊙ yr−1) (M⊙ yr−1)

(i) 10−10.89 10−8.60
−2.54 0.16 0.89 2.0

(ii) 10−11.04 10−8.82 −2.50 0.16 0.89 1.99
(iii) 10−11.10 10−8.93

−2.49 0.16 0.88 1.97

0.04. Adopting the general forms

ṀT,1 = ṀT,1,0 m1(P2)
ǫ1m1 (5)

ṀT,2 = ṀT,2,0 m1(P1)
ǫ2m1 (1 + q)ǫq

(

Porb

1000 s

)ǫp

, (6)

we may now calculate the coefficients. These are given in
Table 1.

Levitan et al. (2015) presents a list of AM CVn systems
ordered byPorb, with outburst properties indicated. The rate
of mass transferṀT decreases sharply withPorb, so that the
shortestPorb systems have disks in permanent outburst, those
with intermediatePorb exhibit outbursts, and those with the
longestPorb have disks in permanent low states. The divid-
ing point between high state systems and outbursting systems
lies atP1 ≈ 20 min. The dividing point between outbursting
systems and low state systems,P2, is not as straightforward.
A block of systems starting atPorb = 44.3 min are listed as
not showing outbursts6, but two systems among these do show
outbursts, atPorb = 47.3 and 48.3 min. The expressions for
ṀT,1 indicate a steep inverse scaling withm1, therefore it
seems probable that these systems have somewhat high pri-
mary masses. Therefore we setP2 = 44 min. Furthermore
we adoptm1(P1) = m1(P2) = 0.6. We note that them1

values for AM CVn systems are not well-constrained obser-
vationally from dynamical measurements.

We may now use the observed instability strip for AM CVn
systems to constrain the secondary mass transfer rateṀT .
Let us assume a power laẇMT = A (Porb/1000 s)

n. For
simplicity we adopt the convention thaṫMT > 0. Since we
expectṀT to decrease with orbital period, we setṀT,1 =

ṀT (P2) andṀT,2 = ṀT (P1), which gives two equations in
two unknowns. We may solve for the normalization constant
A and dependence on orbital periodn = d ln ṀT /d lnPorb.
This yields the general solution

n =
log[(ṀT,2,0/ṀT,1,0) g (P1/1000 s)

ǫp ]

log(P1/P2)
(7)

A = ṀT,1,0 m1(P2)
ǫ1m1

(

P2

1000 s

)−n

, (8)

where
g = (1 + q)ǫqmǫ2m1−ǫ1m1

1 . (9)

Table 2 gives the values forA andn for the three KLDH
compositions, adoptingP1 = 20 min, P2 = 44 min, and
m1 = 0.6 ± 0.05. The magnitude of the putative assigned
error onm1 was propagated through ton andA in order to
indicate the strength of the dependency. The main uncertainty
entering inton andA is the assumed primary mass. For in-

6 There is also a system within the instability zone at 35.2 minindicated as
not having outbursts. We disregard it on the assumption it must be anomalous
in some way, or its outbursts may have been missed.
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TABLE 2
COEFFICIENTS FORṀT = A(Porb/1000 s)n WITH m1 = 0.6± 0.05

composition A(M⊙ yr−1) n

(i) 8.82± 0.6× 10−9 −5.38± 0.3
(ii) 5.27± 0.4× 10−9

−5.23± 0.3
(iii) 3.88± 0.3× 10−9 −5.06± 0.3

stance, takingm1 = 1 would given ≃ −7, a much steeper
ṀT (Porb) relation.

Since precise abundances for AM CVns as a group are
not known, we adopt a representative fiducial scalingṀT ≃

5×10−9M⊙ yr−1 (Porb/1000 s)
−5.2, relevant for the middle

range of scalings given in KLDH.

2.3. Considerations from AM CVn Binary Evolution

How does thisṀT law compare to theoretical expectations?
As mentioned above, in AM CVn systems the driving of the
mass transfer is most likely the angular momentum loss due
to GWR. For that case one can derive the expected scaling
of mass transfer rate with orbital period as is done in Warner
(1995b). We begin by expressing the mass transfer rate in
terms of the angular momentum loss

Ṁ2

M2
∝

(

J̇

Jorb

)

GWR

∝
M1M2(M1 +M2)

a4
(10)

(e.g., see Savonije et al. 1986; Marsh et al. 2004; eqn. [6] of
van Haaften et al 2012), wherėM2 = −ṀT . AssumingM1

remains constant andM2 ≪ M1 and using Kepler’s law to
replace orbital separation with orbital period, we find

Ṁ2

M2
∝ M2P

−8/3
orb . (11)

We then can use the fact that the size of the Roche lobe for
given period depends only very weakly on the mass of the ac-
cretor (the well known period–mean density relation) to find
howPorb scales withM2, given the mass–radius relation for
the donorR2 ∝ M ζ

2 . Hence

Porb ∝

(

R3
2

M2

)1/2

∝ M
(3ζ−1)/2
2 (12)

and therefore

Ṁ2 ∝ M2
2P

−8/3
orb ∝ P

4/(3ζ−1)−8/3
orb . (13)

For ζ = −1/3 we find an exponent7 n = −14/3. In van
Haaften et al. (2012) the values ofζ are plotted in their Fig-
ure 2. For low massesζ > −1/3, yielding a larger absolute
value of the exponent. Indeed, the fit they make to the depen-
dence of mass transfer rate on orbital period (their Appendix
A) givesn = −5.32 for a 1.4M⊙ accretor. Warner (1995b)
usesζ = −0.19, based on Savonije et al. (1986), and finds
n = −5.21. We conclude that the exponent for the scaling we
infer from the DIM based on the observed instability strip for
AM CVns is in good agreement with expectations from stellar
structure if we adoptm1 ≃ 0.6.

7 Note that there is an exponent “−1” missing in eqn. (4) of Warner
(1995b); forζ = −1/3 the donor mass and orbital period scale inversely,
not linearly.

3. RECURRENCE TIME FOR OUTBURSTS

For 11 of the 32 AM CVn systems with known orbital peri-
ods in their study, Levitan et al (2015) have enough coverage
to make quantitative statements about their outburst proper-
ties. They find a relation for the recurrence time for outbursts

trecur = 1.46 d

(

Porb

1000 s

)7.35

+ 24.7 d. (14)

They only include superoutbursts. Their relation (see their
Figure 12a) is much tighter than the comparable plot for DNe
above the minimum period (e.g., see Figures 2–4 of CSW;
Figure 11 of Patterson 2011).

What is the expectation from DIM for the recurrence time
and is it consistent with this scaling?

CSW formulated an analytical expression fortrecur. Their
full complexity is not needed, and indeed one can take a rather
simple approach. Regardless of whether one subscribes to the
thermal–tidal instability for superoutbursts or the plainDIM
(Osaki & Kato 2013), the normal outbursts in a system ex-
hibiting both normal outbursts and superoutbursts represent a
tiny fraction of the mass budget. Therefore a good approxi-
mation is that superoutbursts are the only outbursts, and that
during a superoutburst essentially all the mass stored in the
cold state is accreted. The recurrence time is then simply

trecur =
∆Mcold

ṀT

=
f∆Mmax

ṀT

=
f
∫

2πrdrΣmax(r, α)

ṀT

,

(15)
where∆Mmax is the maximum mass that could be stored in
quiescence andf is the fraction the disk is filled, relative to
this maximum.

For specificity we adopt the middle of the three compo-
sitions considered by KLDH. TheirΣmax for Y = 0.98,
Z = 0.02 is

Σmax = 612 g cm−2 αc−1
−0.82 r10

1.10 m1
−0.37, (16)

whereαc−1 is the value ofα in the low state of the disk,αcold,
normalized to 0.1. Hence

∆Mmax = 1.04× 10−9 M⊙ αc−1
−0.82 m1

0.85

(1 + q)1.03
(

Porb

1000 s

)2.31

. (17)

Evaluating the recurrence time gives

trecur = 7.59 d f−1 αc−1
−0.82 m1

0.85 (1 + q)1.03
(

Porb

1000 s

)7.51

(18)

= 4.92 d

(

Porb

1000 s

)7.51

(19)

for m1 = 0.6, wheref−1 = f/0.1 = αc−1 = 1. Thus for
a mass transfer rate withn = d ln ṀT /d lnPorb = −5.2,
the simplest recurrence time scaling givestrecur ∝

∼
Porb

7.5,
which is close to the observed relation.

4. DURATION TIME FOR OUTBURSTS

For the AM CVn superoutburst durations Levitan et al.
(2015) find

tdur = 0.89 d

(

P

1000 s

)4.54

+ 10.6 d. (20)
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This relation appears to be less reliable than theirtrecur(Porb)
relation: for the four longest period systems only upper limits
are given. In fact, for the other six systems, those with22 min
< Porb < 29 min, their data are consistent withtdur(Porb)
being constant with orbital period. We note that the four out-
burst durations given as upper limits in Table 2 of Levitan et
al. are plotted as actual values in their Figure 12, panel 3,
and enter into their power law fitting. As noted in their Ap-
pendix A, for the four systems with only upper limits(UL)i
on tdur i they arbitrarily taketdur i = 0.75(UL)i, with error
0.25(UL)i.

What would one expect from theory?
There are several ways to construct an outburst duration

timescale for superoutbursts. During a long outburst with a
“viscous plateau”, the cooling front cannot propagate due to
excess surface density at the outer disk edge, relative toΣmin,
therefore the only option is for accretion onto the primary so
thatΣ(router) is gradually reduced. Therefore it is reasonable
to consider the viscous time scale in the outer disk in the hot
state as an approximation to the superoutburst duration.

We follow the method given in King & Pringle (2009).
They estimate a local peak accretion rate during outburst as
≃ 2∆Mhot/tvisc, where∆Mhot is the mass of the hot disk.
The outbursting disk mass is determined by that stored in qui-
escence,∆Mhot = ∆Mcold. This eliminatesṀ from the
standard equations given in Frank, King, & Raine (2002),
which relate the locally defined viscous time toα, r, andṀ .
Using the outer disk edge forr and relating it to orbital period
as previously gives

tvisc = 15.1 d α−0.8
h−1 m0.34

1 (1 + q)0.16
(

Porb

1000 s

)0.36

(21)

whereαh−1 = αhot/0.1.
This is much flatter than the Levitan et al. relation for

tdur(Porb), but their fitted relation is dominated by includ-
ing upper limits fortdur (for systems withPorb > 30 min) as
part of their fit, which makes a direct comparison with theory
problematic.

5. DISCUSSION AND CONCLUSION

Previous workers have examined the stability properties of
AM CVn systems in the context of expectations from the
DIM, e.g., TO97 (see their Fig. 4), Nelemans (2005, see his
Figs. 1 and 6), LDK (see their Fig. 3), and KLDH (see their
Fig. 3). The last work, KLDH, has provided the most com-
plete study to date. Although they do not provide explicit
formulae between the critical mass transfer rates and orbital
period as in TO97, KLDH plot them in their Fig. 3, as do the
aforementioned studies. Our main difference with KLDH is
that forṀT,1 we also take into account the zero torque bound-
ary condition at the inner edge of the disk (following TO97),
in addition to just considering the primary mass. However,
ṀT,1 depends steeply on the primary mass (∝

∼
m−2.5

1 ), and
this uncertainty will likely dominate that associated withthe
boundary condition refinement. KLDH plot in their Fig. 3
the expected seculaṙMT versusPorb from stellar evolution-
ary models, and find consistency with the DIM in terms of
stability of observed systems. Thus the difference between
our study and KLDH is one of perspective: KLDH combine
observations with evolutionary models to show that AM CVn
outbursts can be explained by the DIM, whereas we assume
that the DIM is correct in order to derivėMT (Porb), and then

explore the ramifications of the derived law vis a vis not only
ṀT (Porb) predicted from evolutionary models, but also the
resultant outburst properties versusPorb.

In summary, we apply the DIM model to the recent re-
sults on AM CVn systems obtained by Levitan et al. (2015),
using scalings for the helium–rich accretion disks in such
systems taken from Kotko et al. (2012). The orbital peri-
ods defining the edges of the instability stripP1 andP2 per-
mit us to infer a mean secondary mass transfer rateṀT ≃

5× 10−9M⊙ yr−1(Porb/1000 s)
−5.2. Our finding of a steep

inverse dependencen ≃ −5.2 is consistent with theoretical
expectations, but our result is dependent on takingm1 ≃ 0.6;
higherm1 steepens the relation. Treatingm1 as a variable
and all other parameters on the right hand side of equation (7)
as constant we may writen ≈ −5.23− 7.75 log(m1/0.6) for
Y = 0.98, Z = 0.02. The largest uncertainty inn enters via
m1.

We emphasize that the power-law form forPorb is not an
outcome of our analysis but an assumption, valid in our ap-
plication only over20 min <

∼
Porb <

∼
45 min. However,

our inferredPorb values at20 and 45 min are in line with
those estimated for stable systems with similar orbital periods
(KLDH, see their Fig. 3). We note that the precise values
of Porb defining the edge of the instability strip,P1 andP2,
also affectn andA, although not as strongly asm1. Lastly,n
andA are only weakly dependent on the composition of the
gas and the viscosity parameterα; these two factors enter via
ṀT,2,0/ṀT,1,0 (see eqn. [7]). This ratio is relatively insensi-
tive to composition and virtually independent ofα. The full
dependencies ofn andA on all input parameters are given in
eqs. (7)-(9).

The simplest possible theoretical expression for the re-
currence time from the DIM givestrecur ∝ r3.1outer/ṀT ∝

Porb
2.31Ṁ−1

T , so that (d ln trecur/d lnPorb) = 2.31 −

(−5.2) ≃ 7.5, close to the value 7.35 found by Levitan et
al. (2015). However, a larger assumed value ofm1 in our
model would increase the exponent. Thus, if the DIM is rele-
vant for AM CVn outbursts, the primaries must have masses
m1 ≃ 0.6. The Levitan et al. constraint on the outburst dura-
tion ∝ P 4.54

orb appears to be dominated by incompleteness for
the upper half of their range in orbital period. Our theoretical
prediction is that a more complete time sampling of AM CVn
outbursts, especially at longer orbital period, will ultimately
reveal a much flatter lawtdur ∝∼ P 0.4

orb.
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