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Abstract

Intellectual disability (ID) is a major health problem mostly with an unknown etiology. Recently exome sequencing of
individuals with ID identified novel genes implicated in the disease. Therefore the purpose of the present study was to
identify the genetic cause of ID in one syndromic and two non-syndromic Pakistani families. Whole exome of three ID
probands was sequenced. Missense variations in two plausible novel genes implicated in autosomal recessive ID were
identified: lysine (K)-specific methyltransferase 2B (KMT2B), zinc finger protein 589 (ZNF589), as well as hedgehog
acyltransferase (HHAT) with a de novo mutation with autosomal dominant mode of inheritance. The KMT2B recessive variant
is the first report of recessive Kleefstra syndrome-like phenotype. Identification of plausible causative mutations for two
recessive and a dominant type of ID, in genes not previously implicated in disease, underscores the large genetic
heterogeneity of ID. These results also support the viewpoint that large number of ID genes converge on limited number of
common networks i.e. ZNF589 belongs to KRAB-domain zinc-finger proteins previously implicated in ID, HHAT is predicted
to affect sonic hedgehog, which is involved in several disorders with ID, KMT2B associated with syndromic ID fits the
epigenetic module underlying the Kleefstra syndromic spectrum. The association of these novel genes in three different
Pakistani ID families highlights the importance of screening these genes in more families with similar phenotypes from
different populations to confirm the involvement of these genes in pathogenesis of ID.
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Introduction

Intellectual disability (ID), a neurocognitive disorder, is charac-

terized by substantial limitations both in intellectual functioning

and in adaptive behavior. In patients diagnosed before the age of

18 years, it has a prevalence of 2–3% in the general population

[1]. Stein et al. [2] reported the prevalence of ID among 3–9 years

old children in different populous countries including Pakistan,

Brazil, India, Bangladesh and Philippines, which varied from 9/

1000 to 156/1000. ID is an unsolved healthcare problem, which

creates an enormous socioeconomic burden on the society,

especially in the underdeveloped countries where there is a high

rate of consanguinity, resulting in further aggravating the

genetically inherited disease prevalence [3]. Chromosomal abnor-

malities and single gene disruptions contribute significantly to all

forms of ID, including severe, moderate and mild phenotype [4].

Investigations aiming to unravel the genetic defects initially

focused mainly on X-linked ID since male ID patients are

overrepresented as compared to females with a ratio of 1:1.3 to

1:1.9 [5]. However, these investigations have revealed that only

10% of ID cases are due to X chromosomal defects while the

remaining cases are expected to be caused by genetic defects in the

autosomes and equally due to adverse environmental effects such

as poor mother health, social deprivation, infections and injuries

during prenatal life and hypoxia [6]. Chromosomal aberrations

and mutations in more than 450 genes can explain the disorder in

about half of all ID patients [5]. The large number of ID genes

present a challenge for the identification of the genetic defect in

individual families and isolated cases, however, only a limited

number of pathways are emerging whose disruption appears to be

shared by groups of ID genes [7].
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Despite being clinically heterogeneous, syndromic ID (sID) as

well as non-syndromic ID (nsID) share common neurological

features, such as autism, epilepsy, ADHD (attention deficit

hyperactivity disorder) and behavioral anomalies [7]. In addition,

syndromic forms of ID are characterized by a pattern of congenital

anomalies that can be seen in addition to ID and other

neurological features. The latter can help to establish clinical

diagnosis, which can subsequently be validated by direct molecular

diagnostic testing of targeted gene(s). However, the number of

syndromes where similar phenotypes can be caused by mutations

in a variety of different genes is increasing. Examples of these

include Bardet-Biedl syndrome (MIM 209900; 17 genes), Sotos

syndrome (MIM 117550; 2 genes) and Kleefstra syndrome (MIM

610253; 5 genes) [7–10]. Typically, the underlying genes for each

of these syndromes have a functional relationship to each other

and mutations lead to disruption of the same molecular pathways.

As in the case of Kleefstra syndrome (KS), which is characterized

by severe to moderate ID, speech impairment, congenital

hypotonia, specific distinguishing facial features and complex

pattern of other anomalies can be caused by de novo mutations

affecting epigenetic regulators such as euchromatic histone-lysine

N-methyltransferase 1 (EHMT1), lysine (K)-specific methyltrans-

ferase 2C (KMT2C), SWI/SNF related, matrix associated, actin

dependent regulator of chromatin, subfamily b, member 1

(SMARCB1), nuclear receptor subfamily 1, group I, member 3

(NR1I3) and methyl-CpG binding domain protein 5 (MBD5) [11–

13].

Till now, small families with ID have not been studied

extensively due to technical difficulties including non-suitability

of homozygosity mapping and use of simple traditional linkage

analysis with insufficient power to resolve the genetic cause in such

families. The genetic analyses combined with whole exome

sequencing have recently enabled the systematic identification of

pathogenic mutations in small families with recessive nsID and

sID, including mutations in 13 novel nsID genes [13]. Najamabadi

et al. [4] have recently proposed 29 candidate genes for autosomal

recessive nsID. In the current study missense homozygous

mutations in two novel genes including lysine (K)-specific

methyltransferase 2B (KMT2B), a zinc finger gene ZNF589 and

a heterozygous de novo mutation in hedgehog acetyltransferase

(HHAT) were identified.

Methods

Ethics statement
This study was approved by the Department of Biosciences

Ethics Review Board of the COMSATS Institute of Information

Technology, Islamabad, Pakistan, and the local Ethics Committee

of the Radboud University Medical Centre, Nijmegen, The

Netherlands. All family members and 200 ethnically matched

control individuals were informed about the purpose of the study

and written consent in their local language was taken before

recruitment and sampling. The parents or guardians of the

individuals in this manuscript have given written consent (as

outlined in PLOS consent form) to publish the patients case

details.

Clinical features
A consanguineous family MRQ14 (Figure 1A) with three

children with severe sID was sampled from central Punjab,

Pakistan, including three affected sons (IV:1, IV:2, IV:3) unaffect-

ed daughter and son (IV:4 and IV:5), the unaffected mother (III:1),

unaffected father (III:2), unaffected paternal grandfather (II:4) and

unaffected paternal grandmother (II:5). The three affected

brothers had a similar sID phenotype and were each born after

about 39 weeks of uneventful pregnancies with normal labor. At

the age of 16 years, the proband (IV:1) had short stature,

dysmorphic facial features including a large head, flattened nasal

bridge, apparent hypertelorism synophrys, midface hypoplasia,

thick eyebrows, everted lower lip, dental anomalies and progna-

thism. Upon physical examination, he was found to suffer from

musculoskeletal anomalies as well as cryptorchidism and micro-

penis. Being floppy during childhood he was found to be

hypotonic on reaching teenage (Figure 2). In addition to speech

and motor delay, he was underweight at the time of assessment

(23kg, 2nd centile) and was short for his age (81cm, 2nd centile). All

the three affected boys lacked language development, had

profound ID (IQ,20, IQ was tested using the Wechsler

Intelligence Scale for Children (WISC-III)), and they were not

able to perform essential activities of daily life. Computed

Tomography (CT) scan did not reveal any anomaly of the brain

and the biochemical tests including liver transaminases, serum

lactate as well as serum electrolyte and complete blood count were

all in the normal ranges (Table 1).

The consanguineous family MRQ11 with two affected children

(Figure 1B) was sampled from Northern Pakistan. The sampled

members were: unaffected mother (III:2), unaffected daughters

(IV:1, IV:4, IV:5), affected son (IV:2), and affected daughter

(IV:3). The two affected siblings had a similar nsID phenotype.

The affected members, a son (IV:2), and a daughter (IV:3) were

born after an uneventful 39 weeks pregnancy. Labor was normal

and they did not undergo postnatal hypoxia. Both of them had

delayed milestones including speech and motor development. At

the time of examination, at the ages of 14 years (IV:2) and 10 years

(IV:3), they were both below average weight and height: the

affected son was 23 kg and 114 cm (both 2nd centile), whereas the

affected daughter weighed 22 kg and was 88 cm in height (both

being 2nd centile). Both siblings had strabismus and had moderate

ID (IQ: 36–51). CT scan did not show any anomaly of the brain,

in addition, metabolic and biochemical testing revealed no

abnormalities.

Family MRQ15 was a non-consanguineous family (Figure 1C),

from Punjab, Pakistan. Five members of the family were sampled

that included an unaffected father (I:1), unaffected mother (I:2),

affected daughter (II:2), unaffected son (II:4) and affected son

(II:7). The two affected siblings had profound ID (IQ,20) and

could speak only a few meaningful words and could recognize only

their parents and siblings. They were both not able to perform

daily activities of life independently. No other syndromic features

were present and their CT scan did not show any brain

malformation.

Homozygosity mapping and CNV analysis
The pedigrees are concordant with the recessive inheritance in

all the three families, therefore in order to obtain copy number

variation (CNV) as well as homozygosity mapping data, Affyme-

trix 250K NSPI SNP (Affymetrix, Santa Clara, CA) array analysis

was performed for MRQ14 family members IV:1, IV:2, IV:3 and

IV:5, and all sampled affected and unaffected members of

MRQ11 and MRQ15 (Figure 1). For CNV determination, the

data were scrutinized using Copy Number Analyzer for GeneChip

[14]. Affymetrix Genotyping Console (version 2.0) was used to

obtain the genotype data and online software Homozygosity

Mapper [15] was used to obtain the homozygous regions. The

homozygous intervals of at least 1 Mb were also verified visually.

All data were mapped using the Human Genome Build hg19.

Novel Intellectual Disability Genes
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Exome sequencing
Homozygosity mapping and CNV analysis did not reveal the

genetic cause of the disease in any of the family therefore exome

sequencing was performed for the proband of each family. The

exomes of the probands were enriched and sequenced as described

previously by Vissers et al. [16]. In brief, using an Agilent

SureSelect Human All Exon Kit (50 Mb, ,21,000 genes; Agilent

Technologies, Santa Clara, CA) exome libraries were prepared as

described by the manufacturer and pooled for bead amplification

using the emulsion-based clonal PCR (emPCR) of EZbead system

(Life Technologies, Santa Clara, CA) and were subsequently

sequenced using the SOLiD 4 system (Life Technologies, Santa

Clara, CA). As described by Vissers et al. [16] the variants and

indels were only selected for further analysis when the overall

variant reads were at least 15% of the total number of reads, with

a minimum of 5 reads [17]. For each proband, 36,001 to 44,200

variants were annotated. All nongenic, non-splice site, intronic and

synonymous variants were excluded from further analysis.

Furthermore, the low frequency variants (less than 0.5%) in

known ID genes present in dbSNP were also checked, such

variants were further filtered on the basis of pathogenicity scores

Figure 1. Pedigree of families (A) MRQ14, (B) MRQ11 and (C) MRQ15. The segregation of mutation of KMT2B, ZNF589 and HHAT are also in
the pedigree. The symbol +/+ represents homozygous ancestral alleles, M/M is for homozygous variant alleles and +/M is for heterozygous carriers. In
the panel B, the genotype of the father (III:1) has been deduced.
doi:10.1371/journal.pone.0112687.g001

Figure 2. Photographs of MRQ14 proband. The photographs
demonstrate the classic facial features representative of Kleefstra
syndrome.
doi:10.1371/journal.pone.0112687.g002
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and tested for segregation among the respective family members

while all the other variants were excluded (data not shown), which

were found in dbSNP132 or those in an in-house database. To

predict the pathogenicity of the variants, data were evaluated using

in silico analysis, including Poly Phen-2 (genetics.bwh.harvar-

d.edu/pph2) and SIFT (sift.jcvi.org/).

Sanger sequencing
Sanger sequencing for confirmation of the candidate gene

variants and their segregation in the families was performed

(Tables 2, 3 and 4) by designing PCR primers (Table S1, S2 and

S3) using the Primer3 program (http://frodo.wi.mit.edu/) and

amplifying the regions of interest. PCR amplification was

conducted using 0.25 mM dNTPs, 1X PCR buffer (100 mM

Tris-HCl, pH 8.3, 500 mM KCl), 2.5 mM Mg+2, 0.5 mM of each

primer, 2.5 U Taq polymerase (Fermentas Life Sciences, Ontario,

Canada) and 50 ng gDNA. The thermal profile consisted of initial

denaturation at 95uC for 5 min followed by 30 cycles of

amplification at 95uC for 1 min, 57uC for 30 sec and 72uC for

45 sec, a final extension was carried out at 72uC for 5 min.

Purified PCR amplicons were then sequenced using the ABI

PRISM Big Dye Terminator Cycle Sequencing V3.1 ready

reaction kit and the ABI PRISM 3730 DNA analyzer (Applera

Corp, Foster City, CA).

Results

After filtering the exome data of the proband (IV:1) of family

MRQ14 (Figure 1A), assuming a recessive inheritance model, 53

homozygous and 11 compound heterozygous variants in different

genes were obtained. The data were further prioritized to get the

most relevant changes using a phyloP score.2.0. This resulted in

11 homozygous and 6 compound heterozygous variants in 14

different genes (Table 2). A variant in KMT2B
(chr19.hg19:g.36,208,921_36,229,779), c.2456C.T, p.(Pro819-

Leu), was the only variant in the shared homozygous region that

segregated with the disease in the family after Sanger sequencing

(Figure 1A and 3A). In addition, the variant was absent in 200 age

and ethnicity-matched control samples (n = 400 alleles) as well as

in families MRQ11 and MRQ15. The KMT2B c.2456C.T

mutation segregated with the disease in the family with the change

inherited by descent from the heterozygous paternal grandfather

(III:4), the maternal grandparents were not available for screening

of the change, but it is likely that the other mutant allele was

inherited from the maternal grandfather as the parents are first

cousins.

Exome sequencing of the proband of family MRQ11 resulted in

the identification of 38 homozygous and 30 compound heterozy-

gous changes in 38 and 15 genes. Homozygosity mapping revealed

Table 1. Clinical features of Kleefstra syndrome shared by the three affected brothers of family MRQ14.

Clinical features Patient-IV:1 (Proband) Patient-IV:2 Patient-IV:3

High birth weight no no no

Microcephaly no no no

Synophrys yes yes yes

Unusual shape of the eyebrows yes yes yes

Midface hypoplasia yes yes yes

Full everted lower lip yes yes yes

Cupid bowed upper lip yes yes yes

Protruding tongue yes yes yes

Prognathism yes yes yes

Short stature yes yes yes

Overweight (BMI.25) no no no

DD/ID yes (severe) yes (severe) yes (severe)

Heart defect no no no

Genital anomaly yes yes yes

Renal anomaly (including VUR) no no no

Recurrent infections yes yes yes

Hearing deficit no no no

Gastro-esophageal reflux no no no

Epilepsy yes yes yes

Behavioral/psychiatric problems yes yes yes

Anomalies on brain imaging no not performed not performed

Tracheomalacia no no no

Umbilical/inguinal hernia no no no

Anal atresia no no no

Musculoskeletal anomaly yes yes yes

Respiratory complications no no no

Hypertelorism yes yes yes

BMI, body mass index; DD, developmental disability; ID, intellectual disability, VUR, vesico-ureteric reflux
doi:10.1371/journal.pone.0112687.t001
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only four common homozygous regions between the 2 affected

members of the family (Table S4). The data were further

prioritized (as described above), which revealed a total of 15

variants in 11 different genes (7 homozygous and 8 compound

heterozygous; Table 3). These variants were further validated by

Sanger sequencing for segregation in the respective family. Variant

c.956T.A, p.(Leu319His) in ZNF589 (chr3.hg19:g.48,282,596_

48,329,115) segregated with the phenotype in the family

(Figure 1B and 3B) and was absent in the control population as

well as families MRQ14 and MRQ15.

Genotyping of family MRQ15 by microarray analysis did not

reveal any homozygous region shared by the affected members,

suggesting that compound heterozygosity as well as de novo
dominant mutation may cause the disease in this family. Whole

exome sequencing was carried out to identify the genetic cause of

ID in this family using a trio-based approach [18,19]. After variant

filtration as described above, 8 homozygous and 6 compound

heterozygous variants were identified in 11 different genes, which

were further screened in the family by Sanger sequencing

(Table 4). However, none of these selected variants segregated

with the disease. In-line with a hypothesized dominant de novo
mutation model, a heterozygous change c.1158G.C,

p.(Trp386Cys) in the HHAT was present in both the affected

members (Figure 1C and 3C) and absent in the parents and the

unaffected sibling as well as healthy controls, and families MRQ14

and MRQ11. The occurrence of the mutation in both affected

members is consistent with a germline mosaicism in one of the

unaffected parents. Of note, non-paternity was excluded by

segregation analysis of rare paternal variants. It was not possible to

obtain other tissues of the parents therefore presence of variants

could not be checked in those tissues.

Discussion

Genetic screening of three Pakistani ID families in the current

study resulted in the identification of three novel plausible ID

Figure 3. The sequencing chromatograms of the families MRQ14, MRQ11 and MRQ15. (A) Shows the panels containing the region with
the identified KMT2B mutation in family MRQ14: ancestral (left panel), heterozygous (middle panel) and variant (right panel) (B) shows the region
containing the identified ZNF589 mutation in family MRQ11: ancestral (left panel), heterozygous (middle panel) and variant (right panel). (C) shows
the de novo variant of HHAT in family MRQ15: ancestral (left panel), heterozygous (right panel).
doi:10.1371/journal.pone.0112687.g003
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genes, KMT2B, ZNF589 and HHAT. The phenotype of the three

affected members of family MRQ14 had Kleefstra syndrome-like

phenotype (clinical details are described in clinical features

section), which is characterized by facial dysmorphism, hypotonia

and mild to severe ID (Figure 2). This syndrome is rare with

unknown prevalence and has not been reported in Pakistan

previously. The homozygous variant c.2456C.T; p.(Pro819Leu)

identified in the current study in the KMT2B was found to

segregate in the family in a recessive pattern.

KMT2B belongs to the MLL (myeloid/lymphoid or mixed-

lineage leukemia) family, and was found to be ubiquitously

expressed in adult tissues as well as in solid tumor cell lines [19], its

involvement in human cancer has already been established.

Furthermore, KMT2B has been reported to express in different

parts of human brain such as medial frontal cortex, occipital

cortex, hippocampal cortex, amyloid complex and basal ganglia at

different ages ranging from 0 to 48 months (Allen Institute for

Brain Science. Allen Human Brain Atlas (http://human.brain-

map.org/)). The protein encoded by KMT2B/MLL4 has multiple

domains such as a CXXC zinc finger, three PHD zinc fingers, a

SET (suppressor of variegation, enhancer of zeste, and trithorax)

and two FY domains. Of all the domains, the SET domain is

highly conserved in KMT2B and is a hallmark of the KMT gene

family. Kleefstra et al. [12] reported that the disease in 25% of the

patients with KS was caused by haploinsufficiency of EHMT1,

while the disease in few other patients diagnosed with a similar

phenotype was explained by de novo mutations in MBD5,

SMARCB1, NR1I3 and KMT2C [8]. Kleefstra et al. [8],

reported a de novo mutation in KMT2C to cause dominant ID,

similarly 41 likely pathogenic mutations in KMT2D gene causing

Kabuki syndrome (MIM 147920) have been reported in 86

patients, having dysmorphic facial features, bone deformities,

hypotonia, congenital heart defects, ID, urinary tract and

respiratory tract infections [20]. Kerimogulo et al. [21] have

recently reported that KMT2B/MLL2 belongs to myeloid

leukemia gene family, which mediates hippocampal histone 3

lysine 4 di- and trimethylation in memory formation, thus their

data supports the KMT2B/MLL4 involvement along with

KMT2B/MLL2 in cognition [22]. These findings support the

current results that mutations in KMT2B/MLL4 could possibly

lead to a Kleefstra syndrome-like phenotype. The current work is

the first report of a recessive KS finding, involving the KMT gene

family, which has already been implicated in dominant forms of

KS and Kabuki syndrome. The identified variant was excluded in

200 age and ethnicity matched controls. KMT genes (KMT2A-

KMT2E) as well as their Drosophila orthologs; trithorax (trx) and

trithorax related (trr), express protein products, which are capable

of methylating histone H3 on lysine 4 (H3K4). Of note, the

Drosophila trr gene is the single ortholog of mammalian KMT2C
and KMT2B, and has been shown to be involved in cell

proliferation but its mechanism of action is not yet known [23].

However, its ablation results in restricted tissue growth, which

explains the growth retardation in mouse model with low levels of

KMT2B and could also, be the reason for growth delays in

affected members in the current study. KMT2B, like KMT2C is a

part of the ASCOM (activating signal cointegrator-2) co-activator

complex, which has an important role in epigenetic regulation

together with the nuclear-receptor transactivation and forms a

connection between the two complexes [12]. Kim et al. [23] have

previously reported that ASCOM-KMT2B plays an essential role

in Farnesoid X receptor trans-activation through their H3K4

trimethylation activity [23]. Hence, it can be proposed that

KMT2B could also be a part of the chromatin modification

module proposed by Kleefstra et al. [12], along with KMT2C,

SMARCB1 and NR1I3, MBD5 and EHMT1. It is remarkable

that the Kleefstra syndrome-like phenotype could be the result of

recessive variant identified in family MRQ14 (Figure 1A), whereas

all other previously reported gene mutations associated with KS

are dominantly inherited. This may reflect an intrinsic property of

KMT2B, making it less dosage-sensitive than the other KS genes.

However, the subsequent functional analyses are highly warranted

in order to establish the pathogenicity of the identified recessive

mutation.

The phenotypic features of MRQ11 were nsID, however, no

striking dysmorphic facial features or structural brain anomalies

were observed. The IQ was in the range of moderate ID (IQ: 36-

51). Exome sequencing identified a substitution at c.956T.A

(p.(Leu319His)) in ZNF589, which segregated with the disease in

the family in a recessive manner. The gene has not been reported

previously for ID and is predicted to be involved in DNA

dependent regulation of transcription (Gene ontology database:

www.geneontology.org). Based on the brain atlas, ZNF589 has

been shown to be expressed at different ages ranging from 0 to 48

months in different parts of brain such as amyloid complex, medial

frontal cortex, hippocampal cortex and basal ganglia. (Allen

Institute for Brain Science. Allen Human Brain Atlas; http://

human.brain-map.org/). The variant is located in the zinc finger

C2H2 domain and in silico analysis predicted that the two amino

acids differ from each other with a Grantham distance of 100,

which depicts a moderate physiochemical difference. The SIFT

and polyphen2 also describe this variant to be pathogenic in

nature (Table 4). ZNF589 is localized at the cytogenetic band

3p21.31, it belongs to the kruppel C2H2-type zinc-finger protein

family. ZNF589 consists of a conserved KRAB domain at the

amino terminus and four zinc fingers of the C2H2 type at the

carboxy terminus. Upon alternative splicing of ZNF589, two

products are obtained that encode a protein of 361 and 421 amino

acids, which differ from each other at the carboxy terminus [24].

The missense change c.956T.A is located in the domain C2H2-

type. To date, limited functional data of ZNF589 is available. Liu

et al. [24] have shown that ZNF589 is involved in hematopoiesis,

because of its localization in the bone marrow derived stem cells.

The zinc finger genes are housekeeping genes such as the

ZNF589, which is expressed in the bone marrow stem cell and

is involved in DNA dependent transcription repression. The

missense change identified in the current study is localized in the

C2H2 type domain, which is a highly conserved motif in the

ZNF589 protein involved in transcriptional regulation by inter-

acting with different cellular molecules [25], therefore it is

predicted that this variant would likely disrupt the function of

the protein at the cellular level.

Notably, mutations in other C2H2-type zinc finger proteins

have been reported before in relation to ID, including ZNF526
(one patient), ZNF41 (4 patients) [26] and ZNF674 (1 family)

[27], which supports the pathogenic role of the variant in ZNF589
encountered in this study.

In the family MRQ15, the de novo variant which was found in

the two affected members was c.1158G.C; p.(Trp386Cys);

NM_001122834.2 in HHAT (hedgehog acyltransferase), which

was located in MBOAT domain of the HHAT protein. The

change has a high phyloP score of 5.433 as well as a high

Grantham distance of 215. The substitution was not found in any

of the unaffected members but it was present only in the two

affected children as a heterozygous change. It is proposed that this

variation among the affected members of MRQ15 has occurred as

a result of a de novo germline change, which is not uncommon.

Previously Rauch et al. [28] and de Light et al. [29], have reported

a number of de novo variants in known and novel ID genes.
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HHAT, belongs to the hedgehog family of gene, which is also

referred to as skinny hedgehog. It is the precursor of an enzyme

that acts within the secretory pathway to catalyze amino-terminal

palmitoylation of hedgehog. It encodes a glycoprotein that

undergoes autoproteolytic cleavage to generate its active form,

the lipid modification is required for multimerization and

distribution of hedgehog proteins. Defects in this protein could

lead to improper signaling of shh and can lead to multiple defects

including neural tube defects [30] as hedgehog proteins are

involved in cell growth, survival and pattern of almost every plan

of vertebrate body and has a major role in development of

forebrain and midbrain [31]. Dennis et al. [32] have shown

HHAT to be the candidate gene for congenital human

holoprosencephaly, functional assays demonstrated that defects

in HHAT could diminish secretion of hedgehog proteins. This

defect in secretion can lead to abnormal patterning and extensive

apoptosis within the craniofacial primordial leading to the

structural defects in holoprosencephaly [32]. The role of HHAT
in cognition is supported by the findings of Das et al. [33], where

they treated trisomy 21 mice with Sonic hedgehog agonist and the

treatment resulted in behavioral improvements and normalized

performance in the Morris Water Maze task for learning and

memory, the effect was due to improvement in cerebellar

development and hippocampal function. Pan et al. [34] and

Kyttala et al. [35] reported the role of shh signaling in primary

cilia function. Ciliary defects have already been reported to be

causative of many human syndromes involving ID as a clinical

feature, such as bardet-biedl syndrome, holoprocencephaly,

Kartagener syndromes, polycystic kidney disease, and retinal

degeneration. These studies could possibly support the current

findings in which only a heterozygous de novo change in HHAT
was identified in the two affected siblings, the other allele being

normal, hence the variation did not cause any structural

malformation in both the siblings but the brain cognitive function

was severely affected, which resulted in speech impairment in

them.

Conclusion
In conclusion, the identification of probable pathogenic

variations in KMT2B, ZNF589 and HHAT in the current study

suggests potential importance of the particular pathways associat-

ed with these genes involved in cognitive dysfunctioning. In the

absence of functional data the definitive role of variations in these

novel genes cannot be ascertained without any doubt. However,

after exome sequencing and segregation analysis of all the filtered

variants, the currently reported were the only variants that

segregated with the phenotype in the families. Therefore, it is

proposed that these variations could be the most likely cause of ID

in the studied families. The finding of additional variations in these

genes in other ID families could validate the current results. In

addition, functional studies could also define the role of these

mutations. The current findings point to the possibility that there

are many more unknown pathogenic genes in the known pathways

for ID, which are yet to be identified.
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