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Abstract 

When making statistical comparisons, the temporal dimension of the EEG signal introduces 

problems. Guthrie and Buchwald (1991) proposed a formally correct statistical approach that deals 

with these problems: comparing waveforms by counting the number of successive significant 

univariate tests and then contrasting this number to a well-chosen critical value. However, in the 

literature, this method is often used inappropriately. Using real EEG data and Monte Carlo 

simulations, we examined the problems associated with the incorrect use of this approach under 

circumstances often encountered in the literature. Our results show inflated false-positive or false-

negative rates depending on parameters of the data, including filtering. Our findings suggest that 

most applications of this method result in an inappropriate family-wise error rate control. Solutions 

and alternative methods are discussed.  
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Introduction 

Event-related potentials/fields (ERP/Fs) are widely used to investigate brain processes. ERP/Fs are 

obtained from the electro/magnetoencephalogram (EEG/MEG) by averaging the signal over 

multiple occurrences of an event. Typically, researchers manipulate a variable to create 

experimental conditions to be compared. 

 ERP/Fs have a high temporal resolution and researchers like using this property for 

temporally specific statistical inferences (i.e., inferring an effect in some time interval but not in 

others). As a consequence, when researchers want to compare the time-resolved ERP/Fs of different 

conditions, they are faced with a multiple-comparisons problem (MCP). In this context, it is 

important that the statistical test employed controls the probability of a false positive (i.e., Type I) 

error in the set of multiple tests performed at some critical alpha-level: the family-wise error rate 

(FWER). In practice, researchers normally obtain ERP/Fs from multiple channels, and therefore, the 

MCP also emerges in the spatial dimension. However, in this paper, we only focus on the temporal 

dimension of ERP/Fs.  

 In a method proposed by Guthrie and Buchwald (1991), univariate t-tests between two 

conditions are performed for each time sample, the number of successive significant t-tests is 

counted (a so-called run), and the longest run is determined. Under the null hypothesis of no 

difference between the experimental conditions, the probability distribution of this longest run 

strongly depends on the autocorrelation of the noise signal, with noise denoting the part of the 

signal that is not evoked by the stimulus. Autocorrelation is the correlation of a signal with a time-

shifted version of this same signal. With a time-shift of a single sample, this autocorrelation (i.e., 

first-order autocorrelation) measures how similar the signal is at two adjacent samples. The larger 

the first-order autocorrelation, the longer the intervals of successive between-condition differences 

that all deviate from zero in the same direction. As a consequence, if a sample shows a false-

positive between-condition difference at a particular time sample then, with increasing first-order 

noise autocorrelation
1
, the number of false-positive differences at adjacent samples also increases.  
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In line with these observations, Guthrie and Buchwald (G-B henceforth) proposed to reject 

or accept the null hypothesis on the basis of a critical-run value (based on the probability 

distribution of the longest run) that depends on the signal’s noise autocorrelation. For a given 

univariate threshold alpha-level, this critical-run value depends on two parameters: the signal’s 

length (in number of samples) and its noise autocorrelation
2
, which was discussed above. With 

respect to the signal’s length, note that it is measured in number of samples, and therefore depends 

both on the sampling rate and on the signal’s length measured in seconds. It is important to stress 

that G-B’s method is formally correct if these two parameters are known and subsequently used to 

determine the critical-run value. 

 An important problem with G-B’s method is that it assumes the noise autocorrelation to be 

known, but it is unclear how it should be estimated from the data. G-B’s proposal for estimating it 

consists of first removing systematic sources of variation from the signal. This is achieved by 

applying singular value decomposition to the signal and then removing the first k singular value 

component from the original signal. This residual signal is then used in the computation of the first-

order autocorrelation. However, it is unclear how many components (parameter k in G-B’s 

appendix) must be removed from the data.    

G-B provided a table with critical-run values given the critical parameters only for a finite 

set of parameter combinations. In principle, for every parameter combination, the critical-run value 

can be calculated, but researchers may decide not to and simply choose a number from G-B’s table.  

We surveyed studies in the literature employing G-B’s method to assess the rate of 

compliance to the method’s requirements. For each year between 2000 and 2013, we collected 

information from four highly cited articles
3
, resulting in 58 studies employing G-B’s method in the 

past 14 years. We tried to select the articles with the highest number of citations for each year, but 

this turned out not to be ideal because in many cases, this strategy yielded many articles by the 

same research group. When that was the case, we selected other highly cited articles published by a 

different research group. With these criteria, we are confident that the articles surveyed provide a 
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good representation of the (high-impact) literature. Notably, some studies did not report enough 

details to allow for a reconstruction of how the method was applied. For example, for one study, it 

could not be determined whether the noise autocorrelation had been calculated or just assumed. For 

two studies, the signal’s length could not be derived from the information provided in the article, 

and for a large number of studies, the signal’s length had to be inferred from the figures. For 14% of 

the studies, the critical-run value was not explicitly stated. Only 10% of the studies reported 

calculating the noise autocorrelation. The signal’s length varied between 11 and 1024 samples 

(mean = 341, median = 250, sd = 253), with 73% of the studies using lengths larger than the 

maximum value of 150 samples provided in G-B’s table. The critical-run value employed in these 

studies varied between 4 and 30 samples (mode = 11, mean = 12). Finally, low-pass filter cut-off 

values ranged from 20 to 300 Hz. In this context, the use of low-pass filtering is particularly 

interesting as this type of filtering temporally smooths the signal. Contrary to high-pass filtering, 

which does not temporally smooth the signal, low-pass filtering (and by extension band-stop 

filtering, commonly used to remove power line noise) increases the first-order autocorrelation. For 

our purposes, we focus on filtering issues only with respect to the autocorrelation. If the 

autocorrelation is calculated and taken into account in the statistical test, the impact of filtering on 

the false alarm rate is also accounted for. However, given our observation that only 10% of the 

surveyed studies calculated the autocorrelation when using G-B’s method, the impact that filtering 

can have on the statistical test seems often not to be accounted for. In total, only 7% of the studies 

we surveyed reported the autocorrelation and subsequently employed a critical-run value that was 

appropriate given the signal length. 

 Below, we demonstrate the problems associated with the inappropriate use of G-B’s 

method. We show how disregarding the noise autocorrelation and the signal’s length, both very 

common practices in the literature, impacts the FWER control of G-B’s method.   

Simulation Protocol 

We employed real EEG data
4
 (Piai, Roelofs & Maris, 2014) of 14 participants reading sentences 
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(sampled at 500 Hz with a 0.016–100 Hz online band-pass filter during recording). For our 

purposes, the artefact-free EEG segments comprising the first word of each sentence
5
 were used, 

baseline-corrected using the average EEG between -150 ms and word onset (mean number of trials 

per participant = 98). Data from six channels (Cz, C3, C4, Pz, P3, P4) were averaged per 

participant, representing one channel. The signal was analysed between 150 ms pre- to 600 ms post-

stimulus, yielding 375 sample points. For comparison with G-B’s table, which extends only until 

150 sample points, we also downsampled the signal to 250 Hz, yielding 187 sample points. To 

compare the results of our simulations across different pre-processing pipelines, these data were 

low-pass filtered at cut-offs of 30 and 15 Hz (-6 dB attenuation) using a zero-phase Hamming 

windowed finite impulse response filter of order 100 (Matlab 2010b, fir1 function, default 

parameters, no zero-padding, one-pass, 53 dB stopband attenuation). 

We used the Monte Carlo method to evaluate the FWER control of G-B’s method. The trials 

of each participant were randomly partitioned into two sets and then averaged to form two 

participant-average ERPs, representing two surrogate conditions. The random partitioning of the 

data from the same condition ensures that the null hypothesis is true. Then group-level (across the 

14 participants) between-condition t-tests were performed and the longest run was compared to the 

critical-run values of 5 (a common low value in G-B’s table for 150 sample points), 11 (middle-

range, most common value used in the studies we surveyed), and 17 (highest value in G-B’s table), 

without taking the autocorrelation into account. This procedure was meant to illustrate the 

behaviour of this test under conditions often used in the literature (i.e., disregarding the 

autocorrelation and the signal’s length). The simulation procedure (random partitioning followed by 

group-level t-tests) was repeated 1,000 times. By calculating the proportion of simulations (i.e., 

random partitions) that yielded a significant difference between the two surrogate conditions (with a 

true null hypothesis), we can assess the test’s FWER control. Under a critical alpha-level of .05, 

about 5% of the random partitions should yield a significant difference between the two conditions. 

Results and Discussion 
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Figure 1 shows the results of the simulations. Horizontal solid lines indicate the 5% critical alpha-

level. The results can be summarised as follows: the FWER increases with (1) shorter critical-run 

values, (2) smaller low-pass filter cut-offs, and (3) longer signals. These results emphasise the need 

to use the correct critical-run value when using this method, that is, the value that controls the 

FWER at 5%. We note that very similar results were obtained when the simulations were run on 

ERFs from MEG data with participants viewing pictures (from Piai, Roelofs, Jensen, Schoffelen & 

Bonnefond, 2014), and when we used an infinite impulse response Butterworth filter (default option 

in Fieldtrip, Oostenveld, Fries, Maris & Schoffelen, 2011, and in Brain Vision Analyzer). 

The present results highlight the importance of adjusting the critical-run value as a function 

of the signal’s length and the filter parameters. In this regard, our results reinstate the original 

conclusion by G-B regarding the effect of the signal’s length and autocorrelation on the test’s 

performance. It is clear that simply copying a critical number from G-B’s table, ignoring the factors 

on which this choice should be based, can result in either an increased false alarm rate or decreased 

sensitivity. At present, a typical ERP/F study uses 30-Hz low-pass filter. In studies using G-B’s 

method, a critical run of 11 samples is often used over segments comprising more than 250 sample 

points on average. Our results show that, for this typical ERP/F study one may find in the literature, 

current practices likely have an inappropriate FWER control. 

To avoid having to remove an arbitrary number of principal components from the data or 

having to use a critical number from G-B’s table while the autocorrelation is unknown, one can 

calculate the critical-run length based on the observed data using the Monte Carlo approach we 

adopted for our simulations. An improved alternative to this approach is implemented in the cluster-

based permutation test (Maris & Oostenveld, 2007). Under this approach, adjacent time-points that 

exhibit a similar difference across conditions are clustered together, just as in G-B’s method. Then, 

for each cluster, a cluster-level statistic is calculated (e.g., by taking the sum of the t-values within 

that cluster) and the largest cluster (either in size or in t-value) is selected. The crucial difference 

with G-B’s method is that a permutation distribution is then created by calculating the largest 
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cluster-level statistic for all random permutations of the data being analysed, with which the 

observed statistic is then compared. This obviates the need to know the autocorrelation and to 

consult a look-up table of critical values. Another important advantage of this approach is that can 

deal with the MCP not only in the temporal domain, but also in the spatial and spectral domains 

with the clusters being determined on the basis of spatial and spectral adjacency.  

 From the studies we surveyed, 82% used G-B’s method for temporally specific inferences. 

That is, in these studies, inferences were made about specific time windows within the epoch 

analysed. Even more specifically, in 32% of the studies, inferences were made about the precise 

time-point when the signals from two conditions first diverge or converge, indicating exactly when 

the onset/offset of the effect is. From a statistical point of view, this type of temporally specific 

inference requires that a particular false alarm rate is controlled: the probability of identifying as 

significant an earlier time point than the first one for which the null hypothesis does not hold. 

This false alarm rate is not controlled by G-B’s method, and neither is it by cluster-based 

permutation tests (Maris & Oostenveld, 2007). In fact, these approaches only control the false-

alarm rate under the omnibus null hypothesis involving no effect for none of the time points. This 

point is discussed in more detail in Maris (2012), focusing on spatially specific inference. With 

respect to onset latency differences, methods should be preferred that have been constructed and 

validated for that specific purpose (Kiesel, Miller, Jolicoeur & Brisson, 2008; Miller, Patterson, & 

Ulrich, 1998). 

In sum, G-B’s method provides a formally correct way of statistically comparing 

waveforms. However, it assumes a known noise autocorrelation, which we do not know how to 

estimate from the data. For a given noise autocorrelation, the critical-run value can then be 

calculated (or looked-up in a table) as a function of the signal’s length. However, in practice, a large 

number of studies uses G-B’s method inappropriately, often resulting in increased false-positive 

rates. An alternative approach that circumvents the need to know the noise autocorrelation and the 

signal length is to calculate the p-value under a permutation distribution generated from the 
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observed data, as with the Monte Carlo approach implemented in this article or in the cluster-based 

permutation test. 
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Footnotes 

1 
We are not aware of any study that has investigated the sources of the noise autocorrelation. 

However, when group-average evoked responses are compared between two conditions (typically 

manipulated within participants), an important source of the noise autocorrelation will be the 

individual differences in the timing and amplitude of the evoked responses. These individual 

differences are typically visible by eye when the group-average difference waveform is subtracted 

from the participant-specific difference waveforms. Instead, when participant-specific evoked 

responses are compared between two conditions (manipulated between trials), an important source 

of the noise autocorrelation will be the between-trial differences in the timing and amplitude of the 

signal-trial evoked responses. Due to the lower signal-to-noise ratio at the single-trial level, these 

between-trial differences are typically not visible by eye when the evoked response is subtracted 

from the single trials. However, these between-trial differences will contribute to the noise 

autocorrelation. 

2 
With the simulations, G-B found that the number of participants (i.e., degrees of freedom) was not 

a parameter influencing the critical-run value. 

3
 The journals in which these articles were published are the following: Acta Psychiatrica 

Scandinavica, Behavioral Brain Research, Biological Psychiatry, Cerebral Cortex (4 articles), 

Clinical Neurophysiology (5 articles), Cognitive Brain Research, Developmental Neuropsychology, 

Frontiers in Human Neuroscience, Frontiers in Psychology, Hippocampus, Human Brain Mapping, 

Integrative Physiological & Behavioral Science, International Journal of Psychophysiology,  Journal 

of the Acoustical Society of America, JAMA Psychiatry, Journal of Cognitive Neuroscience (4 

articles), Journal of Neuroscience (10 articles), Neurobiology of Aging, NeuroImage (11 articles), 

Neuropsychologia (2 articles), Neuroscience, PLoS ONE, Proceedings of the National Academy of 

Sciences of the United States of America (2 articles), Psychiatry Research, Psychophysiology. 
 

4 
We opted for avoiding assumptions with respect to the properties of the electrophysiological 

signal, which could erroneously influence the outcome of the simulations, and therefore employ real 
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EEG data in our simulations.  

5 
The segments of Piai et al.’s nonconstraining condition were used.
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Results of the simulations for signal’s length of 187 (left) and 375 (right) sample points with 

critical-run values of 5, 11, and 17 samples. Horizontal solid lines indicate the 5% critical alpha-

level. 100 Hz = data filtered only during recording (0.016–100 Hz band-pass) with no additional 

low-pass filtering. 

 


