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Reward modulation of cognitive function in adult
attention-deficit/hyperactivity disorder: a pilot study on the
role of striatal dopamine
Esther Aartsa,*, Mieke van Holsteina,*, Martine Hoogmanb,c, Marten Onninkc,
Cornelis Kanb, Barbara Frankeb,c, Jan Buitelaara,d,e and Roshan Coolsa,b

Attention-deficit/hyperactivity disorder (ADHD) is
accompanied by impairments in cognitive control, such as
task-switching deficits. We investigated whether such
problems, and their remediation by medication, reflect
abnormal reward motivation and associated striatal
dopamine transmission in ADHD. We used functional
genetic neuroimaging to assess the effects of dopaminergic
medication and reward motivation on task-switching and
striatal BOLD signal in 23 adults with ADHD, ON and OFF
methylphenidate, and 26 healthy controls. Critically, we took
into account interindividual variability in striatal dopamine
by exploiting a common genetic polymorphism (3′-UTR
VNTR) in the DAT1 gene coding for the dopamine
transporter. The results showed a highly significant group
by genotype interaction in the striatum. This was because a
subgroup of patients with ADHD showed markedly
exaggerated effects of reward on the striatal BOLD signal
during task-switching when they were OFF their
dopaminergic medication. Specifically, patients carrying the
9R allele showed a greater striatal signal than healthy
controls carrying this allele, whereas no effect of diagnosis
was observed in 10R homozygotes. Aberrant striatal
responses were normalized when 9R-carrying patients with

ADHD were ON medication. These pilot data indicate an
important role for aberrant reward motivation, striatal
dopamine and interindividual genetic differences in
cognitive processes in adult ADHD. Behavioural
Pharmacology 26:227–240 Copyright © 2015 Wolters
Kluwer Health, Inc. All rights reserved.
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Introduction
Attention-deficit/hyperactivity disorder (ADHD) is

characterized by symptoms of inattention, impulsivity

and/or hyperactivity (American Psychiatric Association,

1994, 2013). Although originally considered a childhood

disorder, ADHD persists into adulthood in many cases,

and affects between 2.5 and 4.9% of the adult population

(Kooij et al., 2005; Kessler et al., 2006; Polanczyk et al.,
2007; Simon et al., 2009). A first-line treatment option for

ADHD is prescription of psychostimulant medication,

primarily the dopamine and noradrenaline transporter

blocker methylphenidate.

ADHD is associated with a wide range of cognitive

control deficits that span the domains of attention,

response inhibition, working memory and task-switching

(Barkley, 1997; Bush et al., 1999). Such cognitive control

deficits have been attributed most commonly (albeit not

exclusively; see Cortese et al., 2012) to (dorsal) prefrontal

cortex dysfunction (Dickstein et al., 2006; Cubillo et al.,
2010; Dibbets et al., 2010; McCarthy et al., 2014).

Accordingly, effects of methylphenidate on cognitive

control deficits in ADHD are considered to reflect action

(i.e. increasing synaptic levels of dopamine and nora-

drenaline) in the prefrontal cortex (Aron et al., 2003;

Berridge et al., 2006; Schmeichel et al., 2013; for a review,
see Arnsten and Li, 2005). In addition to cognitive con-

trol deficits, ADHD is accompanied by processing defi-

cits in the domains of reward and motivation (Sergeant

et al., 2003; Sonuga-Barke, 2003; Scheres et al., 2007;

Furukawa et al., 2014). Unlike the cognitive control

deficits, these reward-related deficits are often attributed

to changes in the ventral striatum (Ströhle et al., 2008;
Plichta et al., 2009; Hoogman et al., 2011, 2013; Carmona

et al., 2012; Volkow et al., 2012; Plichta and Scheres,

2014), as is the modulation of reward-related processing

by methylphenidate (Dodds et al., 2008). Indeed, besides
acting on noradrenaline transporters, methylphenidate
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acts by blocking dopamine transporters (DAT), which are

more abundant in the striatum than in the prefrontal

cortex (Volkow et al., 1995; Ciliax et al., 1999).

The observation that both cognitive control deficits and

reward-related deficits contribute towards ADHD con-

curs with the dual pathway model of ADHD, according

to which two subtypes of ADHD exist with different

developmental pathways, underpinned by different

neural circuits and modulated by different branches of

the dopamine system (Sonuga-Barke, 2002, 2003, 2005;

for more recent models, see Durston et al., 2011; de

Zeeuw et al., 2012). More specifically, disturbances in the

executive mesocortical dopamine circuit, encompassing

the dorsal striatum, dorsomedial thalamus and dorso-

lateral prefrontal cortex, underlie cognitive deficits in

ADHD, whereas motivational deficits are grounded in

disturbances in the mesolimbic reward circuit, including

the ventral striatum and the orbitofrontal cortex. Here, we

approach the issue from a different angle by asking whe-

ther cognitive task-related processing deficits and their

remediation by methylphenidate reflect indirect modula-

tion of motivation and reward-related processing in the

striatum rather than direct modulation of prefrontal pro-

cessing. This question is grounded in current neuroanato-

mical and neurochemical models that emphasize a

hierarchical arrangement of spiralling striatonigrostriatal

loops, allowing directional interaction between motiva-

tional and cognitive circuits (Haber et al., 2000; Haber,

2003; Ikeda et al., 2013). Furthermore, it concurs generally

with a large body of work showing that striatal dopamine is

important not just for motor control but also for cognitive

functioning (e.g. Cools et al., 1984). It also follows directly

from work showing that methylphenidate-induced changes

in striatal dopamine release can contribute towards cogni-

tive (attentional) symptoms in ADHD (Glow and Glow,

1979; Volkow et al., 2012). The hypothesis also concurs

with observations that cognitive deficits in children with

ADHD can be remediated by increases in motivation

(Konrad et al., 2000; Slusarek et al., 2001; Uebel et al., 2010),
although inconsistent findings have also been reported

(Oosterlaan and Sergeant, 1998; Desman et al., 2008;

Shanahan et al., 2008; Karalunas and Huang-Pollock, 2011).

None of these studies, however, speak to the neural

mechanisms of such motivational effects and their mod-

ulation by methylphenidate.

Here, we aimed to assess whether cognitive task-related

processing deficits in adult ADHD can be a function of

reward-related striatal functioning using functional MRI

(fMRI). To index reward effects on cognitive task-related

processing, we used a rewarded task-switching paradigm

that we established previously to be particularly sensitive

to changes in striatal dopamine transmission (Aarts et al.,
2010, 2011, 2012, 2014a, 2014b).

One major challenge for studies aiming to isolate dopa-

minergic drug effects is that such dopaminergic drug

effects vary considerably across different individuals as a

function of (genetically determined) baseline levels of

dopamine (Verheij and Cools, 2008; Cools and

D'Esposito, 2011; van Holstein et al., 2011). Previous

work suggests the possibility that the effects of methyl-

phenidate emerge only when taking into account such

interindividual differences (Clatworthy et al., 2009), for
example by exploiting known common polymorphisms

in dopamine genes. Here, we stratified our sample by

interindividual variation in the 40-bp variable number of

tandem repeats (VNTR) polymorphism in the 3′
untranslated region (3′-UTR) of the DAT gene (DAT1,
SLC6A3). This is based on several lines of evidence,

suggesting an important role for the DAT in the patho-

physiology of ADHD. The DAT is the main mechanism

responsible for clearing extracellular dopamine in the

striatum. Thus, genetic variation of the DAT1 gene might

lead to interindividual variation in the availability of

DATs and subsequently in dopamine levels. Although it

has remained inconclusive in the literature as to which

allele leads to decreased DAT availability (Costa et al.,
2011; Faraone et al., 2014), genetic fMRI studies have

consistently shown the 9-repeat (9R) allele to be asso-

ciated with increased striatal reward responses (Dreher

et al., 2009; Forbes et al., 2009; Aarts et al., 2010).

Furthermore, methylphenidate exerts its action in the

striatum by blocking the DAT (Volkow et al., 1998,

2002); mice that lack the DAT (i.e. DAT1 knockout

mice) show ADHD-like behaviour (Giros et al., 1996;

Gainetdinov et al., 1999), and several dopaminergic

genes, including the DAT1 genotype, have been impli-

cated in ADHD (Faraone et al., 2005; Brookes et al., 2008;
Franke et al., 2008; for a review, see Durston et al., 2009;
Gizer et al., 2009; Franke et al., 2010).

In summary, in this pilot study, we tested the hypothesis

that the effects of reward motivation on task-switching

and striatal BOLD signal vary as a function of the DAT1
genotype in adult patients with ADHD, when they were

OFF relative to ON their methylphenidate regimen,

compared with healthy controls.

Methods
Participants
We present data from 23 patients with ADHD

(mean ±SE age 35.74 ± 2.36; 14 men) and 26 healthy

control participants (mean ±SE age 38.08 ± 2.00; 11 men).

Patients visited our centre on two occasions: once after

intake of methylphenidate and once after withdrawal

from methylphenidate. Healthy controls were also tested

on two occasions, without any methylphenidate (see the

Procedure section).

Initially, we recruited 57 participants (29 patients with

ADHD and 28 healthy controls) from an ongoing study on

ADHD and genetics, IMpACT-NL (Hoogman et al., 2011,
2013; Onnink et al., 2014; http://www.impactADHDgenomics.
com), in which they were tested extensively, genotyped
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and diagnosed (Table 1). Patients were included if they

fulfilled the DSM-IV-TR criteria for ADHD in childhood

as well as adulthood. All participants were assessed using

the Diagnostic Interview for Adult ADHD (Kooij and

Francken, 2007). The Structured Clinical Interviews for

DSM-IV (SCID-I and SCID-II) were administered.

Assessments were carried out by trained professionals

(psychiatrists or psychologists). In addition, a quantitative

measure of clinical symptoms was obtained using the

ADHD rating scale-IV (Kooij et al., 2005). Exclusion cri-

teria for participants were alcohol or substance addiction in

the last 6 months, current psychosis, manic episodes,

obsessive–compulsive disorder or eating disorders (asses-

sed using SCID-I), full-scale IQ estimate less than 70

(assessed using the Wechsler Adult Intelligence Scale-III),

neurological disorders, sensorimotor disabilities and non-

Caucasian ethnicity. An additional exclusion criterion for

healthy comparison participants was a current or a past

neurological or psychiatric disorder according to SCID-I.

Three patients did not complete the testing sessions.

Two patients were excluded because they did not follow

instructions on methylphenidate withdrawal and/or

intake (see the Procedure section) and one because of

excessive head movement. One healthy control partici-

pant was excluded from analysis because of the sub-

optimal quality of the structural data, leading to

normalization difficulties, and one for fulfilling the cri-

teria for an ADHD diagnosis according to the ADHD

rating scale-IV (Kooij et al., 2005) (see the

Neuropsychological assessment section). Hence, 23

patients with ADHD and 26 healthy controls were

included in the final analyses.

All patients had a current prescription of methylpheni-

date [either immediate-release (Ritalin; N= 5; mean ±SD
44 ± 22.74 mg/day), or sustained release (Concerta;

N= 18; mean ± SD 48.5 ± 21.19 mg/day), and three of

them occasionally took Ritalin in addition to Concerta].

All participants were native speakers of Dutch.

Participants were compensated for participation and

provided written informed consent in a manner approved

by the local ethics committee on research involving

human participants (CMO Arnhem-Nijmegen 2009/058,

NL27180.091.09).

Procedure
All participants were asked to abstain from alcohol on the

day of testing and from nicotine and caffeine at least 1 h

before arriving at the centre. The patients were tested

once OFF (i.e. withdrawn from Ritalin for 24 h and from

Concerta for 48 h before testing) and once ON methyl-

phenidate [i.e. after intake of (mean ±SD) 13.15 ±
5.55 mg of Ritalin, the equivalent of (mean ±SD)

0.16 ± 0.05 mg/kg body weight of Ritalin, half an hour

before arriving at the centre]. Patients using sustained-

release methylphenidate were prescribed an equivalent

dose [instant dose (mg)= sustained dose (mg)× 0.278] of

immediate-release methylphenidate by the psychiatrist

(J.B.) for 1 day (three doses a day). Three patients using

additional medication (one antihistamine and two SSRIs)

were asked to take the same dose on both sessions. The

order of the ON and OFF session was approximately

counterbalanced across participants (Table 2). The

healthy control group did not take methylphenidate, but

was nevertheless tested twice to rule out order effects.

Control data were averaged across the two sessions.

Table 1 Demographics, impulsivity and diagnostic interview for diagnosis×DAT1 group

ADHD (N=23) HC (N=26) Univariate GLM/χ2/Fisher’s exact test

9R carriers 10R/10R 9R carriers 10R/10R ADHD vs. HC
9R carriers vs.

10R/10R Diagnosis×DAT1

Demographics
N 12 11 10 16 NS
Age [mean (SE)]b 36.25 (3.78) 35.18 (2.91) 41.1 (2.79) 36.25 (2.70) F(1,45)<1 F(1,45)<1 F(1,45)<1
IQ (WAIS III) [mean (SE)]a,b 11.58 (0.66) 12.72 (0.54) 12 (0.91) 12.31 (0.80) F(1,45)<1 F(1,45)=1.05; P>0.1 F(1,45)<1
Sex: males (N/%)c 7/58 7/64 4/40 7/44 P>0.1 P>0.1 P>0.1
Education level [mean (SE)]a,d 4.75 (0.22) 5.00 (0.30) 5.10 (0.23) 5.00 (0.26) χ2 (3)=1.77; P>0.1 χ2 (3)=5.03; P>0.1 χ2 (1)<1
Handedness: right handed (N/%)a,d 12/100 9/82 8/80 15/94 χ2 (2)=2.25; P>0.1 χ2 (2)<1 χ2 (1)<1
Smokers (N/%)c 6/50 6/55 3/30 5/31 P>0.1 P>0.1 P>0.1

BIS-11 impulsivity scoreb 74.75 (2.74) 71.09 (4.58) 58.9 (3.00) 59.5 (1.75) F(1,45)=20.78; P<0.001 F<1 F<1
SCID-Axis I current comorbiditiesa χ2: Fisher’s exact test

Depressive 0/10 1/11 0/9 0/15 NS NS NS
Dysthymic 0/10 1/11 0/9 0/15 NS NS NS
Anxiety 1/10 1/11 0/9 0/15 NS NS NS

SCID-Axis II Personalitya

Borderline 2/10 0/10 0/9 0/15 NS NS NS
Antisocial 1/10 0/10 0/9 0/15 NS NS NS
Obsessive–compulsive 2/10 0/10 0/9 0/15 NS NS NS

ADHD, attention-deficit/hyperactivity disorder; GLM, general linear model; HC, healthy controls.
aAdministered during the IMpACT-NL study; values indicate the number of participants fulfilling the criterion/total number of participants in which the SCID-I or SCID-II
was administered; 10R/10R=10R homozygotes.
bUnivariate GLM.
cχ2: Fisher’s exact test.
dχ2-test.

Striatal dopamine and cognition in adult ADHD Aarts et al. 229



Sessions were separated by at least 1 week and both

sessions took place at approximately the same time of

day. With the exception of medication state, the proce-

dure was identical for both groups and both sessions.

Cognitive task with reward manipulation
Participants were scanned while performing an estab-

lished precued task-switching paradigm (Fig. 1) with a

reward manipulation (Aarts et al., 2010, 2012, 2014a; van
Holstein et al., 2011). The paradigm started ∼ 60 min

after arrival (mean ± SD 91.8 ± 16.1 min after drug intake).

The task was programmed and presented using the

Presentation (R) software (Version 13, www.neurobs.com).

Participants had to respond to incongruent arrow–word

combinations, either by responding to the direction of the

arrow or the direction indicated by the word (‘left’ or

‘right’). A task-cue appeared 400 ms before the target

indicating the task (arrow or word) that the participant

had to perform on the current trial. Relative to the pre-

vious trial, the task either changed unpredictably (from

arrow to word or vice versa; switch trial) or remained the

same (repeat trial). The critical measure of interest, the

switch cost, was calculated by subtracting performance on

repeat trials from that on switch trials. In addition, we

manipulated reward motivation, to assess the effect of

reward on task-switching, by presenting high and low

reward cues before the task cue. The reward-cue

informed the participants whether 1 cent (low reward) or

15 cents (high reward) could be earned with a correct and

sufficiently quick response. Immediately after the

response, feedback was provided (e.g. ‘correct! 15 cents’).

There was a variable interval of 2–6s between the reward-

cue and the task-cues. Participants used their right index

and middle fingers to respond on a button box.

On both sessions, the task was practiced twice outside

the scanner and once inside the scanner. The first prac-

tice block contained 24 trials with the task cue, target and

feedback (correct/incorrect). As soon as participants suc-

ceeded in completing this block with less than five errors,

the second practice block of 24 trials was performed, in

which the reward cues were included. The third and final

practice block was performed during the acquisition of

the anatomical scan. The mean response times (RT) of

the correct trials per trial-type (arrow-repeat, arrow-

switch, word-repeat, word-switch trials) in this third

practice block were used as the response deadline in the

main experiment. This ensured equal difficulty across

participants and sessions.

The main experiment consisted of 160 trials and

lasted∼ 35 min with a 30 s break after every 32 trials. In

the break, the amount of money that the participant had

earned thus far was displayed on the screen and partici-

pants were told in advance that the total amount would

be added to their financial compensation as a bonus.

Neuropsychological assessment
During the first session, participants completed the

Barratt Impulsiveness Scale (BIS-11a; Patton et al., 1995),
a self-report trait measure of impulsivity. At the begin-

ning of both sessions, participants completed the Bond

and Lader (1974) visual analogue scale for a comparison

of mood between sessions (16 moods rated on a scale of

0–100, resulting in three mood categories) and an ADHD

symptom rating scale (Kooij et al., 2005) to assess self-

reported ADHD symptoms. Motor speed was measured

using the box completion task (Salthouse, 1996), sus-

tained attention with the digit vigilance or the number

cancellation task (Lewis and Kupke, 1977) and verbal

fluency with the begin letters D, A and T (Spreen and

Benton, 1977).

Genotyping
DNA was isolated from EDTA blood samples.

Genotyping of the 40-bp VNTR in the 3′-UTR of

SLC6A3/DAT1 was carried out as described previously

(Hoogman et al., 2013) at the department of Human

Genetics of the Radboud University Medical Centre. In

line with previous studies reporting the effect of this var-

iant, we established a group of carriers of the 9R allele (i.e.

the risk factor for adult ADHD) and a group homozygous

for the 10R allele (Colzato et al., 2010; Rokem et al., 2012)
(Table 1). We preselected our participants from a previous

sample (Hoogman et al., 2013) to homogenize sample

numbers per group (diagnosis× genotype) as much as

possible. Therefore, Hardy–Weinberg equilibrium was not

considered.

In the ADHD group, 12 individuals were carriers of the

9R allele and 11 individuals were homozygous for the

10R allele (Table 1). In the healthy control group, 10

individuals were carriers of the 9R allele and 16 indivi-

duals were homozygous for the 10R allele. We performed

a power calculation in G*Power (http://www.gpower.hhu.de)
on the basis of the effect sizes obtained in an indepen-

dent dataset using a similar rewarded task-switching

paradigm and the same VNTR in the DAT1 gene in

Table 2 Attention-deficit/hyperactivity disorder characteristics

ADHD Statistics

9R carriers 10R/10R DAT1 effect

First session ON MPH 6/50% 6/55% NS
Ritalin dose ON [mean (SE)] 14.38 (1.80) 11.82 (1.39) NS
Ritalina 1/9% 4/33% NS
Concerta dose [mean (SE)] 53.18 (6.91) 36.63 (7.20) NS
Subtypes: DIVAb NS
Combined 11 6
Inattentive 0 3
Hyperactive/impulsive 0 1

ADHD, attention-deficit/hyperactivity disorder; MPH, methylphenidate; 10R/10R,
10R homozygotes.
aThree of the Concerta users (one 9R carrier) occasionally took 15mg Ritalin in
addition to Concerta.
bDIVA was not administered for one patient in each DAT1 group.
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healthy volunteers (Aarts et al., 2010). The power calcu-

lation showed that we would need at least eight partici-

pants per group (four groups: genotype× diagnosis) to

obtain significant effects of genotype on striatal BOLD

responses during the rewarded task-switching [effect

size= 0.78; α= 0.05; power (1− β)= 0.8]. Currently, our

smallest group includes 10 participants.

Functional magnetic resonance imaging data acquisition
Participants were scanned in a 3TMR scanner (Magnetom

TrioTim; Siemens Medical Systems, Erlangen, Germany)

using an eight-channel head coil. T2*-weighted images

were acquired with a gradient echo planar imaging (EPI)

sequence (30 axial slices, repetition time= 2020ms, echo

time= 30ms, voxel size= 3.5× 3.5× 3mm, field of

view= 224mm, flip angle= 80°). All functional images

were acquired in a single run. Stimuli were presented on a

computer display projected onto a mirror attached to the

head coil. The first four volumes were discarded to allow

for T1 equilibrium. Before the acquisition of the functional

images, a high-resolution T1-weighted MP-RAGE anato-

mical scan was obtained (192 sagittal slices, repetition

time= 2300ms, echo time= 3.03ms, voxel size= 1×1× 1

mm, field of view=256mm).

Functional magnetic resonance imaging statistical
analyses
Data were preprocessed and analysed using SPM5

(Wellcome Department of Cognitive Neurology,

London, UK). First, functional EPI images were spatially

realigned and corrected for differences in slice acquisition

timing. Structural and functional data were co-registered

and normalized to a standard anatomical space (Montreal

Neurological Institute) using a unified segmentation

procedure (Ashburner and Friston, 2005). The normal-

ized images were smoothed with an isotropic 8-mm full-

width-at-half-maximum Gaussian kernel.

The preprocessed fMRI time series were analysed at the

first level using an event-related approach in the context

of the general linear model (GLM). Our statistical model

on the first (participant-specific) level considered the

factors reward (high, low), task (arrow, word), task-

switching (repeat, switch) and feedback (correct-1 cent,

correct-15 cents, error-0 cents, too late-0 cents). This

resulted in 21 regressors of interest: two regressors for

reward-cues, eight regressors for targets (reward× task×
task-switching) and four regressors for feedback. All

regressors of interest were modelled as a stick function

(duration= 0) convolved with a canonical haemodynamic

response function. In addition, breaks (duration of 30 s),

six motion parameters and their derivatives were mod-

elled as regressors of noninterest. Finally, we included

three regressors of noninterest to account for movement-

induced intensity changes using the mean time series

from the segmented white matter, cerebral spinal fluid

and out-of-brain signals (Majdandzić et al., 2007;

Verhagen et al., 2008). High-pass filtering (128 s) was

applied to the time series of the functional images to

remove low-frequency drifts.

Fig. 1

Trial 1
(discarded)

Correct!
15 cents

Correct!
1 cent

Correct!
1 cent

Correct!
15 cents

Incorrect!
0 cent

Incorrect!
0 cent

Incorrect!
0 cent

Incorrect!
0 cent

Trial 2
(low reward, task switch)

Trial 3
(low reward, task repeat)

Trial 4
(high reward, task switch)

Reward cue

Task cue

Target

Feedback

Right buttonRight buttonRight buttonRight button Left buttonLeft buttonLeft buttonLeft button

15 cents 1cent 1cent

ArrowArrow

15 cents

WordWord

Left LeftRight Left

Task-switching paradigm with reward manipulation. Participants were instructed to respond either to the direction indicated by the arrow (i.e. ← or →)
or to the direction indicated by the word (i.e. ‘left’ or ‘right’) with a left or a right button press. The task performed on a particular trial either changed
compared with the preceding trial (i.e. switch trial; arrow–word or word–arrow) or remained the same (i.e. repeat trial; arrow–arrow, word–word). In
addition, we manipulated the amount of anticipated reward (e.g. 1 vs. 15 cents) on a trial-by-trial basis by means of a reward anticipation cue. At the
start of each trial, this cue indicated the amount of reward on that trial, providing a correct and sufficiently fast button press (see also Aarts et al.,
2010).
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At the second level, the reward× task-switching contrast

images from the first level were used in three GLMs to

assess the effects of reward during task-switching: two

models to assess the interaction with the DAT1 genotype

and diagnosis (HC vs. ADHD OFF and ADHD ON vs.

HC) and one model to test the interaction with the DAT1
genotype and medication (ADHD ON vs. ADHD OFF).

Statistical inference (P< 0.05) was performed at the

cluster level, correcting for multiple comparisons over the

search volume (the whole brain). The intensity threshold

necessary to determine the cluster-level threshold was

set at P less than 0.001, uncorrected. For each effect, we

report the t-values at the voxel level, the whole-brain

corrected P-values for the cluster (Pcluster) and the size of

the cluster (k). In addition, supplementary exploratory

analyses were carried out, for which the uncorrected

threshold was set to P less than 0.001, and we report the

t-values and P-values (Puncorr) at the voxel level.

Behavioural statistical analyses
We excluded the first trial of each block (five trials in

total) because these cannot be considered as either repeat

or switch trials. All trials to which participants responded

(i.e. all trials except response omissions) were included in

the analysis, even if the response was too late for a reward

to be obtained. For the analysis of the mean RTs, we

excluded responses faster than 200 ms. For each partici-

pant, we calculated the mean RTs for all the correct

responses and the proportion of errors for each of the four

conditions, that is reward (high–low)× switching (switch-

repeat). To maximize homogeneity of variances between

groups and to ensure normal distribution of the data, a

natural logarithm (LN) transformation was applied to the

mean RTs. The mean proportions of incorrect responses

were transformed using the following formula: 2× arcsin√x
(Sheskin 2004). Levene’s tests of homogeneity of variances

and Shapiro–Wilk tests of normality showed that this

transformation was successful in improving variance

between groups and the distribution of the data.

Proportions or errors and mean RTs were analysed using

a repeated-measures GLM with the within-participant

factors reward (high, low), switching (repeat, switch), the

between-participant factor DAT1 genotype (9R carriers,

10R homozygotes) and either the between-participant

factor diagnosis (ADHD or healthy control) or the within-

participant factor medication (ON, OFF). Effects were

considered significant when P-values were less than 0.05.

Statistical analysis of mood measures and
neuropsychological tests
Mood values were calculated for each session and reduced

to three factors: contentedness, alertness and calmness,

according to Bond and Lader (1974). Neuropsychological

and demographic differences between groups or medica-

tion states and their interaction with the DAT1 genotype

were tested using SPSS (IBM Corp. IBM SPSS Statistics

for Windows, Version 21.0. Armonk, New York, USA)

with univariate or repeated measures GLMs or their non

parametric counterparts (Wilcoxon signed rank or Mann–

Whitney U-tests, respectively; Table 3). Nonparametric

DAT1 genotype×medication interactions were assessed

using a Mann–Whitney U-test of the difference between

the score OFF and ON medication. Nonparametric DAT1
genotype×diagnosis effects were assessed using the

Kruskal–Wallis test (Table 3). An effect was considered

significant when P less than 0.05.

Results
Functional magnetic resonance imaging effects
Main task effects
Across groups and sessions, the cue indicating a high

reward, compared with the cue indicating a low reward,

elicited a robust response in regions in the striatum, the

frontal cortex and the occipital cortex (Table 4). There

was also a strong main effect of task-switching during the

targets, as evidenced by a greater response in the frontal

and parietal regions on switch compared with repeat trials

(Table 4).

ADHD OFF versus healthy controls
The BOLD signal in the dorsal striatum varied highly

significantly as a function of ADHD diagnosis (patients

with ADHD OFF their medication versus healthy con-

trols), DAT1 genotype (9R carriers vs. 10R homozygotes)

and task (reward× task-switching) (x, y, z=− 20, 4, 16;

t= 4.92; Pcluster< 0.001; k= 324; Fig. 2a-I). This finding

concurs with our hypothesis that the effect of reward on

task-switching in the striatum would vary as a function of

the DAT1 genotype and diagnosis (healthy controls

compared with patients with ADHD). The striatal effect

was observed because of a greater task-related signal in

patients with ADHD carrying the 9R allele compared with

9R carriers in the healthy control group (reward× task-

switching×diagnosis in 9R carriers: x, y, z=− 18, 2, 16;

t= 4.90; Pcluster= 0.001; k= 333) and greater task-related

signal in the 9R-carrying patients with ADHD compared

with the 10R homozygous patients with ADHD

(reward× task-switching×DAT1 in patients with ADHD

OFF medication: x, y, z=− 12, − 4, 6; t= 4.96;

Pcluster= 0.002; k= 295). To illustrate this effect, we

extracted the beta values from the cluster in the left dorsal

striatum shown in Fig. 2a-I and plotted the results in

Fig. 2b. The only other significant neural difference

between the ADHD group OFF medication and the

healthy control group was observed in the posterior cin-

gulate cortex (reward× task-switching×diagnosis×DAT1:
x, y, z=− 6, − 12, 46; t= 5.56; Pcluster< 0.001; k= 338).

ADHD ON versus healthy controls and ADHD OFF
versus ADHD ON
There was no longer an effect of diagnosis when com-

paring patients with ADHD ON medication with healthy

controls, suggesting that the aberrant striatal response
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was restored by medication. Although a direct compar-

ison of the ON and OFF session (ADHD ON vs. ADHD

OFF medication) did not reach significance at our strin-

gent threshold, exploratory analyses confirmed that task-

related responses in the same region in the striatum were

reduced for patients ON relative to OFF medication

depending on the DAT1 genotype (reward× task-

switching×DAT1×medication: x, y, z=− 20, 4, 16;

t= 3.63; Puncorr< 0.001; Fig. 2a-II and b). This is gen-

erally in line with the hypothesis that the effect of

methylphenidate and reward motivation on task-

switching would vary as a function of the DAT1 geno-

type and medication status (patients with ADHD ON

compared with OFF their medication).

Behavioural effects
Main task effects
Participants responded more quickly after a high than a

low reward (i.e. across groups, irrespective of diagnosis

and genotype), as evidenced by a main effect of

reward on RTs [F(1,48)= 24.36; P< 0.001]. Participants

also responded more quickly on repeat than switch

trials [main effect of task-switching: F(1,48)= 24.91;

P< 0.001]. In addition, participants made more errors on

switch than repeat trials [main effect of task-switching

F(1,48)= 28.67; P< 0.001; Table 5].

Attention-deficit/hyperactivity disorder OFF versus
healthy controls
There were no significant differences in RT between the

ADHD group OFF medication and healthy controls

(Fig. 2c). However, the groups did differ in terms of the

reward effect (i.e. low–high reward) on error rates, across

switch and repeat trials. This effect depended on the

DAT1 genotype [reward×diagnosis×DAT1: F(1,45)=5.56;

P=0.023]: irrespective of task-switching, the 10R homo-

zygotes in the ADHD group made fewer errors on high than

low reward trials, relative to the 10R homozygotes in the

healthy control group [reward×diagnosis in 10R homo-

zygotes: F(1,25)=7.03; P<0.02; Table 5], whereas there

was no difference between the 9R carriers in the ADHD

group and the healthy 9R group. The critical effect of

reward on task-switching errors did not differ between the

patients with ADHD OFF medication and the healthy

control group as a function of DAT1 genotype [the critical

reward× task-switching×diagnosis×DAT1 interaction: error
rates F(1,45)<1; RTs F(1,45)=1.92; P>0.1].

Attention-deficit/hyperactivity disorder ON versus
healthy controls
There were no significant differences in RT between the

ADHD group ON medication and healthy controls. Switch

costs in error rates were significantly greater in the ADHD

group ON medication than in the healthy control group

[task-switching×diagnosis: F(1,45)= 6.44; P< 0.02]. The

critical effect of reward on task-switching did not differ

between the patients with ADHD ONmedication and theTa
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healthy control group as a function of DAT1 genotype [the

critical interaction between reward× task-switching×
diagnosis×DAT1: error rates F(1,45)= 1.37; P> 0.1; RTs

F(1,45)< 1].

ADHD OFF versus ADHD ON
There was no significant difference between the two

medication sessions in RTs or error rates. The critical

DAT1 by medication by reward task-switching interaction

only trended towards significance for RTs [reward× task-

switching×medication×DAT1: F(1,21)= 3.23; P= 0.087;

Fig. 2c], and was absent for error rates [reward× task-

switching×medication×DAT1: F(1,21)< 1].

In summary, unlike the brain data, the behavioural data

did not show any significant effects of diagnosis or

medication status and/or genotype on how anticipated

reward influences task-switching performance (i.e.

reward× task-switching effects). To assess whether the

increased BOLD signal in the striatum of 9R-carrying

patients with ADHD was accompanied, if anything, by

behavioural impairment or improvement, we examined

the numerical (marginal trend) pattern in RTs (Fig. 2c).

Disentangling this marginally significant effect [reward×
task-switching×medication×DAT1: F(1,21)= 3.23;

P= 0.087] showed that 9R-carrying patients OFF medi-

cation tended to show a greater switch cost on high than

low reward trials compared with these patients ON their

medication [reward× task-switching×medication in 9R

carriers: F(1,11)= 4.40; P= 0.06; Fig. 2c]. These data

suggest that the increased dorsal striatal responses in

patients with ADHD carrying the 9R allele are accom-

panied, if anything, by a detrimental effect of reward on

task-switching that can be remediated by methylpheni-

date (Fig. 2b and c).

Demographic and neuropsychological data
Table 1 summarizes the demographic and neuropsycho-

logical data of the patients with ADHD and healthy

controls for the two DAT1 genotype groups. There was

no difference between patients and healthy controls, or

between the 9R-carrying and 10R homozygous group, in

terms of age, IQ, sex, handedness, smoking status and

level of education (Table 1), nor an interaction between

diagnosis and the DAT1 genotype. As expected, the

patients with ADHD scored higher on the Barratt

Impulsiveness Scale (mean ± SE: 73.00 ± 2.58); that is,

they were more impulsive than the healthy controls

[mean ±SE: 59.27 ± 1.54; t (47)= 4.70; P< 0.001]. There

were no differences in current SCID Axis I disorders or

SCID Axis II personality traits as a function of diagnosis,

DAT1 genotype or diagnosis×DAT1 genotype.

Counterbalancing of the ON and OFF sessions within the

two DAT1 genotype patient groups was successful: there

was no difference between the two DAT1 groups in the

number of patients being ON medication during the first

session. Furthermore, there were no significant differences

in the dose of Ritalin or Concerta between the DAT1
genotype groups, nor in the number of patients usually

taking either form of methylphenidate, or in their ADHD

subtype (i.e. combined, inattentive or hyperactive/impul-

sive) (Table 2).

Table 3 summarizes the mood and neuropsychological

test scores. Most importantly, there were no interactions

between the DAT1 genotype and either medication state

Table 4 BOLD maxima across all participants

MNI coordinates

Label Brodmann
Side
(L/R) x y z

Cluster size
(number of voxels)

Significance
(cluster level)

t-value
(peak)

Main effect reward: high> low reward
Superior parietal lobe (B7)a 7 L −16 −68 56 3126 P<0.001 7.38
Insular cortex (B13)a extending into the striatum,

pallidum and thalamus
13 L+R 30 26 0 3468 P<0.001 6.56

Cingulate gyrus (B32)a 32 L+R −4 12 40 3171 P<0.001 6.24
Occipital lobe (B16)a 16 L −26 −94 12 352 P<0.002 5.81
Cingulate gyrus (B23)a 23 L+R −4 −30 28 283 P<0.005 5.43

Main effect reward: low> high reward
Inferior frontal gyrus 10 R 48 46 8 368 P<0.002 6.29
Posterior cingulate Precuneus 31 L+R −6 −56 20 460 P<0.001 4.76
Superior temporal gyrus 39 R 50 −60 26 248 P<0.01 4.42
Superior frontal gyrus 9 L 12 56 26 228 P<0.02 4.06

Main effect switch: switch> repeat
Precuneus (B7)a 7 L −24 −66 34 3289 P<0.001 6.89
Inferior frontal gyrus (B9)a 9 L −48 12 28 1675 P<0.001 6.02
Middle frontal gyrus (B11)a 11 L −24 48 −10 221 P<0.018 5.43

Main effect switch: repeat> switch
Superior Temporal gyus 41 R 56 −28 12 694 P<0.001 4.72
Occipital lobe (cuneus) 19 R 14 −88 34 180 P<0.04 3.94
Superior temporal gyrus 41 L −44 −32 14 617 P<0.001 3.90

Main effect of reward anticipation during cues and main effect of task-switching during targets at a whole-brain cluster-level corrected threshold of P<0.05.
aAlso significant after FWE correction at the voxel level (PFWE<0.05).
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Fig. 2

Brain activation: ADHD OFF vs. HC
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Brain activation: ADHD OFF vs. ADHD ON

Values

(a-I)

(b)

(c)

(a-II)

P< 0.001 (t > 3.28) cluster-level corrected
P< 0.005 (t > 2.69) uncorrected

Values
P< 0.001 (t > 3.29) uncorrected
P< 0.005 (t > 2.69) uncorrected

Rewarded task-switching as a function of the DAT1 genotype in patients with attention-deficit/hyperactivity disorder (ADHD) ON and OFF their
methylphenidate medication, relative to healthy controls (HC). (a-I) Increased dorsal striatal responses during rewarded task-switching for patients
with ADHD OFF methylphenidate relative to healthy controls, as a function of the DAT1 genotype; (a-II) Increased dorsal striatal responses during
rewarded task-switching for patients with ADHD OFF methylphenidate relative to when ON methylphenidate, as a function of the DAT1 genotype; (b)
The β values from the whole-brain cluster-corrected cluster in the left striatum depicted in (a-I), showing the direction of the effect; (c) The response
times during rewarded task-switching. Positive values reflect an increased switch cost (i.e. slower on switch than on repeat trials) for high reward
relative to low reward trials, that is a detrimental effect of reward on the switch cost. Error bars represent the SE of the difference between high
reward (switch-repeat) minus low reward (switch-repeat).
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(ON or OFF) or diagnosis on mood measures or on the

neuropsychological test scores. However, patients OFF

medication were reportedly less content and less alert

than healthy controls, and compared with when they

were ON medication (Table 3; contentedness: ADHD

ON median 83, range 41.6–95.2; ADHD OFF median

67.16, range 23.2–97.6). In addition, healthy controls

reported more calmness than the patients, both ON and

OFF medication (Table 3). There were no differences in

motor speed (box completion task) on the time to com-

plete the vigilance test (number cancellation RT) or in

verbal fluency. We did observe a difference between the

ADHD group OFF medication and the healthy control

group for missed items on the vigilance test, that is the

ADHD group OFF their medication missed more num-

bers (median 4, range 0–17) relative to the healthy control

group (median 2, range 0–11) and relative to when ON

medication (median 3, range 0–13). This difference was

no longer present when comparing the ADHD group ON

medication with the healthy control group (Table 3).

As expected, methylphenidate ameliorated symptom

severity (Table 6) both on attentive and on hyperactive

symptoms. We did not observe effects of the DAT1
genotype, nor an interaction between the DAT1 genotype
and medication status on symptom severity (Table 6).

Discussion
We investigated the effects of reward motivation on task-

switching in adult patients with ADHD, ON and OFF

methylphenidate, relative to a matching healthy control

group. Task-related BOLD responses were assessed as a

function of interindividual variability in the DAT1 gene.

When OFF medication, adults with ADHD showed

greater effects of reward on dorsal striatal BOLD

responses during task-switching than healthy controls.

Critically, this effect was only observed when taking the

DAT1 genotype into account, resulting in a strong

genotype-by-diagnosis interaction. Specifically, patients

carrying the 9R allele showed exaggerated striatal

responses relative to healthy controls carrying the same

allele as well as relative to patients homozygous for the

10R allele. These aberrant striatal responses were nor-

malized when patients with ADHD were ON medica-

tion, such that they no longer differed from those of

controls. In short, the present pilot study shows a dys-

functional influence of reward motivation on task-

switching in the dorsal striatum of adult patients with

ADHD, but only in those carrying the 9R risk allele.

These findings, albeit preliminary because of the small

sample size, suggest that abnormal cognitive task-related

processing in adult ADHD depends critically on inter-

individual trait differences in striatal dopamine trans-

mission as well as on the motivational state of the

individual patient.

The present results indicate the importance of taking

into account interindividual variability, as for example

indexed by the DAT1 genotype, when assessing task-

related BOLD effects in ADHD. This generally concurs

with previous fMRI studies in youth with ADHD, which

have found that striatal responses during reward antici-

pation (Paloyelis et al., 2012), as well as striatal responses
during more cognitive tasks, that is Go/No-Go paradigms

Table 5 Means (SE) for response times and error rates (% errors)

Mean response times (SE) (ms) Error rates (SE) (%)

9R carriers 10R homozygotes 9R carriers 10R homozygotes

Repeat Switch Repeat Switch Repeat Switch Repeat Switch

HC
Low 411.36 (8.44) 421.48 (10.70) 406.81 (19.05) 413.57 (21.14) 2.68 (0.62) 3.19 (0.72) 1.67 (0.34) 2.44 (0.45)
High 402.51 (8.23) 416.24 (10.68) 397.51 (19.05) 405.75 (20.62) 2.55 (0.49) 2.36 (0.43) 1.65 (0.39) 2.82 (0.45)

ADHD OFF
Low 426.90 (21.15) 431.03 (24.37) 409.45 (24.13) 427.54 (29.15) 3.39 (0.58) 4.84 (0.94) 2.36 (0.33) 3.76 (0.67)
High 421.97 (20.68) 442.20 (21.51) 404.46 (23.52) 413.80 (25.62) 3.44 (0.64) 5.16 (0.88) 1.83 (0.62) 3.42 (0.68)

ADHD ON
Low 417.99 (26.71) 424.03 (27.82) 395.13 (19.94) 405.49 (21.80) 3.17 (0.61) 3.98 (0.77) 1.59 (0.35) 3.28 (0.42)
High 415.29 (27.24) 413.85 (27.25) 387.27 (18.22) 391.64 (21.66) 2.85 (0.70) 3.98 (0.79) 1.53 (0.45) 3.23 (0.55)

Data are shown for the attention-deficit/hyperactivity disorder (ADHD) group for each medication state (ON or OFF methylphenidate) and by the DAT1 genotype group
(9R+ or 10R homozygotes) for both the ADHD and the healthy control group (HC).

Table 6 Self-reported symptom severity

ADHD ON ADHD OFF Statistics

9R carriers 10R/10R 9R carriers 10R/10R Drug effect DAT1 effect Drug×DAT1

Symptom severity
Attentive [mean (SE)] 2.67 (0.66) 3.18 (1.11) 7.25 (0.46) 5.64 (0.83) t(22)=5.92; P<0.001 NS F(1,21)=3.47; P>0.05
Hyperactive [mean (SE)] 2.67 (0.66) 2.36 (0.75) 5.33 (0.68) 5.09 (0.72) t(22)=5.15; P<0.001 NS NS

ADHD, attention-deficit/hyperactivity disorder; 10R/10R, 10R homozygotes.
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(Durston et al., 2008; Bédard et al., 2010), depend on

variations in the DAT1 genotype. A recent study in adults

with ADHD failed to extend the effect of the DAT1
genotype on striatal reward responses during reward

anticipation, observed in youth (Paloyelis et al., 2012), to
adult ADHD (Hoogman et al., 2013). In the current

sample with ADHD adults, DAT1 effects on reward-

related striatal responses did emerge, but only as a

function of cognitive task-related processing. This sug-

gests that, in adults with ADHD, the translation of

reward information into (effortful) cognitive processing

might be more strongly dependent on variability in the

DAT1 gene than reward anticipation itself.

Our study shows that patients with ADHD OFF medi-

cation show abnormal BOLD responses in the caudate

nucleus during rewarded task-switching, an effect that

relied on striatal dopamine signalling as indexed by the

DAT1 genotype. In accordance, the caudate nucleus –

known to be involved in cognitive flexibility (Cools,

1980; Aarts et al., 2011) – is well positioned to incorporate

motivational influences from more ventral regions in the

striatum through feed-forward dopaminergic projections

(Haber et al., 2000; Grahn et al., 2008; Ikeda et al., 2013).
The finding is also remarkably consistent with our pre-

vious work using genetic fMRI and PET imaging in

healthy volunteers, showing that the effects of reward

motivation on cognitive control are altered by dopami-

nergic transmission in the left caudate nucleus (Aarts

et al., 2010, 2014b). In ADHD, Volkow et al. (2009) have
shown that dopaminergic transmission in reward-related

brain regions is associated with symptoms of inattention,

and that connectivity between neural reward and atten-

tion networks is impaired (Tomasi and Volkow, 2012).

Here, we show that cognitive task-related processing

deficits in the striatum (i.e. during task-switching) are

modulated by motivation as well as the DAT1 genotype

in ADHD. Unlike earlier suggestions (Sonuga-Barke,

2002, 2003; de Zeeuw et al., 2012), ADHD might not be

accompanied by isolated deficits in either motivational or

cognitive/executive processing pathways, but rather by

deficits in the integration between these pathways.

The present finding extends to ADHD our previous

work in young healthy volunteers showing that the

effects of reward motivation on task-switching and asso-

ciated striatal signal depend on the DAT1 genotype (Aarts
et al., 2010; see also van Holstein et al., 2011). Unlike that

previous study, however, the present study did not show

any DAT1 genotype effects on rewarded task-switching

in healthy controls, in neural or behavioural terms. We

are surprised at this lack of effect, but believe that it

might reflect a difference in the demographics between

the current control group, which was matched to the

ADHD group, and the groups in our previous studies that

primarily included university students. The most obvious

difference is in terms of age, with the current control

group being older (mean 38.12 years, SD 10.20) than

the healthy volunteers in our previous studies (mean

21.58 years, SD 2.06; and mean 22 years, SD 2.32, for

Aarts et al., 2010; van Holstein et al., 2011, respectively).
Indeed, studies have consistently observed a reduction in

dopamine signalling starting in young adulthood (e.g.

Volkow et al., 1996; Reeves et al., 2002). Importantly, the

increases in striatal BOLD in the 9R-carrying patients

OFF medication were, if anything, accompanied by

impaired performance (i.e. increased RT switch cost for

high vs. low reward trials, relative to when ON medica-

tion). These results contrast with our findings in younger

9R-carrying healthy volunteers who showed increased

striatal responses as well as better task-switching perfor-

mance following high versus low reward cues relative to

10R-homozygotes (Aarts et al., 2010). This suggests that

the hyperactivation in the dorsal striatum during rewar-

ded task-switching in the 9R-carrying patients OFF

medication is maladaptive for behaviour. The notion of

maladaptive striatal hyperactivation in 9R-carrying

patients with ADHD is in line with the finding that the

9R allele is the risk allele in adult ADHD (Franke et al.,
2010). However, the absence of significant behavioural

differences relative to healthy controls precludes state-

ments of normality in terms of performance.

The aberrant striatal responses during rewarded task-

switching in patients with ADHD (specifically 9R car-

riers) relative to controls were absent when patients were

ON medication. This suggests that methylphenidate

normalized striatal responses, although we only obtained

trend effects (i.e. at P<0.001 uncorrected for multiple

comparisons) when directly comparing patients ON ver-

sus OFF methylphenidate. Our findings suggest that the

effects of methylphenidate on cognitive task-related

processing are accompanied by modulation of the stria-

tum. This generally concurs with previous work showing

that methylphenidate can normalize striatal responses

during cognitive processes such as response inhibition

(Vaidya et al., 1998; Shafritz et al., 2004; Epstein et al.,
2007; Rubia et al., 2009, 2011). Here, we show that such

normalization of task-related dorsal striatal responses and

performance by methylphenidate depends both on the

DAT1 genotype and on reward motivation. This suggests

that reward motivational factors interact with the effects

of the DAT1 genotype to bias the cognitive response

to methylphenidate. Future work should address the

obvious next question, that is, whether the discrepancy in

the extant literature on the effects of the DAT1 genotype

on the clinical response to medication (Kambeitz et al.,
2014) also reflects variability in the patient’s reward

motivational state. Cognitive neuroimaging measures of

task-related (motivational) processing might be particu-

larly sensitive to detecting DAT1-dependent effects of

methylphenidate in ADHD.

It might be noted that the effects in the OFF state could

reflect rebound effects because of short-term medication

withdrawal. Future studies, with a longitudinal design or
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comparing medication-naive patients with medicated

patients, will need to determine whether the current

findings reflect rebound or withdrawal effects rather than

an unmedicated ADHD state.

Our findings were obtained with a sample of 23 patients

with ADHD and 26 healthy controls. This limited sample

size calls for caution when generalizing to the population

(Munafò and Gage, 2013) and precludes definitive con-

clusions. The findings should therefore be considered

preliminary and in need of replication, as was recently

also explicitly highlighted (Button et al., 2013).

Nevertheless, we believe that our findings are robust,

given extensive convergent evidence. Indeed, we have

previously observed effects of the DAT1 genotype on the

BOLD signal during rewarded task-switching in the

same striatal region (i.e. left caudate nucleus) as we report

here (Aarts et al., 2010). Moreover, we have observed

previously that striatal dopamine synthesis capacity in the

(left) caudate nucleus predicted the effects of reward on

cognitive performance during a focused attention task

(Aarts et al., 2014b). It is unlikely that our whole-brain

corrected results represent a false-positive effect as our

power calculation based on an independent dataset (Aarts

et al., 2010; Button et al., 2013) confirmed that our sample

should be large enough to obtain significantly meaningful

effects (see the Methods section). Replication of the

effect in independent larger samples in future studies

will further increase confidence in the reliability of

the effect.

Previously, we have obtained similar results in a PET

study in healthy volunteers, showing that dopaminergic

transmission in the left caudate nucleus altered the

effects of reward motivation on cognitive control (Aarts

et al., 2014b). In that study, we used a Stroop interference

paradigm instead of a task-switching paradigm, suggest-

ing that our present results can be extended to other

domains of cognitive control. However, future work

should confirm whether our findings in ADHD can be

generalized to domains other than task-switching.

Moreover, future studies should also examine variation in

other dopaminergic genes, such as COMT (Bilder et al.,
2004), to investigate whether the current findings are

limited to striatal dopamine processing.

Conclusion
Our data suggest a dysfunctional influence of reward

motivation on cognitive processing (i.e. task-switching) in

the dorsal striatum of adult patients with ADHD, who

carry the 9R ADHD risk allele. This deficit is remediated

when patients are tested ON methylphenidate. These

findings indicate an important role for both reward

motivation and interindividual trait differences in striatal

dopamine transmission in cognitive processing deficits in

adult ADHD.
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