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New developments of anesthesiology 

Historical overview of artificial lung ventilation 

Anesthesia, literally meaning ‘without sensations’ allowed surgeons to perform their work without a 

patient experiencing pain.[1] The ancient Greeks already experimented with poppy extracts. 

However, the first attempt of intravenous anesthesia is probably in 1656 in Oxford, where a dog was 

injected with a mixture of alcohol and opium and woke up successfully.[2, 3] A major milestone of 

modern anesthesia is the first demonstration of ether gas anesthesia in 1846 in Boston by William 

Thomas Green Morton where a surgical procedure could take place without a pain sensation.[1, 2]  

After this event endotracheal anesthesia was performed for the first time in a human by Friedrich 

Trendelenberg in 1869 with the use of an inflatable cuff, his work later extended by Eisenmenger.[4] 

Alfred Kristein was the first to use direct laryngoscopy in Berlin in 1895.[4] The first attempts at 

mechanical ventilation began in 1893 by George E. Fell, with the Fell’s bellow, later modified by 

O’dwyer in 1896.[4] The use of mechanical ventilation started with the introduction of the whole 

body negative pressure device, extensively used during the poliomyelitis epidemic in the 1950s.[4] 

Rudolph Matas was the first to introduce positive pressure breathing during thoracic surgery at the 

beginning of the twentieth century, although this principle was not very popular at the time and was 

only further explored in the late 1930s.[4]  By the 1950s a lot of positive pressure ventilators had 

been developed and in the 1960s and 1970s anesthesiologists began to recognize the 

pathophysiological mechanisms of respiratory failure and the concept of blood gas analysis also due 

to the development of long term mechanical ventilation in intensive care units.[4] Lung injury after 

mechanical ventilation was divided into three main types of trauma.  Firstly ‘barotrauma’, initially 

demonstrated in 1974 and consisting of the development of a pressure gradient between the 

alveolus and the bronchovascular sheet due to mechanical ventilation with high peak airway 

pressure. This could result in lung edema, rupture of the alveolus and consequently air leakage.[5]  

After this discovery multiple studies showed that not only peak pressure but overdistention of the 

lung was deemed the main determinant in lung injury, hence the second form of trauma, and 

identified as a ‘volutrauma’.[6, 7] Additionally, mechanical ventilation results in mild morphological 

changes and a pulmonary and systemic inflammatory response, the so called ‘biotrauma’, which is 

the third form of positive ventilation lung trauma.[8-10]  

Historical overview of acute and chronic pain  

As early as in the mid 1800s the knowledge about pain was already divided into an acute, chronic and 

palliative component.[11]  Opiates were standard treatment in the early 1900s for acute and chronic 

pain.[11] Widespread use of short acting opioids, during anesthesia and surgery occurred from the 
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1960s.[2] The local anesthetic cocaine was isolated in 1856 and in 1884 Kollar showed that it 

provided reliable corneal anesthesia. The first neuraxial block, which means that a local anesthetic 

was placed around the nerves of the central nervous system, was performed in 1884. Procaine was 

introduced in 1905 and the first percuteanous brachial plexus blocks were described in 1911.[2] 

Neuromuscular blocking drugs have interested physicians during the 19th century, however it was 

only in the 1930s and 1940s that the use of skeletal muscle paralyses was integrated in anesthesia.[2] 

The use of intravenous anesthetics with barbiturates began in 1932 but propofol was clinically 

introduced in 1977.[1] In the early twentieth century Graham, Gaylord and Simpson were the first to 

suggest the influence of anesthesia on the immune system.[12] 

Development of the concept of balanced anesthesia  

All the vigorous work in the development of anesthesia led to the concept of balanced anesthesia, 

initially posed by John Lundy in 1926 from the Mayo clinic. It encompasses the use of multiple drugs 

to produces anesthesia, analgesia, skeletal muscle relaxation and attenuation of autonomic reflexes. 

In the twentieth and twenty-first century we learned a lot more about immune responses during 

anesthesia subsequently mechanical ventilation and surgery. The key topic is that an inflammatory 

response is a homeostatic response to injury or infection and homeostasis or balance is a 

fundamental requirement for life.[13] The definition of homeostasis is  ‘The tendency of a system, 

especially the physiological system of higher animals, to maintain internal stability, owing to the 

coordinated response of its parts to any situation or stimulus that would tend to disturb its normal 

condition or function’. Stimuli in the context of anesthesia are for example mechanical ventilation 

and surgery in which an acute phase response and especially dysregulation of this acute phase 

response can lead to a wide variety of chronic diseases but also can play a role in pain after surgery 

and the development of chronic pain.[14-18] 

Hereby we thus will extend the topic of balanced anesthesia to the modulation and maintenance of 

homeostasis of the inflammatory response in anesthesia and surgery. 

The acute phase response  

The human immune system consists of the innate and the adaptive immune system. The innate 

immune systems acts as a non specific first responder to attack foreign material, pathogens and 

reacts to tissue damage; the so called ‘acute phase response’. The adaptive immune system is 

responsible for pathogen specific attacks and the development of immunity.[15, 19]  

In mammals the symptoms of an acute phase response include fever, lassitude, inhibiton of gastric 

function, tachycardia and activation of immune cells including lymphocytes and neutrophils.[20] 
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The acute phase response consists of complex interactions between immune cells and programming 

of gene expression in response to cytokines.[15] Generally, pattern recognition receptors (PRR’s) play 

a critical role in sensing the pathogen-associated molecular patterns (PAMP’s) and danger-associated 

molecular patterns (DAMP’s). Well studied PRR’s are, for example Toll-like receptors and Nod-like 

receptors (NLRs).[21] Via several downstream signaling pathways TLR’s promote function by 

transcription of inflammatory molecules via Nuclear Factor (NF)-κB dependent inflammatory gene 

expression. PRR’s are expressed on a variety of cells including neutrophils, which play a pivotal role in 

the acute phase response.[22] Neutrophils adhere to the vascular wall after sensing danger and 

transmigrate to the site of damage, where they release inflammatory molecules.[19, 23, 24] 

Cytokines regulate local inflammatory responses and create cell to cell communication.[25] There are 

several pro- and anti-inflammatory cytokines. Important pro-inflammatory cytokines during acute 

phase response are interleukin (IL)-1β, Il-6, IL-8, tumor necrosis factor (TNF)-α.[20, 26] IL-10 is a well 

known anti-inflammatory cytokine which limits the immune response during infections.[27, 28] IL-10 

is also known to decrease the synthesis of pro-inflammatory cytokines in acute phase response as IL-

1α, IL-1β, IL-6 and TNF-α by neutrophils.[29] The main goal however remains to restore homeostasis, 

where anti-inflammatory and pro-inflammatory cytokines are probably of equal importance.[26, 30] 

Figure 1. provides a simplified overview of an acute phase response that can occur on a systemic or 

local level. The next paragraphs will describe the acute phase response after mechanical ventilation 

and surgery. 

 

 

Figure 1. This figure provides a simplified overview of an innate acute phase response. TLR=toll like receptor, IL1R = 

Interleukin 1 receptor. 
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Inflammatory responses after mechanical ventilation 

After mechanical ventilation an acute phase response occurs that can lead to ventilator-induced lung 

injury.[31] Ventilator induced lung injury is characterized by a sterile inflammatory response 

including release of pro-inflammatory cytokines and recruitment of inflammatory cells possibly 

resulting in progressive  lung injury, hence part of the so called ‘biotrauma’.[31, 32] In the lung, 

cytokines are generated by bronchiolar and alveolar epithelial cells, alveolar macrophages and 

neutrophils.[33-35] Experimental studies demonstrate that even lung protective mechanical 

ventilation with low tidal volume and application of positive end expiratory pressure induces an 

inflammatory response.[10, 36, 37] Precise mechanisms behind ventilator induced cytokine 

responses are not yet completely understood, however several mechanisms have been proposed, for 

example mechanotransduction which means cytoskeletal alteration without ultrastructional 

damage.[38] Furthermore stress failure of the alveolar barrier and of plasma membrane and effects 

on pulmonary vasculature independent of stress can initiate the enhanced generation of 

cytokines.[7, 8, 39] Several studies have shown that alveolar cells produce cytokines such as TNF-α, 

IL-1β, IL-6, IL-8 and IL10.[10, 34] Low tidal volume ventilation attenuates, but does not abrogate the 

inflammatory responses.[40, 41] Several studies have also shown an association between mechanical 

ventilation and a systemic inflammatory response, influenced by ventilator settings.[10, 42]  

Leukocytes play an important role in the ventilator induced inflammatory response.[43, 44] 

Leucocytes are primarily attracted by ketatinocyte-derived chemokine (KC; IL-8 homologue) but for 

activation cytokines are probably needed.[45, 46] Previous investigations suggest that the pattern 

recognition receptor, Toll-like receptor 4 (TLR4), plays an important role in the ventilator induced 

inflammatory response by activation of NF-κB, a transcription factor, and consequently transcription 

of pro-inflammatory cytokines.[47, 48] Figure 2. Illustrates the TLR4 receptor pathway which leads to 

transcription of inflammatory cytokines. 

Interleukin (IL)-1β also plays a pivotal role in the pathogenesis of the ventilator induced lung injury by 

promoting recruitment and transmigration of  neutrophils.[49] Bound to its receptor IL-1R, which is 

present on nearly all cells, IL-1β binding leads to an inflammatory cascade.[50] IL-1β however is 

secreted as an inactive molecule, pro-IL-1β, that has to be cleaved at the amino-terminal by caspase-

1 or extracellular serine protease before it can activate the IL-1 receptor.[50, 51]  
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Figure 2. This figure illustrates the TLR4 receptor pathway which leads to transcription of inflammatory cytokines.  

Reprinted with permission of M. Vaneker.  

 

The inflammatory response during surgery and the influence of anesthetic drugs 

An acute phase response is also mediated after surgery and encompasses a complex set of 

physiological changes with a very important role of the immune system responding on a local and 

systemic level.[52] Important cytokines involved seem to be IL-6, TNFα, IL-1, interfon (IFN)- γ, IL-8 

and IL-10.[12, 26, 30] The severity of the injury seems to correlate with the inflammatory 

response.[12, 52, 53] The main goal remains to restore homeostasis, where anti-inflammatory and 

pro-inflammatory cytokines are probably equally important.[26, 30] The immune response during 

surgery does not differ with the use of anesthetic technique, thus regional or general anesthesia.[54, 

55] Certain anesthetic drugs can determine the extent of the inflammatory response. The anesthetic 

drugs discussed below are used in the different experiments compromising this thesis.   

 

 The first volatile anesthetic ether was used as early as in 1846 in William Thomas Green.[1, 2] From 

the 1950’s there was progress in research of organic fluoride compound leading to the development 

of  the modern fluorinated hydrocarbon class volatile anesthetics, including isoflurane.[56] Isoflurane 

is widely used in humans and animals as an agent to provide sleep during general anesthesia.[57, 58]  

Several studies have shown that isoflurane can attenuate pulmonary and systemic inflammatory 

acute phase responses. Isoflurane decreases neutrophil influx, IL-1β after mechanical ventilation.[59] 



General introduction and outline of the thesis 

15 
 

Part of the anti-inflammatory effects of isoflurane may be due to inhibition of the NF-κB 

pathway.[60]  

Ketamine was first synthesized in the early 1960s and in 1965 its anesthetic properties were 

identified as a profound drug providing analgesia and amnesia.[61] Ketamine is a N-Methyl-D-

aspartate (NMDA) receptor antagonist, this receptor presents at spinal and supraspinal locations and 

is involved in transmission of nociceptive signals.[61] It is widely used in humans and animals as an 

anesthetic and analgesic.[62, 63] Ketamine can inhibit production of pro-inflammatory cytokines by 

reduction of NF-κB or suppression of natural killer (NK) cells, neutrophils and macrophages.[12, 63] In 

humans the anti-inflammatory effects of ketamine remain controversial.[62] 

 

Lidocaine is a local amide anesthetic first synthesized in 1943 and was used for many years as a local 

anesthetic agent before it was used as an intravenously administered drug for treatment of 

arrhythmias.[64] Since the early 1980’s there has been increasing interest in the systemic 

administration of lidocaine in treatment of acute and chronic pain.[65] It is widely used during 

anesthesia in humans and animals.[63, 66] 

Lidocaine acts as an anti-hyperalgesic and anti-inflammatory agent.[17, 67] In  vitro research showed 

that lidocaine attenuates priming of human neutrophils by inhibition of G-protein coupled 

receptors[68, 69] Furthermore lidocaine attenuated activated endothelial interleukin (IL)-1, 6 and 8 

concentrations and intracellular adhesion molecule-1 (ICAM-1), important for transport of immune 

cells to site of inflammation.[70, 71] In different in vivo models intravenous lidocaine reduced levels 

of tumor necrosis factor (TNF)-α, IL-1β IL-6 and Il-8,[72-74] and systemic lidocaine attenuates acute 

lung injury in rabbits.[75, 76] The requirements for additional anesthetics are diminished.[77, 78] 

Human research reveals an attenuation of Il-6, IL-8 and IL-1 receptor antagonist in plasma at the end 

of abdominal surgery showing it has anti-inflammatory effects.[79-81] 

Medetomidine is an α2-adrenergic agonist first used as anesthetic and analgetic drugs in veterinary 

medicine in the 1980’s, the S-enantiomer of medetomidine used in veterinary and human medicine is 

dexemdetomidine.[82] Mainly macrophages seem to be affected in the acute phase response by 

stimulation of their sympathetic adrenergic receptors and medetomide can modulates the TLR4-NF-

κB pathway and attenuates pro-inflammatory cytokines.[63] Anti-inflammatory effects seem to be 

dose-dependent.[83] The exact mechanisms of anti-inflammatory effects are not yet completely 

elucidated.  In human research on α2-adrenergic agonists it has been proposed that the drugs indeed 

affect macrophages and clinically patients had a decrease of number of days of mechanical 

ventilation and improved survival.[84] 

http://en.wikipedia.org/wiki/Enantiomer
http://en.wikipedia.org/wiki/Medetomidine
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Pain after surgery 

Nociceptive pain 

Pain after tissue damage results in an inflammatory response and neuroplasticity usually returns to 

its normal state after the inflammation is resolved.[85] Interestingly the inflammatory acute phase 

response and especially dysregulation of  this acute phase response can lead to a wide variety of 

chronic diseases but it can also play a role in pain after surgery and the development of chronic 

pain.[14-18] The definition of nociception is: ‘the neutral process of encoding and processing noxious 

stimuli’.[86] Nociception can induce a transformation of function and structure in the nervous 

system, the so called neuroplasticity.[85]  Surgery induces restriction of normal functioning and 

nociceptive pain, generated by powerful stimuli that activate Aδ and C fibers.[87, 88] Nociceptive and 

inflammatory processes are involved in the development of persistent or chronic pain after 

surgery.[89-91] Peripheral and central neuroplastic changes may explain the chronicity after wound 

healing has already occurred.[90] Several mechanisms are known to play a role in neurplasticity 

including NMDA receptor and kinases and inflammatory mediators.[89, 90] Moderate to severe pain 

after surgery induces a reduction of the quality of life of patients in the immediate postoperative 

period [92], which can be  an important reason for delayed discharge [16] and  a higher risk of 

developing chronic pain.[91] Subsequently, persistent postsurgical pain reduces the quality of life, 

leads to unanticipated hospital admissions and has a huge socio-economic impact.[47] 

Neuropathic pain 

Nerve damage during surgery can lead to neuropathic pain which is defined as pain arising as a direct 

consequence of a lesion or disease affecting the somatosensory system. Neuropathic pain presents 

as a constant, burning pain with spontaneous sharp exacerbations and allodynia, a worsening of pain 

upon normal sensory triggers and there is an increased sensitivity to pain, hyperalgesia. [93] Sensory 

testing is an important diagnostic tool in determination of neuropathic pain and allodynia and 

hyperalgesia can be determined. [94] Multiple tests have been described to test Aβ, C and Aδ fibers 

including mechanical or pressure and thermal tests.[88, 95]  

The pathophysiology of nerve damage describes increased sodium channel expression, ectopic 

electrical activity and altered neuroplasticity.[90] The variety of changes in the peripheral and central 

nervous system can be described firstly by spontaneous firing of peripheral sensory fibers.[85] 

Secondly, in the spinal cord the ongoing nociceptive signals from the injured nerves can trigger 

central sensitization. Thirdly, supraspinally changes occur that shift inhibitory pain to facilitation 

which means that pain can be accentuated.[96] Finally, there appears to be a direct connection 

between inflammatory responses and neuropathic pain in animal models, proinflammatory cytokines 
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such as tumor necrosis factor-α (TNF-α), interleukin 1 β (IL-1β), and interleukin 6 (IL-6) can induce 

acute or short-term hyperalgesia and chronic hyperalgesia and allodynia.[97] After peripheral nerve 

injury the immune response includes macrophages localizing to damaged nerve fibers but also 

localization upstream in the dorsal root ganglion and subsequently activation of microglia and 

astrocytes in the central nervous system.[98, 99] Animal models of pain are contributing to the 

identification of the aetiology of persisting pain states and potential targets for treatment.[100] 

There is a continuing need for animal models that represent the clinical situation.  

Objectives of thesis 

Since the pathophysiology of neuropathic pain after surgery is incompletely understood and there 

are multiple hits to the patients before this pain state occurs there is a need for stable translational 

models to investigate these processes, their acute phase responses but also to investigate possible 

therapies or modulators of these processes. 

 Modulation and investigation of the pathophysiology of the inflammatory processes involved in 

surgery, anesthesia and perioperative nerve damage could provide valuable insights in the treatment 

and perhaps prevention of postoperative neuropathic pain. Figure 3. demonstrates a hypothesis on 

the balance that exists between the input and outcome in relation to mechanisms and modulatory 

therapy. 

 

Figure 3. Pathophysiology and modulation of inflammation during mechanical ventilation and surgery affecting outcome 

 

This thesis thereby aims to identify some of the mechanisms responsible for the responses after 

mechanical ventilation and surgery measured by inflammatory and behavioral outcome parameters 
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and explores possibilities of modulation of inflammatory responses after mechanical ventilation and 

surgical induced nerve injury.  

 

Consequently, with respect to our hypothesis on anesthesiological homeostasis, the following 

research questions are identified (figure 3).  

 What is the role of IL-1β, caspase-1 and neutrophil factors in the mechanical ventilation 

induced inflammatory response in mice?  

 Do resveratrol and intravenous lidocaine attenuate the mechanical ventilation induced 

inflammatory response in mice?  

 What is the current state of knowledge on the in vitro mechanisms and in vivo efficacy of 

intravenous lidocaine in acute and chronic pain?  

 Can we develop a murine model of neuropathic pain behavior?  

 Can we develop a murine ‘two hit’ model of neuropathic pain?  

 Does lidocaine attenuate the postoperative inflammatory response and development of 

neuropathic pain in mice?  

 

Outline of this thesis 

In chapter 2 we investigate the role of IL-1β, caspase-1 and neutrophil factors in the mechanical 

ventilation induced inflammatory response in mice. 

 

In chapter 3 we investigate the mechanical ventilation induced pulmonary and systemic 

inflammatory response and the modulatory effects of resveratrol in healthy mice. 

 

In chapter 4 we investigate the mechanical ventilation induced pulmonary and systemic 

inflammatory response and the modulatory effects of intravenously administered lidocaine in 

healthy mice. 

 

Chapter 5 provides a review on the literature of the modulatory mechanism of lidocaine in vitro and 

in vivo on pain mechanisms.  
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Chapter 6 describes the development of a murine model of neuropathic pain. 

 

Chapter 7 describes the development of a ‘two hit’ murine model of nerve injury and investigates the 

effect of intraperitoneally administered lidocaine in a two hit model of surgery and nerve injury.   

 

In chapter 8 we discuss the results of this thesis research in an integrated scientific context and 

several recommendations for future research will be provided.  
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Abstract 

Introduction  

Mechanical ventilation can cause ventilator-induced lung injury, characterized by a sterile 

inflammatory response in the lungs resulting in tissue damage and respiratory failure. The 

cytokine interleukin-1β (IL-1β) is thought to play an important role in the pathogenesis of 

ventilator-induced lung injury. Cleavage of the inactive precursor pro-IL-1β to form bioactive 

IL-1β is mediated by several types of proteases, of which caspase-1, activated within the 

inflammasome, is the most important. Herein, we studied the roles of IL-1β, caspase-1 and 

neutrophil factors in the mechanical ventilation-induced inflammatory response in mice. 

Methods 

Untreated wild-type mice, IL-1αβ knockout and caspase-1 knockout mice, pralnacasan (a 

selective caspase-1 inhibitor)-treated mice, anti-keratinocyte-derived chemokine (KC)-treated 

mice and cyclophosphamide-treated neutrophil-depleted wildtype mice were ventilated using 

clinically relevant ventilator settings (tidal volume 8 ml/kg). The lungs and plasma were 

collected to determine blood gas values, cytokine profiles and neutrophil influx. 

Results 

Mechanical ventilation resulted in increased pulmonary concentrations of IL-1β and KC and 

increased pulmonary neutrophil influx compared with non-ventilated mice. Ventilated IL-1αβ 

knockout mice did not demonstrate this increase in cytokines. No significant differences were 

observed between wild-type and caspase-1-deficient or pralnacasan-treated mice. In contrast, 

in anti-KC antibody-treated mice and neutropenic mice, inflammatory parameters decreased 

in comparison with ventilated non-treated mice. 

Conclusions 

Our results illustrate that IL-1 is indeed an important cytokine in the inflammatory cascade 

induced by mechanical ventilation. However, the inflammasome/caspase-1 appears not to be 

involved in IL-1β processing in this type of inflammatory response. The attenuated 

inflammatory response observed in ventilated anti-KC-treated and neutropenic mice suggests 

that IL-1β processing in mechanical ventilation-induced inflammation is mainly mediated by 

neutrophil factors. 
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Introduction 

Mechanical ventilation is a life-saving therapy, although it can also cause ventilator-induced lung 

injury (VILI).[1] VILI is characterized by a sterile inflammatory response in the lungs resulting in tissue 

damage that may sustain respiratory failure. The mechanical ventilation-induced inflammatory 

response can also spread systemically, which in severe cases can result in multi-organ dysfunction 

syndrome (MODS).[2] Even protective ventilation strategies that do not cause direct mechano-

induced tissue damage (baro- or volutrauma) have been shown to elicit the release of pro-

inflammatory cytokines, recruitment of leukocytes and subsequent lung injury.[3, 4] The mechanisms 

behind this so-called ‘biotrauma’ have not yet been completely elucidated. 

Previous studies have demonstrated that the TLR4/TRIF pathway is important in the mechanical 

ventilation-induced inflammatory response.[4, 5] Furthermore, it is becoming increasingly clear that 

the pro-inflammatory cytokine interleukin-1β (IL-1β) plays a key role in the pathogenesis of the 

inflammatory response and VILI by promoting neutrophil recruitment and by increasing epithelial 

injury and permeability.[6-8] Through recognition by the IL-1 receptor (IL-1R), not only the secreted 

IL-1β but also the cell-associated family member IL-1α may stimulate production of other 

inflammatory cytokines via IL-1R-associated kinases (IRAKs) and thereby positively amplify the 

inflammatory response.[9] However, up till now, this has not been studied in the context of 

mechanical ventilation-induced inflammation. 

Upon activation of the innate immune system, e.g. via TLRs, IL-1β is synthesized as an inactive 

precursor molecule, pro-IL-1β, that cannot bind and activate the IL-1R.[10] In order to process pro-IL-

1β and form bioactive IL-1β, proteolytic cleavage of the N-terminal 116 amino acids from the 

precursor is required. Caspase-1 is the major protein implicated in cleavage of pro-IL-1β.[10, 11] 

Caspase-1 exists as an inactive zymogen in cells of myeloid origin (e.g. tissue macrophages, dendritic 

cells) which needs to be activated to perform its proteolytic tasks.[9] Caspase-1 is also known to be 

expressed in a wide range of other cell types including lung fibroblasts and epithelial cells.[12, 13] 

The inflammasome is a protein platform that is responsible for the activation of caspase-1.[10, 14] A 

broad range of infectious and autoimmune diseases that involve IL-1β have been associated with 

inappropriate activation of the inflammasome [12, 14, 15], while in several other disease models in 

which IL-1β plays a crucial role, the inflammasome appears not to be involved.[16, 17] IL-1β 

processing in these models might rely on neutrophil serine proteases, like elastase, granzyme A, 

cathepsin G or proteinase-3.[10, 18-20] Hitherto, the role of caspase-1 in processing of IL-1β in the 

mechanical ventilation-induced inflammatory response is unknown. 
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We studied the roles of IL-1β, caspase-1 and neutrophil factors in the mechanical ventilation-induced 

inflammatory response in mice ventilated with clinically relevant ventilator settings. 

Materials and methods 

All experiments were approved by the Regional Animal Ethics Committee in Nijmegen and performed 

under the guidelines of the Dutch Council for Animal Care and the National Institutes of Health. They 

have therefore been performed in accordance with the ethical standards laid down in the 1964 

Declaration of Helsinki and its later amendments. 

Animals 

Age-matched wild-type C57Bl/6 mice and extensively backcrossed caspase-1 knockout mice or IL-1αβ 

knockout mice (aged 8 to 14 weeks, weight 25 ± 4 g) with C57Bl/6 background were used in this 

study. The mice were housed in a light- and temperature-controlled room under specific pathogen-

free (SPF) conditions. Standard pelleted chow (1.00% Ca, 0.22% Mg, 0.24% Na, 0.70% P, 1.02% K, 

SSNIFF Spezialdiäten GmbH, Soest, Germany) and drinking water were available ad libitum. These 

conditions are similar to previous studies in which this mouse model was used.[4, 5, 21, 22] 

Experimental design 

IL-1αβ knockout experiments 

IL-1 can induce inflammation via activation of the IL-1 receptor. To study whether IL-1 is indeed 

involved in initiation and/or propagation of the inflammatory cascade induced by mechanical 

ventilation, mechanically ventilated IL-1αβ−/− mice (n = 8) were compared with ventilated wild-type 

mice (n = 8). As controls, non-ventilated IL-1αβ−/− (n = 8) and wild-type mice (n = 8) were used. 

Caspase-1 experiments 

Caspase-1 is able to cleave the inactive precursor pro-IL-1β to form the active cytokine IL-1β. To 

study the role of caspase-1 in the mechanical ventilation-induced inflammatory response, 

mechanically ventilated caspase-1 knockout mice (n = 8) and ventilated wild-type mice treated with 

the selective caspase-1 inhibitor pralnacasan (100 mg/kg) (n = 8) were compared with ventilated 

untreated wild-type mice (n = 8).[23, 24] As controls, non-ventilated caspase-1−/−, pralnacasan-

treated wild-type and untreated wild-type mice (n = 8 per group) were used. 
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Anti-KC antibody experiments 

Apart from caspase-1, neutrophil serine proteases are also able to process IL-1β.[8] In order to 

investigate whether the attraction of neutrophils by the chemo-attractant keratinocyte-derived 

chemokine (KC) is involved in the inflammatory response elicited by mechanical ventilation, 

mechanically ventilated wild-type mice treated with an intraperitoneal dose of 100 µg of a 

neutralizing monoclonal anti-KC antibody (R&D Systems, Minneapolis, MN, USA) 1 h before induction 

of anaesthesia (n = 8) were compared with ventilated untreated wild-type mice (n = 8). As controls, 

non-ventilated untreated wild-type mice (n = 8) were used. 

Neutrophil depletion experiments 

Neutrophil serine proteases are able to process IL-1β.[8] In order to study the possible role of 

neutrophil factors in IL-1β processing in the mechanical ventilation-induced inflammatory response, 

mechanically ventilated neutrophil-depleted wild-type mice (n = 8) were compared with ventilated 

untreated wild-type mice (n = 8). As controls, non-ventilated wild-type mice (n = 8) were used. The 

neutrophil-depleted group was neutrophil-depleted with cyclophosphamide as described 

previously.[25, 26] 

Experimental procedures 

The mice were anaesthetized using an intraperitoneal injection of 7.5 µl per gram body weight of 

KMA mix (25.5 mg/ml ketamine, 40 µg/ml medetomidine, 0.1 mg/ml atropine in saline). 

Subsequently, the animals were orally intubated, an arterial line was placed in the arteria carotis, and 

the mice were mechanically ventilated (MiniVent®, Hugo Sachs Elektronik-Harvard Apparatus, 

March-Hugstetten, Germany). The ventilation settings used were based on measured tidal volume 

and respiratory rate during spontaneous ventilation in C57Bl/6 mice [27]: a tidal volume of 8 ml/kg 

body weight and a frequency of 150/min. All animals received 4 cm H2O positive end-expiratory 

pressure (PEEP), and fraction of inspired oxygen was set to 0.4. In order to maintain anaesthesia, 

boluses of 5.0 µl per gram body weight maintenance KMA mix (3.6 mg/ml ketamine, 4 µg/ml 

medetomidine, 7.5 µg/ml atropine in saline) were given every 30 min via an intraperitoneally placed 

catheter. Rectal temperature was monitored continuously and maintained between 36.0°C and 

37.5°C using a heating pad. After the 4-h ventilation period, the mice were sacrificed by 

exsanguination under anaesthesia. The control mice were anaesthetized, but not ventilated, and 

sacrificed shortly after induction of anaesthesia. Tissue and blood were sampled in order to 

determine blood gas values (only in ventilated mice), cytokine production and neutrophil influx. 
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Lipopolysaccharide (LPS) was measured in the mechanical ventilation circuit by Limulus Amebocyte 

Lysate testing (Cambrex Bio Science, Walkersville, MD, USA; detection limit: 0.06 IU/ml) to rule out 

contamination and LPS-induced pulmonary inflammation. 

Tissue harvesting 

Plasma was isolated by centrifugation at 13,000g for 5 min and stored at –80°C. Immediately after 

exsanguination, the heart and lungs were carefully removed en block via midline sternotomy. The 

right middle lung lobe was fixed in 4% buffered formalin solution overnight at room temperature. 

The right lung was snap-frozen in liquid nitrogen and stored at –80°C. The left lung was snap-frozen 

and placed in 500 µl lysis buffer containing PBS, 0.5% Triton X-100 and protease inhibitor (complete 

EDTA-free tablets, Roche, Woerden, The Netherlands). Subsequently, the lungs were homogenized 

using a polytron and subjected to two rapid freeze-thaw cycles using liquid nitrogen. Finally, 

homogenates were centrifuged (10 min, 16,000g, 4°C), and the supernatant was stored at −80°C until 

further analysis. 

Pulmonary neutrophil influx 

After overnight incubation in 4% buffered formalin solution, the right middle lung lobe was 

dehydrated and embedded in paraplast (Amstelstad, Amsterdam, The Netherlands). Sections of 4-µm 

thickness were used. Enzyme histochemistry using chloracetatesterase (LEDER staining) was used to 

visualize the enzyme activity in the neutrophils. Neutrophils were counted manually (ten fields per 

mouse), and after automated correction for air/tissue ratio, the average number of neutrophils per 

square centimetre per mouse was calculated. 

Biochemical analysis 

KC (murine equivalent of human IL-8) in the lung homogenate was determined by enzyme-linked 

immunosorbent assay (ELISA; R&D Systems, Minneapolis, MN, USA). The lower detection limit is 160 

pg/ml. IL-1β in the lung homogenate was determined using a radioimmunoassay (RIA) as described 

previously.[28] In the samples of the IL-1αβ (Figure 1) and caspase (Figure 2) experiments, total 

protein concentrations in the lung homogenates were determined using a BCA protein assay 

(Thermo Fisher Scientific, Etten-Leur, The Netherlands), and cytokine concentrations in the 

homogenates were normalized for protein concentration and therefore expressed as nanogram 

cytokine per microgram protein. In the anti-KC (Figure 3) and neutrophil depletion (Figure 4) 
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experiments, cytokine concentrations in the lung homogenate were not normalized for total protein 

content due to insufficient sample volume and therefore expressed as picogram per millilitre. 

Statistical analysis 

Data were not normally distributed (determined using the Kolmogorov-Smirnov and Shapiro-Wilk 

tests) and therefore expressed as median and range or median and interquartile range (IQR). 

Differences between groups were analyzed using the Kruskal-Wallis and Dunn's post hoc tests. 

Statistical analysis was performed using GraphPad Prism 5 software (GraphPad Software, La Jolla, CA, 

USA). P values <0.05 were considered significant. 

Results 

Mean arterial pressure remained stable and above 65 mmHg in all animals throughout the 

mechanical ventilation period. Blood gas values that were obtained at the end of the ventilation 

period did not indicate substantial lung injury (Table 1). 

Table 1  

 Median IQR 

pH 7.36 7.25 to 7.38 

pCO2 4.73 4.17 to 5.18 

PO2 15.3 14.6 to 17.5 

BE −5.5 −7.3 to –4.0 

HCO3 20.2 18.3 to 20.7 

TCO2 21.0 19.8 to 21.5 

sO2% 99% 98 to 99 

Lac 0.98 0.90 to 1.16 

Table 1. Blood gas values after 4 hours of ventilation. Values (median and IQR) from a representative ventilated group 

(wild-type ventilated mice used as the control group for caspase-1
−
/− and pralnacasan-treated mice). 
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Involvement of IL-1 in the mechanical ventilation-induced inflammatory response 

After 4 h of mechanical ventilation, pulmonary levels of pro-inflammatory cytokine KC significantly 

increased in wild-type mice compared with non-ventilated wild-type mice. In contrast, ventilated IL-

1αβ knockout mice did not show an increase in pulmonary cytokines compared with non-ventilated 

IL-1αβ knockout mice (Figure 1). 

 

Figure 1. Involvement of IL-1 in the mechanical ventilation-induced inflammatory response. KC levels in lung 

homogenates expressed as nanogram cytokine per microgram total protein. Data are expressed as box-and-whiskers 

plots, with min to max range as whiskers. Results of analysis in the non-ventilated (C) and ventilated (V) wild-type (WT) 

mice and IL-1αβ knockout (
−
/−) mice are shown. * Indicates p<0.05. 

Involvement of caspase-1 in the mechanical ventilation-induced inflammatory response 

Pulmonary neutrophil influx significantly increased in mechanically ventilated mice compared with 

non-ventilated wild-type and caspase-1−/− mice, but no differences were observed between wild-

type mice, caspase-1−/− mice or pralnacasan-treated mice. Similar to the results described above, 4 h 

of mechanical ventilation resulted in increased IL-1β and KC concentrations in lung homogenates in 

all groups. However, no significant differences in lung cytokine levels were observed between wild-

type mice, caspase-1−/− mice or pralnacasan-treated mice. (Figure 2) 
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Figure 2. Involvement of caspase-1 in the mechanical ventilation-induced inflammatory response. Pulmonary neutrophil 

counts expressed as the number of neutrophils per square centimetre tissue and IL-1β and KC levels in lung homogenates 

expressed as nanogram cytokine per microgram total protein. Data are expressed as box-and-whiskers plots, with min to 

max range as whiskers. Results of analysis in the non-ventilated (C) and ventilated (V) wild-type (WT) mice, caspase-1 

knockout (
−
/−) mice and pralnacasan-treated mice are shown. * Indicates p<0.05. 

 

Involvement of neutrophil factors in the mechanical ventilation-induced inflammatory response 

To determine whether neutrophil factors are involved in the mechanical ventilation-induced 

inflammatory response and IL-1β processing, we investigated the effects of treatment with an 

antibody against KC. KC is one of the major factors involved in neutrophil attraction to the site of 

inflammation (chemo-attractants). Mechanical ventilation resulted in increased levels of pulmonary 

neutrophils (Figure 3). This increase was abrogated by pre-treatment with an anti-KC antibody. 

Furthermore, the mechanical ventilation-induced increase in pulmonary IL-1β levels was less 

pronounced in anti-KC-treated mice compared with untreated mice, although this did not reach 

statistical significance (Figure 3). 
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Figure 3. Involvement of KC in the mechanical ventilation-induced inflammatory response. Pulmonary neutrophil counts 

expressed as the number of neutrophils per square centimetre tissue and IL-1β concentration expressed as picogram 

cytokine per millilitre lung homogenate. Data are expressed as box-and-whiskers plots, with min to max range as 

whiskers. Pulmonary neutrophils and IL-1β concentration in the non-ventilated (C) and ventilated (V) untreated wild-

type mice (WT) and anti-KC antibody-treated wild-type (anti-KC) mice are shown. * Indicates p<0.05. 

 

To further confirm the role of neutrophil factors, we investigated the effects of mechanical 

ventilation following neutrophil depletion using cyclophosphamide. The effect of cyclophosphamide 

was visually inspected, and no pulmonary neutrophils were present (data not shown). As depicted in 

Figure 4, the mechanical ventilation-induced increase in pulmonary IL-1β and KC concentrations was 

diminished in neutrophil-depleted mice. 

 

Figure 4. Effects of neutrophil depletion on the mechanical ventilation-induced inflammatory response. IL-1β and KC 

concentrations expressed as picogram cytokine per millilitre lung homogenate, measured in the non-ventilated (C) and 

ventilated (V) untreated wild-type (WT) and cyclophosphamide-treated neutrophil-depleted mice. Data are expressed as 

box-and-whiskers plots, with min to max range as whiskers. * Indicates p<0.05. 
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Our hypothesis regarding the role of IL-1β processing in the inflammatory response following 

mechanical ventilation is illustrated in Figure 5. We present the following hypothesis based on our 

results and previous findings. Mechanical ventilation causes mechanotransduction and cell and/or 

tissue damage. This causes the release of danger-associated molecular patterns (DAMPs) that 

activate TLR4 and possibly other pattern recognition receptors. Ligation of these receptors induces 

production of cytokines, most importantly IL-1β. Subsequently, KC is produced, leading to neutrophil 

recruitment to the lungs. Pro-IL-1β processing to bioactive IL-1β could occur intracellularly by 

caspase-1, although in our model, it only plays a minor role in IL-1β bioactivation, not excluding that 

it may be involved at the onset of the inflammatory process, when very few neutrophils are present. 

The majority of pro-IL-1β is excreted in the inactive form and then cleaved by factors released by 

neutrophils, such as neutrophil serine proteases. Finally, active IL-1β present extracellularly binds to 

the IL-1R, which in turn leads to the production of more cytokines and hence positive amplification of 

the inflammatory response. As such, a positive feedback loop is activated which could be an 

explanation for the extensive inflammatory response observed following mechanical ventilation. 

Numbers 1 to 4 represents the experiments performed in this study and corresponds to the figure 

numbers in this paper. References [4] and [22] refer to previous studies performed by our grou 

 

Figure 5. Hypothesis regarding the role of IL-1β processing in the inflammatory response following mechanical 

ventilation.  

 

Discussion 

Consistent with previous results published by our group [4, 5, 22] and others [29, 30], the present 

study shows that mechanical ventilation using clinically relevant settings induces a pulmonary 

inflammatory response in mice. In addition, our data is in support of previous findings that IL-1 plays 
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an important role in initiation and/or propagation of the mechanical ventilation-induced 

inflammatory response and suggests that processing of IL-1β in mechanical ventilation-induced 

inflammation occurs via the release of neutrophil factors and not through caspase-1-dependent 

mechanisms. 

Our finding that caspase-1 does not play a significant role in mechanical ventilation-induced 

inflammation is in contrast to a recent study where the NLRP3 inflammasome was found to play an 

important role in the mechanical ventilation-induced inflammatory response and VILI.[31] Several 

differences between their study and ours might explain the different results. First, in the previous 

study, ASC and NLRP3 (components of the inflammasome upstream of caspase-1) knockout mice 

were used, and it was shown that mechanical ventilation activated caspase-1 in a NLRP3-dependent 

fashion. Nevertheless, it is very well possible that ASC and NLRP3 play other roles in the mechanical 

ventilation-induced inflammatory cascade than merely activating caspase-1. As abrogation and 

inhibition of caspase-1 by either a knockout approach or pralnacasan treatment did not have any 

effect in our model, the role of caspase-1/the inflammasome appears not to be as crucial as 

suggested. Second, differences between wild-type and ASC or NLRP3 knockout were only found at a 

high tidal volume of 15 ml/kg, known to cause extensive lung damage [22], while no effects were 

found at a low tidal volume of 7.5 ml/kg, which is more representative of the current clinical practice 

and similar to that used in the present study. This suggests that the inflammasome might play a more 

important role at higher tidal volumes which lead to apparent lung injury but not in mechanical 

ventilation-induced inflammation at clinically relevant ventilator settings. Interestingly, a more 

recent study from the same group showed that pre-treatment with allopurinol or uricase (both 

degraders of known inflammasome-activating factors [32]) did not decrease mechanical ventilation-

induced inflammation, which is in support of a caspase/inflammasome-independent mechanism.[33] 

As beneficial effects of uricase and allopurinol were observed in terms of alveolar barrier 

dysfunction, it appears plausible that ASC and NLRP3 are involved in VILI via inflammation-

independent mechanisms. 

The pronounced influx of neutrophils in the lung observed in our experiments suggests a major role 

for these inflammatory cells in the inflammatory cascade following mechanical ventilation. Our 

findings that treatment with an antibody against KC or depletion of neutrophils reduced the 

mechanical ventilation-induced production of IL-1β and KC indicate an important role for neutrophils 

in initiation and/or propagation of the inflammatory response. In this respect, pro-IL-1β cleavage in 

our model is probably achieved through neutrophil factors, such as the serine proteases proteinase-3 

(PR-3), elastase or cathepsin G, leading to bioactive IL-1β and propagation of the inflammatory 

response through binding of the IL-1-receptor, which in turn leads to production of other 
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inflammatory cytokines such as KC.[10, 34, 35] Several other IL-1β-mediated inflammatory responses 

are described to be partly or completely independent of the inflammasome and caspase-1 and 

possibly dependent on neutrophil factors, including proteinase-3 and cathepsin G .[35] Future studies 

should focus on the confirmation of our hypothesis and the identification of these neutrophil factors. 

Our study has several limitations. First, we used cyclophosphamide to deplete neutrophils. While this 

is a widely used method [25, 26, 36, 37], cyclophosphamide treatment may also result in depletion of 

other cell types that play a role in mechanical ventilation-induced inflammation.[38, 39] 

Nevertheless, our data of mice treated with an anti-KC antibody underline the importance of 

neutrophils in this process. Second, no histological slides to perform neutrophil counts were 

collected in the IL-1αβ−/− experiments to investigate whether these knockout mice were still able to 

recruit neutrophils. Finally, we cannot exclude the possibility that next to mechanical ventilation, the 

procedures related to the instrumentation/ventilation (e.g. intubation, arterial cannulation) also 

induce inflammation to a certain extent. However, we have previously shown that the inflammatory 

response is aggravated when mice are ventilated with these parameters for a longer period of time 

or when higher tidal volumes are used, suggesting that the inflammatory response is mainly 

ventilation-induced. 

In conclusion, our results indicate that IL-1 signalling is important in mechanical ventilation-induced 

inflammation. We show that following mechanical ventilation, IL-1β bioactivation is not caspase-1 

dependent but appears to be mediated by neutrophil factors, leading to a positive amplification loop 

and further propagation of the inflammatory response. Further elucidation of the precise mechanism 

of IL-1β processing in mechanical ventilation-induced inflammation could provide novel targets for 

the future treatment of VILI.[40] 
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Abstract  

Introduction 

 Mechanical ventilation (MV) can result in inflammation and subsequent lung injury. Toll Like 

Receptor (TLR) 4 and NF-κB are proposed to play a crucial role in the MV-induced inflammatory 

response. Resveratrol exhibits anti-inflammatory effects in vitro and in vivo, supposedly by 

interfering with TLR4 signaling and NF-κB. In the present study we investigated the role of resveratrol 

in MV-induced inflammation in mice.  

Methods 

Resveratrol (RVT) (10 mg/kg, 20 mg/kg, and 40 mg/kg) or vehicle was intraperitoneally administered 

one hour before start of MV (four hours, tidal volume 8ml/kg, positive end expiratory pressure 1,5 

cmH2O, and FiO2 0.4). Blood and lungs were harvested for cytokine analysis. DNA binding activity of 

transcription factor NF-κB was measured in lung homogenates. 

Results 

MV resulted in elevated pulmonary concentrations of IL-1, IL-6, KC (keratinocyte-derived 

chemokine) and NF-κB DNA binding activity. Resveratrol at 10, 20 and 40 mg/kg reduced NF-κB’s 

DNA-binding activity following MV compared with ventilated controls.  However, no differences in 

cytokine release were found between resveratrol treated and control ventilated mice. Similarly, in 

plasma, MV resulted in elevated concentrations of TNF-α, KC and IL-6 but resveratrol did not affect 

cytokine levels. 

Conclusions 

Resveratrol abrogates the MV-induced increase in pulmonary NF-κB activity, but does not attenuate 

cytokine levels. This implies a less prominent role for NF-κB in MV-induced inflammation than 

previously assumed. 
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Introduction 

Mechanical ventilation (MV) could be life saving in patients with acute respiratory failure. However, a 

large body of evidence suggests that MV can result in an inflammatory response resulting in lung 

injury or so-called ventilator-induced lung injury (VILI).[1, 2] Studies have shown that besides 

aggravating existing lung injury, MV can also induce injury in healthy lungs.[1, 3, 4] An inflammatory 

response, characterized by release of inflammatory cytokines and influx of immune cells such as 

neutrophils, contributes to the development of lung injury.[2, 5-7] To date, no effective therapy 

exists to attenuate the MV-induced inflammatory response. 

Toll-like receptors (TLR) are pattern recognition receptors that play a pivotal role in innate immunity. 

[8-11] Recently, major advances have been made concerning the elucidation of the mechanisms 

behind MV-induced inflammation in which a crucial role for TLR4 has been identified.[12] TLR4 

signaling leads to activation of NF-κB,[12-14] and subsequent production of inflammatory 

cytokines.[15, 16] TLR4 can activate NF-κB by different downstream signaling pathways: (TRIF) 

Toll/interleukin-1 receptor domain-containing adapter-inducing interferon-beta and (MyD88) 

myeloid differentiation factor 88.[14, 17] As increased activation of NF-κB and pro-inflammatory 

cytokines play a major role in MV- induced lung injury, [7, 18] inhibition of NF-κB activation and 

cytokine production could be an effective strategy to prevent or attenuate MV induced 

inflammation.  

Resveratrol (3,4’,5-trihydroxy-trans-stilbene) is a polyphenol found in plants and grapes and exhibits 

multifaceted physiological effects including anti-inflammatory and protective effects on different 

organ systems, including the lungs.[14, 19-21]  These anti-inflammatory effects of resveratrol are 

mediated by inhibition of TLR4-signaling, supposedly by inhibition of TRIF or MyD88 [14, 19], and 

decreased NF-κB activation. [22-26] Therefore, resveratrol could represent a novel therapeutic 

option to reduce MV-induced inflammation. In the present study, we investigated the effects of 

resveratrol on NF-κB activation and cytokine production induced by MV in healthy mice to test the 

hypothesis that resveratrol attenuates MV-induced NF-κB activation and cytokine production.  
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Materials and methods 

All experiments were approved by the Regional Animal Ethics Committee in Nijmegen and performed 

under the guidelines of the Dutch Council for Animal Care and The National Institutes of Health. 

 

Animals 

All studies were performed in C57BL6 male mice in our established MV mice model.[4, 12, 17] Mice 

were housed in a light and temperature controlled room under specific pathogen free (SPF) 

conditions. Standard pelleted chow (1.00 % Ca; 0.22 % Mg; 0.24 % Na; 0.70 % P; 1.02 % K; SSNIFF 

Spezialdiäten GmbH, Soest, Germany) and drinking water were available ad libitum. 

 

Experimental design 

Five groups of mice, unventilated (CON, n = 16), ventilated (V-CON, n = 16) and mice treated with 

different doses of resveratrol (RVT) were studied. Resveratrol (Ergomax, Nijmegen the Netherlands), 

10 mg/kg (V-RVT 10, n = 8), 20 mg/kg (V-RVT 20, n = 8) and 40 mg/kg (V-RVT 40, n = 8) was 

administered intraperitoneal one hour prior to the start of MV were compared with asses NF-κB 

binding activity and cytokine response prior to and after MV. The ventilated control group (V-CON) 

received equal volume of NaCl 0.9% intraperitoneal. In MV mice, intra-arterial carotid blood pressure 

was measured throughout the experiment. Arterial blood gas analysis (iSTAT, Abbott, Birmingham, 

United Kingdom) was performed after 4 hours of MV (data not shown). 

Lipopolysacharide was measured in the ventilation circuit by Limulus Amebocyte Lysate testing 

(Cambrex Bio Science, Walkersville, MD; detection limit: 0.06 IU/ml) to rule out contamination with 

lipopolysacharide in our experimental setting. No lipopolysacharide could be detected in air, tubing 

or ventilator (data not shown).  

 

Mechanical ventilation 

Mice were anesthetized with an intraperitoneal injection of a combination of ketamine, 

medetomidine and atropine (KMA): 7.5 μl per gram of body weight of induction KMA mix (consisting 

of 1.26 ml ketamine, 100 mg/ml; 0.2 ml medetomidine, 1 mg/ml; 1 ml atropine, 0.5 mg/ml; and 5 ml 

NaCl, 0.9%). Animals were orally intubated and mechanically ventilated (MiniVent®, Hugo Sachs 

Elektronik-Harvard apparatus, March-Hugstetten, Germany) for 4 hours. The following MV settings 
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were used: tidal volume 8 ml/kg and frequency 170 / min, 1,5cm H2O positive end-expiratory 

pressure and fraction of inspired oxygen was set to 0.4. These setting are within the normal range of 

tidal volume and respiratory rate measured during spontaneous ventilation in C57BL6 mice.[27]  

To maintain anesthesia, 5.0 μl per gram of body weight boluses of maintenance KMA mix (consisting 

of 0.72 ml ketamine, 100 mg/ml; 0.08 ml medetomidine, 1 mg/ml; 0.3 ml atropine, 0.5 mg/ml; and  

18.9 ml NaCl, 0.9%) were administered every 30 minutes via an intraperitoneally placed catheter. 

Rectal temperature was monitored continuously and maintained between 36.0 ºC and 37.5ºC using a 

heating pad.  

 

Tissue harvesting 

Blood was collected by exsanguination, centrifuged (5 minutes, 14000 rpm), and plasma was stored 

at -80°C for cytokine analysis. Immediately after exsanguination, heart and lungs were carefully 

removed en block via midline sternotomy. The right upper and lower lobes were snap frozen in liquid 

nitrogen and stored at -80 ºC. The left lobes were snap-frozen and placed in 500 μL lysisbuffer 

containing PBS, 0.5% triton X-100 and protease inhibitor (complete EDTA-free tablets, Roche, 

Woerden, The Netherlands). Subsequently, the left lobes were homogenized using a polytron and 

subjected to two rapid freeze-thaw cycles using liquid nitrogen. Finally, homogenates were 

centrifuged (10 minutes, 14000 rpm, 4 °C) and the supernatant was stored at -80° C until cytokine 

analysis. 

 

Cytokine analysis 

Tumor necrosis factor (TNF)-, interleukin (IL)-6 and keratinocyte-derived chemokine (KC) (murine 

equivalent of human IL-8) in lung homogenate were determined by enzyme-linked-immunosorbent 

assay (ELISA) (for IL-6; CytoSet, BioSource, CA; for TNF- and KC; ELISA-Kit, R&D Systems, 

Minneapolis, MN). Lower detection limits: TNF-: 32 pg/ml; IL-6: 160 pg/ml and KC: 160 pg/ml. 

A simultaneous Luminex® assay was used to determine plasma cytokine levels of TNF-, IL-6, KC and 

IL-1β  (Milliplex, Millipore, Billerica, MA). 

IL-1β in lung homogenate was determined using a radioimmunoassay (RIA) as described 

previously.[28] 

Total protein concentrations in the lung homogenates were determined using a BCA protein assay 

(Thermo Fisher Scientific, Etten-Leur, The Netherlands). Cytokine concentrations in the homogenates 

were normalized for protein concentration. 
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NF-κB’s DNA-binding activity 

NF-κB’s DNA-binding activity in the right upper lobes was determined by electrophoretic mobility 

shift assay. Lung tissue (20 mg) was homogenized in 5ml ice-cold buffer (HEPES) 10mM, 1.5mM 

MgCl2
, 10mM KCl and 0.6% Nonidet-P40, 0.5 mM dithiothreitol and 0.2 mM 

phenylmethylsulphonylfluoride (Sigma-Aldrich, Zwijndrecht, The Netherlands) and centrifuged for 

30s at 350 g (4°C). The supernatant was then incubated on ice for 5 min and centrifuged for 5 min at 

6000g (4°C). The pellet was resuspended in 200µl buffer (10 mM HEPES, 1.5 mM MgCl2, 10 mM KCL 

and 1.2 M sucrose, 0.5 mM dithiothreitol and 0.2 mM phenylmethylsulphonylfluoride (Sigma-

Aldrich)) and centrifuged for 30 min at 13000g (4°C). Then the pellet was resuspended in 66 µl buffer 

(HEPES 20mM, 1.5mM MgCl2, 0.2 mM EDTA, 420 mM NaCl, 25% glycerol, 0.5mM dithiothreitol, 

0.2mM phenylmethylsulphonylfluoride, 2.0 mM benzamidine and 5.0 µg/ml leupeptine (Sigma-

Aldrich), incubated on ice for 20 min and centrifuged for 2 min at 6000g (4°C). The supernatants were 

used as nuclear extracts. Protein concentrations in these extracts were determined by using the Bio-

Rad protein assay (Bio-Rad, Veenendaal, The Netherlands). 

Double stranded oligonucleotides containing an NF-κB consensus binding site (5’-

AGTTGAGGGGACTTTCCCAGGC-3’) were radiolabeled with 32[P]-adenosine triphosphate using T4 

polynucleotide kinase (Promega, Madison, WI). Labeled NF-κB oligonucleotides were mixed with 

nuclear extracts (10 µg) and incubated at room temperature for 20 min. Then, these samples were 

loaded on a 4% polyacrylamide gel. After electrophoresis for 45 min, the gel was dried and exposed 

for 24 hours to an X-ray film. The bands on the film were quantified using optical densitometry 

software (GeneTools, Syngene, Cambridge, United Kingdom).  

 

Statistical Analysis  

We performed a sample size calculation based on previous investigations considering a difference of 

40% in cytokine levels of cytokines between ventilated and control mice with a type 1 error of 5% 

(α=0.05) and a power of 80% (β=0.2).[4, 12, 17] This resulted in a group size of 8 animals per group.  

NF-κB’s binding activity before and after MV was expressed as mean (%) of the unventilated control 

group and analyzed using an unpaired t-test with Welch’s correction. 

Shapiro-Wilk test showed that cytokine data were not normally distributed, data were also not log 

normally distributed. Differences between control versus resveratrol were therefore studied using 

Mann Whitney-U tests and expressed as median with interquartile range depicted as column bar 
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graphs. Statistical analysis was performed using Graphpad Prism 5 software (Graphpad Software, La 

Jolla, USA). P-values < 0.05 were considered significant.  

Results  

Cardiopulmonary physiology 

The mice exhibited stable hemodynamic variables during MV. Mean arterial pressure was within 

normal limits and remained above 65 mmHg, which was in line with our previous data in this model. 

[4, 12, 17] Blood gas values remained within normal range after 4 hours of MV (data not shown). 

Three mice died during instrumentation (one in the ventilated control (V-CON) group, and two in the 

ventilated resveratrol 40 mg/kg (V-RVT 40) group.  

                         

 

Figure 1. Upper panel: NF-κB activity in lung tissue divided in upper band, lower band an total activity and expressed as 

percentage of the mean of the unventilated mice (CON). The figure shows NF-κB activity in lung tissue of unventilated 

mice (CON) compared with control ventilated mice (V-CON) and ventilated mice receiving different dosages of 

resveratrol (RVT) 10 mg/kg (10), 20 mg/kg (20) and 40 mg/kg (40). A difference is found in the upper isoform/subunit 

measured by  NF-κB’s binding activity between CON compared with V-CON. No significance is obtained in the lower 

isoform/subunit or total NF-κB activity between CON compared with V-CON. NF-κB activity was lower ( P < 0.05) 

between V-CON compared with V- RVT 10, V- RVT 20 and V- RVT 40 in both isoform/subunits. Data are expressed as 

optical densities obtained using an electrophoretic mobility shift assay analysis and expressed as mean (SD). (* = P<0.05) 

Lower panel: A representative example of the x-ray obtained from the electrophoretic mobility shift assay used to 

determine NF-κB’s DNA binding activity in the CON and V-CON groups.  
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MV induced NF-κB’s DNA-binding activity  

Mechanical ventilated mice (V-CON)  showed increased DNA- binding activity of the upper NF-κB 

isoform/subunit compared with unventilated mice (CON). The activity of the lower subunit was not 

different between ventilated and unventilated mice (Figure 1). Resveratrol prevented up regulation 

of  DNA-binding activity of the ‘upper and lower’ isoform of NF-κB following MV in all dosage groups 

of resveratrol (RVT) compared with ventilated control mice (V-CON). (Figure 1).  

 

Cytokine release induced by MV 

MV induced a pulmonary pro-inflammatory response as indicated by elevated concentrations of IL-

1, KC and IL-6 in ventilated mice (V-CON) compared with unventilated control mice (CON). No 

differences were found in pulmonary levels of TNF-α after MV. Resveratrol (any dose tested) did not 

affect the attenuation of cytokine in the lung by MV (Figure 2).  

 

 

 

 

Figure 2. Cytokine levels in lung homogenates. Levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, 

keratinocyte derived chemokine (KC), in unventilated (CON) and ventilated control (V-CON) mice compared with 

ventilated mice receiving resveratrol (V-RVT) in different dosages. RVT was given in dosages of 10 mg/kg (10), 20 

mg/kg (20) and 40 mg/kg (40).  

(panels A–D). V-CON mice showed increased IL-1β (P < 0.05) and KC (P < 0.05) compared with CON mice. No differences 

were observed within the different ventilated groups. Data are expressed as median with interquartile range (IQR). (* = P 

< 0.05) 
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In plasma, MV resulted in elevated concentrations of KC, IL-6 and TNF-α in ventilated control mice (V-

CON) compared with unventilated control mice (CON). Resveratrol (any dose tested) did not affect 

cytokine response in the plasma elicited by MV(Figure 3). 

 

 

 

Figure 3. Cytokine levels in plasma. Levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, keratinocyte derived 

chemokine (KC), in unventilated (CON) and ventilated control (V-CON) 

mice compared with ventilated mice receiving resveratrol (V-RVT) in different dosages. RVT was given in dosages of 10 

mg/kg (10), 20 mg/kg (20) and 40 mg/kg (40).  

(panels A–D). V-CON showed increased  TNF-α, IL-6 and KC (P < 0.05) compared with CON mice. No differences were 

observed within the different ventilated groups. Data are expressed as median with interquartile range (IQR). (* = P < 

0.05) 

 

Discussion 

The present study is to our knowledge the first to show that resveratrol inhibits pulmonary DNA- 

binding activity of NF-κB in healthy mice following MV.  However, pretreatment of resveratrol did not 

attenuate the induction of pulmonary of systemic cytokines elicited by MV. 

 

Resveratrol was investigated in several lung injury mouse models. Li et al. investigated the effect of 

resveratrol in mice with respiratory syncytial virus and found inhibition of pulmonary expression of 

TNF-α, IL-1β and IL-6.[29] In an LPS induced acute lung injury model, Cao et al. found resveratrol to 
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attenuate the production of IL-1β and suppress the nuclear translocation of NF-κB in lung tissue.[21] 

Therefore we hypothesized that resveratrol could inhibit the inflammatory response following MV. In 

the present study we found resveratrol to inhibit production of NF-κB, but no reduction of 

inflammatory cytokines was found. Not only did we prove our hypothesis wrong, our data also 

indicate that NF-κB is not the only transcription factor in the acute phase inflammatory response 

upon MV in our model. 

It is however possible that the MV induced inflammatory response in our model has a different 

mechanism than the lung injury mouse models. 

 

Previously we found an attenuation of NF-κB activity and cytokine levels after MV in TLR4-TRIF 

knock-out mice and showed the importance of the TLR4-TRIF pathway.[17] Resveratrol has been 

shown to inhibit TLR4 signaling and attenuate NF-κB.[14, 19] In the present study we found no 

decrease in cytokine levels after pre-treatment with resveratrol. These findings could suggest that 

resveratrol reduces NF-κB activity via a different pathway than TLR4.  

We also found a more pronounced inflammatory response after MV in plasma than in pulmonary 

cytokines measured by picogram per microgram. A possible explanation for this would be that the 

systemic acute phase response is more pronounced after 4 hours of MV than the inflammatory 

pulmonary response measured in picogram per microgram with lung protective tidal volumes.   

 

According to the literature different isoforms of NF-κB exist. Kirchner et al. described a role for both 

the p50-p50 homodimer and the p50-p65 heterodimer in rabbit lungs, where p50-p50 homodimers 

were shown to inhibit NF-κB-driven transcription.[30, 31] We did observe an increase of one 

particular NF-κB isoform/subunit, however we were unable to identify which isoform was increased, 

since there was no material left to perform such analysis. More research is needed to identify the 

involvement of certain isoforms of NF-κB in the inflammatory response after MV, however our 

results indicate that only one isoform seemed to participate in ventilation induced pro-inflammation. 

 

A limitation of this study concerns time of administration of resveratrol. We administered resveratrol 

in equivalent dosages described in literature but just prior to MV. [32, 33] In vivo effects of 

resveratrol have been observed with longer (pre)treatment of resveratrol, varying from 72 hours to 

several weeks.[21, 29, 34, 35]  There is not much data on resveratrol in human clinical trials, although 

a growing number of trials have started recently (clinicaltrials.gov).[36]  

 

 



Chapter 3 

50 
 

Conclusion 

Our data show that resveratrol pretreatment attenuates MV-induced NF-κB’s DNA-binding activity, 

but not cytokine production. This suggests that NF-κB does not play a pivotal role in the MV-induced 

acute phase inflammatory response.  

The absence of an effect of resveratrol on MV-induced inflammation makes it an unlikely therapeutic 

option to limit MV induced inflammation.  
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Abstract 

Introduction 

 Mechanical ventilation (MV) induces an inflammatory response that may result in (acute) lung injury. 

Lidocaine, an amide local anesthetic, has anti-inflammatory properties in vitro and in vivo, possibly 

due to an attenuation of pro-inflammatory cytokines, ICAM-1 and reduction of neutrophils influx. We 

hypothesized an attenuation of MV-induced inflammatory response with intravenously administered 

lidocaine. 

Methods 

Lidocaine (Lido) (2, 4 and 8 mg/kg/h) was intravenously administered during four hours of 

mechanical ventilation (MV) with a tidal volume of 8ml/kg, positive end expiratory pressure 1,5 

cmH2O and FiO2 0.4. We used one ventilated control (CON) group receiving vehicle. After MV, mice 

were euthanized and lungs and blood were immediately harvested and cytokine levels and ICAM-1 

levels were measured in plasma and lung homogenates. Pulmonary neutrophils influx was 

determined in LEDER stained slices of lungs.  Anesthetic need was determined by painful hind paw 

stimulation. 

Results 

Lidocaine treated animals (Lido 2, 4 and 8 mg/kg/h) showed higher IL-10 plasma levels compared 

with control animals (CON). Lidocaine treatment with 8 mg/kg/h (Lido 8) resulted in higher IL-10 in 

lung homogenates. No differences were observed in pro-inflammatory cytokines, ICAM-1 and 

pulmonary influx between the different ventilated groups.  

Conclusions  

 Intravenously administered lidocaine increases levels of plasma IL-10 with infusion from 2, 4 and 8 

mg/kg/h and pulmonary levels of IL-10 with 8 mg/kg/h, in a murine mechanical ventilation model. 

Intravenously administered lidocaine appears to reduce anesthetic need in mice. 
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Introduction 

For patients with acute respiratory failure, mechanical ventilation (MV) can be life saving. However, a 

large body of evidence suggests that MV can result in lung injury, so-called ventilator-induced lung 

injury.[1, 2] It is widely assumed that an inflammatory response, characterized by release of 

inflammatory cytokines and influx of immune cells such as neutrophils contributes to the 

development of lung injury.[2-4] To date, no effective therapy exists to attenuate the MV-induced 

inflammatory response. 

Lidocaine is an amide local anesthetic and a non-specific sodium channel blocker that is mostly used 

for the treatment of acute and chronic pain. It was demonstrated that low dose intravenous 

lidocaine acts as an anti-hyperalgesic and anti-inflammatory agent.[5, 6] Extensive in vitro research 

showed that lidocaine attenuates priming of human neutrophils by inhibition of G-protein coupled 

receptors[7, 8] Furthermore lidocaine attenuated activated endothelial interleukin (IL)-1, 6 and 8 

concentrations and intracellular adhesion molecule-1 (ICAM-1), important for transport of immune 

cells to site of inflammation.[9, 10] In different in vivo models intravenous lidocaine reduced levels of 

tumor necrosis factor (TNF)-α, IL-1β IL-6 and Il-8.[11-13] Also systemic lidocaine was found to 

attenuate acute lung injury in rabbits.[14, 15] An additional effect of lidocaine infusion is that the 

requirements for anesthetics are diminished.[16, 17] In human research an attenuation in 

inflammatory response (measured by IL-6, IL-8 and an IL-1 receptor antagonist) in plasma has been 

found at the end of abdominal surgery in response to lidocaine.[18-20] 

Since lidocaine seems to have prominent anti-inflammatory effects we aim to investigate the role of 

intravenously administered lidocaine at different dosages of 2,4 and 8 mg/kg/h during 4 hours of 

mechanical ventilation in healthy mice in an established acute phase model.[21-23]  

We hypothesize that intravenously administered lidocaine attenuates the inflammatory response 

following MV. 

 

 Methods 

All experiments were approved by the Regional Animal Ethics Committee in Nijmegen and performed 

under the guidelines of the Dutch Council for Animal Care and The National Institutes of Health. 
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Animals 

All studies were performed in C57BL6 male mice in our established MV mice model.[21-23] Mice 

were housed in a light and temperature controlled room under specific pathogen free (SPF) 

conditions. Standard pelleted chow (1.00 % Ca; 0.22 % Mg; 0.24 % Na; 0.70 % P; 1.02 % K; SSNIFF 

Spezialdiäten GmbH, Soest, Germany) and drinking water were available ad libitum. 

 

Experimental design 

Four groups of mice (N= 8 / group, randomly allocated) were studied after MV: control mice with 

vehicle (CON) and three groups of  mice treated with different doses of lidocaine 2% (Lido)(Fresenius 

Kabi, Zeist, the Netherlands), 2 mg/kg/hour (Lido 2), 4 mg/kg/hour (Lido 4) and 8 mg/kg/hour (Lido 

8). Lidocaine was administered intravenously via an indwelling intravenous tail-catheter just before 

MV and continued during 4 hours. The control group (CON) received an equal volume of NaCl 0.9% 

intravenously. Intra-arterial carotid blood pressure and heart rhythm was measured throughout the 

experiment. Arterial blood gas analysis (iSTAT, Abbott, Birmingham, United Kingdom) was performed 

after 4 hours of MV (data not shown). 

Lipopolysacharide was measured in the ventilation circuit by Limulus Amebocyte Lysate testing 

(Cambrex Bio Science, Walkersville, MD; detection limit: 0.06 IU/ml) to rule out contamination with 

lipopolysacharide in our experimental setting. No lipopolysacharide could be detected in air, tubing 

or ventilator.  

 

Mechanical ventilation and anesthetic need 

Mice were anesthetized with an intraperitoneal injection of a combination of ketamine, 

medetomidine and atropine (KMA): 7.5 μl per gram of body weight of induction KMA mix (consisting 

of 1.26 ml ketamine, 100 mg/ml; 0.2 ml medetomidine, 1 mg/ml; 1 ml atropine, 0.5 mg/ml; and 5 ml 

NaCl, 0.9%). Animals were orally intubated and mechanically ventilated (MiniVent®, Hugo Sachs 

Elektronik-Harvard apparatus, March-Hugstetten, Germany) for 4 hours. The following MV settings 

were used: tidal volume 8 ml/kg and frequency 170 / min, 1,5cm H2O positive end-expiratory 

pressure and fraction of inspired oxygen was set to 0.4. These setting are within the normal range of 

tidal volume and respiratory rate measured during spontaneous ventilation in C57BL6 mice.[24]  

To maintain anesthesia, 5.0 μl per gram of body weight boluses of maintenance KMA mix (consisting 

of 0.72 ml ketamine, 100 mg/ml; 0.08 ml medetomidine, 1 mg/ml; 0.3 ml atropine, 0.5 mg/ml; and  
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18.9 ml NaCl, 0.9%) was administered when showed a positive reaction after manually administered 

painful hind paw stimulation, via an intraperitoneally placed catheter. Painful hind paw stimulation 

was performed every 30 minutes and represented anesthetic need. Rectal temperature was 

monitored continuously and maintained between 36.0 ºC and 37.5ºC using a heating pad.  

 

Tissue harvesting 

Blood was collected by exsanguination, centrifuged (5 minutes, 14000 rpm), and plasma was stored 

at -80°C for cytokine analysis. Immediately after exsanguination, heart and lungs were carefully 

removed en block via midline sternotomy. The right upper and lower lobes were snap frozen in liquid 

nitrogen and stored at -80 ºC. The left lobes were snap-frozen and placed in 500 μL lysisbuffer 

containing PBS, 0.5% triton X-100 and protease inhibitor (complete EDTA-free tablets, Roche, 

Woerden, The Netherlands). Subsequently, the left lobes were homogenized using a polytron and 

subjected to two rapid freeze-thaw cycles using liquid nitrogen. Finally, homogenates were 

centrifuged (10 minutes, 14000 rpm, 4 °C) and the supernatant was stored at -80° C until cytokine 

analysis. 

 

Cytokine analysis 

A simultaneous Luminex® assay was used to determine plasma cytokine levels of TNF-, IL-6, IL-10, 

KC and IL-1β  (Milliplex, Millipore, Billerica, MA). 

Tumor necrosis factor (TNF)-, interleukin (IL)-6 and keratinocyte-derived chemokine (KC) (murine 

equivalent of human IL-8) in lung homogenate were determined by enzyme-linked-immunosorbent 

assay (ELISA) (for IL-6 and IL10; CytoSet, BioSource, CA; for TNF- and KC; ELISA-Kit, R&D Systems, 

Minneapolis, MN). Lower detection limits: IL-1α and IL-1β 40 pg/ml; TNF-: 32 pg/ml; IL-6: 160 

pg/ml; IL-10: 16 pg/ml and KC: 160 pg/ml.  

IL-1β and IL-1α in lung homogenate were determined using a radioimmunoassay (RIA) as described 

previously.[23] Total protein concentrations in the lung homogenates were determined using a BCA 

protein assay (Thermo Fisher Scientific, Etten-Leur, The Netherlands). Cytokine concentrations in the 

homogenates were normalized for protein concentration. 
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ICAM-1 analysis 

Concentration of mouse sICAM-1 was determined in plasma and lung tissue using the quantikine 

mouse sICAM (CD54) ELISA (MIC100) kit. (R & D systems, Abingdon, United Kingdom). Lower 

detection limits: 24,8 ng/ml.   

 

Pulmonary neutrophil influx 

After overnight incubation in 4% buffered formalin solution, the right middle lung lobe was 

dehydrated, and embedded in paraplast (Amstelstad, Amsterdam, The Netherlands). Sections of 

4µm-thickness were used. Enzyme histochemistry using chloracetatesterase (LEDER staining) was 

used to visualize the enzyme activity in the neutrophils. Neutrophils were counted manually (10 

fields per mouse, blinded), and after automated correction for air/tissue ratio, the average number 

of neutrophils/μm2 per mouse was calculated.[23] 

 

Statistical analysis 

We performed a sample size calculation based on previous investigations considering a difference of 

40% in cytokine levels between ventilated and control mice with a type 1 error of 5% (α=0.05) and a 

power of 80% (β=0.2).[21-23] This resulted in a group size of 8 animals per group.  

Shapiro-Wilk tests showed that data were not normally or log normally distributed. 

Data are therefore expressed as median with interquartile range (IQR) and depicted as column bar 

graphs. Differences between control versus lidocaine groups were studied using Mann Whitney tests. 

Statistical analysis was performed using Graphpad Prism 5 software (Graphpad Software, La Jolla, 

USA). P-values < 0.05 were considered significant. 

 

Results  

Cardiopulmonary physiology 

All mice in this experiment exhibited stable hemodynamic variables during MV (P>0.05). 

Mean arterial pressure was within normal limits and remained above 65 mmHg (except in one mouse 

measured in the Lido 8 group), which was in line with previous data from our lab in this model. [21-

23] We did not observe arrhythmic changes in the different MV groups (except one mouse measured 
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in the Lido 8 group). Blood gas values remained within normal range after 4 hours of MV and no 

differences were observed within the ventilated groups (data not shown). Four mice, one in each 

group, died during the experiment (N=7 in each group remaining). Two mice died during 

instrumentation (CON, Lido 2, no measurement on hemodynamics obtained yet), one mouse died in 

its cage before the experiment started, without apparent reason (Lido 4). One mouse died before the 

end of the experiment (Lido 8) from severe hypotension and bradycardia resulting in death. 

 

Cytokine analysis in plasma 

Cytokine analysis in plasma revealed no significant differences between the ventilated groups in IL-

1β, IL-6, TNF-α and KC. However, IL-10 analysis showed a significant increase in all the lidocaine 

groups, 2, 4 and 8 mg/kg/h (Lido 2, Lido 4 and Lido 8) in comparison with the control group (CON) 

(figure 1).  

 

Figure 1. Cytokine levels in plasma. Levels of interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor (TNF)-α and 

keratinocyte derived chemokine (KC) in ventilated control (CON) compared with ventilated lidocaine mice (Lido) 

receiving lidocaine in different dosages. Lidocaine was given in dosages of 2, 4 and 8 mg/kg/h.  

(panels a-e). Lido 2,4 and 8 showed increased  IL-10 compared with CON. No differences were observed within the 

different ventilated groups of IL-1β, IL-6, IL-10, TNF-α and KC. Data are expressed as median with interquartile range 

(IQR). (* = P < 0.05) 
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Cytokine analysis in lungs 

IL-10 analysis showed a significant increase between the control group (CON) in comparison with the 

lidocaine 8 mg/kg/h group (Lido 8) but not in comparison with the lidocaine 2 mg/kg/h and 4 

mg/kg/h group (figure 2).  

Cytokine analysis in lung homogenates revealed no significant differences between the different 

ventilated groups in IL-1β, IL-6, TNF-α, KC and IL-1α.  

 

 

 

 

Figure 2. Cytokine levels in lung homogenates. Levels of interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor (TNF)-α, 

keratinocyte derived chemokine (KC) and IL-1α, in ventilated control (CON) compared with ventilated lidocaine mice 

(Lido) receiving lidocaine in different dosages. Lidocaine was given in dosages of 2, 4 and 8 mg/kg/h. (panels a-f). Lido 8 

showed increased IL-10 compared with CON. No differences were observed within the different ventilated groups of IL-

1β, IL-6, IL-10, TNF-α, KC and IL-1α. Data are expressed as median with interquartile range (IQR). (* = P < 0.05) 

 

ICAM-1 analysis 

ICAM-1 analysis in plasma and lung homogenates showed no significant differences between the 

different ventilated groups (figure 3).  
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Figure 3. Intracellular adhesion molecule (ICAM)-1 levels in plasma (panel a) and lung homogenates (panel b). Levels of in 

ventilated control (CON) compared with ventilated lidocaine mice (Lido) receiving lidocaine in different dosages. 

Lidocaine was given in dosages of 2, 4 and 8 mg/kg/h. No differences of ICAM-1 were observed between the different 

ventilated groups. Data are expressed as median with interquartile range (IQR).  

 

Pulmonary neutrophil influx 

No significant differences between pulmonary neutrophil influx measured per µm2 were observed 

between the different ventilated groups (figure 4). 

 

Figure 4. Pulmonary neutrophils influx in lung. Neutrophil influx was measured by cell count in ventilated control (CON) 

compared with ventilated lidocaine mice (Lido) receiving lidocaine in different dosages. Lidocaine was given in dosages of 

2, 4 and 8 mg/kg/h. No differences were observed between the different ventilated groups. Data are expressed as 

median with interquartile range (IQR).  
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Anesthetic need 

Mice showed a decrease in anesthetic need in lidocaine 2 and 8 mg/kg/h (lido 2 and 8) group, 

compared with control mice (CON) (figure 5).  

 

Figure 5. Anesthetic need in mice. Anesthetic need was determined by painful hind paw stimulaton every 30 minutes. If 

the mouse retracted his hindpaw, 5.0 μl per gram of body weight boluses of maintenance KMA mix (consisting of 0.72 ml 

ketamine, 100 mg/ml; 0.08 ml medetomidine, 1 mg/ml; 0.3 ml atropine, 0.5 mg/ml;
 
and  18.9 ml NaCl, 0.9%) was 

administered. The number of KMA injections was measured in the different ventilated groups receiving lidocaine in 

dosages of 2, 4 and 8 mg/kg/h. (Lido 2, 4 and 8) compared with ventilated control (CON). Differences were observed 

between CON compared with lido 2 and lido 8. Data are expressed as median with interquartile range (IQR). (* = P < 

0.05) 

 

Discussion 

This study is the first to show that intravenously administered lidocaine caused an increase in 

pulmonary and systemic IL-10 levels following MV in healthy mice compared with control animals. 

IL-10 is a well known anti-inflammatory cytokine which limits the immune response during infections 

and is produced by nearly every type of cell in the immune system.[25, 26] IL-10 is known to 

decrease the synthesis of pro-inflammatory cytokines in acute phase response as IL-1α, IL-1β, IL-6 

and TNF-α by neutrophils.[27] In mouse lung fibroblast exposed to mechanical stretch, IL-10 inhibited 

inflammatory cytokines.[25] A low lung concentration of IL-10 in patients with acute lung injury is an 

indication for development of adult respiratory distress syndrome (ARDS).[28] Administration of IL-

10 has shown protective effects in LPS induced lung injury.[29] Interestingly, inhaled IL-10 attenuates 

biotrauma and mortality in a ventilator-induced lung injury model in rats.[30]  

We did not observe an attenuation of pro-inflammatory cytokine levels, pulmonary ICAM-1 levels or 

pulmonary neutrophil influx. A possible explanation for this could be that although IL-10 is known to 
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attenuate inflammation, the acute phase response in our MV model is only a mild inflammatory 

response.  

We did not include an unventilated group whereas the placement of an indwelling tail catheter in an 

awake mouse provides extreme stress which could lead to false high cytokine levels. Furthermore 

previous investigations have shown that cytokine levels of unventilated mice are below or extremely 

close to detection limits.[21-23] Dosage of lidocaine, especially 8 mg/kg/h, is relatively high. In 

comparison, dosages of 2 mg/kg/h can be considered safe in humans, 4 mg/kg/h is relatively high 

and 8 mg/kg/h is considered too high in humans.[31] Previous research has shown an ED50 for 

central nervous system and cardiac toxicity in mice of approximately 19,5 and 21,2 mg/kg.[32] . The 

cardiac side effects of lidocaine, contributed by the blockage of voltage-gated sodium channels, 

appear at plasma levels higher than 10 µg/ml in humans.[33] Considering the high ED50 for lidocaine 

in mice and extensive animal research in lidocaine toxicity with similar dosage we did not measure 

plasma levels of lidocaine and we have strong indications we stayed under critical plasma levels of 

lidocaine. One mouse however died in the 8 mg/kg/h group, because of uncontrollable hypotension, 

which could possibly indicate an overdose of lidocaine. In lung homogenates a significant increase of 

IL-10 was observed only at 8 mg/kg/h lidocaine (Lido 8), suggesting a possible dose related effect. 

Mice in our experiment showed a decrease in anesthetic need with lidocaine administration which is 

consistent with previous experiments.[16, 17] Although a decreased anesthetic need did not lead to 

an attenuation of other cytokine levels in our experiment an influence on the level of IL-10 cannot 

completely be ruled out.  

In conclusion, low dose intravenously administered lidocaine in MV increases levels of plasma IL-10 

with infusion from 2, 4 and 8 mg/kg/h and pulmonary levels of IL-10 with 8 mg/kg/h, in a murine 

mechanical ventilation model indicating a modulatory role of lidocaine in inflammatory response. 

After 4 hours of MV no effects were found on pro-inflammatory cytokines, neutrophil influx or ICAM-

1 levels. More research has to be performed to elucidate the exact role of lidocaine in ventilator 

induced pulmonary inflammation and cytokine levels during time, and since we only ventilated mice 

for 4 hours, the full impact of lidocaine on the MV induced inflammatory response, cannot be fully 

described.   

 Lidocaine could prove to be an interesting therapeutic in multiple hit models. Furthermore 

intravenously administered lidocaine decreases anesthetic need. 
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Abstract  

Introduction 

The neuroinflammatory response plays a key role in several pain syndromes. Intravenous lidocaine 

has beneficial effects in acute and chronic pain. This review delineates the current literature 

concerning in vitro mechanisms and in vivo efficacy of intravenous lidocaine on the 

neuroinflammatory response in acute and chronic pain. 

Methods 

We searched PUBMED and the Cochrane Library for in vitro and in vivo studies from July 1975 to 

August 2014.  In vitro articles providing an explanation for the mechanisms of action of lidocaine on 

the neuroinflammatory response in pain were included. Animal or clinical studies were included 

concerning intravenous lidocaine for acute or chronic pain or during inflammation.  

Results 

Eighty eight articles concerning systemic administration of lidocaine were included: 36 in vitro studies 

evaluating the effect on ion channels, receptors and inflammation; 31 animal studies concerning 

acute and chronic pain and inflammatory models; 21 clinical studies concerning acute and chronic 

pain.  

Low dose lidocaine inhibits in vitro voltage gated sodium channels, the glycinergic system, some 

potassium channels and Gαq- coupled protein receptors. Higher dosages lidocaine block voltage 

gated calcium channels, potassium channels and NMDA receptors.  Animal studies demonstrate 

lidocaine to have analgesic effects in acute and neuropathic pain syndromes and anti-inflammatory 

effects early in the inflammatory response. Clinical studies demonstrate lidocaine to have a clear 

advantage in abdominal surgery and in some neuropathic pain syndromes. 

Conclusions 

Intravenous lidocaine has analgesic, anti-inflammatory and antihyperalgesic properties. It attenuates 

the neuroinflammatory response in perioperative pain and chronic neuropathic pain. 
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Background and objective 

The neuroinflammatory response plays a key role in several acute and chronic pain syndromes. Even 

though pain is typically categorized as either inflammatory or neuropathic many similarities exists 

between these two conditions [1-5].  

After tissue injury, pro-inflammatory cytokines and chemokines are synthesized and immune cells 

migrate to the injury site. This "inflammatory soup" reduces firing tresholds of A-δ and C-fiber 

nociceptors and causes acute pain [6]. Chronic pain can exist despite tissue healing and results from 

persistently generated impulses to the central nervous system due to ongoing inflammation or nerve 

injury [7, 8]. These induce ligand- and voltage gated ion channels in the peripheral and central 

nervous system. Prolonged peripheral input causes glutamate release and subsequent N-methyl-D-

aspartic acid (NMDA) receptor activation, resulting in hyperexcitability and modification of the 

central nervous system [7, 9]. Concurrently, microglia and astrocytes in the dorsal horn and spinal 

cord are activated resulting in an enhanced release of proinflammatory cytokines and algesic 

mediators contributing to development and persistence of chronic pain [3, 10]. 

 

Lidocaine is the only local anesthetic considered safe for intravenous use, as a result of the extensive 

experience for anti-arrhythmic therapy [11].  Lidocaine is well known for its ability to block sodium 

channels. However, blockade of potassium- and calcium channels, G protein-coupled receptors, 

NMDA-receptors and the glycinergic system may contribute to its efficacy in the neuroinflammatory 

response in pain conditions [12]. Over the last years, an increasing number of in vitro publications 

have emerged concerning the different target mechanism contributing to the analgesic efficacy of 

systemic lidocaine. Additionally, an increasing number of in vivo publications have emerged 

concerning the administration of lidocaine as a perioperative analgesic and for relieving chronic pain 

conditions.  

The first aim of this review is to present an overview of the preclinical studies concerning the various 

target mechanisms of lidocaine, which elucidate its effect on the neuroinflammatory response in 

acute and chronic pain. The second aim is to present an overview of the clinical studies concerning 

the efficacy of systemic lidocaine on the neuroinflammatory response in acute and chronic pain.  
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Databases and data treatment 

 

Search 

A systematic literature search was performed. We used the electronic database PUMBED from July 

1975 till November 2014 for in vitro studies explaining mechanisms of action of lidocaine. We 

searched the databases PUBMED and the Cochrane Library from July 1975 till November 2014 for 

studies regarding the effects of intravenous lidocaine on nerve injury and inflammation in acute and 

chronic pain. Furthermore, reference lists were searched for relevant articles. The search was 

restricted to articles written in English or Dutch and published as ‘full paper’.  

We used the following terms for our search: ‘lidocaine’, ‘lignocaine’ ‘intravenous lidocaine OR 

systemic lidocaine’, ‘intravenous lidocaine OR systemic lignocaine’. Additional search terms included:  

‘chronic and acute pain’, ‘hyperalgesia’, ‘inflammation’, ‘cytokines’, ‘perioperatieve’, ‘peroperative’.   

 

In vitro articles were included providing a specific explanation of the mechanisms of action of 

lidocaine on the neuroinflammatory response in acute and chronic pain. In vitro articles evaluating 

the effect of lidocaine on ionchannels (sodium-, potassium-, and calcium channels), receptors 

(NMDA-, G-protein coupled- and glycine receptors) and on the inflammatory response were 

included. 

Animal or clinical studies were included concerning systemic lidocaine administration for acute or 

chronic pain or during inflammation. Abstracts of possible relevant studies were independently 

assessed. A data collection was assembled consisting of reviews, randomized controlled clinical trials, 

intervention and some retrospective studies in humans and animals. Studies were excluded for the 

following reasons: evaluation of locoregional, epidural or local applied lidocaine, pain or 

inflammatory response was not used as an outcome measure, the effectiveness of lidocaine 

treatment on pain or the inflammatory response was not the aim of the study. Other reasons for 

exclusion were as follows: studies were already described in included systematic reviews, the 

manuscripts concerned case studies or opinion articles, or articles were of poor methodological 

quality.  Studies were considered to be of poor methodological quality when the aim was not clearly 

described; the research design, selection of participants or data collection were inadequate; and 

analysis of data, the description of results and conclusions were not accurate or clearly described.  
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Analysis 

In vitro literature concerning lidocaine was categorized in three groups evaluating the effect on: 1) 

ion channels (sodium-, calcium- and potassium channels); 2) receptors (G-protein coupled, NMDA 

and glycine); 3) inflammatory response. We compared these studies regarding their general 

characteristics: cell type, technique, lidocaine concentration and results. Clinical studies concerning 

systemic lidocaine administration were subdivided in animal and clinical studies. Animal studies were 

categorized in three groups: 1) acute pain; 2) chronic pain; 3) anti-inflammatory effects. We 

compared these studies regarding the following characteristics: type and number of animals, pain 

syndrome, lidocaine dose and results. Clinical studies were categorized in two groups: 1) acute pain; 

2) chronic pain. We compared these studies regarding the following characteristics: study design, 

number of trials or patients included, pain syndrome, lidocaine dose and results. 

Results 

A total of 88 articles were included. 36 articles were in vitro studies, of which 18 studies concerning 

ion channels, 13 studies concerning receptors and 5 additional studies concerning the inflammatory 

response. 31 were animal studies, of which 12 studies concerning acute pain, 7 studies concerning 

chronic pain and 12 studies evaluated the effect of lidocaine in inflammatory models.   

Reviews, RCT published after these reviews and interesting retrospective studies, evaluated the 

clinical efficacy of lidocaine in acute (10 articles) and chronic (11 articles) pain.  

The results are presented in table 1 to 7.  

 

Mechanism of action of lidocaine:  In vitro research  

Ion channels (Table 1) 

 

Sodium channels 

Voltage-gated sodium channels (VGSC) are compromised of a pore-forming α subunit, Nav1.1  - 

Nav1.9, with one or more smaller β subunits, β1-β4. The α subunits regulates Na+ currents [13] and 

the β subunits are multifunctional channel modulators, members of the immunoglobulin superfamily 

and cell adhesion molecules [14]. Each isoform has its own electrophysiological characteristics and 

are expressed in specific neuronal tissue. Changes in expression of VGSC isoforms occur in chronic 

neuropathic and inflammatory pain conditions [9, 13, 15-17].   

After depolarization, VGSC eventually assume a nonconducting state through a distinct process 
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known as inactivation and cannot reopen during a certain period. After a train of depolarizations, the 

availability of channels to reopen declines, which is called use-dependence. Lidocaine preferentially 

binds to the inactivated state, thereby enhancing use-dependence and suppressing cellular 

excitability, particularly at high rates of stimulation [18]. Lidocaine produces a tonic block of sodium 

currents after depolarization [19]. 

Lidocaine decreases conduction in Nav 1.4, by enhancing the transition to slow inactivation [20-22]. 

This implies that lidocaine induces a conformational gating change of Nav 1.4 linked to a stable 

inactivated state. Lowering extracellular sodium concentration enhances use-dependent blockade 

[21]. Chevrier et al. [23] studied Nav 1.7 and Nav 1.8 expressed in Xenopus oocytes. Lidocaine 

enhances tonic and use-dependent block and the transition to slow inactivation in both channels, 

although Nav 1.8 is 4.4-fold more sensitive to lidocaine than Nav 1.7. Sheets et al. [24] showed a 

decreased transition to slow inactivation in Nav 1.7, which opposes Chevrier’s results. An explanation 

for this can be that Sheets et al. studied Nav 1.7 in Human Embryonic Kidney cells (HEK cells) and 

Chevrier et al. in Xenopus oocytes; additionally, Chevrier et al. applied other lidocaine dosages and 

stimulation pulses. However, it can be concluded that lidocaine seems to have differing potencies on 

subtypes of VGSC. This is confirmed for tetrodotoxin sensitive (TTXs) and tetrodotoxin resistant 

(TTXr) VGSC. TTXs VGSC are found to be 5-fold more sensitive for lidocaine. Nevertheless, stimulating 

TTXr at higher frequencies reduces the inhibitory concentration to block 50% (IC50) of sodium 

channels, implicating a slower activation and higher stimulation threshold of TTXr neurons [25]. Aδ- 

and C-fibers can be divided according to their response to sustained depolarization into: tonic, 

adapting and single spike neurons. Lidocaine suppresses tonic firing and adapting firing neurons by 

interacting with VGSC [26].  

Lidocaine influences inflammation, mediated by VGSC. Huang et al. [27] revealed that lidocaine dose 

dependently inhibits the expression of inducible nitric oxide (iNOS) and cationic amino acid 

transporter (CAT-2) in lipopolysaccharide (LPS) stimulated murine macrophages, presumably by 

blocking VGSC. Upregulation of iNOS and subsequent nitric oxide overproduction is a critical factor in 

the sequence of sepsis. This research group further explored the role of lidocaine on toll-like receptor 

4 (TLR4) and nuclear factor (NF)-κB and mitogen-acitvated protein kinases (MAPK’s) since these 

mediate  iNOS mediated inflammation, and demonstrated lidocaine to attenuate activation of TLR4, 

NF-κB and MAPK’s in activated macrophages, with involvement of VGSC [28]. 

 

 

Calcium channels 
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Voltage gated calcium channels (VGCC) are involved in neuronal excitement and diverse physiological 

functions and can be subdivided into low voltage-activated T-type and high voltage-activated L-, N- 

and R-type channels. Changes in the biophysical properties and expression levels of VGCC are 

observed in neuropathic pain [29].  

Lidocaine inhibits calcium currents in amphibian neurons in a dose- and voltage dependent manner 

[30, 31]. At an IC 50 for blocking sodium currents (100µM), 35% of the calcium currents were blocked 

in frog neurons [31]. However, the concentration needed for blocking calcium currents in snail 

neurons was about ten times higher (1mM) [30].  These opposing results may be attributed to the 

different applied external Ca2+concentration (2mM in frog, and 10mM in snail one), since the efficacy 

of lidocaine is reduced for increased external Ca2+concentrations [30]. 

Studies in mammalian neuronal preparations revealed a dose-dependent inhibition of high voltage 

activated VGCC and more specifically L-type VGCC.  Lidocaine dosages needed for VGCC blockade 

were relatively high (1-10mM) compared with VGSC blockade (60-200µM) [32, 33]. 

 

Potassium channels 

 

Potassium channels are important regulators of membrane potentials, action potential shape, and 

firing adaptation in excitable tissues including sensory neurons [34]. Various potassium channels are 

involved in pain modulation and inflammation: voltage-gated potassium channels (VGPC), voltage 

independent potassium channels, tandem pore domain potassium channels (2P K+ channels) and 

ATP-sensitive potassium channels. Lidocaine inhibits K+ currents in various neuronal preparations, 

including transient K+ currents in rat dorsal horn neurons [19] and sustained K+ currents in rat dorsal 

root ganglion neurons [35] and amphibian sciatic nerves [36]. Although the affinity of lidocaine for 

VGPCs is 6-fold lower compared with VGSCs, blockade of VGPCs seems to contribute to the 

broadening of the action potential in the presence of lidocaine. Inhibition of the outward potassium 

currents causes partial depolarization and leads to an increased amount of inactivated sodium 

channels. Inactivated sodium channels are more sensitive to lidocaine. Thus, inhibition of outward 

potassium currents promotes sodium channel inactivation [36]. Kindler et al. [37] investigated 

members of 2P K+ ion channel family, which are widely expressed in the central nervous system and 

the molecular entities of background or leak potassium conductances involved in the control of 

resting membrane potential and firing pattern of excitable cells. Lidocaine inhibited tandem pore 

weak inward rectifying K channel (TWIK)-related acid-sensitive K+ channel 2 (TASK-2) in a dose-

dependent manner (IC 50 = 1mM). 
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Lidocaine suppresses tonic firing Aδ- and C-fibers by interacting with VGPC [26].  

The flicker potassium channel is a voltage independent potassium channel found in most of the thin 

nerve fibers and generates the resting membrane potential of these fibers. In a frog sciatic nerve, 

lidocaine blocks the flicker potassium channel intracellularly (IC 50 = 219µM) and binding is pH-

dependent, id est improved binding at higher pH-values and reduced binding at low pH-values [38]. 

Lidocaine modulates mitochondrial adenosine triphosphate (ATP)-sensitive potassium channels 

resulting in a reduction of cytokine-induced cell injury in vascular smooth muscle and endothelial 

cells. Cell survival improved as the cells were incubated with increasing dosages of lidocaine [39].  

 

Receptors (Table 2) 

G- coupled protein receptors  

The G-protein-coupled receptors (GPCRs) consist of a large family (nearly 2000 GCPRs), which are of 

fundamental importance for intra- and intercellular communication pathways [40].  Following injury, 

a variety of inflammatory mediators are released activating GCPRs expressed on sensory neurons. 

Downstream GPCR signaling, diverse intracellular enzymes are activated, which converge upon ion 

channels that transduce noxious input or modulate basal excitability of nociceptors [41]. Specifically 

the α-subunit of the Gq family plays an important role in pain modulation and inflammation [41, 42] 

and seems to be a target of lidocaine. 

Lidocaine inhibits m1 and m3 muscarinic receptors in clinically relevant dosages. Dosages needed for 

inhibition of  m1 (IC 50 = 18nM) is about a 21-fold less for m3 muscarinic (IC 50 = 370nM) signaling, 

but still both dosage are significantly less compared with sodium channel blockade (60-200µM) [43, 

44].  Intracellular binding to the α-subunit of the Gq-protein subunit is similar for m1 and m3 

receptor. The m1 receptor has an additional major extracellular binding site for lidocaine, which 

clarifies its sensitivity for lidocaine [43, 44]. Inhibition of m3 muscarinic receptors is not restricted to 

Xenopus GCPR [40]. Binding of lidocaine to m1 and m3 receptor has a time dependent biphasic 

response. Lidocaine initially inhibits m1 and m3 receptors, but after 8 hours it enhances m1 and m3 

signaling. This enhancement may be attributed to an interaction with an extracellular receptor 

domain and subsequent modulation of PKC activity and receptor phosphorylation [45]. 

Lidocaine inhibits immune modulatory Gαq-coupled receptors, such as lysophosphatidic acid (LPA), 

platelet activating factor (PAF) or tromboxane A2 (TXA2) receptors. Interestingly, after prolonged 

lidocaine administration an increased inhibitory potency is exhibited [46-48].  LPA is an intracellular 

phospholipid mediator which is released at injury sites and has chemoattractive and priming effects 

towards human polymorphonuclear neutrophil (hPMN). PAF plays a pivotal role in inflammatory 

disorders and also can effectively prime hPMNs. hPMN are of great importance in host defense, as 
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they move actively to the site of inflammation, where a multicomponent enzyme complex generates 

oxygen metabolites. Priming of hPMN potentiates the response  to a subsequent activating stimulus 

and is a critical component of hPMN-mediated tissue injury. Lidocaine inhibits LPA en PAF mediated 

priming of hPMN in clinically relevant concentrations [48, 49]. TXA2 is a potent platelet aggregator 

and vasoconstrictor, however dosages needed for inhibition are relatively high (IC 50 = 1,1mM) [47]. 

 

N-methyl-D-aspartate receptor 

The N-methyl-D-aspartate (NMDA) receptors are involved in rapid excitatory neurotransmission and 

modulation of nociceptive information, contributing to the development of hyperalgesia and chronic 

pain [9, 50]. NMDA receptors are protein complexes composed of two classes of co-assembling 

subunits: the essential subunit GluN1 and the modulating subunit GluN2 (A-D).  

Hahnenkamp et al. [51] and Gronwald et al. [52] expressed human GluN1/GluN2A NMDA receptors 

in Xenopus oocytes and stimulated these with glutamate/glycine. Lidocaine inhibits the NMDA 

receptor in a dose dependent manner via an intracellular binding site. Addition of structural 

derivates of lidocaine, revealed NMDA receptor binding is stereoselective. Various mechanism of 

NMDA receptor inhibition have been proposed; altering the receptor phosphorylation state as a 

result of inhibition of the PKC pathway[52], binding to various sites on the NMDA receptor [53], or 

modulation of the glycinergic system [54]. 

Lidocaine dosages needed for NMDA receptor blockade are relatively high (NMDA rec IC 50 = 0,8 – 

1,2 mM) compared with sodium channel blockade (60-200µM). 

 

Glycinergic system 

Glycine serves a dual role in central neurotransmission. It is not only an obligatory inhibitory 

neurotransmitter, but also a coagonist at the excitatory NMDA receptor. These actions depend on 

extracellular glycine levels, which are regulated by glycine transporter 1 (GlyT1) and glycine 

transporter 2 (GlyT2). GlyT1 is responsible for removal of glycine from the synaptic cleft, whereas 

GlyT2 is required for re-uptake of glycine into nerve terminals,  allowing neurotransmitter reloading 

of synaptic vesicles [55]. During high neuronal activity, glycine released from inhibitory interneurons 

escapes from the synaptic cleft, reaches nearby NMDA receptors by so-called spillover and facilitates 

NMDA receptor currents [56, 57]. Lidocaine exerts a biphasic response on the glycine receptor. Low 

dose lidocaine (10µM) enhances and high dose (1mM) inhibits glycinergic signaling [58]. 

Werdehausen et al. [54] revealed that not lidocaine, but its metabolites mediate the actions on 

glycinergic transmission by inhibiting GlyT1 in clinically relevant concentrations (55µM). Inhibition of 
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glycine re-uptake reduces glycine binding to the NMDA receptor and subsequent activation. 

 

Anti-inflammatory effects 

The inflammatory response leads to an increase in acute phase proteins and the release of vasoactive 

mediators from mast cells and platelets followed by activation of the kinin-, complement- and 

cytokine- systems. These inflammatory substances sensitize the central nervous system and induce 

pain [12, 59].  

The inflammatory effects of lidocaine are mediated by inhibition of VGSC, Gq-receptors and ATP-

sensitive potassium channels. Lidocaine attenuates the expression of iNOS en CAT-2 in LPS 

stimulated murine macrophages and  the activation of TLR4, NF-κB and MAPK’s by inhibiting VGSC 

[27, 28, 60, 61]. Additionally, inhibition of Gq-protein coupled receptors reduces PAF and LPA 

induced priming of hPMN [48, 49] and modulation of cytokine induced cell injury is mediated by ATP-

sensitive potassium channels [39]. Moreover, other studies demonstrate lidocaine to decrease 

cytokine release in epithelial cells and neutrophils [62] and attenuate the expression of activated 

endothelial interleukin-1 (IL-1), IL-6 and IL-8 concentrations and intracellular adhesion molecule-1 

(ICAM-1) during reperfusion injury [63, 64].  

 

 Mechanism of action of lidocaine:  In vivo research 

 

Research in animals 

Acute pain (Table 3) 

Woolf et al. [65] and Sotgiu et al. [66] investigated the effects of lidocaine on neuronal activity and 

the site of action of systemic lidocaine in rats. Intravenous lidocaine (1-5mg/kg) suppresses 

polysynaptic C-fiber evoked flexor response to noxious heat and chemicals, without blocking the 

conduction block at the peripheral nerve [65].  Intravenous lidocaine reduces responsiveness of wide 

dynamic range neurons to noxious evoked activity, but not to spontaneous activity or non-noxious 

stimuli [66]. In an acute pain rat model using a formalin test, pretreatment with lidocaine 

significantly reduces thermal hyperalgesia measured by paw withdrawal [67]. Lidocaine or its 

metabolites have a modulating effect on glycinergic signaling, since agonists of the glycine binding 

site at the NMDA-receptors inhibit the nociceptive effects [68]. These studies implicate a selective 

effect of lidocaine on nociceptive transmission at the level of the spinal cord. It should be noted that 

an effect on supraspinal pathways further has to be elucidated. 

Small studies evaluating the effect of lidocaine on acute pain in dogs, demonstrate lidocaine to 
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provide intermediate analgesic effects. Lidocaine has comparable results to meloxicam [69] or has no 

extra analgesic effect in addition to opioids during ovariectomy [70], although it reduced 

preoperative inhalation anesthetic need [70]. During ocular surgery, lidocaine provides similar post-

operative analgesia as morphine [71]. Furthermore, no anti-nociceptive effects were observed in 

conscious dogs, although they did show signs of mild to moderate sedation [72]. During orthopedic 

or soft tissue surgery, lidocaine significantly reduced supplemental intra-operative analgesic usage 

[73]. Dogs received a bolus of 1-2mg/kg followed by an infusion of 1,5-3mg/kg/h.  

Two studies showed a reduction in length of stay (LOS) and incidence of postoperative ileus in 

horses, which is often a fatal complication [74, 75], although no difference in pain assessment was 

obtained [75]. However, a recently performed study found no beneficial effects of lidocaine 

treatment in 36 horses scheduled for a laparotomy for colic [76]. 

Chronic (neuropathic) pain (table 4) 

Various dosages of lidocaine provide analgesia in rat models based on nerve constriction injury. 

Lidocaine silences ectopic neuroma and dorsal root ganglion discharge without affecting nerve 

conduction. The median effective dose of lidocaine for blocking dorsal root ganglion cells was 

significantly lower than for neurons at the injury site [77].  Lidocaine attenuates allodynia after nerve 

ligation and reduces ectopic discharges in injured afferent fibers [78]. Sotgiu et al. [79] found 

lidocaine (4mg/kg) to reduce receptive field and hyperesthetic sensation for 35 min. Dorsal horn 

neurons were  more sensitive compared with ganglionic neurons [79]. Agonists of the glycine binding 

site at the NMDA-receptors inhibit nociceptive effects, indicating a general glycine-like action of 

lidocaine or some of its metabolites [68]. Thus, reduction of peripheral and central excitability is 

most likely a component of the analgesic properties of lidocaine.   

Constant rate infusion of lidocaine results in a prolonged alleviation of allodynia in nerve-ligated rats 

without affecting motor function [67, 80] The long lasting analgesic effects were not achieved after 

intrathecal or perineural administration [80]. Lidocaine has a threshold value (2,1 µg/ml) and a ceiling 

effect for relief of allodynia [81].   

Anti-inflammatory effects (Table 5)  

 

Lidocaine exerts anti-inflammatory effects during the acute inflammatory response. Timing of 

lidocaine administration seems to be a critical factor in its efficacy. Pretreatment with lidocaine in a 

rabbit endotoxemia model induced by Escheria coli reduces the release of complement, cytokine 

release and activation of PMN and improves lung mechanics [82]. Early posttreatment slightly 

attenuates endotoxin-induced lung edema, without affecting chemical mediators in brochoalveolar 
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lavage fluid [83]. In another endotoxin rabbit model, systemic lidocaine administered immediately 

after endotoxin injection reduces release of Il-6 and Il-8 and improves hemodynamics [84]. Acute 

lung injury induced by phospholipase A2 and trypsin is attenuated when phospholipase A2 is co-

administered with lidocaine [85] Similar dosages were used (bolus 2-3mg/kg + continuous rate 

infusion (CRI) 2mg/kg/h) in these rabbit studies.  

CRI infusion of lidocaine (2,5-5mg/kg/hr for 7days) during septic peritonitis in mice reduces  tumor 

necrosis factor α (TNF-α), ICAM-1 and chemokines, improves organ dysfunction and reduces 

mortality [86]. 

In an endotoxemia model in horses induced by lipopolysaccharide (LPS), systemic lidocaine infusion 

reduced discomfort and levels of TNF-α in plasma and peritoneal fluid [87]. Rats receiving an 

intravenous bolus or aerosolized lidocaine before treatment with LPS had lower levels of cytokines in 

bronchoalveolar fluid of IL-1β and TNF-α, without changes in plasma cytokine level [88].  

Studies evaluating lidocaine administration during reperfusion injury show moderately positive 

effects depending on the species and reperfusion injury model used. Lidocaine attenuates ischemic 

injury, improves mucosal barrier [89], and reduces mucosal cyclooxygenase 2 and plasma levels of 

prostaglandin E2 in the equine jejenum after surgery [90]. Lidocaine (3-4 µg/ml) reduces reperfusion 

injury and improves gas exchange in lung allografts in dogs by inhibiting PMN adhesion and 

subsequent neutrophil migration. Neutrophils mediate postischemic tissue injury by oxygen radical 

and proteolytic enzyme release [91]. Pretreatment with systemic lidocaine reduces infarct size after 

reperfusion in a murine myocardial ischemia model most likely due to a reduction of hypoxia induced 

apoptosis. Lidocaine had no effects on leucocyte rolling or adhesion [92]. In a porcine model of 

myocardial ischemia, systemic lidocaine had no effect on myocardial damage. However, retrograde 

infusion before coronary reperfusion reduces myocardial infarct size [93].  

 

Clinical studies 

Acute pain (Table 6) 

 

Sun et al. [94] performed a meta-analysis of 21 trials concerning lidocaine administration during 

abdominal surgery. Lidocaine reduces pain scores, opioid consumption, postoperative nausea and 

vomiting (PONV), LOS and duration of ileus after open and laparoscopic surgery. Some studies show 

an attenuation of postoperative rise of proinflammatory cytokines. Vigneault et al. [95] and Mc 

Carthy et al. [96] confirmed the beneficial effects in gastrointestinal surgery, although lidocaine has 

no or minimal impact on postoperative analgesia or outcome in cardiac surgery, gynecologic 

procedures, tonsillectomy and  total hip arthroplasty. Mc Carthy et al performed a systematic review 
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of 16 trials, which described specifically the effects of lidocaine on different subtypes of surgery. 

Vigneaults meta-analysis included 29 trials, was more extensive and provided a comprehensive 

understanding of intravenous lidocaine on perioperative outcomes.  

Randomized control trials published after this meta-analysis confirms the beneficial effects of 

perioperative lidocaine administration in gastrointestinal surgery [97-99]. However, Yon et al. [99] 

found no difference in PONV and LOS in patients undergoing gastrectomy. 

Lidocaine has differing efficacy in other types of surgery. Lidocaine has no influence on LOS, 

postoperative pain, return of bowel function or inflammatory and stress response measured by 

plasma cortisol levels and CRP in major laparoscopic renal surgery [100].  Lidocaine improves pain 

scores from 5.5 to 4.4 on a 11-point Likert scale, reduces 48h opioid requirements by approximately 

25% and  patients exhibit greater physical scores at 1 and 3 months after major spine surgery [101]. 

Grigoras et al. [102] tested the efficacy of a lidocaine infusion in 36 patients undergoing breast 

surgery. No difference in intraoperative or postoperative opioid consumption was found. 

Nevertheless, postoperative pain scores were reduced at 4 hours and a significant reduction of 

chronic pain and hyperalgesia was observed at 3 months follow up (11,8 % vs. 47,4 %). However, 

Terkawi et al. [103] found no difference in pain scores, opioid consumption, PONV and LOS in 71 

patients undergoing breast surgery. Long term effects were not evaluated in this study. 

 

 

Chronic (neuropathic) pain (Table 7) 

Challapalli et al.[104] performed a Cochrane review of 30 RCT concerning the efficacy of intravenous 

lidocaine and its oral analogues on relieving neuropathic pain in 2005. The treatment intervention 

was lidocaine in16 trials, mexilitine in 12 trials, sequential mexilitine and lidocaine in one study and 

tocainide in one study. Lidocaine and mexilitine were more effective compared with placebo in 

decreasing neuropathic pain. In a subgroup analysis, lidocaine tended to be more effective for 

relieving neuropathic pain caused by diabetes, trauma or cerebrovascular diseases. No serious 

adverse effects were observed during these studies. The number of studies was relatively small and 

their methodology not always consequent. Minor side effects occurred in about 35% of the patients 

compared with 12% of the patients allocated to placebo. The most common adverse effects were 

sleepiness, fatigue, nausea, dizziness, perioral numbness and metallic taste. Since 2005, many other 

trials have been published that explored the use of systemic lidocaine for chronic (neuropathic) pain.  

Three randomized crossover trials, examining the effect on neuropathic symptoms and pain, found 

differing results in neuropathic pain syndromes. Lidocaine (5mg/kg in 30minutes) relieves 

spontaneous pain and brush evoked dysesthesia in 24 patients with spinal cord injury, without effect 
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on cold allodynia, pinprick hyperalgesia and pain evoked by repetitive pinprick [105]. In a small group 

of 13 patients with nerve injury, lidocaine (5mg/kg) reduces brush evoked pain and cold allodynia 

and has a tendency to reduce spontaneous pain, although not statistically significant due to the small 

study population. The presence of mechanical allodynia did not predict response to lidocaine [106]. 

Conversely, lidocaine (5mg/kg in 30min) had minimal to no effect on spontaneous pain, brush evoked 

pain or cold allodynia in 20 patients with nerve injury pain. Lidocaine reduced pain evoked by 

repetitive pinprick [107]. 

Tremont-Lukats et al. [108] investigated lidocaine (5 mg/kg in 6h) versus placebo in 31 patients with 

variable causes of peripheral neuropathic pain in a randomized cross-over trial. Lidocaine was more 

effective than placebo in relieving neuropathic pain, and pain reduction persisted for 4h after 

discontinuation of infusion. Lidocaine (5 or 7,5mg/kg in 4h) reduces significantly severity and quality 

of pain for 14 days and persisted for up to 28 days in 15 patients with intractable diabetic neuropathy 

[109]. No difference in analgesic effect was found between saline, lidocaine 1mg/kg and lidocaine 

5mg/kg in patients with neuropathic pain as a result of failed back surgery syndrome [110]. 

Some retrospective studies imply a beneficial effect of lidocaine in chronic pain syndromes. Thomas 

et al.[111] did a retrospective chart review in 768 patients acutely admitted to a hospice. Patients 

receiving intravenous lidocaine for pain relief were evaluated. A great deal of them had neuropathic 

pain symptoms (78%) and 52% of the 61 patients had opioid refractory pain. Significant pain 

reduction was achieved in 50 patients (82%), partial response in 5 patients (8%) and no response in 6 

patients (10%). Lidocaine infusion during 5 days reduces pain, thermal and mechanical allodynia and 

inflammatory symptoms for 3 months in 76% of patients presenting with CRPS. In general, by 6 

months, CRPS factors had returned to baseline [112].  Lidocaine in unknown dosages  reduced pain in 

68 cases of  refractory chronic daily headache for averagely 8,5 days [113]. Adolescents receiving 

lidocaine (2,4 -3,6 mg/kg/h) for refractory headache or neuropathic pain had reduced pain scores 

during 80% of the infusions. Only minor side effects were reported, which resolved quickly after 

discontinuation of infusion [114].  

 

Conclusion 

 

In vitro studies 

In this review, we found that following in vitro research, lidocaine exerts its different effects on the 

neuroinflammatory response by inhibiting ion channels and receptors. Although, comparison of 

lidocaine dosages between in vitro studies is not always feasible due to the different cell types and 

methodology used, lidocaine seems to inhibit ion channels and receptors in various potencies. In 
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vitro, higher dosages are required for inhibition of VGCC, NMDA receptor and some of the potassium 

channels, as for VGSC, GCPR and glycinergic transmission. Nevertheless, partial inhibition of 

potassium channels, VGCCs and NMDA-receptor can contribute to analgesic and anti-inflammatory 

effects or side-effects [115].  

Additionally, extrapolation of dosages from in vitro to in vivo situation encounters some difficulties. 

Whereas intravenous lidocaine in vivo induces favorable effects at clinically relevant concentration 

(1-15µM or 0,3 - 4,5µg/ml), in vitro concentrations to block ion channels or receptors are frequently 

higher to achieve the desired effect. One difference between in vivo and in vitro studies is the 

exposure time to lidocaine: exposure in most in vitro settings is 10-30 minutes, compared with hours 

or days in vivo. Hollman et al. [46] and Picardi et al. [45] found an enhanced effect of lidocaine on 

Gαq coupled protein receptors in in vitro setting during a prolonged exposure time. Another 

difference is that during in vitro experiments frequently just a single cell is observed which 

complicates translation to the in vivo situations. 

Interestingly, lidocaine has slight differing effects on isoforms of specific ion channels. For example, 

Nav 1.8 is more sensitive to inhibition of lidocaine compared with Nav 1.7. Both Nav 1.7 and Nav 1.8 

play specific roles in the neurobiology of neuropathic  pain and are upregulated in inflammatory and  

neuropathic pain states [17]. An increased expression of Nav 1.8 is observed in neuromas [116, 117]. 

An increased expression of Nav 1.3, 1.7, 1.8 and 1.9 isoforms are observed in neuronal cell bodies 

following inflammatory lesions [116, 118]. Although lidocaine blocks all sodium channel isoforms, the 

little differences in sensitivity could be an additional explanation for its efficacy on ectopic discharges 

in neuropathic pain. Tanelian et al. [119] found lidocaine to inhibit tonic discharges in acutely injured  

Aδ and C-fibers in clinically relevant concentrations (5,7µg/ml), suppression of nerve conduction was 

achieved at 50-fold higher concentrations (250µg/ml). An increased expression of sodium channels in 

dorsal root ganglia and around the injury site of injured axons contributes to spontaneous firing of 

nerve fibers after injury [77]. 

 

In vivo studies  

In the selected in vivo studies, the effects of lidocaine on the neuroinflammatory response in acute 

and chronic pain are presented. Animal studies demonstrate lidocaine to affect hyperexcitable 

neuroma, dorsal root ganglion neurons and dorsal horn neurons without affecting normal nerve 

conduction [77-79]. Dorsal horn neurons are more sensitive to lidocaine compared with peripheral 

neurons [79]. It should be noted that an effect on supraspinal pathways further has to be elucidated. 

The high susceptibility of hyperexcitable neurons to lidocaine may be attributed to their frequency 

dependency and to the changed expression of sodium channels during nerve injury [17], which may 
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render them subject to exaggerated blockade by lidocaine.  

Lidocaine has anti-inflammatory effects during the acute phase of the inflammatory response in 

endotoxemia and reperfusion injury animal models. Pro-inflammatory cytokines and neutrophil 

migration are reduced, when lidocaine is administered early in the inflammatory cascade. 

Inflammatory effects are mediated by blockade of GCPR, VGSC and ATP-sensitive K+ channels. 

Limitation in these animal studies is the diverse endotoxemia models or reperfusion models used, 

which exert differences in immune response. Secondly, different dosing regimens were used 

between studies and long-term effects were not recorded. It is not clear whether attenuation of the 

hyperinflammatory response induces subsequent immune suppression. Thus, future animal studies 

are needed to further evaluate the underlying mechanisms and register long term-efficacy 

Clinical studies reveal systemic lidocaine to reduce pain scores, opioid consumption, PONV, LOS in 

abdominal surgery in animal and clinical studies. The pronounced analgesic effect in abdominal 

surgery may be explained by the central antihyperalgesic effect of lidocaine[68]. Hyperalgesia is 

found in patients undergoing bowel surgery with peritoneal irritation, which induces inhibitory 

gastrointestinal reflexes. Intravenous lidocaine may shorten the duration of ileus by reducing opioid 

consumption, by preventing inflammatory processes and by decreasing sympathetic tone [120]. 

However, for other types of surgery the efficacy of intravenous lidocaine remains ambiguous.  

Cardiac or major orthopedic surgery involves substantial tissue disruption and a subsequent 

inflammatory response, but lidocaine exerts no beneficial effect in this type of surgery. Though, 

recent studies demonstrate lidocaine to have prolonged analgesic effects during complex spine 

surgery [101] and to reduce chronic pain after breast surgery [102]. Most studies concerning 

perioperative administration of lidocaine do not report long term results, so no definite conclusion 

can be made on this topic.  

 

Lidocaine provides analgesia in neuropathic pain and reduces neuropathic symptoms. However relief 

of clinical symptoms varies between causes of neuropathic pain, presumably due to the distinct 

underlying pathofysiological mechanisms.  

Studies evaluating lidocaine administration for chronic pain syndromes encounter several limitations. 

A problem in placebo controlled studies is that most people experience some minor side effects, 

therefore bias in these studies cannot be ruled out. Secondly, long term analgesic effects of 

intravenous lidocaine for chronic neuropathic pain have not been conclusively documented.  Thirdly, 

some studies are retrospective, which implicate a risk of bias. Finally, the main limitation of most 

studies is the small study size.  
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A limitation in all clinical studies is the varying dosing regimens. A bolus of 1,5 - 2 mg/kg is 

administered followed by a continuous infusion of 1,5 - 2 mg/kg/h is the most common dose in the 

perioperative situation. However, duration of infusion vary widely, ranging from discontinuation at 

the end of surgery untill 24 hours postoperative. For neuropathic pain relief mostly a bolus of 5 

mg/kg lidocaine is administered over a period ranging from 30 minutes till 6 hour. However, in some 

studies continuous infusion is administered for a longer period.  

Most likely, perioperative administration is sufficient because modulatory action on the initiation of 

the inflammatory response primarily takes place during surgery and sustained lidocaine 

concentrations in cerebrospinal fluid extend beyond infusion time [121]. However, in vitro studies 

show a time dependent enhancement on GCPR [45, 46] .  

 

Although precise therapeutic plasma levels and duration of infusion of lidocaine are still not that well 

defined, the optimal therapeutic range for pain treatment seems to be between 1-5 µg/ml [12, 119, 

122-124].  Bolus administration of 2 mg/kg and a continuous infusion of 2-5 mg/kg/h have shown to 

reach plasma levels of 1-4 µg/ml [121]. After a bolus injection or continuous administration for up to 

12 h, the half-life of lidocaine is about 100 minutes and shows linear pharmacokinetics [125]. 

Following prolonged infusion, lidocaine exhibits time-dependent, or nonlinear pharmacokinetics 

[126]. Minor side effects like light-headedness, periorbital numbness, vertigo or sedation can develop 

in therapeutic concentrations.  

Clinical features of lidocaine toxicity include symptoms of central nervous and cardiovascular 

depression.  Plasma levels of 5-10 µg/ml cause prolongation of conduction time and increased 

diastolic threshold [127], at levels higher than 7.5 µg/ml seizure activity can become noticeable. 

Plasma levels above 10µg/ml cause marked central nervous system and cardiovascular depression 

[127]. Lidocaine toxicity primarily arises from blockade of VGSC, though conceivably inhibition of 

ATP-dependent potassium channels plays a role [128, 129]. Cardiovascular compromised people or 

patients with a reduced  liver or kidney function are more at risk for developing toxicity symptoms 

[127]. 

 

We recommend more trials to be performed, with larger study size and impeccable methodology to 

determine the effect of intravenous lidocaine on the neuroinflammatory response in acute and 

chronic pain. Since similar toxic plasma levels in animals and humans have been described in 

literature, further research in animals concerning the precise mechanism responsible for reduction in 

inflammation and pain could be extrapolated to the clinical setting. More research has to be done 

assessing the effect of the metabolites of lidocaine.  
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Although amide local anesthetics share common properties, the scope of this review was intravenous 

lidocaine. Lidocaine is the only local anesthetic registered for intravenous use in the Netherlands. 

Considering the potential of lidocaine infusion, investigation of the efficacy of other amide local 

anesthetics seems only a matter of time. More after, other routes than intravenous lidocaine 

administration exert beneficial effects, however this is beyond the scope of this review.  

In summary, lidocaine exerts in vitro inhibitory effects on VGSC, some potassium channels, the 

glycinergic system and Gαq-protein pathways and in higher dosages inhibitory effects of potassium 

channels, VGCC and the NMDA-receptor. Animal studies show pain relieving effects in neuropathic 

pain syndromes and anti-inflammatory effects during the first phase of hyperinflammatory 

responses. Clinical studies demonstrate lidocaine to have beneficial effects in abdominal surgery and 

in some neuropathic pain syndromes. 
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Tables 

Table 1: In vitro studies evaluating effects of lidocaine on voltage gated sodium-and calcium channels and subtypes of 

potassium channels 

Sodiumchannels 

Reference Cells Technique Effect lidocaine 
on 

Lidocaine 
Concentration 

Results 

Olscheweski 
1998 
[19] 

Rat dorsal horn 
neurons 

Patch clamp Na+ currents after 
depolarization 

1μM – 10mM LDC IC 50 = 112 μM 
LDC produces a tonic block Na+-currents which is 
use-dependent 

Balser 
1996[20] 

Xenophus 
oocytes + HEK 
cells 

Voltage clamp Mutation in  
III-IV Nav 1.4: 
disabling fast 
inactivation 

30µM- 1000μM Dose dependent current reduction,  
IC 50 = 74 μM, indicating augmentation slow 
inactivation 
LDC modifies coupling between (in-) activation as 
an effector of the allosteric gating process 

Chen 
2000[21] 

HEK cells + 
Xenophus 
oocytes  

Voltage clamp Kinetics 
Nav 1.4 
 

50μM - 200μM Lowering extracellular Na-concentration augments 
use-dependent LDC block 
Outer pore (P-loop) mutation reduces LDC use-
dependent block 
LDC  increases slow inactivation 

Fukuda 
2005[22] 

HEK cells  Voltage clamp Kinetics 
Nav 1.4 

100μM LDC stabilize structural rearrangements coupled to 
slow inactivation 

Chevrier 
2004[23] 

Xenophus 
oocytes  

Voltage clamp Kinetics  
Nav 1.7 and  
Nav 1.8 

10-100-300 μM Na v 1.8 is more sensitive to LDC: Nav 1.8 EC 50 = 
104 μM, Nav1.7 EC 50 = 450 μM; tonic block and 
use-dependent block of Nav 1.8 is 4,4-fold more 
enhanced as for Nav1.7. LDC increases transition to 
slow inactivation Nav 1.8>Nav1.7. LDC modulates 
gating properties 

Sheets 
2011[24] 

HEK cells  Voltage clamp Kinetics 
Nav 1.7 

0,1, 0,3, 1, 3, 10 
and 30mM 

Voltage and pulse duration determine 
concentration response curve: IC 50 2-727 μM LDC 
enhances recovery of Nav 1.7  from prolonged 
depolarization  
LDC decreases transition of Nav 1.7 to the slow 
inactivated state. Use-dependent inhibition 

Scholz 
1998[25] 

Dorsal horn 
neurons rats 

Patch clamp Kinetics  
TTXs and TTXr 
Na+-channels 

50-300 μM IC50 TTXs = 42 μM, IC50 TTXr = 210 μM 
TTXr show higher affinity for LDC in the inactivated 
state. A low concentration of LDC blocks trains of 
action potentials better at high frequencies in TTXr  

Wolf 
2014[26] 

Dorsal horn 
neurons rats 

Patch clamp Tonically or 
adapting firing 
and single spike 
neurons 

100 μM (50% of 
VGSC are blocked) 

LDC blockade of adapting firing neurons is 
mediated by VGSC 

Huang 
2006[27] 

Murine 
macrophages 
+ LPS 

PCR + electro-
phoresis 

LPS induced 
upregulation of 
iNOS and CAT-2 

5, 50, 500 μM Lidocaine attenuates in a dose dependent manner 
LPS-induced up regulation of iNOS and CAT-2, 
probably mediated by a VGSC, since veratridine 
(=VGSC-activator) inhibits this effect 

Lee 
2008[28] 

Murine 
macrophages 
+ LPS 

Immuno-
blotting assay 

LPS induced 
upregulation 
(upstream iNOS) 
of TLR-4, NF-κβ, 
MAPKs 

50 μMol/L Lidocaine inhibits endotoxin induced activation of 
TLR-4, NF-κβ and MAPKs, probably mediated by 
VGSC, addition of veratridine reduces LDC effects 
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Calcium channels 

Akaike 
1982[30] 

Helix neurones Voltage clamp Calcium current 
(Ica) 

0,1mM – 10mM Dose-dependent inhibition Ca+ current.  
Internal and external applied LDC reduces Ca+ 
current 

Oyama 
1988 [31] 

Frog dorsal root 
ganglia 

Voltage clamp Calcium current 1µM – 10mM Threshold for depressing ICa = 10µM (for INa 1µM) 
Blockade ICa is voltage- and dose-dependent.  
LDC blocks Ca

2a
 – channel in open state. At IC50 for 

blockade INa (100µM),, ICa is 35% reduced  

Sugiyama 
1994[32] 

Rat dorsal root 
ganglion 

Patch clamp Calcium current 10µM -100mM LDC blocks high voltage ICa at high concentrations +/- 
1-10mM 

Potassium channels 
  

Brau 
1998 
[36] 

Sciatic nerve of 
Xenopus Laevis 

Patch clamp Voltage 
dependent K

+ 

channels 

10µM – 1mM IC 50 1118µM for blocking outward voltage 
dependent K

+
 current. (IC 50 Na

+
 = 204µM) 

Direct interaction of LDC with ion channel  

Olscheweski 
1998[19] 

Rat dorsal horn 
neurons 

Patch clamp Rapidly 
inactivating K+ 
currents 

1μM – 10mM LDC IC 50 = 163 μM 
Delayed rectifier K= currents are almost insensitive 
for LDC 

Komai 
2001[35]  

Isolated rat 
dorsal root 
ganglion 
neurons 

Patch clamp K+ currents 1-10mM IC 50 = 2,2 mM 
LDC inhibits sustained and slow-inactivating K+ 
currents 
 

Wolf 
2014[26] 

Dorsal horn 
neurons rats 

Patch clamp Tonic or adapting 
firing and single 
spike neurons 

100 μM (50% of 
VGSC are 
blocked) 

LDC blockade of tonic firing neurons is mediated by 
VGPC 

Brau  
1995[38] 

Demyelinated 
tibial and 
peroneal nerve  
of Xenopus 
Laevis 

Patch clamp Basic kinetics of 
LDC on flicker K+ 
channel 

300μM LDC IC 50 = 219 μM 
Blockade flicker K+ channel mainly by an 
extracellular binding site, is pH dependent  
LDC blocks the flicker K+ channel by impeding gating, 
not conduction 

Kindler 
2003[37] 
 

Xenophus 
Laevis 
HEK cells 

Voltage clamp TASK-1  
TASK-2 

50-2000μM LDC IC 50 = 1000μM 
LDC has a greater  sensitivity for TASK-2 as for TASK-
1 

Klaver  
2003[39] 

Rat vascular 
muscle cells+ 
human vascular 
endothelial cells 
+ TNFα, INFΥ, Il-
1β 

Cellculturing + 
staining + 
microscopic 
and 
spectrophoto
metric 
analysis 

ATP-senitive K+ 
channel 
 

5-100μM Lidocaine attenuates cytokine induced cell injury in 
dose dependent manner (5μM 10% vs 100μM 60% 
cell survival). Decrease LDH release in both cell types 
Effects appear to be modulated by ATP-sens K+ 
channels (5-hydroxydecanoate = inh ATP-sens K+ 
abolish effects) 

 
LDC lidocaine, IC 50 half maximal inhibitory concentration, EC 50 half maximal effective concentration, HEK human 

embryonic kidney, TTXs tetrodotoxin-sensitive, TTXr tetrodotoxin-resistant, VGSC voltage gated sodium channel, LPS 

lipopolysacchariden, iNOS inducible nitric oxide, CAT-2 cationic amino acid transporter-2, TLR-4 toll-like receptor 4, NF-κβ 

nuclear factor κβ, MAPKs mitogen-activated protein kinases, VGPC voltage gated potassium channel, TASK-1 TASK-2 TWIK 

(tandem pore weak inward rectifying K channel)-related acid-sensitive K+ channel 1 or 2, TNFα tumor necrosis factor α, 

INFγ interferon γ, Il-1β interleukin-1 β, LDH lactate dehydrogenase 
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Table 2: In vitro studies evaluating effects of lidocaine on G-protein coupled receptors (GPCR), N-methyl-D-aspartate 

(NMDA) receptors and glycinergic signaling 

-protein coupled receptors 

Reference Cells Technique Effect lidocaine 
on 

Lidocaine 
Concentration 

Results 

Hollmann 
2000[43] 

Xenopus 
oocytes 

Voltage clamp M1  
receptor 

0,1nM – 10mM LDC IC 50 = 18nM 
Non-competitive binding extracellular polar site on 
muscarinic receptor and intracellular on the 
coupled G-protein 

Hollmann 
2001[44] 

Xenopus 
oocytes 

Voltage clamp M3  
receptor 

0,1nM – 10mM LDC IC 50 = 370nM. Non-competitive binding 
intracellular Gαq -protein. M3 lacks extracellular 
binding site for LDC 

Hollmann 
2002[40] 

Xenopus 
oocytes injected 
with mouse Gq 

Voltage clamp LPA and M3 Gq 
signaling in 
mammalian Gq 
protein 

100μM -10mM LDC reduced response LPA and M3  
 signaling via intracellular binding site 
 LDC IC 50 LPA inhibition = 148μM 
  

Hollmann 
2004[46] 

Xenopus 
oocytes + 
primed and 
activated hPMN 

Voltage clamp 
+ cytochrome 
c assay 

Time-dependent 
effect Gαq 
protein 

 LDC attenuated Gαq rec signaling in  
 reversible and time-dependent  
 manner (= reduction LPA- signaling ) 

Picardi 
2014[45] 

Xenopus 
oocytes 

Voltage 
Clamp 

M1 and M3 
receptor Gαq-
signaling and time 
dependent 

M1: 18nM 
M3: 370nM 

Biphasic effect LDC on M1 and M3: t= 30-120min 
inhibition; t= >8h increased response, (dependent 
on PKC activity and receptor phosphorylation). 
Effect is mediated by Gαq 

Honemann 
2004[47] 

Xenopus 
oocytes 
Human K562 
cells 

Voltage clamp 
+ fluorometric 
determ IC Ca 

TXA2-signaling  1μM – 100mM LDC IC 50 = 1,1mM 
LDC attenuates TXA2 signaling via intracellular 
binding site 
Pathway coupled with Gα11 and Gαq 

Fischer 
2001[49] 

hPMN Cytochrome 
c-assay 

Priming and 
activating of LPA 
on hPMN 

1μM  and 0,1mM LPA act as a priming and chemo-attractant toward 
hPMN, not as activator. LDC attenuates 
chemotactic en metabolic response of hPMN 
probably by reducing LPA via an effect on Gαq 
Concentration and time dependent effect  

Hollmann 
2001[48] 

hPMN Cytochrome 
c-assay 

PAF priming of 
hPMN 

1-100μM LDC inhibit PAF mediated priming of hPMN, which 
is PLC and PKC dependent and mainly Gq-mediated 

NMDA receptor 
Hahnenkam
p 
2006[51] 

Xenopus 
oocytes 

Voltage clamp NMDA receptor 1nM – 0,1mM LDC inhibit NMDA receptor signaling via 
intracellular binding site and by influencing PKC 
dependent pathway (PKC activates NMDA-rec) 
Binding is not charge dependent 

Sugimoto 
2003[53] 

Xenopus 
oocytes 

Voltage clamp NMDA receptor + 
site of action 

1μM -10mM LDC IC 50 = 1,2mM. NMDA receptor mutagenesis 
reveals various binding sites are involved 

Gronwald 
2012[52] 

Xenopus 
oocytes 

Voltage clamp Structural 
features needed 
for inhibition 
NMDA receptor 

0,1μM – 1mM 
+ several LDC-
analogues 

LDC IC 50 = 0,8mM 
Position and length aliphatic side chain in aromatic 
part strongly influences inhibition and potency 

Glycine    

Hara 
2007[58] 

Xenopus 
oocytes 

Voltage clamp Glycine receptor 
GABAA and GABAC 

receptor 

0,1μM – 1mM Biphasic response on glycine receptor: LDC low 
concentrations (10μM) enhances, whereas >1mM 
inhibits glycine receptor. High dosages LDC inhibits 
GABAA  (580μM); No effect GABAC 

Werde- 
Hausen 
2012[54] 

Primary rat 
astrocytes 
Xenopus 
oocytes 

Tetrazolium 
hydroxide 
assay + 
Voltage clamp 

LDC + 
metabolites: 
GlyT1 function 

1μM – 1mM LDC reduced glycine uptake only in high dosages 
(1mM) LDC metabolites reduces uptake in clinically 
relevant concentrations EC 50 55μM 

LDC lidocaine, M1 muscarinic 1, M3 muscarinic 3, IC 50 half maximal inhibitory concentration, Gαq Gq-protein α-subunit. 

LPA lysophosphatidic acid, t time, TXA2 thromboxane A2, IC Ca intracellular concentration of calcium, hPMN human 

polymorphonuclear leucocytes, PAF platelet-activating factor, PLC phospholipase C, PKC protein kinase C, GABAA γ-

aminobutyric acid A, GABAC γ-aminobutyric acid C, GlyT1 glycine transporter 1 
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Table 3: Animal studies concerning the efficacy of lidocaine in acute pain 

Acute pain animal 
Reference Participants Evaluate effect 

lidocaine on 
Study-medication    Results 

Woolf 
1985[65] 

10 Rats Nociceptive 
processing primary 
afferents spinal cord 

I: LDC 1, 2, 5, and10mg/kg 
II: tocainide 50 and 100mg/kg 

Polysynaptic C-fiber evoked flexor response 
to noxious heat and chemicals are 
suppressed (prolonged action tocainide), 

without blocking conduction in A, A and C 
primary afferents. 

Sotgiu 
1991[66] 

20 Rats 
 
Cross-over 

Responsiveness WDR 
neurons 

LDC B 3-4mg/kg, control in 
same rat 

LDC reduces in WDR neurons noxious evoked 
activity, no reduced response to non-noxious 
stimuli and spontaneous activity 

Abram 
1994[67] 

25 Rats 
I: n=8, II: n=7, 
III: n=5, IV: n=5 

Formalin sc : dose- 
and timing effect of 
LDC 

I: saline (II-IV =LDC) 
II: B 1,5mg + CRI 0,75mg/h, III 
and IV:  B 3mg + CRI 1,5mg/h 

Reduction of hyperalgesia if pretreatment 
with LDC, not with post-treatment LDC (IV) 

Muth-
Selbach 
2009[68] 

48 Rats  
 
8 groups n=6 

Formalin sc in rats 
receiving intrathecal 
strychnine, d-serine,, 
l-serine or saline  

I: LDC B10mg/kg + CRI 
5,4mg/kg/h, II: saline 

Reduction of acute pain 
Modulating effect on glycine signaling and 
NMDA-receptor 

Tsai 
2013[69] 

27 Dogs 
 
3 groups n=9 
 

Ovariohysterectomy I:  Meloxicam 0,2mg/kg 
II: LDC B 1mg/kg + CRI  
1,5mg/kg/h 
III: Meloxicam + LDC 

Similar analgesic effect till 12h postoperative, 
no advantage meloxicam + LDC. Little more 
sedative effect in LDC group 

Columbano 
2012[70] 

24 dogs 
 
4 groups n=6 

Ovariectomy I: Buprenorfine 0,02mg/kg, II: 
Fentanyl 4μg/kg + CRI 
8μg/kg/h, III: Bupr + LDC 
2mg/kg + CRI 3mg/kg/h, IV: 
Fent + LDC 

Peroperative total anesthetic dose, 
autonomic responses, postoperative 
behavioral and pain scores were similar. III: 
minor reduction in peroperative sevoflurane 
use 

Smith 
2004[71] 

12 Dogs 
 
3 groups n=4 
 

Intra-oculair surgery I: LDC B 1mg/kg + CRI 
1,5mg/kg/h, II: Saline 
III: Morfine B 0,15mg/kg + CRI 
0,1mg/kg/h 

LDC has a similar analgesic effect as 
morphine, no difference in intra-ocular 
pressure, aqueous flare, cell count (pilot) 

MacDougall 
2009[72] 

6 Dogs 
 
Cross-over 

Vital signs conscious 
dogs in 5 dosing 
regimens 

LDC B 2mg/kg + CRI  
I: 0,6mg/kg/h; II: 1,5mg/kg/h 
III: 3mg/kg/h; IV: 4,5mg/kg/h 
V: 6mg/kg/h 

No difference in nociceptive tresholds in all 
groups Respiratory rate decreased in II, IV, 
and V.  Blood pressure increased after 4h in 
V. Sedation increased + occasional nausea 
with increasing dose  

Ortega 
2011[73] 

41 Dogs 
I: n=20 
II: n=21 

Orthopedic or soft 
tissue surgery 

I: LDC B 2mg/kg + CRI  
3mg/kg/h 
II: Saline 

LDC decreases intraoperative supplemental 
analgesics and sympathetic response to 
surgical stimuli 

Torfs 
2009[74] 

126 Horses 
 
Retrospective 

Small intestinal 
surgery 

Prokinetic drugs: LDC, 
metoclopramide, erytromycin 
or combinations 

Postoperative ileus is highly associated with 
death in horses. Significantly reduced risk of 
postoperative ileus in horses receiving 
prophylactic LDC 

Malone 
2006[75] 

32 Horses 
I: n=17 
II: n=15 

Ileus I: LDC B 1,3mg/kg + CRI 
3mg/kg/h for 24h 
II: Saline 

LDC reduces reflux and hospital stay, 

Nannarone 
2014[76] 

36 Horses Laparotomy for colic I: LDC B 1,5mg/kg + CRI 
3mg/kg/h 
II: LDC CRI 3mg/kg/h 

No advantage of a loading dose of LDC prior 
to CRI on peroperative vital signs and quality 
of recovery 

LDC lidocaine, WDR wide dynamic range, B bolus, CRI constant rate infusion, n number, sc subcutaneous,  

bupr buprenorfine, fent fentanyl 
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Table 4: Animal studies concerning the efficacy of lidocaine in chronic pain 

Chronic pain animal                                                                                                    

Reference Particpants Evaluate effect lidocaine 
on 

Study-medication Results 

Devor 
1992 
[77] 

Rats Ectopic neuroma and 
DRG discharg 

LDC gradually increasing dosages: 
0,125mg – 10mg 

LDC suppresses ectopic discharge at 
nerve injury site and DRG cells. ED 50 
for blocking DRG discharge = 0,37mg 
(1mg/kg); for neuroma = 1,9mg 
(6mg/kg) 

Abdi  
1998 [78] 
 

36 Rats 
I-III: n=8 
IV-V: n=6 

Ligation L5 and L6 spinal 
nerves; measuring 
ectopic discharges and 
mechanical allodynia 

I: Saline IP 
II: Amitriptyline 1,5mg/kg IP 
III: Gabapentin 50mg/kg IP 
IV: Saline IV 
V: LDC 10mg/kg for 10min 

AMI, GBP, LDC increase mechanical 
treshold. LDC: quick onset and long 
lasting effect 
LDC reduces ectopic discharges more 
as AMI; GBP does not 

Sotgiu 
1994 [79] 

15 Rats Activity in ganglionic and 
dorsal horn neurons 
after ligation sciatic 
nerve 

LDC B 4mg/kg LDC reduces hyperactivity in dorsal 
horn > ganglionic neurons  

Muth-
Selbach 
2009 [68] 

48 Rats  
 
8 groups n=6 

Ligation sciatic nerve in 
rats receiving ITC 
strychnine, d-serine, l-
serine or saline  

I: LDC B10mg/kg + CRI 
10,8mg/kg/h, II: saline 

LDC reduces response to a thermal 
stimulus 
Modulating effect on glycine and 
NMDA-receptor 

Abram 
1994 [67] 

6 Rats 
 
Cross-over 

Ligation sciatic nerve  Study I: LDC B 0,6mg + CRI 
0,3mg/h 
Study II: saline or LDC B 0,6mg + 
CRI 0,3mg/h or LDC B 0,06mg + 
CRI 0,03mg/h 

LDC reduces hyperalgesia.  
Paw withdrawal normalizes 24h 
postinfusion of LDC 
Lower dose needed as for acute pain 

Chaplan 
1995 [80] 

12 Rats 
I: n=6 
II: n=6 

Ligation L5 and L6: 
different dosing 
regimens and studies  

I: Receiving LDC IV aimed at 
plasma conc 2-2,5μg/ml, max 
dose 15-30mg/kg/h; LDC ITC 
0,5mg; LDC 1mg perineural 
II: Saline 

LDC: no analgesic effect without 
constriction injury. ITC/perineural 
LDC no relief tactile allodynia. LDC IV 
induces a prolonged relief of tactile 
allodynia after 30min steady state 
(EC50 0,75mcg/ml), without affecting 
motor function.  

Sinnot 
1999 [81] 

40 Rats 
I: n=8 
II-V: n=7-10 
VI: n=5 
VII: n=5 

Ligation L5 and L6 spinal 
nerves 
I: evolution allodynia 
II-V: dose-effect 
VI: no nerve ligation 
VII: control 

II-VI: aimed at steady plasma 
concentrations varying from 
1,1μg/L till 9,7μg/L 
VII: saline 

LDC partially relieves allodynia, 
Treshold value 2μg/L and ceiling 
effect with wide variability 

 

LDC lidocaine, B bolus, ITC intrathecal, CRI constant rate infusion, DRG dorsal root ganglion, n number, IV intravenous, IP 

intraperitoneal, EC 50 half maximal effective concentration, ami amitriptyline, GBP gabapentin 

 

 

 

 

 

 



The in vitro mechanisms and in vivo efficacy of intravenous lidocaine 

89 
 

Table 5:Animal studies concerning the anti-inflammatory effects of lidocaine  

Antinflammatory effects animal  

Reference Evaluate effect of 
IV lidocaine on 

Participants Study-medication Results 

Mikawa 
1994[82] 

E. Coli endotoxemia 
model 

N = 27 rabbits I: Saline 
II: E. Coli endotoxin 
III: II LDC 2B mg/kg + CRI 2mg/kg/h  

LDC improves lung mechanics, reduces 
PMN count, albumin, C3a, C5a, TNFα, IL-
1β, TXB2 in BALF 

Nishina 
1995[83] 

E. Coli endotoxemia 
model 

N = 32 rabbits I: LDC B 2mg/kg + CRI 2mg/kg/h 
II: Saline 

LDC improves slightly W/D ratio lung; no 
reduction chemotaxine  (C3a, C5a, 
cytokine, AA metabolites) when 
administered  after endotoxin 

Taniguchi 
2000[84] 

E. Coli endotoxemia 
model 

N = 32 rabbits I: Endotoxin; II: Saline, no 
endotoxin; III: LDC B 3mg/kg + CRI 
2mg/kg/h + no endotoxin 
IV: Endotoxine + LDC 

LDC: more stable hemodynamics. IL-6 + 
IL-8 does not increase when 
administered immediately after 
endotoxin 

Kiyonari 
2000[85] 

Acute lung injury 
model induced by 
PLA2 and trypsin 

N = 21 rabbits I: LDC B 2mg/kg + CRI 2mg/kg/hr; II: 
saline 
III: Non lung injury  

LDC attenuates neutrophil and platelet 
count + improve lung mechanics; no 
effect complement 

Gallos 
2004[86] 

Septic peritonitis: 
caecal ligation + 
puncture 

N = 138 mice I: LDC 5mg/kg/h 7days 
II: LDC 2,5mg/kg/h 7d 
III: Bupivacaine 0,5mg/kg/h 7d 
IV: Bupivacaine 1mg/kg/h 7d 
V: Saline 

I and IV: Improved survival + reduced 
liver and kidney injury  + reduction TNF-
α, ICAM-1 and chemokine 

Peiro et al 
2010[87] 

LPS induced 
endotoxemia 
 

N = 12 horses I: saline 
II: LDC B 1,3mg/kg + CRI 3mg/kg/h 

LDC inhibits TNF-α + stable 
hemodynamics. No effect IL-6 or 
infiltration inflammatory cells abdominal 
cavity 

Flondor 
2010[88] 

LPS induced 
endotoxenia model  

N = 36 rats I: Ae LDC 4mg/kg; II: Ae LDC 
0,4mg/kg; III: Iv LDC 4mg/kg;  
IV: LPS or sham 

I + III: reduces IL-1β + TNF-α in BAL, 
reduced nitrite. No influence plasma 
cytokine levels 

Cook et al 
2008[89] 

Ischemic injury in 
jejenum 

N = 24 horses I: saline; II: flunixin meglumine 
II LDC B 1,3mg/kg + CRI 3mg/kg/h; 
IV: LDC+ flunixin 

LDC improves mucosal barriere 

Cook et al 
2009[90] 

Ischemic injury in 
jejenum 

N = 24 horses I: saline; II: flunixin meglumine 
II LDC B 1,3mg/kg + CRI 3mg/kg/h; 
IV: LDC + flunixin 

Reduced plasma PG E2 and mucosal COX-
2 expression in jejenum after ischemia. 
Reduced neutrophil migration caused by 
flunixin  

Schmid et al 
1996 [91] 

Reperfusion injury 
in lung allografts 

N = 13 dogs I: LDC flush + CRI 4mg.kg.h 
II: placebo 

I: gas exchange improved, PMN count 
reduced, PMN CD11b expression 
reduced. No effect wet/dry (W/D) ratio 

Kaczmarek 
2009[92] 

Reperfusion after  
coronary artery 
ligation 

N = 20 mice  
N = 20 mice 
N = 18 mice 

I: saline 
II: LDC B1mg/kg + CRI 0,6mg/kg/h 

LDC reduces infarct size by reducing 
apoptosis, size of neutrophil infiltration 
reduces, neutrophil density not, no effect 
leucocyt rolling/firm adhesion 

Lee et al 
1998[93] 

Reperfusion after 
coronary artery 
ligation 

N = 34 pigs I: control, II: saline, III: LDC iv, IV: 
LDC local iv, V: arginine iv, VI: 
arginine local iv 

Retrograde delivery in great cardiac vein 
of arginine and LDC  reduces infarct size, 
Iv LDC  does not 

 

N number, E. Coli Escheria Coli, LDC lidocaine, B bolus, CRI constant rate infusion, PMN polymorphonuclear leucocytes, C3a 

complement 3a, C5a complement 5a, TNFα tumor necrosis factor α, IL-1β interleukine-1 β, TXB2 thromboxane B2, BALF 

brochoalveolar lavage fluid, W/D ratio wet/dry ratio, AA metabolites arachnidonic acid metabolites, IL-6 interleukin-6, IL-8 

interleukin-8, PLA2 phospholipase A2, ICAM-1 intercellular adhesion molecule 1, LPS lipopolysaccharide, Ae aerosolized, 

BAL bronchoalveolar lavage, Iv intravenous, PG E2 prostaglandin E2, COX-2 cyclooxygenase 2  
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Table 6: Clinical studies concerning the efficacy of lidocaine in acute pain 

Acute pain human 
Reference Study 

design 
Patients Evaluate effect 

lidocaine on 
Study-medication Results 

McCarthy 
2010[96] 

Review of 
RCT  

16 Trials 
764 (LDC 
395, control 
369) 

Abdominal surgery, 
ambulatory surgery, 
CABG, tonsillectomy, 
THP 

LDC B 100mg or 1,5-
2mg/kg + CRI 1-3mg/kg/h 

LDC reduces pain scores and opioid 
consumption, LOS, improves bowel 
function in open + laparoscopic 
abdominal surgery. Reduces pain 
scores + opioid ambulatory surgery. 
No effect CABG, THP, 
tonsillectomy. 

Vigneault 
2011[95] 

Meta-
analysis 

29 Trials 
1754 

Abdominal surgery, 
ambulatory surgery, 
cardiothoracic surgery 
tonsillectomy, THP 

LDC B 100mg or 1,5-
2mg/kg + CRI 1-3mg/kg/h 

LDC reduces pain scores and opioid 
consumption, LOS, improves bowel 
function in abdominal surgery 

Sun 
2012[94] 

Meta-
analysis 

21 trials 
1108 (LDC 
548, control 
560) 

15 trials: open 
abdominal surgery 
6 trials: laparoscopic 
abdominal surgery 

B LDC 100mg or 1,5-
2mg/kg + CRI 1,5-
2mg/kg/h or 2-3mg/min 
up to 1, 4, 24hr 
postoperative 

LDC reduces pain scores, PONV, 
opioid consumption, duration of 
ileus. Reduced LOS after open 
surgery. Reduced IL-8 postop 
18/21: no side effect of LDC; 3/21: 
mild side effects 

Yang 
2014[98] 

RCT N = 72 
I: 22 
II: 26 
III: 24 

Laparoscopic 
cholecystectomy 

I: LDC intraperitoneal 
3,5mg/kg; II: LDC B 
1,5mg/kg + CRI 2mg/kg/h 
during surgery; III: 
placebo 

I + II: reduced pain scores, opioid 
consumption. Improved patient 
satisfaction 
No side-effects reported 

Tikuisis  
2014[97] 

RCT N = 64 
I: 32 
II: 32 

Laparoscopic colon 
surgery 

I: LDC B 1,5mg/kg + CRI 
2mg/kg/h intraop 24h 
postop 
II: bolus 

I: lower pains scores 24h, reduced 
LOS, reduction time to first diet, 
and bowel movement 

Yon  
2014[99] 

RCT N = 36  
I: 17 
II: 19 

Gastrectomy I: LDC B 1,5mg/kg + CRI 
2mg/kg/h during surgery 
II: Placebo 

I: lower pain scores until 24h 
postop. opioid consumption and 
CRP on day 3. No difference in 
PONV, LOS 

Wuethrich 
2012[100] 

RCT N = 64  
I: 32 
II: 32 

Laparoscopic renal 
surgery 

I: LDC B 1,5mg/kg + CRI 
2mg/kg/h intraop 
1,3mg/kg/h 24 h postop 
II: Placebo 

No difference in: pain scores, 
opioid consumption, PONV, LOS, 
return bowel function, CRP levels 

Farag 
2013[101] 

RCT N = 116 
I: 57 
II: 58 

Complex spine surgery I: LDC CRI 2mg/kg/h 
peroperative + PACU 
(max 8h) 
II: placebo 

I: Reduced pain scores + opioid 
consumption. Lower 30 day 
complication rate + higher QOL-
scores + functioning month 1&3. 
No difference PONV + LOS 

Grigoras 
2012[102] 

RCT  N = 36 
I: 17 
II: 19 

Oncologic breast 
surgery  

I: LDC B 1,5mg/kg + CRI 
1,5mg/kg/h till 1h postop 
II: Placebo 

I: Reduced VAS score at 4hour 
postop. Significant reduction 
chronic pain and hyperalgesia at 
3months follow up. I&II: similar 
opioid consumption and PONV 

Terkawi 
2014[103] 

RCT N = 71 
I: 37 
II: 34 

Oncologic breast 
surgery 

I: LDC B 1,5mg/kg + CRI 
2mg/kg/h till 2h postop 
II: Placebo 

No difference in: pain scores, 
opioid consumption, PONV, LOS, 
fatigue 

LDC lidocaine, CABG coronary artery bypass grafting, THP total hip replacement, B bolus, CRI constant rate infusion, LOS 

length of stay, IL-8 interleukin 8, PONV postoperative nausea and vomiting, CRP C-reactive protein, PACU post anesthesia 

care unit , QOL-scores quality of life scores, intraop intraoperative, postop postoperative 
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Table 7: Clinical studies concerning the efficacy of lidocaine in chronic pain 

Chronic pain human 
Reference Study 

design 
Participants Evaluate effect 

lidocaine on 
Study-
medication 

Results 

Challapalli 
2005[104] 

Cochrane 
review 

16 trials LDC  
12 trials 
mexelitine 
1trial mex + 
LDC; 1trial 
tocainide 

Chronic neuropathic 
pain: CRPS, MS, 
periph. neuropathy, 
plexopathy, central 
pain, amputation 
pain, fibromyalgia 

LDC B 1-5mg/kg 
+/- CRI 

LDC and mexilitine were superior to 
placebo. No difference in efficacy or 
adverse effects compared with 
carbamazepine, morfine, amantadine, 
gabapentin 

Finnerup 
2005[105] 

RCCT N = 24  Spinal cord injury, 
n=12 allodynia 
n=12 without 
allodynia 

LDC 5mg/kg in 
30min or saline 

LDC reduces spontaneous pain in all 
patients and brush evoked dysesthesia. No 
reduction cold allodynia, pinprick 
hyperalgesia, pain evoked evoked by 
repetitive pinprick 

Gormsen 
2009[106] 

RCCT N = 13 Peripheral nerve 
injury: mechanical 
allodynia or pinprick 
hyperalgesia 

I: NS1209 
322mg IV; II: 
LDC 5mg/kg in 
4h; III: Saline 

LDC and NS1209 reduces brush evoked 
pain and cold allodynia, not spontaneous 
pain 

Gottrup 
2006[107] 

RCCT N = 20  Nerve injury with 
spontaneous pain, 
allodynia and pinprick 
hyperalgesia 

LDC 5mg/kg in 
30min or saline. 
Ketamine B 
0,1mg/kg + 
0,4mg/kg/h or 
saline. 

LDC had minimal effect on spontaneous 
pain, reduced pain evoked by pinprick 
stimuli. No reduction brush evoked pain, 
cold allodynia 

Tremont-
Lukats 
2006[108] 

RCCT N = 31  Neuropathic pain:  
CRPS n=23, 
polyneuropthy n=5, 
Radicular pain n=3 
Plexopathy n=1 

LDC 1, 3, 5 
mg/kg in 6h or 
saline  

LDC 5mg/kg/h reduced pain significantly 
and pain reduction persisted for 4h after 
stop infusion 
Mild adverse events 

Viola 
2006[109] 

RCCT N = 15 Painful diabetic 
neuropathy 

LDC 5mg/kg in 
4h, 7,5mg/kg or 
saline 

LDC reduces pain for 14days up to 28days. 
LDC 7,5mg/kg gives a slightly better 
response   

Park 
2012[110] 

RCCT N = 18  Failed back surgery 
syndrome 

LDC 1mg/kg/h 
1h, 5mg/kg/h 
1h or placebo 

Reduction pain in all groups, no significant 
differences between groups 

Thomas 
2004[111] 

Retrospec-
tive study 

768 evaluated 
82 IV LDC 
61 of them 
included 

Intractable pain or 
opioid refractory pain 
associated with 
advanced cancer 

LDC B 1-2mg/kg 
+ CRI 1mg/kg/h 

Pain reduction: 82% major response, 8% 
partial response, 10% no response. 
78% neuropathic characteristics 
52% were opioid refractory. No sign 
adverse effects, 30% experienced 
somnolence 

Schwartzman 
2009[112] 

Retropec-
tive study 

N = 49  CRPS LDC CRI 5 day 
with gradually 
increasing dose  

76% pain reduction of 25% for 3 months. 
Effective in reducing thermal and 
mechanical allodynia. Reduced 
inflammatory components CRPS. No severe 
complications 

Rosen 
2009[113] 

Retrospec-
tive study 

N = 68  Chronic daily 
headache 

Not mentioned Average NRS 7,9 pretreatment, after LDC 
NRS 3,9 lasting 8,5days 
Low incidence adverse effects 

Mooney 
2014[114] 

Retrospec-
tive study 

N = 15 
Adolescents 

Refractory headache 
or neuropathic pain 

LDC CRI 2,4-3,6 
mg/kg/h 

58 infusions: 80% had pain reduction, more 
pronounced response if NRS>6 and 3 
infusions. 80% experienced minimal side 
effects; 20% moderate 

LDC lidocaine, mex mexilitine, CRPS complex regional pain syndrome, MS multiple sclerosis, B bolus, CRI constant rate 

infusion, RCCT randomized controlled cross-over trial, N number, NS 1209, NRS numeric rating scale 
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Abstract  

Introduction 

Neuropathic pain is defined as pain arising as a direct consequence of a lesion or disease affecting 

the somatosensory system and is common after surgery. Neuropathic can persist without an obvious 

injury. In this study we aim to validate a murine chronic constriction injury model in mice as a model 

for neuropathic pain research and determine if silk or catgut ligatures induced most stable 

neuropathic pain behavior.  

Methods  

In this study mice underwent chronic constriction or sham surgery. Mice were tested on cutaneous 

hyperalgesia with the cumulative reaction time in the acetone test, on allodynia with the cumulative 

reaction time and number of lifts in the cold plate test and the maximal force before withdrawal in 

von Frey test.  

Results 

In the acetone test neuropathic pain was seen in CCI mice, but not in sham mice. Hyperalgesia was 

present postoperatively in CCI mice compared with preoperatively. In the cold plate test cumulative 

reaction time and number of lifts were higher in the ipsilateral hind paw than in the contralateral 

hind paw and sham mice. Postoperative measurements were higher than preoperatively. In the von 

Frey test the postoperative measurements were lower in the ipsilateral hind paw than 

preoperatively, while the contralateral hind paw showed an increase in maximal force before 

withdrawal. The contralateral hind paw showed more difference with sham mice than the ipsilateral 

hind paw. Silk ligatures showed more stable neuropathic pain behavior. In the acetone test, the cold 

plate test and the von Frey test the mice scored higher on neuropathic pain having silk ligatures, 

compared with catgut ligatures.  

Conclusions 

In this study we validated a murine CCI model for neuropathic pain behavior. In the murine CCI 

model it appears that silk ligatures demonstrate more stable neuropathic pain behaviors than catgut 

ligatures in de CCI model.  
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Introduction 

Neuropathic pain is defined as pain arising as a consequence of a lesion or disease affecting the 

somatosensory system and is common after surgery.[1] Neuropathic pain presents as a constant, 

burning pain with spontaneous sharp exacerbations and worsening upon normal sensory triggers.[2]  

The grading system of neuropathic pain is based on certain criteria, explained by Treede.[1] The 

criteria consist of the distribution of pain coupled to the medical history and clinical investigation 

with supplemental sensory testing. Depending on the number of criteria that match with the patient, 

neuropathic pain is confirmed or excluded.[1] Sensory testing is an important diagnostic tool in 

determination of neuropathic pain and allodynia and hyperalgesia should be determined.[3]  

 

Neuropathic pain is associated with poor physical and mental health and adversely affects quality of 

life.[4, 5] The prevalence of neuropathic pain in the human population ranges from 1% to 17.9%.[6] 

considering the above neuropathic pain adds to the burden of direct and indirect medical cost for our 

society [5], as there are direct medical costs, loss of the ability to work, loss of caregivers' ability to 

work and possibly greater need for institutionalization or other living assistance.[7]  

The treatment of neuropathic pain mostly consists of oral analgesics such as tricyclic anti-depressants 

(TCAs) and anti-epileptic drugs (AEDs) [8], to decrease the symptoms of neuropathic pain. However, 

the therapeutic response on the pharmacological treatment of neuropathic pain is rather poor, as 

few patients receive efficacious dosages of medication.[2, 7]  

 

Because the mechanisms of neuropathic pain are insufficiently understood, [9, 10] it seems pivotal to 

investigate the course and cause of neuropathic pain and development of treatment and perhaps 

prevention strategies. Therefore ideally we want to study a neuropathic pain animal model 

extrapolatable to the clinical situation. Often a chronic constrictive injury model is used in rats  to 

study neuropathic pain which include thermal and mechanical allodynia testing.[11, 12] In this study 

we aim to validate a chronic constriction model in mice. A murine model can lead to a better 

understanding of the course of neuropathic pain, and will lead to an improvement of accuracy and 

variability of the chronic constriction model, because of the possibility to use transgenic mice.[12] 

 

The material that is used for ligatures can have an effect on the outcome of the observed sensory 

abnormalities.[13] In chronic constriction injury, either catgut or silk ligatures are used. In rats, catgut 

is commonly used as ligature material [14]. Catgut leads to a development of an inflammatory 

reaction and consequentially a loss of most A-fibres and some C-fibers, but few cell bodies.[15, 16]  
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In mice, however, the preferable ligature material is not known. In this research both silk and catgut 

ligatures were compared, to check for efficacy in inducing neuropathic pain behavior.  

 

In this study we aim to validate a model of neuropathic pain in mice and investigate whether silk or 

catgut ligature material is more effective in inducing neuropathic pain. 

 

Material and methods  

All experiments were approved by the Regional Animal Ethics Committee in Nijmegen and performed 

under the guidelines of the Dutch Council for Animal Care and The National Institutes of Health.  

 

Study Population 

All studies were performed in C57BL/6J male mice (Charles River). Mice were aged 6 weeks upon 

arrival were first acclimatized.  Mice were housed in a light and temperature controlled room under 

specific pathogen free (SPF) conditions. Standard pelleted chow (1.00 % Ca; 0.22 % Mg; 0.24 % Na; 

0.70 % P; 1.02 % K; SSNIFF Spezialdiäten GmbH, Soest, Germany) and drinking water were available 

ad libitum. 

 

Experimental design 

This experiment was used to validate the chronic constriction injury (CCI) model in mice (n=45) to 

induce neuropathic pain. Thereby it will be checked if the preferable ligature material used in rats, 

which is catgut [14], differs from the preferable ligature material used in mice. In the experiment 

postoperative testing was done in both sham-group (n=5) and CCI-group (n=40), with either catgut 

(n=20) or silk (n=20) ligatures.  

 

Surgical procedure 

Both sham and CCI-mice were being operated. Before surgery, the mice got rimadyl subcutaneously 

according to their weight (0.1 ml rimadyl per 10 gram). The mice were anesthetized using isofluran 

inhalation (1-4%). Under a dissecting microscope, the left common sciatic nerve was exposed at the 

level of the mid-thigh by dissecting through the biceps femoris. In contrary to the sham-mice, in 

which no ligatures were placed, in de CCI-mice,  proximal to the nerve trifurcation (while taking care 

to preserve epineural circulation), three ligatures (either silk 6.0 or catgut 6.0) were loosely tied 

around the sciatic nerve, at about 1 mm spacing, until they elicited a brief twitch in the related hind 

paw. The muscle layer was then stitched and the incision in the shaved skin layer was closed using 

clips. The sham-operated animals were used as controls and had only sciatic exposure without 
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ligation. Also after surgery the mice got rimadyl subcutaneously according to their weight on day 1 

and day 2 once a day. On day 10, the clips were removed. After the experiment, when the mice were 

euthanized, the nerve histology was studied by removing connective tissue and ligatures.  

 

General well-being 

The first week after surgery, animals will be weighted daily. When the animal lost too much weight 

(>30% directly after surgery or 20% not directly after surgery, starting weight mean of approximately 

24 grams) or did not recover within 1 week the humane endpoint had been reached and the animal 

will be excluded from the experiment and consequently postoperative pain testing. They were also 

tested on activity, state of the surgical wound and eventual damage on the left feet or toes (by 

autotomy).  

 

Postoperative testing 

Responses to thermal and mechanical stimuli were tested in all mice. Sham mice were tested before 

surgery (baseline) and 3, 7, 10, 14 and 21 days after surgery. CCI-mice were tested before surgery 

(baseline) and 3, 7, 10, 14, 21 and also 28 days after surgery 

 

Thermal and chemical hyperalgesia were tested using the acetone spray test. After habituation for at 

least 15 minutes in plexiglass cubicles with a wire mesh metal floor, the plantar area of the left hind 

paw was exposed to acetone. For one minute the mouse was scored on lifting up the paw, scratching 

to the paw and touching the left hip or paw. The duration of the reaction was measured and 

analysed as cumulative reaction time.[17] 

  

Thermal allodynia was measured using the Cold Plate test. The mice were exposed to a temperature 

of 2-2.5ºC to regain the best response. Measurements were performed on both the ipsilateral and 

contralateral hind paws. Mice were scored for 5 minutes on scratching with a paw, lifting up the paw, 

lifting up the paw shortly in the same place and licking on the toes. The amount of lifting of the hind 

paw was measured and analysed as number of lifts. Also the duration of reaction was measured, 

analysed as cumulative reaction time.[11, 18] However, the cold plate test became defective, so in 

some groups the number of mice with catgut ligatures is lower.  

 

Mechanical allodynia was measured using the Von Frey test, preoperatively and on day 4, 7, 11, 14, 

18, 21 and 27. Mechanical allodynia is induced by application of pressure to the skin.[19] The mice 

were placed in a test cage with a wire mesh metal floor and the rigid tip of a von Frey filament 

(punctate stimulus) was applied to the skin of the midplantar area of the hind paw until it bends. 
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Different filaments, ranging from 0.145 to 5.1 gram (table 1), made of nylon, were used that exerted 

an increasing force, starting below the threshold of detection (hair number 7 or 8; 0.145-0.320 gram) 

and increasing until the animal removed its paw. Withdrawal threshold of ipsilateral and 

contralateral paws was measured 3-5 times and the maximal force before withdrawal was the mean 

of the evaluations.[20]  

 

 

 

 

 

 

 

 

 

 

Table 1. Number of the von Frey hair with the corresponding weight in grams.  

 

Statistical Analysis 

Results are presented as mean values ± S.E. All statistical analyses were performed with IBM SPSS 

Statistics 20 (SPSS, Chicago, IL). Because of some missing data in the CCI group statistical analysis of 

post- and pre-measurements in the acetone test, cold plate test and the von Frey test were done 

using linear mixed models. The dynamic mechanical allodynia is shown in percentage of mice that 

responded to the different 3 hairs. For the analysis of ligature material and the differences between 

CCI and sham mice an ANOVA-test is performed. A p-value of 0.05 is considered statistically 

significant. To determine the experimental group size a calculation on data is performed based on 

previously published information [21], using the following formula: n = 1 + 2C(s/d)2 [22] to compute 

sample size for continuous variables where s is an estimation of the standard deviation of the 

variable, d is the magnitude of the difference we wish to be detected, and C is a constant dependent 

on the value of  alpha and beta selected.  C = 10.5 for α = 0.5 and 1-β = 0.9, then sample size is n = 1 + 

21 x (5/10)2 = 6.25. This analysis showed that to detect differences of 10% with a power of 90% and 

Table 1. 

Number of the hair 

 

Weight of the hair (g) 

4 0.03 

6 0.09 

7 0.15 

8 0.32 

9 0.39 

10 1.1 

11 1.7 

12 3.3 

13 5.1 

14 8.3 
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statistical significance at the p < 0.05 level, 7 mice per group are needed. Since we expect that 10–

30% of animals that will undergo chronic construction injury will not have successful neuropathic 

symptoms 10 animals per group will be needed to produce statistically valid results.  

 

Results 

General well-being  

There were no complications after surgery and no animals had to be excluded from the study. One 

mouse got a staphylococcus infection at the end of the experiment, which was treated. The fur of all 

the mice was clean, shining and well groomed.  

 

Directly after surgery, CCI-mice showed a characteristic posture of the left hind paw, with a curve 

downward and decreased musculature and thereby made abnormal movements with the left hind 

paw. After approximately one week, the enlarged movements were still seen and the left hind paw 

was still curved downwards, but the other abnormal movements mostly disappeared. Some mice 

showed mild signs of autotomy, as they gnaw or bite their paws or toes, which could indicate that 

the ligation of the sciatic nerve was too tight. There were occasional signs of stress present, but no 

abnormal aggression amongst the mice was seen. The activity of the mice was generally normal. Both 

sham as CCI-mice gained weight during the experiment. After the experiment it was confirmed that 

constrictions were still present.  

 

Acetone test 

To test thermal hyperalgesia the acetone test was performed in sham and CCI-mice (Figure 1). 

According to the acetone test an increase in cumulative reaction time in sham mice was seen. This 

increase was significant postoperatively compared with preoperatively on day 18 and 21. In CCI mice 

a significant increase in cumulative reaction was seen preoperatively compared with day 7, in silk 

ligatured mice more than in catgut ligatured mice. From day 7 the cumulative reaction time 

decreased in the silk group, but was still higher than preoperatively, which indicates neuropathic pain 

following CCI in mice according to the acetone test. In the catgut ligatured mice the cumulative 

reaction time increased until day 14 but then showed a decline on day 18. All postoperative 

measurements in catgut ligatured group were significantly higher than preoperatively. However, 

there was never a significant difference between sham mice and CCI mice. 
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Cold plate test 

With the cold plate test cumulative reaction time as well as number of lifts are measured in left and 

right hind paw (Figure 2). Sham mice and the contralateral hind paw showed an equal cumulative 

reaction time, while cumulative reaction time increased in CCI mice, in silk ligatured mice more than 

catgut ligatured mice. The cumulative reaction time in the silk ligatured mice was still increasing on 

day 21, while catgut ligatured mice showed a decrease in cumulative reaction time on day 14. A 

difference in sham mice and the right hind paw is shown on day 14 (p=0.007) and day 18 (p=0.037). 

In comparison the ipsilateral hind paw and the sham mice were different on day 7, day 10, day 18 

and day 21.  

 

 

 

 

Figure 1. Thermal and chemical hyperalgesia (cumulative reaction time ±SE) measured in CCI mice and sham mice with 

acetone test preoperatively and postoperatively. Statistics were done with linear mixed models in which:  * p<0.05 as 

compared with preoperative measurement, ** p<0.01 as compared with preoperative measurement, *** p<0.001 as 

compared with preoperative measurement. Measurements on day 3 and day 33 were left out, because of missing data. A 

significant increase was seen in both CCI mice, silk and catgut ligatures, from day 0 until day 7. In silk a significant 

decrease is seen after day 7. 
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Figure 2.  Thermal allodynia measured in CCI mice and sham mice with the cold plate test in cumulative reaction time ±SE 

preoperatively and postoperatively in both ipsilateral (left) and contralateral (right) hind paw. Statistics were done with 

linear mixed models in which:  * p<0.05 as compared with preoperative measurement, ** p<0.01 as compared with 

preoperative measurement, *** p<0.001 as compared with preoperative measurement. In CCI-mice with silk ligatures a 

significant increase is seen from preoperatively to day 10. From day 10 until day 14 a decrease in cumulative reaction 

time was seen, though this difference was not significant. In CCI-mice with silk ligatures a significant increase of 

cumulative reaction time was seen on day 7, day 14 and day 21 compared with the preoperative cumulative reaction 

time.  

Thermal allodynia was also tested by the cold plate test considering the number of lifts (Figure 3). 

Sham mice and right hind paw remained constant over time. Sham mice even showed a significant 

decrease in number of lifts of day 7 and 10. The number of lifts in CCI mice significantly increased. 

The catgut ligatured CCI mice showed an increase in number of lifts, until a decrease in number of 

lifts was seen on day 14, on which the postoperative measurement was not significantly different to 

the preoperative measurement. In silk ligatured mice a constant increase in number of lifts was seen 

and the number of lifts was still increasing on day 21. Neuropathy in mice according to cumulative 

reaction time as well as number of lifts significantly increased from day 7 in the left hind paw of CCI 

mice and decreased from day 7 in the right hind paw of CCI mice. The number of lifts of sham mice 

and the contralateral hind paw differed from the ipsilateral hind paw in all postoperative 

measurements, but not in the preoperative measurement, which indicates neuropathic pain 

following the cold plate test. 
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Figure 3. Thermal allodynia measured in CCI mice and sham mice with cold plate test in number of lifts ±SE 

preoperatively and postoperatively in both ipsilateral (left) and contralateral (right) hind paw. Statistics were done with 

linear mixed models in which:  * p<0.05 as compared with preoperative measurement, ** p<0.01 as compared with 

preoperative measurement, *** p<0.001 as compared with preoperative measurement. A significant increase was seen 

from preoperatively to day 7 in both silk and catgut ligatured mice considering the left hind paw. In CCI mice with silk 

ligatures also a significant increase was seen from day 18 to day 21. In the CCI mice considering the right hind paw and 

the sham-mice the number of lifts remained constant.  

 

Von Frey test 

Mechanical allodynia was tested in the von Frey test (Figure 4). Sham mice showed overall a low 

force before withdrawal, but on day 11 sham mice showed a peak in maximal force before 

withdrawal. The right hind paw showed an increase in maximal force before withdrawal. The left 

hind paw showed a significant decrease in maximal force before withdrawal, in silk ligatured mice 

more than in catgut ligatured mice. In catgut ligatured mice an increase in maximal force before 

withdrawal was seen until day 11. On day 14 a drop was seen, and after that a small increase was 

seen. Postoperatively there were no significant differences compared with preoperatively. In the silk 

ligatured mice a significant decrease in maximal force before withdrawal was seen on day 7. From 

day 7 the maximal force before withdrawal remained constant. The maximal force before withdrawal 

was significantly different in the contralateral hind paw than the sham mice. Between the ipsilateral 

hind paw and the sham mice only differences were seen preoperatively, on day 7 and day 10.  
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Figure 4. Mechanical allodynia measured in CCI mice and sham mice with the Von Frey test in maximum force before 

withdrawal ±SE preoperatively and postoperatively in both ipsilateral (left) and contralateral (right) hind paw. Statistics 

were done with linear mixed models in which:  * p<0.05 as compared with preoperative measurement, ** p<0.01 as 

compared with preoperative measurement, *** p<0.001 as compared with preoperative measurement. Considering the 

right hind paw the CCI mice, both catgut and silk ligatured, showed a significant increase in the maximal force before 

withdrawal. Considering the left hind paw no significant difference was found in the catgut ligatured mice. In the silk 

ligatured mice a significant decrease was found in all postoperative measurements compared with the preoperative 

measurements. 

 

Discussion 

In this study we demonstrated that a CCI model in mice can induce neuropathic pain behaviors 

comparable to neuropathic pain signs and symptoms in humans. Chronic constriction injury in mice 

seems to present significant quantitative changes proportional to external stimulation in thermal and 

chemical hyperalgesia, thermal allodynia and mechanical allodynia. Neuropathy was developed from 

day 7 postoperatively and in most animals neuropathy was still observed until day 21-27 days 

postoperatively. 

We tested two ligature materials, silk and catgut. Silk seems to be preferable compared with catgut 

as ligature material in mice. 

 

Neuropathic pain behavior 

After surgery abnormal movements were seen in all groups, which disappeared mostly after one 

week. No mice had to be excluded from the experiment due to extensive weight loss, disease or 

autotomy. In some mice a slight reddening of the plantar surface of the toes was seen, these mice 

were not excluded from the experiment. It could however indicate that the ligature of the sciatic 
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nerve was too tight. According to cumulative reaction time, measured with the acetone test, thermal 

and chemical hyperalgesia were present from day 7 in CCI mice with both silk and catgut ligatures. 

Sham mice were barely responsive to acetone application, but CCI mice showed associated aversive 

behavior as licking of the affected paw, limping with the left paw and enlarged movements. The 

acetone test was only performed in the ipsilateral hind paw, so no comparison with the contralateral 

hind paw could be made. Also according to both cumulative reaction time and number of lifts, 

measured with the cold plate test, cold allodynia was present in CCI mice with silk and catgut 

ligatures from day 7, compared with the contralateral hind paw and the sham mice. And also the von 

Frey test showed neuropathy in CCI mice with silk catgut ligatures from day 7.  

The CCI-model has its limitations. For example, to obtain validated results, environmental factors 

should be eliminated. Concerning the acetone test the duration of exposure to cold is dependent on 

the spread and the evaporation of acetone, because of the ambient temperature and the body 

temperature of the mouse.[23, 24] Furthermore the landing of the acetone of the plantar surface of 

the left hind paw is technique-dependant, and causes differences in mice.[17] Also the liquid itself 

may elicit a chemical, olfactory or mechanical stimulus that may, independent of the temperature, 

elicit a flexion reflex.[17, 23, 24] Concerning the cold plate testing, not all tests could be performed 

due to technical difficulties, especially in the catgut-ligatured mice. Concerning the von Frey testing, 

the bending forces applied by Von Frey filaments are significantly influenced by ambient humidity 

and slightly by temperature. Also washing and drying can significantly affect the bending forces.[25] 

It is important the experimenter waits for the animal to hold its paw in the right position as weight 

bearing of the limb might be a confounding factor in determining von Frey withdrawal thresholds. 

Therefore also the increased weight of the CCI mice during the experiment could be a determent 

factor in the von Frey test.[26] In further research it might be useful to use an electronic von Frey 

meter, because of the difference in increase of the forces.  

 

Silk versus catgut  

In the acetone test, the cold plate test and the von Frey test a trend toward more neuropathic 

behavior was shown in mice with silk ligatures compared with catgut ligatures. We suspect that these 

results are not significant because fewer mice with catgut ligatures were measured than initially 

powered due to technical difficulties. Robinson et al. showed catgut ligation caused cold allodynia, 

chemical hyperalgesia and mechanical hyperalgesia for at least 56 days post-surgery following partial 

sciatic nerve ligation (PNL) in rat. Silk ligatures caused the same deficits, but several of these deficits 

diminished over time 21-28 post surgery. In contrary to the rat model, where catgut is mostly used 

presumably because it induces an inflammatory response, in mice, catgut does not seem to be as 

effective. Perhaps catgut in mice does not induce an inflammatory response where silk ligature 



Chapter 6 

110 
 

material does.[13] However this research just measured neuropathic pain for 27 days, sham even 21 

days, so the long term effect of ligature material on neuropathy is not studied and inflammatory 

parameters have not been studied. More research is therefore needed to prove our hypothesis that 

silk is more effective than catgut in mice in a CCI model.  

 

In conclusion this study demonstrated that a murine chronic constriction injury model to study 

neuropathic pain behavior can be a valuable model for testing of neuropathic pain and observational 

studies. Because mice are genetically modifiable, chronic constriction injury research in mice could 

create important opportunities in for example the role of inflammatory receptors or channel 

pathology compared with other animal models for the further discovering and testing of the 

mechanisms of neuropathic pain and possible new treatment targets. 
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Abstract  

Introduction  

Neuropathic pain is defined as pain arising after nerve injury and is common after surgery.  

Methods 

Mice underwent mechanical ventilation (MV) and were allocated to receive sham (MV-sham) or 

chronic constriction injury (MV-CCI) surgery. Postoperative systemic cytokines were determined on 

day 0 and 16 and sensory testing was performed on day 0, 3, 7 and 16 by cold plate test (number of 

lifts (NOL) and cumulative reaction time (CRT)) and von Frey test.  

Results 

MV-Sham showed an increase in interleukin (IL)-1β and tumor necrosis factor (TNF)-α compared with 

MV, MV-CCI lido in keratinocyte derived chemokine (KC) compared with MV. MV-CCI showed a 

difference between the left and right paw on day 7, MV-CCI lido on day 7 and 16. The NOL on the left 

paw was lower in MV-sham compared with MV-CCI and lower in the MV-CCI lido compared with MV-

CCI mice on day 16. 

 The left and right hind paw were different in CCI group on day 3 and 7. In MV-CCI lido the left and 

hind paw were different on day 7. The CRT  was higher in MV-CCI mice than MV-sham mice on day 16 

and in MV-CCI mice than in MV-CCI lido mice. The left hind paw scored lower on maximal force 

before withdrawal on day 16 in the CCI lido group than the right hind paw.  

Conclusions 

We demonstrated that nerve injury and not systemic inflammatory response seems mandatory for 

development of neuropathic pain in a ‘second hit’ model. Lidocaine attenuates cold allodynia in 

mice. 
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Introduction 

The response to surgical injury is a combination of complex physiological and behavioral changes 

with an important role for the local and systemic immune system.[1] The severity of the injury seems 

to correlate with the inflammatory response [1, 2] involving Interleukin- (IL) 6, TNFα, IL-1 and IL-8. [2] 

After injury the host defense is aimed at restoring homeostasis, and the release of anti-inflammatory 

and pro-inflammatory cytokines seems equally important.[3] Interestingly, dysregulation of the 

inflammatory response can play a role in pain after surgery and the development of chronic pain.[4-

8]  Mechanical ventilation without surgery can result in an inflammatory response too, characterized 

by release of inflammatory cytokines and influx of immune cells such as neutrophils.[9-12] Moderate 

to severe pain after surgery can lead to chronic pain and a reduction in the quality of life in the 

immediate postoperative period [13], which is an important reason for delayed discharge.[14]  

Neuropathic pain is defined as pain arising as a direct consequence of a lesion or disease affecting 

the somatosensory system and is common after surgery. [15] Nerve damage is characterized by an 

increased sodium channel expression, ectopic electrical activity and altered neuroplasticity.[16] In 

animal models, the inflammatory response is linked with the development neuropathic pain. 

Proinflammatory cytokines such as tumor necrosis factor-α (TNF-α), IL-1β, and IL-6 induce acute or 

short-term and chronic hyperalgesia and allodynia.[17] Neuropathic pain presents as a constant, 

burning pain with spontaneous sharp exacerbations and worsening upon normal sensory triggers. 

[18]  Sensory testing is an important diagnostic tool in determining neuropathic pain, which can 

objectivity allodynia and hyperalgesia.[19]  

 

Lidocaine is an amide local anesthetic and aspecific sodium channel blocker used for treatment of 

acute and chronic pain. Low dose systemic lidocaine has anti-hyperalgesic and anti-inflammatory 

properties.[7, 20] Lidocaine attenuates activated endothelial interleukin (IL)-1, 6 and 8 

concentrations and ICAM-1 expression in vitro [21, 22] and reduces levels of tumor necrosis factor 

(TNF)-α, IL-1β IL-6 and Il-8 in animal endotoxemia models.[23-25] Lung mechanics are improved in 

acute lung injury in rabbits by lidocaine.[26, 27] The antihyperalgesic effect of lidocaine in 

neuropathic pain syndromes results from a decrease in ectopic discharges in injured neurons and its 

selective inhibition of hyperexcitable peripheral and central neurons to noxious stimuli.[28-30] 

Since mechanisms of neuropathic pain after surgery are insufficiently understood, [31, 32] 

investigating the course and cause of neuropathic pain is pivotal for subsequent development of 

treatment and prevention strategies. In this study we investigate the postoperative inflammatory 
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response after chronic constriction injury (CCI) versus sham, and we determine mechanical and 

thermal allodynia after MV and CCI versus sham in a murine model. 

We study the effect of intraperitoneally administered lidocaine on the postoperative inflammatory 

response and the development of thermal and mechanical allodynia. 

We additionally used  MV to enhance extrapolation to the clinical ‘second hit’ situation in which 

patients are being ventilated and undergo surgery. 

 

 

Material and methods  

All experiments were approved by the Regional Animal Ethics Committee in Nijmegen and performed 

according tothe guidelines of the Dutch Council for Animal Care and The National Institutes of 

Health.  

 

Study Population 

Studies were performed in C57BL/6J male mice (n=64) (Charles River). Mice were acclimatized to 

their environment and were aged between 8-12 weeks for the start of the experiment.  Mice were 

housed in a light and temperature controlled room under specific pathogen free (SPF) conditions. 

Standard pelleted chow (1.00 % Ca; 0.22 % Mg; 0.24 % Na; 0.70 % P; 1.02 % K; SSNIFF Spezialdiäten 

GmbH, Soest, Germany) and drinking water were available ad libitum. 

 

Experimental design 

This experiment consists of two parts. First we investigated the inflammatory systemic response after 

surgery, comparing sham and CCI with or without systemic low dose lidocaine (bolus 1,5 mg/kg and 2 

mg/kg/hour (figure 1).  

 

 

 

Figure 1. First part of experiment, lasting 2,5 hours. WT=wildtype, MV=Mechanical ventilation, CCI=chronic constriction 

injury. 
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Secondly, we investigated the effect of low dose lidocaine on the development of neuropathic pain 

with postoperative sensory testing (see paragraph ‘postoperative testing’) done in both sham-group 

and CCI-group (n=), with silk ligatures, during 16 days (figure 2). All mice were euthanized by 

exsanguination and cytokine levels were determined. 

 

 

 

Figure 2. Second part of experiment lasting 16 days. WT=wildtype, MV=Mechanical ventilation, CCI=chronic constriction 

injury. 

 

Mechanical ventilation and surgical procedure 

Both sham and CCI-mice were operated. Before surgery, the mice received carprofen subcutaneously 

according to their weight (0.1 ml carprofen per 10 gram). The mice were anesthetized using isofluran 

inhalation (1-4%). After oral intubation with a 20 gauche catheter, the mice were mechanically 

ventilated (MiniVent®, Hugo Sachs Elektronik-Harvard Apparatus, March-Hugstetten, Germany). The 

ventilation settings used were based on measured tidal volume and respiratory rate during 

spontaneous ventilation in C57Bl/6 mice [27]: a tidal volume of 8 ml/kg body weight and a frequency 

of 150/min. All animals received 4 cm H2O positive end-expiratory pressure (PEEP), and fraction of 

inspired oxygen was set to 0.4. Rectal temperature was monitored continuously and maintained 

between 36.0°C and 37.5°C using a heating pad. Under a dissecting microscope, the left common 

sciatic nerve was exposed at the level of the mid-thigh by dissecting through the biceps femoris. In 

the CCI-mice three ligatures (silk 6.0) were loosely tied around the sciatic nerve proximal to the nerve 

trifurcation (while taking care to preserve epineural circulation), at about 1 mm spacing, until they 

elicited a brief twitch in the related hind paw. The muscle layer was then stitched and the incision in 

the shaved skin layer was closed using clips. Sham-mice had only sciatic exposure without ligation 
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and were used as controls. After surgery the mice received carprofen subcutaneously once a day 

according to their weight on day 1 and day 2. On day 10, the clips were removed. Lipopolysaccharide 

(LPS) was measured in the mechanical ventilation circuit by Limulus Amebocyte Lysate testing 

(Cambrex Bio Science, Walkersville, MD, USA; detection limit: 0.06 IU/ml) to rule out contamination 

and LPS-induced pulmonary inflammation. 

 

General well-being 

In the second part of the experiment in the first week after surgery, animals were weighted daily. 

When the animal lost too much weight (>30% directly after surgery or 20% in the days after surgery, 

starting weight mean of approximately 24 grams) or did not recover within 1 week the humane 

endpoint had been reached and the animal was to be excluded from the experiment and 

consequently postoperative pain testing. They were also tested on activity, state of the surgical 

wound and eventual damage on the left feet or toes (by autotomy).  

 

Cytokine analysis 

A simultaneous Luminex® assay was used to determine plasma cytokine levels of TNF-, IL-6, IL-10, 

KC and IL-1β  (Milliplex, Millipore, Billerica, MA). 

 TNF-, IL-6 and KC (murine equivalent of human IL-8) in lung homogenate were determined by 

enzyme-linked-immunosorbent assay (ELISA) (for IL-6 and IL10; CytoSet, BioSource, CA; for TNF- 

and KC; ELISA-Kit, R&D Systems, Minneapolis, MN). Lower detection limits: IL-1β 40 pg/ml; TNF-: 32 

pg/ml; IL-6: 160 pg/ml; IL-10: 16 pg/ml and KC: 160 pg/ml.  

 

Postoperative testing 

Responses to thermal and mechanical stimuli were tested in all mice before (baseline) and 3, 7 and 

16 days after surgery.  

Thermal allodynia was measured using the Cold Plate test. The mice were exposed to a temperature 

of 2-2.5ºC to regain the best response. Measurements were performed on both the ipsilateral and 

contralateral hind paws. Mice were scored for 5 minutes on scratching with a paw, lifting up the paw, 

jumping, lifting up the paw in the same place and licking on the toes. The amount of lifting of the 

hind paw was measured and analysed as number of lifts. Also the amount of jumps was counted and 

the duration of reaction was measured and analysed as cumulative reaction time. [33, 34]  
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Mechanical allodynia was measured using the Von Frey test, before surgery, on day 3, 7 and 16.  

Mechanical allodynia was induced by application of pressure of the skin (table 1). [35] Mice were 

placed in a test cage with a wire mesh metal floor and the rigid tip of a von Frey filament (punctate 

stimulus) was applied to the skin of the midplantar area of the hind paw until it bended. Different 

filaments, ranging from 0.145 to 5.1 gram (table 1), made of nylon, were used that exerted an 

increasing force, starting below the threshold of detection (hair number 7 or 8; 0.145-0.320 gram) 

and increasing until the animal removed its paw. Withdrawal threshold of ipsilateral and 

contralateral paws was measured 3-5 times and the maximal force before withdrawal was the mean 

of the evaluations. [36]  

 

 

 

 

 

  

 

 

 

Table 1. The number of the hair used in the von Frey test with corresponding weight of the hair in grams (g). 

 

Statistical Analysis 

For both parts of the experiment separate power analyses were performed. 

First part: We performed a sample size calculation based on previous investigations considering a 

difference of 40% in cytokine levels between ventilated and control mice with a type 1 error of 5% 

(α=0.05) and a power of 80% (β=0.2).[12, 37, 38] This resulted in a group size of 8 animals per group.  

Shapiro-Wilk tests showed that data were not normally or log normally distributed. Data are 

therefore expressed as median with interquartile range (IQR) and depicted as column bar graphs. 

Differences between control versus lidocaine and between ventilated groups were studied using 

Mann Whitney tests. Statistical analysis was performed using Graphpad Prism 5 software (Graphpad 

Software, La Jolla, USA). P-values < 0.05 were considered significant. 

 

Number of the hair 

 

Weight of the hair (g) 

4 0.03 

6 0.09 

7 0.15 

8 0.32 

9 0.39 

10 1.1 

11 1.7 

12 3.3 

13 5.1 

14 8.3 
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Second part: The experimental group size calculation for the behavioral test is performed based on 

previously published information [39], using the following formula: n = 1 + 2C(s/d)2 [40] to compute 

sample size for continuous variables where s is an estimation of the standard deviation of the 

variable, d is the magnitude of the difference we wish to be detected, and C is a constant dependent 

on the value of  alpha and beta selected.  C = 10.5 for α = 0.5 and 1-β = 0.9, then sample size is n = 1 + 

21 x (5/10)2 = 6.25. This analysis showed that to detect differences of 10% with a power of 90% and 

statistical significance at the p < 0.05 level, 7 mice per group are needed. Therefore all groups 

originally started with n = 8. Results of the behavioral tests are presented as mean values ± S.E. All 

statistical analyses were performed with Graphpad Prism 5 software (Graphpad Software, La Jolla, 

USA). Pre-operative measurements were compared with post-operative measurements using Mann 

Whitney tests. Comparisons between left and right hind paw were made by a paired samples T-test. 

A p-value of < 0.05 is considered statistically significant.  

 

Results  

 

Cytokine analysis 

First part experiment:  

MV-Sham showed an increase in IL-1β compared with MV. MV-CCI lido showed an increase in KC 

compared with MV. MV-Sham showed an increase in TNF-α compared with MV. No differences were 

observed in IL-6 and IL-10 between the different groups after 2 hours of MV (figure3.) 

 

Second part experiment:  

No differences in cytokine levels were observed betweenthe different groups after 16 days (figure 

4.). 

 

Cold plate test – number of lifts 

The number of lifts was determined in the cold plate test. Differences between left (CCI) and right 

were determined. The differences between the groups were also investigated. 

left versus right paw 

We tested the number of lifts in the left (CCI) as well as right hind paw.  

We observed no differences between the left and right hind paw on day 0, 3, 7 and 16 in the sham 

group. In the CCI group a difference was found between the left and right paw on day 7. In the CCI 

lido group a difference was found between the left and right paw on day 7 and 16 (figure 5.). 

 



Intraperitoneally administered lidocaine attenuates thermal allodynia 

121 
 

 

Figure 3. Cytokine levels in plasma after 2 hours. Levels of interleukin (IL)-1β, IL-6, IL-10, keratinocyte derived chemokine 

(KC) and tumor necrosis factor (TNF)-α keratinocyte derived chemokine (KC), in ventilated mice (MV) compared with MV 

sham mice (MV-sham), MV chronic constriction injury (CCI) mice (MV-CCI) and MV-CCI mice receiving lidocaine at 1,5 mg 

per kilogram per hour (MV-CCI lido). MV-Sham showed an increase in IL-1β compared with MV. MV-CCI lido showed an 

increase in KC compared with MV. MV-Sham showed an increase in TNF-α compared with MV. Data are expressed as 

median with interquartile range (IQR). (* = P < 0.05) 

 

Figure 4.  

Cytokine levels in plasma after 16 days. Levels of interleukin (IL)-1β, IL-6, IL-10, keratinocyte derived chemokine (KC) and 

tumor necrosis factor (TNF)-α keratinocyte derived chemokine (KC), in ventilated (MV) sham mice (MV-sham), MV 

chronic constriction injury (CCI) mice (MV-CCI) and MV-CCI mice receiving lidocaine at 1,5 mg per kilogram per hour (MV-

CCI lido). No differences were observed between the different groups. Data are expressed as median with interquartile 

range (IQR). (* = P < 0.05) 
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Figure 5 . Number of lifts (NOL) comparing left versus right on day 0, day 3, day 7 and day 16. MV=mechanical ventilation, 

CCI=chronic constriction injury, lido=lidocaine. Data are expressed as mean with standard error of the mean (SEM). (* = P 

< 0.05) 

Difference between groups 

The number of lifts on the left paw was lower in the sham group compared with CCI and lower in the 

CCI lido group compared with the CCI mice on day 16 (Figure 6.).  
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Figure 6. Number of lifts (NOL) measured by cold plate comparing different groups on day 0, day 3, day 7 and day 16. 

MV=mechanical ventilation, CCI=chronic constriction injury, lido=lidocaine. Data are expressed as mean with standard 

error of the mean (SEM). (* = P < 0.05) 

 

Cold plate test – cumulative reaction time 

The cumulative reaction time was determined in the cold plate test. Differences between left (CCI) 

and right were determined. The difference between the groups was also investigated. 

Left versus right paw 

We observed no differences between the left and right hind paw on day 0, 3, 7 and 16 in the sham 

group. The left and right hind paw were different in CCI group on day 3 and day 7. 

In the CCI lido group the left and hind paw were different on day 7 (figure 7.).  
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Figure 7. Cumulative reaction time (CRT) measured by cold plate comparing left versus right on day 0, day 3, day 7 and 

day 16. MV=mechanical ventilation, CCI=chronic constriction injury, lido=lidocaine. Data are expressed as mean with 

standard error of the mean (SEM). (* = P < 0.05) 

 

Difference between groups 

The cumulative reaction time was higher in CCI mice than sham mice on day 16. Cumulative reaction 

time was also higher in CCI mice than in CCI mice that received lidocaine on day 16 (figure 8.).  
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Figure 8. Cumulative reaction time (CRT) measured by cold plate comparing different groups on day 0, day 3, day 7 and 

day 16. MV=mechanical ventilation, CCI=chronic constriction injury, lido=lidocaine. Data are expressed as mean with 

standard error of the mean (SEM). (* = P < 0.05) 

 

Von Frey test – maximal force before withdrawal 

Left versus right 

The maximal force before withdrawal was tested in the von Frey test. The left hind paw scored lower 

on maximal force before withdrawal on day 16 in the CCI lido group than the right hind paw (figure 

9). 

 

Differences between groups 

No differences were shown comparing the different groups (figure 10.). 

 



Chapter 7 

126 
 

 

Figure 9. Maximal force of withdrawal by von Frey comparing left versus right on day 0, day 3, day 7 and day 16. 

MV=mechanical ventilation, CCI=chronic constriction injury, lido=lidocaine, g=gram. Data are expressed as mean with 

standard error of the mean (SEM). (* = P < 0.05) 

 

General well being 

Part 1. In the MV group one mouse died during intubation. In the MV CCI  group one mouse died 

during ventilation. In the MV CCI lido group one mouse died during intubation.  

Second part experiment. In the MV sham group 1 mouse was excluded from the experiment with 

paralysed hind extremities and in the CCI group 2 mice died the day after surgery. No autotomy was 

observed.  
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Figure 10. Maximal force of withdrawal measured by von Frey comparing different groups on day 0, day 3, day 7 and day 

16. MV=mechanical ventilation, CCI=chronic constriction injury, lido=lidocaine, g=gram. Data are expressed as mean with 

standard error of the mean (SEM). (* = P < 0.05) 

 

Discussion 

To our knowledge this is the first experiment showing a decrease in thermal allodynia after 

perioperative i.p. administration of lidocaine in an experiment creating a ‘second hit’ pain model with 

MV and surgery (sham/CCI). 

 

 

Anesthetic technique 

We used isoflurane as monoanesthetic and carprofen, a non-steroidal anti inflammatory drug 

administered before surgery and on day 1 and 2. We observed some hiccupping during 

monoanesthesia with isoflurane and a somewhat longer recovery time compared with previous 

experiments where we performed CCI in spontaneous breathing mice. Previous literature describes 

an acute phase response to MV but also to anesthetic drugs.[41] Isoflurane has been shown to 

attenuate the inflammatory response after MV.[42] No medication was used that could interfere 

with the neuropathy.  

In the CCI lido group we did not investigate anesthetic need although lidocaine administration can 

decrease anesthetic need.[43-45] Further studies are needed to assess the effect of other anesthetics 
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in this murine model, for example ketamine, dexmedetomidine and opioids that are known for their 

anti-inflammatory and pain modulating effects.[2, 46] 

 

Cytokine release 

Part 1 of the experiment 

We found a systemic increase of cytokines IL-1β and TNF-α after surgery (MV-sham) and KC after 

surgery (MV-CCI lido) in comparison with MV. These findings support our ‘second hit’ model.  

Previous investigations have shown that cytokine levels of unventilated mice are below or extremely 

close to detection limits, therefore we did not include an unventilated group.[12, 37, 38] The entire 

procedure lasted only 2 hours and not all measured cytokines can reach peak concentrations in such 

a short period of time.[47, 48] In a previous investigation we have shown an increase of IL-10 after 4 

hours of MV with systemic administration of lidocaine.[45] We did not show an increase in cytokine 

levels comparing sham operation to CCI. Although severity of injury seems to correlate with systemic 

inflammatory response and perhaps even with the amount of postoperative pain.[1, 2, 6]  

Part 2 of the experiment 

No differences in systemic cytokine levels were observed after 16 days. Cytokine levels were almost 

below detection limits, indicating a return to preoperative status consisted with previous 

investigations.[12, 37, 38]  

 

Neuropathic pain behavior 

We compared sham with CCI and CCI with lidocaine administration creating a model of postsurgical 

neuropathic pain. In this model CCI but not sham surgery leads to the development of neuropathy in 

mice. Perioperative administration of lidocaine can lead to a decreased thermal allodynia. Mice 

receiving lidocaine had significantly lower symptoms of neuropathy during the cold plate test.  

 

Sensory testing 

We used cold plate testing to assess cold allodynia and von Frey testing to assess mechanical 

allodynia. 

Cold allodynia is thought to be mediated by C and Aδ fibers, mechanical allodynia by Aβ fibers 

through peripheral and central sensitisation, although the exact underlying mechanisms are not 

completely understood.[49] Cold allodynia in mice can mimic cold allodynia observed in patients.[50] 

Cold plate testing has high behavioral variability and is mainly used for neuropathy models.[51, 52] 

Von Frey testing to determine mechanical allodynia can reliably be used in mice.[51, 52]  During cold 

plate testing we did found high baseline values in the cold plate tests with high variability (figure 5,7). 

We believe that habituation is a contributing factor in the gradual decline of our measurements and 
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perhaps a longer period of acclimatization should be applied to research with cold plate testing in 

mice. [53] Concerning the von Frey testing, the bending forces applied by Von Frey filaments can be 

influenced by ambient humidity, temperature, washing and drying.[54] Increased weight of the CCI 

mice during the experiment could also be a conflicting factor in the von Frey test.[55]  

 

Left versus right hind paw 

No differences between left and right hind paw were observed in the sham operated mice, however 

an increase in thermal and mechanical allodynia was objectivised in the CCI treated mice. A sham 

operation did not lead to altered sensory testing. Therefore we conclude that although a systemic 

inflammatory response is caused by sham operation and MV, nerve injury is needed for altered 

sensory testing in our experiment. Perhaps a more extended surgical procedure or an infectious 

component without neurological damage, will alter sensory testing after surgery as has been shown 

in a model of inflammatory pain.[56] Further research is needed to identify the role of inflammatory 

/ infectious disease and its role in the development of neuropathic pain. 

 

Lidocaine  

Lidocaine acts on voltage-gated sodium channels in the damaged nerve and inhibits the release of 

nociceptive mediators by keratinocytes, G-protein coupled receptors and glycinergic system. [57, 58] 

Some studies indicate perioperative intravenous lidocaine to reduce postoperative complications and 

neuropathic pain. [58-60] . Low dose systemic lidocaine acts like an anti-hyperalgesic and anti-

inflammatory agent.[7, 20] Lidocaine targets neuropathic pain possibly by a decrease in ectopic 

discharges and prevention of central hyperalgesia.[28-30] Our study shows that cold allodynia is 

attenuated by lidocaine on day 16 measured by number of lifts (NOL) and in cumulative reaction 

time (CRT) in the cold plate tests. These findings insinuate  lidocaine to have a greater effect on Aδ 

fibers and C fibers than on Aβ fibers and to  prevent central hyperalgesia since it has been posed that 

mechanical allodynia is caused by central sensitization.[49] 

We did not find a significant difference in the von Frey tested groups, however this could be 

attributed to a power problem since two mice died in the CCI group. Further research is needed to 

elucidate the mechanism contributing to the attenuation of sensory testing by lidocaine. 

 

Since mice are genetically modifiable, chronic constriction injury research in mice could create 

opportunities in exploring the role of inflammatory receptors or channel pathology in neuropathic 

pain, and subsequent development of new treatment targets.  
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In conclusion this study demonstrated that not a systemic inflammatory response, but nerve injury is 

mandatory for development of neuropathic pain in a murine ‘two hit’ model. Lidocaine attenuates 

cold allodynia in healthy mice. 
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This thesis aimed to identify some of the mechanisms responsible for the responses after mechanical 

ventilation and surgery measured by inflammatory and behavioral outcome parameters and explores 

possibilities of modulation of inflammatory responses after mechanical ventilation and surgical 

induced nerve injury.  

 

Consequently, with respect to our hypothesis on homeostasis, the following research questions were 

identified.  

 What is the role of IL-1β, caspase-1 and neutrophil factors in the mechanical ventilation 

induced inflammatory response in mice?  

 Do resveratrol and intravenous lidocaine attenuate the mechanical ventilation induced 

inflammatory response in mice?  

 What is the current state of knowledge on the in vitro mechanisms and in vivo efficacy of 

intravenous lidocaine in acute and chronic pain?  

 Can we develop a murine model of neuropathic pain behavior?  

 Can we develop a murine ‘two hit’ model of neuropathic pain?  

 Does lidocaine attenuate the postoperative inflammatory response and development of 

neuropathic pain in mice?  

 

 IL-1beta processing in mechanical ventilation-induced inflammation is dependent on neutrophil 

factors rather than caspase-1. 

In chapter 2 we found that cleavage of pro-1β is dependent rather on neutrophil proteasen than 

caspase-1. Our findings resulted in the following hypothesis: Mechanical ventilation causes 

mechanotransduction and cell and/or tissue damage. This causes the release of danger-associated 

molecular patterns (DAMPs) that activate TLR4 and possibly other pattern recognition receptors. 

Ligation of these receptors induces production of cytokines, most importantly IL-1β. Subsequently, 

KC is produced, leading to neutrophil recruitment to the lungs. The majority of pro-IL-1β is excreted 

in the inactive form and then cleaved by factors released by neutrophils, such as neutrophil serine 

proteases. Finally, active IL-1β extracellularly binds to the IL-1R, which in turn leads to the production 

of more cytokines and hence positive amplification of the inflammatory response. As such, a positive 

feedback loop is activated which could be an explanation for the extensive inflammatory response 

observed following mechanical ventilation.  
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Previous investigations suggest that the pro-inflammatory cytokine IL-1β plays a key role in the 

pathogenesis of the inflammatory response after mechanical ventilation by promoting neutrophil 

recruitment and by increasing epithelial injury and permeability.[1-3] It has been assumed that upon 

activation of the innate immune system, e.g. via Toll Like Receptors (TLRs), IL-1β is synthesized as an 

inactive precursor molecule, pro-IL-1β, that cannot bind and activate the IL-1R.[4] In order to process 

pro-IL-1β and form bioactive IL-1β, proteolytic cleavage from the precursor is required. Caspase-1 is 

the major protein implicated in cleavage of pro-IL-1β. [4, 5] Our finding that caspase-1 does not play 

a significant role in mechanical ventilation-induced inflammation is in contrast to a recent study 

where the Nod-Like Receptor (NLR)P3 inflammasome was found to play an important role in the 

mechanical ventilation-induced inflammatory response.[6] Several differences might explain our 

results. First components of the inflammasome, upstream of caspase-1,  in knockout mice were used, 

and it was shown that mechanical ventilation activated caspase-without involvement of these 

components. Nevertheless, it is possible that they play other roles in the mechanical ventilation-

induced inflammatory cascade than merely activating caspase-1. As abrogation and inhibition of 

caspase-1 by either a knockout approach or pralnacasan treatment did not have any effect in our 

model, the role of caspase-1/the inflammasome appears not to be as crucial as suggested. Second, 

differences between wild-type and knockout mice were only found at a high tidal volume, known to 

cause extensive lung damage [7], while no effects were found at a low tidal volume. This suggests 

that the inflammasome might play a more important role at higher tidal volumes but not in 

mechanical ventilation-induced inflammation at clinically relevant ventilator settings. A recent study 

from the same group showed that pre-treatment with allopurinol or uricase (both degraders of 

known inflammasome-activating factors [8]) did not decrease mechanical ventilation-induced 

inflammation, which is in support of a caspase/inflammasome-independent mechanism.[9] Our 

findings that treatment with an antibody against KC or depletion of neutrophils reduced the 

mechanical ventilation-induced production of IL-1β and KC indicate an important role for neutrophils 

in initiation and/or propagation of the inflammatory response. Pro-IL-1β cleavage in our model is 

probably achieved through neutrophil factors as the serine proteases proteinase-3 (PR-3), elastase or 

cathepsin G, leading to bioactive IL-1β and propagation of the inflammatory response.[4, 10, 11] 

Several other IL-1β-mediated inflammatory responses are described to be partly or completely 

independent of the inflammasome and caspase-1 and possibly dependent on neutrophil factors as 

proteinase-3 and cathepsin G .[11] Future studies should focus on the confirmation of our hypothesis 

and the identification of these neutrophil factors, they could provide a possible therapeutic target to 

influence homeostasis.  
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Resveratrol attenuates NF-κB-binding activity but not cytokine production in mechanically 

ventilated mice 

Resveratrol inhibits pulmonary DNA- binding activity of NF-κB in healthy mice following mechanical 

ventilation.  However, pretreatment of resveratrol did not attenuate the induction of pulmonary of 

systemic cytokines elicited by mechanical ventilation.  

Resveratrol (3,4’,5-trihydroxy-trans-stilbene) is a polyphenol found in plants and grapes and exhibits 

multifaceted physiological effects including anti-inflammatory and protective effects on different 

organ systems.[12-14] In vitro and in vivo studies have implicated that the anti-inflammatory effects 

of resveratrol are mediated  by inhibition of TLR4-signaling, supposedly by inhibition of 

Toll/interleukin-1 receptor domain-containing adapter-inducing interferon-beta (TRIF) or myeloid 

differentiation factor 88 (MyD88) [12, 13] and attenuation of NF-κB.[15-17] 

A crucial role for TLR4 has been identified in the mechanical ventilation-induced inflammatory 

response.[18] TLR4 signaling leads to activation of NF-κB,[13, 18, 19] and subsequent production of 

inflammatory cytokines.[20, 21] TLR4 can activate NF-κB by different downstream signaling 

pathways: TRIF and MyD88.[13, 22] The anti-inflammatory effects of resveratrol are mediated by 

inhibition of TLR4-signaling, supposedly by inhibition of TRIF or MyD88 [12, 13], and decreased NF-κB 

activation. [15-17, 23, 24] 

Resveratrol was investigated in several lung injury mouse models. Li et al. investigated the effect of 

resveratrol in mice with respiratory syncytial virus and found inhibition of pulmonary expression of 

TNF-α, IL-1β and IL-6.[25] In an LPS induced acute lung injury model, Cao et al. found resveratrol to 

attenuate the production of IL-1β and suppress the nuclear translocation of NF-κB in lung tissue.[26]  

A limitation of this study concerns time of administration of resveratrol. We administered resveratrol 

in equivalent dosages described in literature but just prior to mechanical ventilation. [27, 28] In vivo 

effects of resveratrol have been observed with longer (pre)treatment of resveratrol, varying from 72 

hours to several weeks.[25, 26, 29, 30]   

In our model resveratrol inhibits production of NF-κB, but not inflammatory cytokines. Furthermore 

this indicates that NF-κB is not the only transcription factor in the acute phase inflammatory 

response upon mechanical ventilation. This study suggest that resveratrol reduces NF-κB activity via 

a different pathway than TLR4. According to the literature different isoforms of NF-κB exist. Kirchner 

et al. described a role for both the p50-p50 homodimer and the p50-p65 heterodimer in rabbit lungs, 

where p50-p50 homodimers were shown to inhibit NF-κB-driven transcription.[31, 32] We did 

observe an increase of one particular NF-κB isoform/subunit, but were unable to identify the 

isoform. More research is needed to identify the involvement of certain isoforms of NF-κB in the 

inflammatory response after MECHANICAL VENTILATION, however our results indicate that only one 
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isoform participates in ventilation induced inflammatory response. Identification of this isoform 

could provide valuable insights in the pathofysiological mechanisms responsible for the increase of 

NF-κB in our model and provide possible targets for influencing homeostasis. 

 

Lidocaine increases the anti-inflammatory cytokine IL-10 following mechanical ventilation in 

healthy mice. 

In chapter 4 we found that different doses of intravenously administered lidocaine in a murine model 

of mechanical ventilation increases levels of plasma and pulmonary IL-10, indicating a modulatory 

role of lidocaine in inflammatory response. No effects were found on pro-inflammatory cytokines, 

neutrophil influx or ICAM-1 levels. We hypothesized that low dose intravenously administered 

lidocaine acts as an anti-hyperalgesic and anti-inflammatory agent [33, 34] and therefore may proof 

to be an important therapeutic to modulate the inflammatory response after mechanical ventilation.  

Extensive in vitro research showed that lidocaine attenuates priming of human neutrophils by 

inhibition of G-protein coupled receptors.[35, 36] Furthermore lidocaine attenuated activated 

endothelial interleukin (IL)-1, 6 and 8 concentrations and intracellular adhesion molecule-1 (ICAM-1), 

important for transport of immune cells to site of inflammation.[37, 38] In different in vivo models 

intravenous lidocaine reduced levels of tumor necrosis factor (TNF)-α, IL-1β IL-6 and Il-8.[39-41] Also 

systemic lidocaine was found to attenuate acute lung injury in rabbits.[42, 43] An additional effect of 

lidocaine infusion is that the requirements for anesthetics are diminished.[44, 45] In human research 

an attenuation in inflammatory response (measured by IL-6, IL-8 and an IL-1 receptor antagonist) in 

plasma has been found at the end of abdominal surgery in response to lidocaine.[46-48]  

 IL-10 is a well known anti-inflammatory cytokine which limits the immune response during infections 

and is produced by nearly every type of cell in the immune system.[49, 50] IL-10 is known to 

decrease the synthesis of pro-inflammatory cytokines in acute phase response as IL-1α, IL-1β, IL-6 

and TNF-α by neutrophils.[51] In mouse lung fibroblast exposed to mechanical stretch, IL-10 inhibited 

inflammatory cytokines.[49] A low lung concentration of IL-10 in patients with acute lung injury is an 

indication for development of adult respiratory distress syndrome (ARDS).[52] Administration of IL-

10 has shown protective effects in LPS induced lung injury.[53] Interestingly, inhaled IL-10 attenuates 

biotrauma and mortality in a ventilator-induced lung injury model in rats.[54] We did not observe an 

attenuation of pro-inflammatory cytokine levels, pulmonary ICAM-1 levels or pulmonary neutrophil 

influx. Again a possible explanation could be that although IL-10 is known to attenuate inflammation, 

the acute phase response in our mechanical ventilation model is only a mild inflammatory response. 

In our opinion we stayed below toxic levels of lidocaine, however extrapolation remains difficult. 
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Mice in our experiment showed a decrease in anesthetic need with lidocaine administration which is 

consistent with previous experiments.[44, 45] Although a decreased anesthetic need did not lead to 

an attenuation of other cytokine levels in our experiment an influence on the level of IL-10 cannot 

completely be ruled out. We believe lidocaine could be used as a modulatory agent during 

mechanical ventilation however, more research has to be performed to elucidate the exact role of 

lidocaine in ventilator induced pulmonary inflammation and cytokine levels during a longer period of 

mechanical ventilation with lung protective ventilator setting. 

 

Intravenous lidocaine has analgesic, anti-inflammatory and antihyperalgesic properties, it also 

attenuates the neuroinflammatory response in perioperative pain and chronic neuropathic pain.  

In chapter 5 we provide an overview of the evidence on in vitro and in vivo efficacy of intravenous 

lidocaine on the inflammatory response in acute and chronic pain. Low dose lidocaine inhibits in vitro 

voltage gated sodium channels, the glycinergic system, some potassium channels and G- coupled 

protein receptors. Higher dosages lidocaine block voltage gated calcium channels, potassium 

channels and NMDA receptors.  Animal studies demonstrate lidocaine to have analgesic effects in 

acute and neuropathic pain syndromes and anti-inflammatory effects early in the inflammatory 

response. Clinical studies demonstrate lidocaine to have a clear advantage in abdominal surgery and 

in some neuropathic pain syndromes. Intravenous lidocaine has analgesic, anti-inflammatory and 

antihyperalgesic properties. It attenuates the (neuro) inflammatory response in perioperative pain 

and chronic neuropathic pain. We recommend more clinical trials to be performed, with larger study 

size, different dosages of administered lidocaine, and impeccable methodology to determine the 

effect of intravenous lidocaine on the neuroinflammatory response in acute and chronic pain. More 

research has to be done assessing the effect of the metabolites of lidocaine. Lidocaine does however 

seems a valuable therapeutic agent to modulate the neuroinflammatory response, perioperative 

pain and chronic neuropathic pain.  

 

Behavior of neuropathic pain in mice following chronic constriction injury comparing silk and 

catgut ligatures. 

In chapter 6 we developed an improvement program to optimize an animal translational pain 

behavior model for neuropathic pain after surgery.  This model is a murine model of CCI comparing 

silk and catgut ligatures. We found that silk seemed to be preferable to catgut.  
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Neuropathic pain is defined as pain arising as a direct consequence of a lesion or disease affecting 

the somatosensory system and is common after surgery. [55] Because the mechanisms of 

neuropathic pain are insufficiently understood, [56, 57] it seems pivotal to investigate the course and 

cause of neuropathic pain and development of treatment and perhaps prevention strategies. 

Therefore ideally we want to study a neuropathic pain animal model that can be translated to the 

clinical situation. Often a chronic constrictive injury model is used in rats to study neuropathic pain 

which include thermal and mechanical allodynia testing [58, 59]. A murine model facilitates a better 

understanding of the course of neuropathic pain, and improves accuracy and decreases variability of 

the chronic constriction model, because of the possibility to use transgenic mice. [59] The material 

that is used for ligatures can have an effect on the outcome of the observed sensory abnormalities. 

[60] In chronic constriction injury, either catgut or silk ligatures are used. In rats, catgut is commonly 

used as ligature material [61]. Catgut induces a development of an inflammatory reaction and 

consequentially a loss of most A fibers and some C fibers, but few cell bodies. [62, 63] In mice, 

however, the preferable ligature material is not known.  In our study silk seemed to be preferable 

compared with catgut as ligature material in mice, however more research has to be performed to 

confirm this hypothesis. In further research it might be useful to use an electronic von Frey meter, 

because of the difference in increase of the forces.  

 In this study we demonstrated that a chronic constrictive injury (CCI) model in mice can induce 

neuropathic pain behaviors comparable to neuropathic pain signs and symptoms in humans. We can 

use this model in future research to test our translational modulatory hypothesis and it could be 

used with transgenic models to provide more insights in the mechanisms that contribute to the 

development of neuropathic pain.  

 

Intraperitoneally administered lidocaine attenuates thermal allodynia in a murine second hit 

chronic constriction injury model. 

 

In chapter 7 we developed an improvement program to optimize an animal translational pain 

behavior model for neuropathic pain after surgery and mechanical ventilation thereby creating a 

‘second hit’ translational model. We found that intraperitoneally administered lidocaine does not 

attenuate the postoperative inflammatory response but does reduce cold allodynia. We also found a 

systemic increase of cytokines IL-1β, TNF-α and KC after surgery. These findings support our ‘second 

hit’ model. 

Translational pain model 
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CCI but not sham surgery led to the development of neuropathy in mice. Mice receiving lidocaine had 

significantly lower symptoms of neuropathy during the cold plate test. 

We used cold plate testing to assess cold allodynia and von Frey testing to assess mechanical 

allodynia. 

Cold allodynia is thought to be mediated by C and Aδ fibers, mechanical allodynia by Aβ fibers 

through peripheral and central sensitisation, although the exact underlying mechanisms are not 

completely understood.[64] Cold allodynia in mice can mimic cold allodynia observed in patients.[65] 

Cold plate testing has high behavioral variability and is mainly used for neuropathy animal 

models.[66, 67] Von Frey testing to determine mechanical allodynia can reliably be used in mice.[66, 

67]   

We conclude that nerve injury is needed for altered sensory testing in our experiment. Perhaps a 

more extended surgical procedure or an infectious component without neurological damage, will 

alter sensory testing after surgery as has been shown in a model of inflammatory pain.[68] Further 

research is needed to identify the role of inflammatory / infectious disease and its role in the 

development of neuropathic pain. Our study shows that cold allodynia is attenuated by lidocaine 

insinuating that lidocaine has a greater effect on Aδ fibers and C fibers than on Aβ fibers and to  

prevent central hyperalgesia since it has been posed that mechanical allodynia is caused by central 

sensitization.[64] 

Further research is needed to elucidate the mechanism contributing to the attenuation of sensory 

testing by lidocaine. Further studies are also needed to assess the effect of other anesthetics in this 

murine model, for example ketamine, dexmedetomidine and opioids that are known for their anti-

inflammatory and pain modulating effects.[69, 70] 

Inflammatory response 

After injury the host defense is aimed at restoring homeostasis, and the release of anti-inflammatory 

and pro-inflammatory cytokines seems equally important.[71] Interestingly, dysregulation of the 

inflammatory response can play a role in pain after surgery and the development of chronic pain.[33, 

72-75]  Mechanical ventilation without surgery can result in an inflammatory response too, 

characterized by release of inflammatory cytokines and influx of immune cells such as neutrophils.[7, 

76-78] The entire procedure lasted only 2 hours and not all measured cytokines can reach peak 

concentrations in this time window. Additionally, the effect of lidocaine may not be observed after 

such a short period of time.[79, 80] We did not show an increase in cytokine levels comparing sham 

operation to CCI. Although severity of injury seems to correlate with systemic inflammatory response 

and perhaps even with the amount of postoperative pain.[70, 74, 81] However, further research 

should focus on the neuroinflammatory responses in the central nervous system.  
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General conclusion  

In the introduction of this thesis we explained the development of the concept of balanced 

anesthesia, which encompasses the use of multiple drugs to produce anesthesia, analgesia, skeletal 

muscle relaxation and attenuation of autonomic reflexes. This thesis provides some insights in the 

responses during anesthesia and surgery. The key topic is that an inflammatory response is a 

homeostatic response to injury or infection and homeostasis or balance is a fundamental 

requirement for life.[82] Hereby we have extended the topic of balanced anesthesia to the 

modulation of the inflammatory response in anesthesia and surgery. We have determined that in 

mechanical ventilation with lung protective settings serine proteasen play an important role and that 

not only NF-κB is responsible for transcription of inflammatory cytokines, furthermore certain 

subtypes of NF-κB may be of greater importance than other. Modulation of the inflammatory 

response after mechanical ventilation, but also in a translational second hit model, by resveratrol and 

lidocaine, has revealed altered outcomes, measured by DNA binding activity of NF-κB, increased IL-

10, altered sensory testing and attenuation of anesthetic need.  

This thesis provided valuable insights in on the balance that exists between the input and outcome in 

relation to mechanisms and modulatory therapy. We present the figure from the introduction of this 

thesis again with the findings of this thesis.  

 

 

Figure 1. Pathophysiology and modulation of inflammation during mechanical ventilation and surgery affecting outcome 
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Recommendations for further research 

We designed an animal model that reflects the clinical setting during a regular anesthesia with 

mechanical ventilation and surgery with or without nerve injury. In this model we investigated 

pathophysiology of inflammatory responses but also provided modulation therapy thereby trying to 

balance outcome parameters. However this model of modulation should ultimately include more 

features.  

Firstly we strongly recommend extended research that takes species and gender in account. But also 

transgenic mouse models require further investigation. An interesting question for example is what 

role of Toll like receptor 4 is in the development of pain in our murine model. Secondly we also 

recommend to investigate the effects of different types of anesthesia, for example we used 

isoflurane in our ‘second hit’ model. Further research should aim to investigate the (modulatory) 

effect of other anesthetics as for example ketamine or medetomide. Thirdly forthcoming research 

should include animal research with different etiologies of neuropathic pain and inflammation to 

elucidate exact mechanisms responsible for chronic pain after surgery.   

Finally, future research should also include patient cohorts with different etiologies of neuropathic 

pain and inflammation. Therapy should include pre-emptive treatment and include patient cohorts 

where different etiologies of neuropathic pain are equally distributed.   
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Summary 

The aim of this thesis was to identify some of the mechanisms responsible for the responses after 

mechanical ventilation and surgery measured by inflammatory and behavioral outcome parameters 

and explores possibilities of modulation of inflammatory responses after mechanical ventilation and 

surgical induced nerve injury. 

  

In chapter 1 we provide a brief overview on the development of anesthesia and mechanical 

ventilation and describe the evolution of the concept of balanced anesthesia. We also provide a brief 

introduction on the pathyofysiology of the acute phase response after mechanical ventilation and 

surgery and describe the mechanisms of pain after surgery and neuropathic pain. The effects of the 

anesthetic drugs isoflurane, lidocaine, ketamine and metedomidine are briefly highlighted. We pose 

a hypothesis on the balance that exists between the input and outcome in relation to mechanisms 

and modulatory therapy. 

 

In chapter 2 we describe the role of IL-1β, caspase-1 and neutrophil factors in the mechanical 

ventilation induced inflammatory response in mice. The cytokine IL-1β is thought to play an 

important role in the pathogenesis of ventilator-induced lung injury. Cleavage of the inactive 

precursor, pro-IL-1β, is needed to form bioactive IL-1β. This can be mediated by several types of 

proteases. Our results illustrate that IL-1 is indeed an important cytokine in the inflammatory 

cascade induced by mechanical ventilation, but caspase-1 appears not to be involved in IL-1β 

processing in this type of inflammatory response. Our results suggest that this is mainly mediated by 

neutrophil factors. 

 

In chapter 3 we investigated the modulatory effects of resveratrol on the mechanical ventilation 

induced inflammatory response in healthy mice. Resveratrol, a polyphenol found in plants and 

grapes exhibits anti-inflammatory effects in vitro and in vivo, supposedly by interfering with TLR4 

signaling and NF-κB. Resveratrol abrogates the mechanical ventilation induced increase in pulmonary 

NF-κB activity, but does not attenuate cytokine levels. These results imply a less prominent role for 

NF-κB in mechanical ventilation induced inflammation than previously assumed. 

 

In chapter 4 we investigate the effects of intravenously administered lidocaine on the mechanical 

ventilation induced inflammatory response. Lidocaine, an amide local anesthetic, has anti-
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inflammatory properties in vitro and in vivo, possibly due to an attenuation of pro-inflammatory 

cytokines, ICAM-1 and reduction of neutrophils influx. Intravenously administered lidocaine increases 

levels of plasma and pulmonary IL-10 indicating a modulatory role of lidocaine on inflammation. 

Intravenously administered lidocaine also appears to reduce anesthetic need in mice. 

 

In Chapter 5 we reviewed the literature concerning the modulatory mechanism and effect of 

lidocaine on neuroinflammatory responses in acute and chronic pain. Intravenous lidocaine has 

analgesic, anti-inflammatory and antihyperalgesic properties. It attenuates the neuroinflammatory 

response in perioperative pain and chronic neuropathic pain. 

In chapter 6 we developed a translation murine model of neuropathic pain. We created a chronic 

constriction injury of the sciatic nerve with silk and catgut ligatures and performed sensory testing of 

mechanical and thermal allodynia. Silk seems to be the preferred ligature material.  

 

In chapter 7 we described the development a ‘two hit’ murine model of nerve injury and investigated 

the effect of intraperitoneally administered lidocaine in a two hit model of surgery and nerve injury.  

Perioperative administered lidocaine attenuated thermal allodynia in our ‘two hit’murine model, 

indicating a modulatory role for lidocaine in the development of pain.  

 

In chapter 8 we will discuss the results of this thesis research in an integrated scientific context and 

proposed several recommendations for future research. 
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Samenvatting 

Het doel van dit proefschrift was om een aantal van de mechanismen die verantwoordelijk zijn voor 

de reacties na mechanische ventilatie en een operatie te identificeren, mede door het meten van 

inflammatoire parameters en gedragsmatige uitkomstmaten. Tevens wilden we de mogelijkheden 

verkennen tot modulatie van ontstekingsreacties na mechanische ventilatie en chirurgisch 

geïnduceerd zenuwletsel.  

 

In hoofdstuk 1 geven we een kort overzicht van de ontwikkeling van anesthesie en mechanische 

ventilatie en beschrijven we de ontwikkeling van het concept van gebalanceerde anesthesie. We 

geven een korte inleiding over de pathofysiologie van de acute fase respons na mechanische 

ventilatie en chirurgie en beschrijven de mechanismen van pijn na een operatie en van 

neuropathische pijn. De effecten van de anesthetica isofluraan, lidocaïne, ketamine en 

metedomidine zijn kort belicht. Wij stellen een hypothese op over de balans die bestaat tussen de 

verschillende mechanismen, modulerende therapie en de uitkomsten. 

In hoofdstuk 2 beschrijven we de rol van IL-1β, caspase-1 en neutrofiele factoren in de mechanische 

ventilatie geïnduceerde ontstekingsreactie bij muizen. Het cytokine IL-1β speelt een belangrijke rol 

bij de pathogenese van ventilator-geïnduceerde longbeschadiging. Splitsing van de inactieve 

precursor, pro-IL-1β is nodig om bioactief IL-1β vormen. Dit kan worden gemedieerd door 

verschillende soorten proteasen. Onze resultaten laten zien dat IL-1β inderdaad een belangrijk 

cytokine is in de inflammatoire cascade veroorzaakt door mechanische ventilatie, maar caspase-1 

lijkt niet betrokken bij IL-1β verwerking in ons model. Onze resultaten suggereren dat dit juist 

voornamelijk wordt gemedieerd door neutrofiele factoren. 

 

In hoofdstuk 3 onderzochten we de modulerende effecten van resveratrol op de mechanische 

ventilatie geïnduceerde ontstekingsreactie in gezonde muizen. Resveratrol, een polyfenol gevonden 

in planten en druiven vertoont anti-inflammatoire effecten in vitro en in vivo, vermoedelijk door te 

interfereren met TLR4 signalering en NF-kB. Resveratrol reduceert de mechanische ventilatie 

geïnduceerde toename van pulmonale NF-κB-activiteit, maar niet het cytokinegehalte. Deze 

resultaten impliceren een minder prominente rol voor NF-κB in mechanische ventilatie geïnduceerde 

ontsteking dan eerder werd aangenomen. 

 

In hoofdstuk 4 onderzochten we het effect van intraveneus toegediend lidocaïne op de mechanische 

ventilatie geïnduceerde ontstekingsreactie. Lidocaïne, een amide lokaal anestheticum, bezit anti-

inflammatoire eigenschappen in vitro en in vivo. Intraveneus toegediend lidocaïne verhoogt het 
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niveau van plasma en pulmonale IL-10 en dit zou kunnen wijzen op een modulerende rol van 

lidocaïne op de inflammatoire respons in muizen na mechanische ventilatie. Intraveneus toegediend 

lidocaïne geeft ook een vermindering van anesthesie behoefte bij muizen. 

 

In hoofdstuk 5 beoordeelden we de literatuur over de modulerende mechanismen en de effecten 

van lidocaïne op neuro-inflammatoire reacties in acute en chronische pijn. Intraveneus toegediende 

lidocaine heeft analgetische, anti-inflammatoire en antihyperalgetische eigenschappen. Het dempt 

de neuroinflammatoire reactie in peri-operatieve en chronische neuropathische pijn. 

 

In hoofdstuk 6 hebben we een extrapoleerbaar muizenmodel van neuropathische pijn ontwikkeld. 

We creëerden een chronisch constrictie model van de nervus ischiadicus met een ligatuur van zijde 

en kattendarm en verrichtten sensorische testen om mechanische en temperatuur geïnduceerde 

allodynie op te wekken. Zijde lijkt het ligatuur materiaal van voorkeur. 

 

In hoofdstuk 7 beschreven we de ontwikkeling van een 'second hit' muizenmodel van chirurgisch 

zenuwletsel en onderzochten het effect van peri-operatief intraperitoneaal toegediend lidocaïne in 

dit model. Perioperatief toegediend lidocaïne vermindert thermische allodynie in onze 'second hit' 

muizen model, dit impliceert een modulerende rol van lidocaïne in de ontwikkeling van pijn. 

 

In hoofdstuk 8 hebben we de resultaten van dit proefschrift besproken in een geïntegreerde 

wetenschappelijke context en gaven we aanbevelingen voor toekomstig onderzoek.
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Dankwoord 

Tijdens de totstandkoming van dit proefschrift zijn er veel mensen geweest die daar een aandeel in 

hebben gehad. Deze mensen hebben veelal ook een belangrijke rol gespeeld in mijn persoonlijke 

ontwikkeling als wetenschapper, arts maar ook als mens.  

 

Als eerste wil ik mijn promotoren bedanken. 

Prof. Dr. GJ  Scheffer, beste Gert Jan, dankzij jouw enorme enthousiasme en het besef van het belang 

van de wetenschap voor ons vakgebied wat je mij al vroeg hebt bijgebracht, ben ik begonnen aan dit 

project. Daarbij heb je altijd de voorwaarden gecreëerd die het voor mij mogelijk gemaakt hebben nu 

te komen tot dit moment. Zelfs toen ik halverwege toch besloot van richting te veranderen ben je me 

altijd blijven steunen. Hiervoor ben ik je erg dankbaar.  

Prof. Dr. K. Vissers, beste Kris, onze brainstormsessies waren voor mij van zeer groot belang; hierna 

ging ik altijd met nog meer enthousiasme aan de gang. Je hebt me geholpen de lijnen uit te zetten, 

structuur te scheppen en een visie te creëren voor dit manuscript en de toekomst. Daarbij motiveer 

je me enorm om uit elke dag het beste te halen qua wetenschap, patiëntenzorg of gewoon uit 

mezelf.  

 

Als tweede wil ik mijn co-promotoren bedanken. 

Dr. M. Vaneker, beste Michiel, ik ben jou gaan waarderen als een motivator van top allure. Jouw tips, 

steun, humor, eerlijkheid en menselijkheid onder alle omstandigheden, hebben mij enorm gesteund. 

Je was er altijd, ook toen het eigenlijk niet kon. Daarbij ben ik erg gesteld op je geraakt. Je zegt altijd: 

‘komt goed’. Dankzij jou is het goed gekomen.  

Dr. M. Steegers, beste Monique, jouw hulp is van onschatbare waarde geweest in het tot stand 

komen van dit proefschrift. Dankzij jouw drive en unieke doch praktische kijk op de zaken ben je voor 

mij een voorbeeld (geweest). Daarbij heb ik me altijd zeer gesteund, gewaardeerd en gemotiveerd 

gevoeld dankzij jouw vertrouwen in mijn kunnen.  

Een speciaal woord van dank wil ik richten aan de leden van de manuscriptcommissie: Prof. Dr. P. 

Pickkers, Prof. Dr. L. Joosten en Prof. Dr. F. Huygen. Dank u zeer voor het kritisch beoordelen van dit 

manuscript en de tijd die u ervoor heeft vrijgemaakt ondanks uw overvolle agenda’s. 
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Dan zou ik ook willen bedanken, 

Prof. Dr. H. van der Hoeven, beste Hans, in 2007 begon ik vol bravoure als agnio op de intensive care. 

Jij hebt mij beter leren denken en onderzoeken zonder de mens achter de ziekte uit het oog te 

verliezen. Achttien maanden later ging ik met iets minder bravoure, maar wel als wetenschapper en 

anesthesioloog in de dop naar de anesthesie.  

Dr. M. Kox, beste Matthijs en Kim Cornelissen, dank voor jullie hulp en inzichten in de wereld van de 

cytokinen. Als rasonderzoekers heeft jullie input mij zeer geholpen. Bedankt hiervoor. 

Dr. H. van Hees, beste Jeroen, en Dr. L. Heunks, beste Leo, op het moment dat ik even vastliep met 

mijn onderzoek hebben jullie me weer op de juiste weg gezet en waarschijnlijk zonder het te weten 

weer enorm gemotiveerd. Dank hiervoor. 

Ilona van den Brink en Francien van de Pol, jullie muizenkennis en handigheid is ongeëvenaard. Dank 

dat jullie met mij dit traject wilde doorlopen en nieuwe dingen wilden proberen. Dank ook voor jullie 

oprechte, soms kritische, maar altijd goed onderbouwde vragen en opmerkingen. Jullie hebben mij 

tot een betere onderzoeker gemaakt.  

Dank ook aan alle muizen die zich hebben gegeven aan de wetenschap. 

Ineke Verschueren, Jelle Gerretsen,  dank voor de hulp bij de vele cytokinen bepalingen van dit 

proefschrift. 

Dr. J. van der Laak, beste Jeroen, dank voor je ingenieuze computersystemen en je eindeloze uitleg 

over hoe ze werkten, ik geloof dat ik het eindelijk snap. 

Boudewijn van Berkum en Lisa Cornelissen, mijn eerste ‘stagiaires’, dank voor al jullie hulp!  

Charlotte Hofhuizen en Willem-Jan Schellekens: als klinische promovendi hebben wij elkaar door 

soms wat lastige momenten geholpen. Ik koester goede herinneringen aan de te gekke internet 

plaatjes die de rondte gingen. Dank voor jullie steun en collegialiteit.  

Dr. Jenny Copius Peereboom – Stegeman,  je hebt me altijd geïnspireerd en in de allereerste fase van 

mijn onderzoekscarrière bijzonder gesteund en met heel veel warmte begeleid. Mijn oprechte dank 

hiervoor en proost! 

Dr. Kees Besse je bent een voorbeeld voor me. Niet alleen als dokter en meester-prikker, maar ook 

als mens.  
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Dr. Jos Lerou, bedankt dat je me altijd flink, doch met zachte hand intellectueel hebt gestimuleerd. 

Festina lente. 

‘Meisjes van de pijn’: Sandra van den Heuvel, Christine Lescrenier, Manon en Beppie Wubbels, 

Wietske Hanenburg en Ineke Bles. Dank voor jullie steun en vriendschap. Ditzelfde geldt voor Thea, 

Lisette, Esther, Kees en de rest van het team van Dekkerswald. Werken voelt soms net een beetje als 

thuiskomen. 

Collega’s van de pijn, palliatieve en de anesthesie, specialisten, arts-assistenten, verpleging, 

anesthesiemedewerkers, operatie assistenten en ondersteunend personeel, jullie hebben me enorm 

gesteund door de jaren heen in ons geweldige vak. Mede door jullie voel ik me elke dag gemotiveerd 

en opgewekt om weer aan het werk te gaan.  

 In het bijzonder collega’s Marieke van Rens, Frank van Haren, Mark Buijs, Hester Boesjes en Loes 

Bruijstens, we zijn toch een beetje samen opgegroeid. Frank extra dank voor je hulp bij het 

digitaliseren van dit proefschrift. 

Chantal Samson, je was mijn assistent-mentor,  bij de eerste promotiestapjes, maar ook in een 

moeilijke persoonlijke periode heb je me geholpen. Dank voor je humor en steun. Ik zal je nooit 

vergeten. 

De leden van de verschillende secretariaten van onze afdeling. In het bijzonder: Léon, de ‘Monieken’, 

Anneke, Bianca, Bert, Xandra, Nicole en Rina. Dank voor jullie planning,  hulp, snoepjes en luisterend 

oor. 

Floor Verspoor, dank voor je jarenlange vriendschap en integriteit. Jouw doorzettingsvermogen heeft 

mij altijd geïnspireerd om zelf ook door te gaan. 

Mijn schoonfamilie, Toos en Jan, Nicole en Bertus, Kai en Sem, dank voor jullie belangstelling, 

interesse en steun. Jullie zijn een geweldige schoonfamilie.  

Mijn zwager, Carsten en nichtjes Hannah en Fenna, ik houd van jullie! 

Mijn paranimf en broer Raymond. Ray, jouw intelligentie en snedigheid hebben me al van jongs af 

aan geprikkeld en getriggerd. Onbewust heb je een grote rol gehad in mijn nieuwsgierigheid en 

onderzoeksgeest. Ik kan me herinneren dat ik als kleuter vroeg waarom de wolken alleen lokaal te 

zien waren. Jij wist het antwoord direct! Dat wilde ik ook! Je hebt me uiteindelijk zelfs geholpen de 

keus te maken om ook anesthesioloog te worden. Ik ben trots op je en houd onnoemlijk veel van je. 
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Yolanda, mijn grote slimme zus met het leeuwenhart, steun, toeverlaat en mede-musketier. Zonder 

jou had dit boekje niet bestaan en alle redenen waarom die zijn je al bekend. Ik houd intens veel van 

je. Bovendien, als je me niet op de kop had gehouden als kind, dan was nooit al dat bloed naar mijn 

hoofd gezakt en had ik nimmer dit proefschrift mede aan jou op kunnen dragen. 

 Mamma, mijn andere-mede musketier. Door jouw onvoorwaardelijke steun en onwankelbare liefde 

ben ik geworden wie ik ben. Jouw kracht en doorzettingsvermogen zijn elke dag weer een inspiratie 

voor me. Je hebt me geleerd wat liefde, kracht en integriteit zijn. Je bent een buitengewone moeder 

en ik heb niet voor niets dit proefschrift mede ook aan jou opgedragen.  

Mijn paranimf Sharon, en innig geliefde echtgenote, dank dat je het mogelijk hebt gemaakt. Doordat 

je altijd achter me staat en onvoorwaardelijk van me houdt, wat volledig wederzijds is, heb je me de 

afgelopen jaren de kracht en de tijd gegeven om door te gaan. Ik heb immense bewondering voor je 

en voor jouw enorme compassie en mededogen in jouw vakgebied, waarin je uitblinkt. Door jou ben 

ik een beter en completer mens geworden. Je maakt dat mijn dromen uitkomen en ik zie uit naar de 

rest van ons leven samen.   

  



Chapter 10 

158 
 

Bibliografie 

Selina Elisabeth Ingrid van der Wal werd geboren op 7 mei 1981 te Arnhem. In 1999 haalde zij haar 

gymnasium diploma aan het Olympus college te Arnhem om hierna te starten met de studie 

Biomedische Gezondheidswetenschappen aan de Katholieke Universiteit Nijmegen. In 2003 rondde 

zij deze studie succesvol af met als hoofdvakken pathobiologie en reproductietoxicologie. Hier is haar 

liefde voor de wetenschap waarschijnlijk ontwaakt. Zij is echter wel vlot doorgestroomd  naar de 

studie geneeskunde alwaar zij in 2005 haar doctoraal en 2007 haar artsexamen haalde. Tijdens haar 

opleiding werkte zij als student-assistent op de interne geneekunde en was zij hoofdredacteur bij de 

studenteneditie van het nederlands tijdschrift voor geneeskunde. 

Na haar artsexamen gehaald te hebben is zij begonnen als arts-assistent op de afdeling intensive care 

in het Universitair medisch centrum te Nijmegen. Na anderhalf jaar mocht zij  eind 2008 beginnen als 

arts-assistent op de anesthesiologie. Vanaf begin 2010 is zij begonnen met haar promotietraject. 

Tijdens deze periode heeft zij een professionele en persoonlijke ontwikkeling doorgemaakt. In 2012 

won zij de best oral presentation tijdens de anesthesiologen dagen van de Nederlandse vereniging 

voor anesthesiologie met een presentatie van haar onderzoek en in 2014 begeleidde zij de winnaar. 

In 2014 won zij samen met Sandra Radema de Paul Speth prijs. 

In februari 2013 rondde zij haar specialisatie tot anesthesioloog af om direct daaropvolgend een 

fellowship Pijn en Palliatieve geneeskunde te volgen en af te ronden begin 2014. Vanaf 2013 tot op 

heden is zij met veel plezier werkplek manager van de neurochirurgie en plastische chirurgie. Vanaf 

begin 2014 is zij werkzaam als anesthesioloog-pijnarts  in het Radboud Universitair medisch centrum. 

In de toekomst zal zij het onderzoek naar het moduleren van inflammatoire processen die betrokken 

zijn bij anesthesie en het ontstaan en persisteren van pijn voortzetten in samenwerkingsverband met 

onder andere de oncologie. Tevens zal zij zich blijven inzetten als pijnarts en anesthesioloog in het 

Radboud universitair medisch centrum.  

  



 

159 
 

Publicaties 

 

1. S. van der Wal, K. Timmermans, M. Vaneker, M. Kox, G. Braak, J. van der Laak, M. Netea, 

J. van der Hoeven, L. Joosten, G.J. Scheffer 

 et al. IL-1β processing in mechanical ventilation-induced inflammation is dependent on 

neutrophil factors rather than caspase-1. Intensive Care Medicine Experimental 2013 

Oct; 1:8 

2. S. van der Wal, M. Vaneker, M. Kox, G. Braak, H. van Hees, I. van den Brink, F. van de Pol, 

L. Heunks, H. van der Hoeven, L. Joosten, K. Vissers, GJ  Scheffer . Resveratrol attenuates 

NF-κB-binding activity but not cytokine production in mechanically ventilated mice. Acta 

Anaesthesiol Scand. 2014 Apr;58(4):487-94.  

3. S. van der Wal, M. Vaneker, M. Steegers, B. van Berkum, M. Kox, J. van der Laak, J. van 

der Hoeven, K. Vissers, GJ. Scheffer. Lidocaine increases the anit-inflammatory cytokine 

IL-10 in a mechanical ventilation mouse model. Acta Anaesthesiol Scand. 2015 

Jan;59(1):47-55 

4. S. van der Wal, S. van den Heuvel, S. Radema, B. van Berkum, M. Vaneker, M. Steegers, 

G.J. Scheffer, K. Vissers. The in vitro mechanisms and in vivo efficacy of intravenous 

lidocaine on the neuroinflammatory response in acute and chronic pain: A review  of 

current knowledge. Submitted. 

5. S. van der Wal, L. Cornelissen, M. Behet, M. Vaneker, M. Steegers, K. Vissers. Behavior of 

neuropathic pain in mice following chronic constriction injury comparing silk en catgut 

ligatures. In revision. 

6. S. van der Wal, L. Cornelissen, S. van den Heuvel,  M. Vaneker, G.J. Scheffer, M. Steegers, 

K. Vissers. Intraperitoneally administered lidocaine attenuates thermal allodynia in a 

murine second hit chronic constriction injury (CCI) model. Submitted. 

7. T. Bisseling, M. Versteegen, S. van der Wal, J. Copius Peereboom-Stegeman, J. 

Borggreven, E. Steegers, J. van der Laak, F. Russel, P. Smits. Impaired KATP channel 

function in the fetoplacental circulation of patients with type 1 diabetes mellitus. Am J 

Obstet Gynecol, 2005 Mar; 192(3): p. 973-9.  

 
 

 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Van%20der%20Wal%20SE%5BAuthor%5D&cauthor=true&cauthor_uid=24571360
http://www.ncbi.nlm.nih.gov/pubmed?term=Vaneker%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24571360
http://www.ncbi.nlm.nih.gov/pubmed?term=Kox%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24571360
http://www.ncbi.nlm.nih.gov/pubmed?term=Braak%20G%5BAuthor%5D&cauthor=true&cauthor_uid=24571360
http://www.ncbi.nlm.nih.gov/pubmed?term=Van%20Hees%20HW%5BAuthor%5D&cauthor=true&cauthor_uid=24571360
http://www.ncbi.nlm.nih.gov/pubmed?term=Van%20den%20Brink%20IA%5BAuthor%5D&cauthor=true&cauthor_uid=24571360
http://www.ncbi.nlm.nih.gov/pubmed?term=Van%20de%20Pol%20FM%5BAuthor%5D&cauthor=true&cauthor_uid=24571360
http://www.ncbi.nlm.nih.gov/pubmed?term=Heunks%20LM%5BAuthor%5D&cauthor=true&cauthor_uid=24571360
http://www.ncbi.nlm.nih.gov/pubmed?term=Van%20der%20Hoeven%20JG%5BAuthor%5D&cauthor=true&cauthor_uid=24571360
http://www.ncbi.nlm.nih.gov/pubmed?term=Vissers%20KC%5BAuthor%5D&cauthor=true&cauthor_uid=24571360
http://www.ncbi.nlm.nih.gov/pubmed?term=Scheffer%20GJ%5BAuthor%5D&cauthor=true&cauthor_uid=24571360
http://www.ncbi.nlm.nih.gov/pubmed/?term=resveratrol+van+der+wal
http://www.ncbi.nlm.nih.gov/pubmed/?term=resveratrol+van+der+wal


Chapter 10 

160 
 

 

Awards 

2012 Best oral presentation Nederlandse vereniging voor           

anesthesiologie: The role of IL-1beta in mechanical 

ventilation 

 

2014 Best oral presentation (begeleider): intravenous lidocaine 

reduces the anti-inflammatory cytokine IL-10 after 

mechanical ventilation in healthy mice 

2014     Paul Speth prijs 

 

Posters 

2013 World institute of pain: a case report of low dose intravenous           

lidocaine in chronic chemotherapy induced neuropathy 

 

 

 


