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At the heart of the Conway-Kochen Free Will Theorem and Kochen and Specker’s argument against
non-contextual hidden variable theories is the existence of a Kochen-Specker (KS) system: a set of
points on the sphere that has no{0,1}-coloring such that at most one of two orthogonal points are
colored 1 and of three pairwise orthogonal points exactly one is colored 1. In public lectures, Conway
encouraged the search for small KS systems. At the time of writing, the smallest known KS system
has 31 vectors.

Arends, Ouaknine and Wampler have shown that a KS system has at least 18 vectors, by reducing
the problem to the existence of graphs with a topological embeddability and non-colorability prop-
erty. The bottleneck in their search proved to be the sheer number of graphs on more than 17 vertices
and deciding embeddability.

Continuing their effort, we prove a restriction on the classof graphs we need to consider and
develop a more practical decision procedure for embeddability to improve the lower bound to 22.

1 Introduction

1.1 The experiment

Consider the following experiment. Shoot a deuterium atom (or another neutral spin 1 particle) through
a certain fixed inhomogeneous magnetic field, such as that in the Stern-Gerlach experiment. The particle
will then move undisturbed or deviate. What we have done is measure the spin component1 of the particle
along a certain direction. This direction depends on the specifics of the field and the movement of the
particle.

Quantum Mechanics only predicts the probability, given thedirection, whether the particle will devi-
ate. Its probabilistic prediction has been thoroughly tested. One wonders: is there adeterministictheory
predicting the outcome of this experiment?

Kochen and Specker have shown that such a non-contextual deterministic theory must be odd: it
cannot satisfy the plausible SPIN axiom, that is:

SPIN Axiom [5]. Given three pairwise orthogonal directions. In exactly oneof the directions, the
particle will not deviate.

Their argument is based on the existence of a Kochen-Speckersystem.

∗This is a condensed version of the article to be published in Ohmsha-Springer’s New Generation Computing. One can find
a preprint of the full version athttp://westerbaan.name/~bas/math/ks.pdf

1As we are only interested in whether the particle deviates ornot, we actually only consider the square of the spin component.

http://dx.doi.org/10.4204/EPTCS.172.11
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://westerbaan.name/~bas/math/ks.pdf
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Definition 1. A Kochen-Specker (KS) systemis a finite set of points on the sphere2 for which each pair
is not antipodal and there is no010-coloring. A 010-coloring is a{0,1}-coloring of the points such that3

1. no pair of orthogonal points are both colored 1 and

2. of three pairwise orthogonal points exactly one is colored 1; or alternatively: they are colored 0, 1
and 0 in some order.

A point on the sphere obviously corresponds to a direction inspace. Because of this, the term point,
vector and direction can be used interchangeably. Antipodal points correspond to opposite vectors and
these span the same direction in space.

Figure 1: Conway’s 31 vector
Kochen-Specker system

Suppose there is a KS system and a non-contextual deterministic
theory satisfying the SPIN Axiom. Then we color a point of this sys-
tem 0, whenever this theory predicts that the particle will deviate if the
spin is measured in the direction corresponding to that point, and 1 oth-
erwise. Given two orthogonal points of the system, we can finda third
point orthogonal to both of them. The SPIN axiom implies exactly one
of them is colored 1, so they cannot both be colored 1. Similarly, given
three pairwise orthogonal vectors in the system, the SPIN axiom implies
exactly one of them is colored 1. Hence there would be a 010-coloring
of the KS system, quod non. Therefore a deterministic non-contextual
theory cannot satisfy the SPIN Axiom.

The KS system proposed by Kochen and Specker contained 117
points[7]. Penrose and Peres[10] independently found a smaller system
of 33 points. The current record is the 31 point system of Conway[11,
p. 197]. As pointed out by [3, 2], finding small KS systems is ofboth theoretical and practical interest.
In public lectures, Conway himself, stressed the search forsmall KS systems.[9]

1.2 Overview

In [2] Arends, Ouaknine and Wampler (AOW) give a computer aided proof that a KS system must have
at least 18 vectors. We improve their lower bound and show that a KS system must have at least 22
vectors.

First, in Subsection 1.3, we repeat a part of AOW’s work, in particular the reduction of KS systems
to graphs. The bottleneck of their search was the sheer number of graphs and the deciding whether such
graphs are embeddable. In Section 2, we improve upon their reduction, to cut down the number of graphs
to consider drastically, and state the results of our main computation. Finally, in Section 3, we describe
our practical embeddability test.

The software and results of the various computations performed for this paper, can be found here[15].

1.3 Kochen-Specker graphs

We follow [2] and reduce the search for Kochen-Specker systems to the search of a certain class of
graphs. First note that in a Kochen-Specker system we may replace a point with its antipodal point. They

2 We define KS systems to be three dimensional, as in the original proof of Kochen and Specker. Later, higher dimensional
systems have been studied. See, for instance [11, p. 201].

3 In other papers, like [2], the 0 and 1 are swapped; they consider 101-colorings. These colorings are of course equivalent
and the difference arises from considering either squared spin measurementsS2, or 1−S2.
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are both orthogonal to the same points and hence the non-010-colorability is preserved. Therefore, we
may assume antipodal points are identified on the sphere. That is: a Kochen-Specker system is a finite
subset of the projective plane that is not 010-colorable.

Definition 2. Given a finite subsetSof the projective plane (or equivalently, a finite subset of the northern
hemisphere without equator4). Define itsorthogonality graph G(S) as follows. The vertices are the
points ofS. Two vertices are joined by an edge, if their corresponding points are orthogonal.

Definition 3. A graphG is calledembeddable, if it occurs as a subgraph of an orthogonality graph. That
is: if there is a finite subsetSof the projective plane, such thatG≤ G(S).

Definition 4. A graph is called010-colorableif there is a{0,1}-coloring of the vertices, such that

1. for each triangle there is exactly one vertex that is colored 1 and

2. adjacent vertices are not both colored 1.

Definition 5. A Kochen-Specker graphis a embeddable graph that is not 010-colorable.

It is an easy, but important, consequence of the definitions that:

Fact 6. A finite subset S of the projective plane is a Kochen-Specker system, if and only if its orthogonality
graph G(S) is Kochen-Specker.

To prove there is no Kochen-Specker system on 17 points, it would be sufficient to enumerate all
graphs on 17 vertices and check these are not 010-colorable or not embeddable. However, this is in-
feasible as there are already∼1026 non-isomorphic graphs on 17 points.[12] Luckily, we can restrict
ourselves to certain classes of graphs.

Proposition 7 ([2]). An embeddable graph is squarefree. That is: it does not contain the square as a
subgraph.5

v
wProof. Given two non antipodal pointsv 6= w. See the figure on the right. Consider the

points orthogonal tov. This is a great circle. The points orthogonal tow is a different
great circle. They intersect in precisely two antipodal points. Hence, ifc andd are both
orthogonal tov andw, thenc andd are equivalent. Therefore, an embeddable graph
cannot contain a square.

The squarefreeness is a considerable restriction. There are only∼1010 non-isomorphic
squarefree graphs on 17 vertices.[13] Next, we show we can restrict ourselves to connected graphs.

Proposition 8 ([2]). A minimal Kochen-Specker graph is connected.

Proof. SupposeG is a non-connected Kochen-Specker graph. Then one of its components is not 010-
colorable. As a subgraph of an embeddable graph, is embeddable, this component is embeddable as well.
Hence it is a smaller connected Kochen-Specker graph.

The gain, however, is small. There are only∼109 non-isomorphic squarefree graphs
on 17 vertices that are not connected. In our computations, checking for connectedness required more
time than would be gained by reducing the number of graphs.

We have verified the main result of [2]:

4A subset of the projective plane can be identified with a subset of the closed northern hemisphere. For a finite subset we
can always rotate in such a way that no points lie on the equator.

5Some authors call a graph squarefree if it does not contain the square as induced subgraph. For them the complete graph
on four vertices is squarefree. We follow Weisstein[16] andSloane[13] and call a graph squarefree if it does not containthe
square as subgraph. For us the complete graph on four vertices is not squarefree.
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Computation 9. There is a unique non-010-colorable squarefree connected graph on17or less vertices:

It is not embeddable, as the graph in Figure 2 is an unembeddable subgraph. For our proof, see Propo-
sition 22. Hence a Kochen-Specker system has at least 18 points.

2 An improved lower bound

Continuing the effort of Arends, Ouaknine and Wambler, we consider another restriction.

Proposition 10. A minimal Kochen-Specker graph has minimal vertex-order three. That is: every vertex
is adjacent to at least three other vertices.

Proof. Given a minimal Kochen-Specker graphG. Supposev is a vertex with order less than or equal 2.
Let G′ beG with v removed. ClearlyG′ is embeddable. SupposeG′ is 010-colorable. Then we can extend
the coloring to a coloring ofG as follows. Ifv is adjacent to only one or no vertex, then we can colorv
with 0. Supposev is adjacent to two vertices, sayw andw′. If one ofw or w′ is colored 1, we can colorv
with 0. If bothw andw′ are colored 0, we can colorv with 1. This would implyG is 010-colorable, quod
non. ThereforeG′ is a smaller Kochen-Specker graph, which contradicts the minimality of G.

There are only∼107 squarefree non-isomorphic graphs on 17 vertices with minimal vertex order 3.
Even though Arends, Ouaknine and Wampler note this restriction once, surprisingly, they did not restrict
their graph enumeration to graphs with minimal vertex order3.

We continue with a strengthening of Proposition 8.

Proposition 11. A minimal Kochen-Specker graph is edge-biconnected. That is: removing any single
edge leaves the graph connected.

We need some preparation, before we can prove this Proposition.

Definition 12. Given a graphG and a vertexv of G. We say,v has fixed colorc (in G), if G is 010-
colorable and for every 010-coloring ofG, the vertexv is assigned colorc.

We are interested in these graphs because of the following observation.

Lemma 13. If there is an embeddable graph G on n vertices with a vertex with fixed color1, then there
is a Kochen-Specker graph on2n vertices.

Proof. Let G be a graph andv a vertex ofG with fixed color 1. Consider two copies of the graphG.
Connect the two instances ofv with an edge. Call this graphG′. Clearly,G′ is not 010-colorable.

We need to showG′ is embeddable. Given an embeddingSof G. We may assume that the point inS
corresponding tov is the north pole. Furthermore, we may assume that there is nopoint on thex-axis,
by rotating points along the north pole. LetS′ be S rotated 90 degrees along they-axis. Some points



158 A Kochen-Specker system has at least 22 vectors (extended abstract)

of SandS′ might overlap. That is: there might be a points in Sands′ in S′ that are equal or antipodal.
Observe that if no points ofS′ andSoverlap, thenS∪S′ is an embedding ofG′.

Suppose there are points inS′ andS that overlap. Note that the north pole (and south pole) is not
in S′. Let S′′ beS′ rotated along the north pole at some angleα . There are finitely many angles such that
there are overlapping points. Thus there is an angle such that S∪S′′ is an embedding ofG′.

Unfortunately, these graphs are not small.

Computation 14. There are no embeddable graphs with fixed color1 on less than 17 vertices.6

We are ready to prove that a minimal Kochen-Specker graph is edge-biconnected.

Proof of Proposition 11.Given a minimal Kochen-Specker graphG.

a b

A B

Recall it must be connected. Suppose it is not edge-biconnected. Then
there must be an edge(a,b) in G, which removal disconnectsG. ThusG de-
composes into two connected graphsA andB such thata∈ A, b∈ B and(a,b)
is the only edge betweenA andB. ClearlyA andB are embeddable.

Note thatAmust be 010-colorable, for if it were not 010-colorable, then A is a Kochen-Specker graph,
in contradiction withG’s minimality. SimilarlyB is 010-colorable. Suppose there is a 010-coloring ofA
in which a is colored 0. Then we can extend this coloring with any 010-coloring of B to a 010-coloring
of G, which is absurd. Thusa must have fixed color 1 inA. Similarly b must have fixed color 1 inB.
Thus by Computation 14, we have #A≥ 17 and #B≥ 17. Consequently #G≥ 34. Contradiction withG’s
minimality.

We can go one step further.

Proposition 15. A minimal Kochen-Specker graph is edge-triconnected. Thatis: removing any two
edges keeps the graph connected.

Again, we need some preparation for the proof. First, we generalize the notion of fixed color.

Definition 16. Given a graphG together with selected verticesv1, . . . ,vn ∈ G. Let C(G) denote the set
of 010-colorings ofG. Thetype t of (v1, . . . ,vn) (in G) is the set of all possible ways{v1, . . . ,vn} can be
colored. That is:t = {(c(v1), . . . ,c(vn)); c∈C(G)}. A type ofn vertices is called ann-type.

Example 17. • The triangle has 3-type{(1,0,0),(0,1,0),(0,0,1)}.

• Every vertex in a Kochen-Specker graph has type /0.

• A vertexv has the 1-type{(1)} in G if and only if it has fixed color 1 inG.

Just as verteces with fixed color are rare, we are interested in types, because most types do not occur
in small graphs.

Computation 18. We have enumerated all embeddable graphs of less than17 vertices and deter-
mined a lower bound at which a particular1- or 2-type occurs, omitting the trivial types{(0),(1)}
and{(0,0),(0,1),(1,0),(1,1)}.7

6Source code atcode/comp5.py of [15].
7Source code atcode/comp5.py of [15].
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1/2-type #G
{(0,0),(1,0),(0,1)} non-trivially ≥ 10
{(0,0),(1,0),(1,1)} ≥ 10
{(0,0),(0,1),(1,1)} ≥ 10
{(0,0),(0,1))} ≥ 15
{(0,0),(1,0))} ≥ 15
{(0)} ≥ 15
{(0,1),(1,0)} ≥ 16
other ≥ 17

The type{(0,0),(1,0),(0,1)} occurs in the embeddable two-vertex graph . Because the two vertices
are adjacent, this occurance of the type is called trivial.

Proof of Proposition 15.Given a minimal Kochen-Specker graphG. a1

a2

b1

b2

A B

Suppose it is not edge-triconnected. Then it splits into twographsA andB
together with vertecesa1,a2 ∈ A andb1,b2 ∈ B such that(a1,b1) and(a2,b2)
are the only edges betweenA andB. Note thatA andB must be 010-colorable,
for otherwiseG would not be a minimal Kochen-Specker graph.

1. Supposea1 = a2 andb1 = b2. ThenG is not edge-biconnected. Contradiction with Proposition 11.

2. Supposea1 6= a2 andb1 = b2. Supposeb1 = b2 does not have a fixed color inB. Then any coloring
of A can be extended with some coloring inB to a coloring ofG. Contradiction. Apparentlyb1 = b2

has a fixed color inB.

(a) Supposeb1 = b2 has fixed color 1 inB. Note #B≥ 17 by Computation 18.
Suppose there is a coloring ofA in which botha1 and a2 have color 0. Then, regardless
whethera1 anda2 are adjacent or not, this coloring can be extended with a coloring of B (in
whichb1 = b2 must be colored 1) to a coloringG. Contradiction.
Thus the type of(a1,a2) in A cannot contain(0,0). Thus, by Computation 18, #A ≥ 17.
Consequently #G≥ 34. Contradiction with minimality.

(b) Apparentlyb1 = b2 has fixed color 0 inB. Hence, by Computation 18, #B≥ 15.
Supposea1 is not adjacent toa2. Then any coloring ofA can be extended with a coloring
of B to a coloring ofG. Contradiction.
Apparentlya1 is adjacent toa2.
The type of(a1,a2) in A cannot contain(1,0) or (0,1) for otherwiseG can be colored. It also
cannot contain(1,1) asa1 anda2 are adjacent. Thus botha1 anda2 have fixed color 0 inA.
Hence #A≥ 17 by Computation 18. Consequently #G≥ 32. Contradiction with minimality.

3. Supposea1 = a2 andb1 6= b2. This leads to a contradication in the same way as in case 2.

4. Apparentlya1 6= a2 andb1 6= b2. The type of(a1,a2) in A cannot contain(0,0), for otherwiseG is
colorable. Similarly, the type of(b1,b2) in Bcannot contain(0,0). Thus both #A≥ 17 and #B≥ 17.
Hence #G≥ 34. Contradiction with minimality.

Although these restrictions are theoretically pleasing, they seem to be of little use as a practical
restriction. Concerning excluding unconnected graphs:

Computation 19. There are five non-isomorphic minimal squarefree connectedgraphs with minimal
vertex order 3 and they have 10 vertices.
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Corollary 20. Any unconnected squarefree graph with minimal vertex order3 has at least 20 vertices,
for it has two connected components, each with at least 10 vertices. With 20 vertices, there are exactly
25 of these.

This justifies, at this stage, not checking for connectedness. Similarly, we believe there are very few
connected but not edge-biconnected graphs.

Now we can state our main computation.

Computation 21. Let Cn denote the number of non-010 colorable squarefree graphs with minimal vertex
order 3 on n nodes. Then:8

n ≤ 16 17 18 19 20 21
Cn 0 1 2 19 441 11876

All these 12339 graphs are not embeddable. See Computation 23.

The computation was distributed on approximately 300 CPU cores and took roughly three months. It
was executed as follows. We enumerated all squarefree graphs with minimal vertex order 3 on less than
or equal 21 vertices, using thegeng util of the nauty software package, which uses the isomorphism-free
exhaustive generation method of McKay[8]. The output ofgeng, we passed through a custom heuristic
backtracker written in C++ to decide 010-colorability of these graphs.

3 Embeddability

Our computation has yielded over nine-thousand non-010-colorable graphs. If we show one of them is
embeddable, we have found a new KS system. If we demonstrate all of them are not embeddable, we
have proven a lower bound on the size of a minimal KS system.

In [2], Arends, Wampler and Ouaknine discuss several computer-aided methods to test embeddability
of a graph. None of these methods could decide for all graphs considered, whether they were embeddable
or not.

w

v xz

p3 p4

p1

p2 p5

a

Figure 2: One of the two mini-
mal non-embeddable graphs

We propose a new method, which for all graphs we considered,
could decide whether they were embeddable or not. First we give a
pen-and-paper example.

Proposition 22. The graph in Figure 2 is not embeddable.

Proof. Suppose it is embeddable. Considerp1. It is orthogonal to
both a andv. Sincea andv are not collinear,p1 must be collinear
to v×a, the cross-product ofv anda. Similarly, p2 is collinear tov×
p1 = v× (v×a). Continuing in this fashion, we see that

a is collinear tox× (x× (w× (w× (v× (v×a))))). (1)

Now, we may assume thatz= (0,0,1) andx = (1,0,0). Thus: v =
(v1,v2,0); w= (w1,w2,0) anda= (0,a2,a3) for some−1≤ v1,v2,w1,w2,a2,a3 ≤ 1, with v2

1+ v2
2 = 1;

w2
1+w2

2 = 1 anda2
2+a2

3 = 1. Now, (1) becomes:




0
a2

a3



 is collinear to





0
−a2v1w2(v1w1+v2w2)

−a3(v2
1w2

1+v2
1w2

2+v2
2w2

1+v2
2w2

2)



 .

8Source code atcode/comp6 of [15].
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Consequently

v1w2(v1w1+v2w2) = v2
1w2

1+v2
1w2

2+v2
2w2

1+v2
2w2

2

= (v2
1+v2

2)w
2
1+(v2

1+v2
2)w

2
2

= w2
1+w2

2

= 1.

Sincev andw are not collinear, we have by Cauchy-Schwarz| 〈v,w〉 |< 1. Now we find the contradiction:

1> |v1w2〈v,w〉 |= |v1w2(v1w1+v2w2)|= 1.

In the previous proof, we fixed, without loss of generality, the position of a few vertices. Then we
derived cross-product expressions for the remaining vertices. Finally, we find an equation relating some
of the cross-product expressions and show it is unsatisfiable. We can automate this reasoning as follows.

while there are unassigned verticesdo
pick an unassigned vertexv
assignV(v) = v
markv as free

5: while there are unassigned vertices adjacent to two different assigned verticesdo
pick such a vertexw adjacent to the assignedw1 andw2

assignV(w) =V(w1)×V(w2)
mark edges(v,w1) and(v,w2) as accounted for

end while
10: end while

for each pair of vertices(v1,v2) do
if (v1,v2) is not an edgethen

record requirement: “V(v1) is not collinear toV(v2)”
end if

15: end for
for each edge(v1,v2) not accounted fordo

record requirement: “V(v1) is orthogonal toV(v2)”
end for

At two points in the algorithm, there is a choice which vertexto pick. Depending on the vertices
chosen, the number of recorded requirements and free pointsmay significantly vary. By considering all
possible choices, one can find the one with least free points.

The requirements can be mechanically converted to a formal sentence in the language of the real
numbers. This sentence is true if and only if the graph is embeddable. Famously, Tarski proved[14]
that such sentences are decidable. His decision procedure has an impractical complexity. However, its
practical value has been improved by, for instance, the method of cylindrical algebraic decomposition[4].
We have used the redlog[6] package of the reduce algebra system, which implements a variant of Tarski’s
quantifier elimination.9

Different assignments give different sentences. In our tests, some assignments would yield sentences
that were decided within milliseconds, whereas another assignment with less free vertices would yield

9The reader can find the reduce script generated mechanicallyfor the graph in Figure 2 here:http://kochen-specker.
info/smallGraphs/49743f49514769444f.html.

http://kochen-specker.info/smallGraphs/49743f49514769444f.html
http://kochen-specker.info/smallGraphs/49743f49514769444f.html
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a sentence that could not be decided (directly). Therefore,when determining embeddability of a graph,
we try several assignments in parallel.

In this way, there were still a few (010-colorable) graphs ofwhich we could not decide embeddabil-
ity. With some guessing, we determined embeddings for thesegraphs by hand. Once we knew the
troublesome graphs were embeddable, we adapted the algorithm, as to guess for some assignments the
position of one of the vectors. If the corresponding sentence turns out false, we know nothing. However,
if the sentence is true, we know the graph is embeddable.

With this method, we have decided in a day the embeddability of every squarefree graph with minimal
vertex order three of less than 15, except for one.10 In particular:

Computation 23. Every squarefree graph of minimal vertex order three that isnot 010-colorable of
order less than or equal to 20 contains, as a subgraph, one of the following three graphs:

These three graphs are unembeddable. The left and middle graph are the only minimal unembeddable
squarefree graph. For the first graph, we have proven directly that it is unembeddable. See Proposi-
tion 22. For the second graph, we also have a similar direct proof. The third graph is shown to not be
embeddable using our algorithm.

Every squarefree graph of minimal vertex order three that isnot 010-colorable of order 21 contains
an unembeddable subgraph.11

4 Conclusion and future research

Arends, Ouaknine and Wampler struggled with two problems: enumerating candidate graphs of less
than 31 vertices and testing their embeddability. We have verified most of their computations. Then
we enumerated all candidate graphs up to and including 21 vertices. Furthermore, we have proposed
a new decision procedure, which was able to decide embeddability for all candidate graphs we found.
Therefore, we demonstrate: a Kochen-Specker system must have at least 22 points.12

Enumerating all candidate graphs of less than 31 vertices iscomputationally infeasable. To bridge
the enormous the gap between 22 and 31, requires a new insight. For instance: another restriction on
which graphs to consider.

The Reader, interested in pursuing this line of research, isencouraged to read the master thesis[1] of
Arends, in which he discusses in detail several other properties that a minimal KS system must enjoy, as
well as some failed attempts.

10 A list of all squarefree graphs with minimal vertex order three of less than 15 vertices together with their embeddability can
be found here:http://kochen-specker.info/smallGraphs/. The graph for which we could not determine embeddability
can be found here:http://kochen-specker.info/smallGraphs/4d4b3f4b3f603f47414641654953625f3f.html.

11A list of these graphs together with their unembeddable subgraphs, can be found here:http://kochen-specker.info/
candidates/. The source code for this computation can be found atcode/comp2.py of [15].

12The authors have a wager whether there is a minimal KS system of less than 25 vertices.

http://kochen-specker.info/smallGraphs/
http://kochen-specker.info/smallGraphs/4d4b3f4b3f603f47414641654953625f3f.html
http://kochen-specker.info/candidates/
http://kochen-specker.info/candidates/
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