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Abstract

individuals with ID identified novel genes implicated in the disease. Therefore the purpose of the present study was to
identify the genetic cause of ID in one syndromic and two non-syndromic Pakistani families. Whole exome of three ID
probands was sequenced. Missense variations in two plausible novel genes implicated in autosomal recessive ID were
identified: lysine (K)-specific methyltransferase 2B (KMT2B), zinc finger protein 589 (ZNF589), as well as hedgehog
acyltransferase (HHAT) with a de novo mutation with autosomal dominant mode of inheritance. The KMT2B recessive variant
is the first report of recessive Kleefstra syndrome-like phenotype. Identification of plausible causative mutations for two
recessive and a dominant type of ID, in genes not previously implicated in disease, underscores the large genetic

common networks i.e. ZNF589 belongs to KRAB-domain zinc-finger proteins previously implicated in ID, HHAT is predicted
to affect sonic hedgehog, which is involved in several disorders with ID, KMT2B associated with syndromic ID fits the
epigenetic module underlying the Kleefstra syndromic spectrum. The association of these novel genes in three different
Pakistani ID families highlights the importance of screening these genes in more families with similar phenotypes from
different populations to confirm the involvement of these genes in pathogenesis of ID.
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Intellectual disability (ID) is a major health problem mostly with an unknown etiology. Recently exome sequencing of

heterogeneity of ID. These results also support the viewpoint that large number of ID genes converge on limited number of
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Introduction

Intellectual disability (ID), a neurocognitive disorder, is charac-
terized by substantial limitations both in intellectual functioning
and in adaptive behavior. In patients diagnosed before the age of
18 years, it has a prevalence of 2-3% in the general population
[1]. Stein et al. [2] reported the prevalence of ID among 3-9 years
old children in different populous countries including Pakistan,
Brazil, India, Bangladesh and Philippines, which varied from 9/
1000 to 156/1000. ID is an unsolved healthcare problem, which
creates an enormous socioeconomic burden on the society,
especially in the underdeveloped countries where there is a high
rate of consanguinity, resulting in further aggravating the
genetically inherited disease prevalence [3]. Chromosomal abnor-
malities and single gene disruptions contribute significantly to all
forms of ID, including severe, moderate and mild phenotype [4].
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Investigations aiming to unravel the genetic defects initially
focused mainly on X-linked ID since male ID patients are
overrepresented as compared to females with a ratio of 1:1.3 to
1:1.9 [5]. However, these investigations have revealed that only
10% of ID cases are due to X chromosomal defects while the
remaining cases are expected to be caused by genetic defects in the
autosomes and equally due to adverse environmental effects such
as poor mother health, social deprivation, infections and injuries
during prenatal life and hypoxia [6]. Chromosomal aberrations
and mutations in more than 450 genes can explain the disorder in
about half of all ID patients [5]. The large number of ID genes
present a challenge for the identification of the genetic defect in
individual families and isolated cases, however, only a limited
number of pathways are emerging whose disruption appears to be
shared by groups of ID genes [7].
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Despite being clinically heterogeneous, syndromic ID (sID) as
well as non-syndromic ID (nsID) share common neurological
features, such as autism, epilepsy, ADHD (attention deficit
hyperactivity disorder) and behavioral anomalies [7]. In addition,
syndromic forms of ID are characterized by a pattern of congenital
anomalies that can be seen in addition to ID and other
neurological features. The latter can help to establish clinical
diagnosis, which can subsequently be validated by direct molecular
diagnostic testing of targeted gene(s). However, the number of
syndromes where similar phenotypes can be caused by mutations
in a variety of different genes is increasing. Examples of these
include Bardet-Biedl syndrome (MIM 209900; 17 genes), Sotos
syndrome (MIM 117550; 2 genes) and Kleefstra syndrome (MIM
610253; 5 genes) [7-10]. Typically, the underlying genes for each
of these syndromes have a functional relationship to each other
and mutations lead to disruption of the same molecular pathways.
As in the case of Kleefstra syndrome (KS), which is characterized
by severe to moderate ID, speech impairment, congenital
hypotonia, specific distinguishing facial features and complex
pattern of other anomalies can be caused by de novo mutations
affecting epigenetic regulators such as euchromatic histone-lysine
N-methyltransferase 1 (KFHMTI), lysine (K)-specific methyltrans-
ferase 2C (KMT2C), SWI/SNF related, matrix associated, actin
dependent regulator of chromatin, subfamily b, member 1
(SMARCBI), nuclear receptor subfamily 1, group I, member 3
(NR113) and methyl-CpG binding domain protein 5 (MBD5) [11-
13].

Till now, small families with ID have not been studied
extensively due to technical difficulties including non-suitability
of homozygosity mapping and use of simple traditional linkage
analysis with insufficient power to resolve the genetic cause in such
families. The genetic analyses combined with whole exome
sequencing have recently enabled the systematic identification of
pathogenic mutations in small families with recessive nsID and
sID, including mutations in 13 novel nsID genes [13]. Najamabadi
et al. [4] have recently proposed 29 candidate genes for autosomal
recessive nslD. In the current study missense homozygous
mutations in two novel genes including lysine (K)-specific
methyltransferase 2B (KMT2B), a zinc finger gene ZNF589 and
a heterozygous de novo mutation in hedgehog acetyltransferase

(HHAT) were identified.

Methods

Ethics statement

This study was approved by the Department of Biosciences
Ethics Review Board of the COMSATS Institute of Information
Technology, Islamabad, Pakistan, and the local Ethics Committee
of the Radboud University Medical Centre, Nijmegen, The
Netherlands. All family members and 200 ethnically matched
control individuals were informed about the purpose of the study
and written consent in their local language was taken before
recruitment and sampling. The parents or guardians of the
individuals in this manuscript have given written consent (as
outlined in PLOS consent form) to publish the patients case
details.

Clinical features

A consanguineous family MRQI14 (Figure 1A) with three
children with severe sID was sampled from central Punjab,
Pakistan, including three affected sons (IV:1, IV:2, IV:3) unaffect-
ed daughter and son (IV:4 and IV:5), the unaffected mother (III:1),
unaffected father (I1I:2), unaffected paternal grandfather (II:4) and
unaffected paternal grandmother (II:5). The three affected

PLOS ONE | www.plosone.org

Novel Intellectual Disability Genes

brothers had a similar sID phenotype and were each born after
about 39 weeks of uneventful pregnancies with normal labor. At
the age of 16 years, the proband (IV:1) had short stature,
dysmorphic facial features including a large head, flattened nasal
bridge, apparent hypertelorism synophrys, midface hypoplasia,
thick eyebrows, everted lower lip, dental anomalies and progna-
thism. Upon physical examination, he was found to suffer from
musculoskeletal anomalies as well as cryptorchidism and micro-
penis. Being floppy during childhood he was found to be
hypotonic on reaching teenage (Figure 2). In addition to speech
and motor delay, he was underweight at the time of assessment
(23kg, 2" centile) and was short for his age (81cm, 2" centile). All
the three affected boys lacked language development, had
profound ID (IQ<20, IQ was tested using the Wechsler
Intelligence Scale for Children (WISC-III)), and they were not
able to perform essential activities of daily life. Computed
Tomography (CT) scan did not reveal any anomaly of the brain
and the biochemical tests including liver transaminases, serum
lactate as well as serum electrolyte and complete blood count were
all in the normal ranges (Table 1).

The consanguineous family MRQ11 with two affected children
(Figure 1B) was sampled from Northern Pakistan. The sampled
members were: unaffected mother (III:2), unaffected daughters
AV:1, IV:4, IV:5), affected son (IV:2), and affected daughter
(IV:3). The two affected siblings had a similar nsID phenotype.
The affected members, a son (IV:2), and a daughter (IV:3) were
born after an uneventful 39 weeks pregnancy. Labor was normal
and they did not undergo postnatal hypoxia. Both of them had
delayed milestones including speech and motor development. At
the time of examination, at the ages of 14 years (IV:2) and 10 years
(IV:3), they were both below average weight and height: the
affected son was 23 kg and 114 cm (both 2™ centile), whereas the
affected daughter weighed 22 kg and was 88 cm in height (both
being 2" centile). Both siblings had strabismus and had moderate
ID (IQ; 36-51). CT scan did not show any anomaly of the brain,
in addition, metabolic and biochemical testing revealed no
abnormalities.

Family MRQ15 was a non-consanguineous family (Figure 1C),
from Punjab, Pakistan. Five members of the family were sampled
that included an unaffected father (I:1), unaffected mother (I:2),
affected daughter (II:2), unaffected son (II:4) and affected son
(I:7). The two affected siblings had profound ID (IQ<20) and
could speak only a few meaningful words and could recognize only
their parents and siblings. They were both not able to perform
daily activities of life independently. No other syndromic features
were present and their CT scan did not show any brain
malformation.

Homozygosity mapping and CNV analysis

The pedigrees are concordant with the recessive inheritance in
all the three families, therefore in order to obtain copy number
variation (CNV) as well as homozygosity mapping data, Affyme-
trix 250K NSPI SNP (Affymetrix, Santa Clara, CA) array analysis
was performed for MRQ14 family members IV:1, IV:2, IV:3 and
IV:5, and all sampled affected and unaffected members of
MRQI11 and MRQI15 (Figure 1). For CNV determination, the
data were scrutinized using Copy Number Analyzer for GeneChip
[14]. Affymetrix Genotyping Console (version 2.0) was used to
obtain the genotype data and online software Homozygosity
Mapper [15] was used to obtain the homozygous regions. The
homozygous intervals of at least 1 Mb were also verified visually.
All data were mapped using the Human Genome Build hg19.
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Figure 1. Pedigree of families (A) MRQ14, (B) MRQ11 and (C) MRQ15. The segregation of mutation of KMT2B, ZNF589 and HHAT are also in
the pedigree. The symbol +/+ represents homozygous ancestral alleles, M/M is for homozygous variant alleles and +/M is for heterozygous carriers. In

the panel B, the genotype of the father (lll:1) has been deduced.
doi:10.1371/journal.pone.0112687.g001

MRQ14_IV:1

Figure 2. Photographs of MRQ14 proband. The photographs
demonstrate the classic facial features representative of Kleefstra
syndrome.

doi:10.1371/journal.pone.0112687.9g002
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Exome sequencing

Homozygosity mapping and CNV analysis did not reveal the
genetic cause of the disease in any of the family therefore exome
sequencing was performed for the proband of each family. The
exomes of the probands were enriched and sequenced as described
previously by Vissers et al. [16]. In brief, using an Agilent
SureSelect Human All Exon Kit (50 Mb, ~21,000 genes; Agilent
Technologies, Santa Clara, CA) exome libraries were prepared as
described by the manufacturer and pooled for bead amplification
using the emulsion-based clonal PCR (emPCR) of EZbead system
(Life Technologies, Santa Clara, CA) and were subsequently
sequenced using the SOLID 4 system (Life Technologies, Santa
Clara, CA). As described by Vissers et al. [16] the variants and
indels were only selected for further analysis when the overall
variant reads were at least 15% of the total number of reads, with
a minimum of 5 reads [17]. For each proband, 36,001 to 44,200
variants were annotated. All nongenic, non-splice site, intronic and
synonymous variants were excluded from further analysis.
Furthermore, the low frequency variants (less than 0.5%) in
known ID genes present in dbSNP were also checked, such
variants were further filtered on the basis of pathogenicity scores
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Table 1. Clinical features of Kleefstra syndrome shared by the three affected brothers of family MRQ14.

Clinical features Patient-1V:1 (Proband) Patient-1V:2 Patient-1V:3
High birth weight no no no
Microcephaly no no no
Synophrys yes yes yes
Unusual shape of the eyebrows yes yes yes
Midface hypoplasia yes yes yes

Full everted lower lip yes yes yes

Cupid bowed upper lip yes yes yes
Protruding tongue yes yes yes
Prognathism yes yes yes

Short stature yes yes yes
Overweight (BMI>25) no no no

DD/ID yes (severe) yes (severe) yes (severe)
Heart defect no no no

Genital anomaly yes yes yes

Renal anomaly (including VUR) no no no
Recurrent infections yes yes yes
Hearing deficit no no no
Gastro-esophageal reflux no no no
Epilepsy yes yes yes
Behavioral/psychiatric problems yes yes yes
Anomalies on brain imaging no not performed not performed
Tracheomalacia no no no
Umbilical/inguinal hernia no no no

Anal atresia no no no
Musculoskeletal anomaly yes yes yes
Respiratory complications no no no
Hypertelorism yes yes yes

doi:10.1371/journal.pone.0112687.t001

and tested for segregation among the respective family members
while all the other variants were excluded (data not shown), which
were found in dbSNP132 or those in an in-house database. To
predict the pathogenicity of the variants, data were evaluated using
i silico analysis, including Poly Phen-2 (genetics.bwh.harvar-
d.edu/pph2) and SIFT (sift.jcvi.org/).

Sanger sequencing

Sanger sequencing for confirmation of the candidate gene
variants and their segregation in the families was performed
(Tables 2, 3 and 4) by designing PCR primers (Table S1, S2 and
S3) using the Primer3 program (http://frodo.wimit.edu/) and
amplifying the regions of interest. PCR amplification was
conducted using 0.25 mM dNTPs, 1X PCR buffer (100 mM
Tris-HCI, pH 8.3, 500 mM KCl), 2.5 mM l\ngrQ, 0.5 uM of each
primer, 2.5 U Tag polymerase (Fermentas Life Sciences, Ontario,
Canada) and 50 ng gDNA. The thermal profile consisted of initial
denaturation at 95°C for 5 min followed by 30 cycles of
amplification at 95°C for 1 min, 57°C for 30 sec and 72°C for
45 sec, a final extension was carried out at 72°C for 5 min.
Purified PCR amplicons were then sequenced using the ABI
PRISM Big Dye Terminator Cycle Sequencing V3.1 ready
reaction kit and the ABI PRISM 3730 DNA analyzer (Applera
Corp, Foster City, CA).

PLOS ONE | www.plosone.org

BMI, body mass index; DD, developmental disability; ID, intellectual disability, VUR, vesico-ureteric reflux

Results

After filtering the exome data of the proband (IV:1) of family
MRQ14 (Figure 1A), assuming a recessive inheritance model, 53
homozygous and 11 compound heterozygous variants in different
genes were obtained. The data were further prioritized to get the
most relevant changes using a phyloP score>2.0. This resulted in
11 homozygous and 6 compound heterozygous variants in 14
different  genes  (Table 2). A variant in KMT2B
(chr19.hg19:2.36,208,921_36,229,779), ¢.2456C>T, p.(Pro819-
Leu), was the only variant in the shared homozygous region that
segregated with the disease in the family after Sanger sequencing
(Figure 1A and 3A). In addition, the variant was absent in 200 age
and ethnicity-matched control samples (n =400 alleles) as well as
in families MRQI11 and MRQ15. The KMT2B c.2456C>T
mutation segregated with the disease in the family with the change
inherited by descent from the heterozygous paternal grandfather
(IIL:4), the maternal grandparents were not available for screening
of the change, but it is likely that the other mutant allele was
inherited from the maternal grandfather as the parents are first
cousins.

Exome sequencing of the proband of family MRQ]11 resulted in
the identification of 38 homozygous and 30 compound heterozy-
gous changes in 38 and 15 genes. Homozygosity mapping revealed

November 2014 | Volume 9 | Issue 11 | e112687
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Figure 3. The sequencing chromatograms of the families MRQ14, MRQ11 and MRQ15. (A) Shows the panels containing the region with
the identified KMT2B mutation in family MRQ14: ancestral (left panel), heterozygous (middle panel) and variant (right panel) (B) shows the region
containing the identified ZNF589 mutation in family MRQ11: ancestral (left panel), heterozygous (middle panel) and variant (right panel). (C) shows
the de novo variant of HHAT in family MRQ15: ancestral (left panel), heterozygous (right panel).

doi:10.1371/journal.pone.0112687.g003

only four common homozygous regions between the 2 affected
members of the family (Table S4). The data were further
prioritized (as described above), which revealed a total of 15
variants in 11 different genes (7 homozygous and 8 compound
heterozygous; Table 3). These variants were further validated by
Sanger sequencing for segregation in the respective family. Variant
c.956T>A, p.(Leu319His) in ZNF589 (chr3.hg19:g.48,282,596_
48,329,115) segregated with the phenotype in the family
(Figure 1B and 3B) and was absent in the control population as
well as families MRQ14 and MRQ15.

Genotyping of family MRQ15 by microarray analysis did not
reveal any homozygous region shared by the affected members,
suggesting that compound heterozygosity as well as de novo
dominant mutation may cause the disease in this family. Whole
exome sequencing was carried out to identify the genetic cause of
ID in this family using a trio-based approach [18,19]. After variant
filtration as described above, 8 homozygous and 6 compound
heterozygous variants were identified in 11 different genes, which
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were further screened in the family by Sanger sequencing
(Table 4). However, none of these selected variants segregated
with the disease. In-line with a hypothesized dominant de novo
mutation model, a heterozygous change ¢.1158G>C,
p-(Trp386Cys) in the HHAT was present in both the affected
members (Figure 1C and 3C) and absent in the parents and the
unaffected sibling as well as healthy controls, and families MRQ 14
and MRQ]I1. The occurrence of the mutation in both affected
members is consistent with a germline mosaicism in one of the
unaffected parents. Of note, non-paternity was excluded by
segregation analysis of rare paternal variants. It was not possible to
obtain other tissues of the parents therefore presence of variants
could not be checked in those tissues.

Discussion

Genetic screening of three Pakistani ID families in the current
study resulted in the identification of three novel plausible 1D

November 2014 | Volume 9 | Issue 11 | e112687



genes, KMT2B, ZNF589 and HHAT. The phenotype of the three
affected members of family MRQ14 had Kleefstra syndrome-like
phenotype (clinical details are described in clinical features
section), which is characterized by facial dysmorphism, hypotonia
and mild to severe ID (Figure 2). This syndrome is rare with
unknown prevalence and has not been reported in Pakistan
previously. The homozygous variant ¢.2456C>T; p.(Pro819Leu)
identified in the current study in the KM7T2B was found to
segregate in the family in a recessive pattern.

KMT2B belongs to the MLL (myeloid/lymphoid or mixed-
lineage leukemia) family, and was found to be ubiquitously
expressed in adult tissues as well as in solid tumor cell lines [19], its
mnvolvement in human cancer has already been established.
Furthermore, KMT2B has been reported to express in different
parts of human brain such as medial frontal cortex, occipital
cortex, hippocampal cortex, amyloid complex and basal ganglia at
different ages ranging from 0 to 48 months (Allen Institute for
Brain Science. Allen Human Brain Atlas (http://human.brain-
map.org/)). The protein encoded by KMT2B/MLL4 has multiple
domains such as a CXXC zinc finger, three PHD zinc fingers, a
SET (suppressor of variegation, enhancer of zeste, and trithorax)
and two FY domains. Of all the domains, the SET domain is
highly conserved in KMT2B and is a hallmark of the KMT gene
family. Kleefstra et al. [12] reported that the disease in 25% of the
patients with KS was caused by haploinsufficiency of EHMTI,
while the disease in few other patients diagnosed with a similar
phenotype was explained by de novo mutations in MBD5,
SMARCBI1, NRII3 and KMT2C [8]. Kleefstra et al. [8],
reported a de novo mutation in KMT2C to cause dominant ID,
similarly 41 likely pathogenic mutations in KM72D gene causing
Kabuki syndrome (MIM 147920) have been reported in 86
patients, having dysmorphic facial features, bone deformities,
hypotonia, congenital heart defects, ID, urinary tract and
respiratory tract infections [20]. Kerimogulo et al. [21] have
recently reported that KMT2B/MLL2 belongs to myeloid
leukemia gene family, which mediates hippocampal histone 3
lysine 4 di- and trimethylation in memory formation, thus their
data supports the KMT2B/MLL4 involvement along with
KMT2B/MLL2 in cognition [22]. These findings support the
current results that mutations in KMT2B/MLL4 could possibly
lead to a Kleefstra syndrome-like phenotype. The current work is
the first report of a recessive KS finding, involving the KMT gene
family, which has already been implicated in dominant forms of
KS and Kabuki syndrome. The identified variant was excluded in
200 age and ethnicity matched controls. KMT genes (KMT2A-
KMT2E) as well as their Drosophila orthologs; trithorax (trx) and
trithorax related (trr), express protein products, which are capable
of methylating histone H3 on lysine 4 (H3K4). Of note, the
Drosophila trr gene is the single ortholog of mammalian KMT2C
and KMT2B, and has been shown to be involved in cell
proliferation but its mechanism of action is not yet known [23].
However, its ablation results in restricted tissue growth, which
explains the growth retardation in mouse model with low levels of
KMT2B and could also, be the reason for growth delays in
affected members in the current study. KM'T2B, like KMT2C is a
part of the ASCOM (activating signal cointegrator-2) co-activator
complex, which has an important role in epigenetic regulation
together with the nuclear-receptor transactivation and forms a
connection between the two complexes [12]. Kim et al. [23] have
previously reported that ASCOM-KMT?2B plays an essential role
in Farnesoid X receptor trans-activation through their H3K4
trimethylation activity [23]. Hence, it can be proposed that
KMT2B could also be a part of the chromatin modification
module proposed by Kleefstra et al. [12], along with KMT2C,
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SMARCBI and NR1I3, MBD5 and EHMTI. It is remarkable
that the Kleefstra syndrome-like phenotype could be the result of
recessive variant identified in family MRQ14 (Figure 1A), whereas
all other previously reported gene mutations associated with KS
are dominantly inherited. This may reflect an intrinsic property of
KMT2B, making it less dosage-sensitive than the other KS genes.
However, the subsequent functional analyses are highly warranted
in order to establish the pathogenicity of the identified recessive
mutation.

The phenotypic features of MRQI1 were nsID, however, no
striking dysmorphic facial features or structural brain anomalies
were observed. The IQ was in the range of moderate ID (IQ; 36-
51). Exome sequencing identified a substitution at c.956T>A
(p-(Leu319His)) in ZNF589, which segregated with the disease in
the family in a recessive manner. The gene has not been reported
previously for ID and is predicted to be involved in DNA
dependent regulation of transcription (Gene ontology database:
www.geneontology.org). Based on the brain atlas, ZNF589 has
been shown to be expressed at different ages ranging from 0 to 48
months in different parts of brain such as amyloid complex, medial
frontal cortex, hippocampal cortex and basal ganglia. (Allen
Institute for Brain Science. Allen Human Brain Atlas; http://
human.brain-map.org/). The variant is located in the zinc finger
C2H2 domain and in silico analysis predicted that the two amino
acids differ from each other with a Grantham distance of 100,
which depicts a moderate physiochemical difference. The SIFT
and polyphen?2 also describe this variant to be pathogenic in
nature (Table 4). ZNF589 is localized at the cytogenetic band
3p21.31, it belongs to the kruppel C2H2-type zinc-finger protein
family. ZNF589 consists of a conserved KRAB domain at the
amino terminus and four zinc fingers of the C2H2 type at the
carboxy terminus. Upon alternative splicing of ZNF589, two
products are obtained that encode a protein of 361 and 421 amino
acids, which differ from each other at the carboxy terminus [24].
The missense change ¢.956T>A is located in the domain C2H2-
type. To date, limited functional data of ZNF589 is available. Liu
et al. [24] have shown that ZNF589 is involved in hematopoiesis,
because of its localization in the bone marrow derived stem cells.
The zinc finger genes are housckeeping genes such as the
ZNF589, which is expressed in the bone marrow stem cell and
is involved in DNA dependent transcription repression. The
missense change identified in the current study is localized in the
C2H2 type domain, which is a highly conserved motif in the
ZNF589 protein involved in transcriptional regulation by inter-
acting with different cellular molecules [25], therefore it is
predicted that this variant would likely disrupt the function of
the protein at the cellular level.

Notably, mutations in other CG2H2-type zinc finger proteins
have been reported before in relation to ID, including ZNF526
(one patient), ZNF41 (4 patients) [26] and ZNF674 (1 family)
[27], which supports the pathogenic role of the variant in ZNF589
encountered in this study.

In the family MRQ15, the de novo variant which was found in
the two affected members was ¢.1158G>C; p.(Trp386Cys);
NM_001122834.2 in HHAT (hedgehog acyltransferase), which
was located in MBOAT domain of the HHAT protein. The
change has a high phyloP score of 5.433 as well as a high
Grantham distance of 215. The substitution was not found in any
of the unaffected members but it was present only in the two
affected children as a heterozygous change. It is proposed that this
variation among the affected members of MRQ15 has occurred as
a result of a de novo germline change, which is not uncommon.
Previously Rauch et al. [28] and de Light et al. [29], have reported
a number of de novo variants in known and novel ID genes.
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HHAT, belongs to the hedgehog family of gene, which is also
referred to as skinny hedgehog. It is the precursor of an enzyme
that acts within the secretory pathway to catalyze amino-terminal
palmitoylation of hedgehog. It encodes a glycoprotein that
undergoes autoproteolytic cleavage to generate its active form,
the lipid modification is required for multimerization and
distribution of hedgehog proteins. Defects in this protein could
lead to improper signaling of shh and can lead to multiple defects
including neural tube defects [30] as hedgehog proteins are
involved in cell growth, survival and pattern of almost every plan
of vertebrate body and has a major role in development of
forebrain and midbrain [31]. Dennis et al. [32] have shown
HHAT to be the candidate gene for congenital human
holoprosencephaly, functional assays demonstrated that defects
in HHAT could diminish secretion of hedgehog proteins. This
defect in secretion can lead to abnormal patterning and extensive
apoptosis within the craniofacial primordial leading to the
structural defects in holoprosencephaly [32]. The role of HHAT
in cognition is supported by the findings of Das et al. [33], where
they treated trisomy 21 mice with Sonic hedgehog agonist and the
treatment resulted in behavioral improvements and normalized
performance in the Morris Water Maze task for learning and
memory, the effect was due to improvement in cerebellar
development and hippocampal function. Pan et al. [34] and
Kyttala et al. [35] reported the role of shh signaling in primary
cilia function. Ciliary defects have already been reported to be
causative of many human syndromes involving ID as a clinical
feature, such as bardet-biedl syndrome, holoprocencephaly,
Kartagener syndromes, polycystic kidney disease, and retinal
degeneration. These studies could possibly support the current
findings in which only a heterozygous de novo change in HHAT
was identified in the two affected siblings, the other allele being
normal, hence the variation did not cause any structural
malformation in both the siblings but the brain cognitive function
was severely affected, which resulted in speech impairment in
them.

Conclusion

In conclusion, the identification of probable pathogenic
variations in KMT2B, ZNF589 and HHAT in the current study
suggests potential importance of the particular pathways associat-
ed with these genes involved in cognitive dysfunctioning. In the
absence of functional data the definitive role of variations in these
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