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Active anti-cancer immune responses depend on effi-
cient presentation of tumor antigens and co-stimulatory
signals by antigen-presenting cells (APCs). Therapy with
autologous natural APCs is costly and time-consuming
and results in variable outcomes in clinical trials. There-
fore, development of artificial APCs (aAPCs) has
attracted significant interest as an alternative. We dis-
cuss the characteristics of various types of acellular
aAPCs, and their clinical potential in cancer immunother-
apy. The size, shape, and ligand mobility of aAPCs and
their presentation of different immunological signals can
all have significant effects on cytotoxic T cell activation.
Novel optimized aAPCs, combining carefully tuned prop-
erties, may lead to efficient immunomodulation and
improved clinical responses in cancer immunotherapy.

Advances in cancer immunotherapy
In cancer immunotherapy, the immune system is either
passively or actively exploited to target and kill cancer
cells. In this way, higher specificity for malignant cells may
be achieved than with conventional cancer therapeutics.
This approach thus avoids off-target toxicities while still
inducing highly potent anti-cancer responses. By targeting
tumor cells or their microenvironment, passive immuno-
therapy exploiting monoclonal antibodies has proven ben-
eficial clinical effects in several malignancies [1,2]. In
active immunotherapy, immune cells are stimulated and
instructed to actively fight cancer and although more
challenging, this approach is extremely promising. Active
immunotherapy is highly dependent on efficient stimula-
tion of antigen-specific immune cells, such as killer T cells
and antibody-producing B cells. In adoptive T cell transfer,
isolated autologous tumor-specific T cells are expanded ex
vivo and, after sufficient stimulation, are reinfused into the
cancer patient, where these cells are expected to elicit
potent anti-tumor responses (Figure 1, gray arrows) [3].

A more recent trend in adoptive T cell transfer exploits
molecular biology approaches to create more active T cells
with higher target affinities and prolonged lifetimes
(Figure 1, green arrow). For this purpose, T cells have
been constructed that express either transgenic T cell
receptors (TCRs) with increased affinity for their pep-
tide–major histocompatibility complexes (MHC) com-
plexes, or chimeric antigen receptors that can target
antigens independent of MHC through antibody-derived
ligand-binding domains. Engineered T cells have been
clinically applied and show good results, but several issues
need to be addressed, including on-target and off-target
toxicities, undesirable immune responses to chimeric an-
tigen receptors and engineered TCRs, and the possibility of
transformation, either because of virus-related insertional
mutagenesis or misguided T cell lifetime engineering.
Furthermore, engineered T cells do not differentiate into
memory cells and therefore no immunological memory is
created. These fundamental issues need to be resolved
before engineered T cells can be broadly implemented as
anti-cancer therapy [4,5].

In vivo, induction of T cell responses is highly dependent
on interactions with professional antigen-presenting cells
(APCs), in particular dendritic cells (DCs), which present
tumor-specific antigens. Therefore, to induce in vivo T cell
activation, cancer patients are vaccinated with APCs [6]. In
contrast to engineered T cells, these approaches use phys-
iological interactions, which minimizes the risk of serious
adverse side effects. Natural APCs, in particular DCs, are
well equipped to induce efficient activation and expansion
of tumor antigen-specific naı̈ve T cells, which can lead to
induction of large populations of T cells, including CD8+

cytotoxic T lymphocytes (CTLs) that can kill cancer cells
antigen-specifically (Figure 1, blue arrows). Several stud-
ies now indicate that the use of natural APCs in cancer
treatment is associated with a beneficial clinical outcome
with minor adverse side effects, emphasizing the promise
of active immunotherapy [3,6–8].

Unfortunately, the use of natural APCs such as DCs
over the years has also uncovered several serious limita-
tions. Lack of knowledge of the optimal antigen-loaded DC
combined with deleterious effects of immunosuppressive
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factors in the tumor microenvironment may be responsible
for the mixed results observed in clinical trials [9–12]. In
addition, isolation and ex vivo stimulation of autologous
DCs proved time-consuming and expensive, and the quali-
ty of ex vivo-generated DCs can be variable [9,13,14]. The
use of patient-derived autologous DCs therefore limits
standardization of DC-based treatment protocols [9,14].

Artificial APCs for T cell activation
To overcome the disadvantages and difficulties in use of
autologous APCs, artificial APCs (aAPCs) have been devel-
oped as an alternative for both ex vivo and in vivo induction
of tumor-specific CTLs (Figure 1, red arrows) [15,16].
Whereas natural APCs may be influenced by the tumor
microenvironment and unknown signaling moieties may
be present on their surface, artificial presentation of anti-
gens allows for better defined systems with more control
over the signals presented. Furthermore, the use of aAPCs
does not require time-consuming and expensive cell-culture
strategies and can be developed into an off-the-shelf tech-
nology [14,15]. However, aAPCs are not equipped with a
machinery to actively migrate into tissues. In this review,
advances in aAPC development are discussed for both ex
vivo and in vivo application in cancer immunotherapy.

Cell-based aAPCs
Genetically modified xenogeneic or allogeneic cells, such
as Drosophila cells, murine fibroblasts, and human

erythroleukemia cells, have been used as aAPCs [17–
19]. These cells are easier to handle and are better defined
than DCs, allowing for more control over the signals deliv-
ered. In addition, cellular aAPCs are stable cell lines that
can be stored for extended times and can thus be obtained
from a readily accessible source [16]. However, a major
disadvantage is their allogeneic nature. The use of human
cell-based aAPCs has recently been extensively reviewed
[20], so this review is restricted to the use of acellular
aAPCs for active cancer immunotherapy.

Acellular synthetic aAPCs for efficient expansion of
CTLs
Although cellular aAPCs can induce high expansion rates
of CD8+ T cells, they do not easily allow for specific control
of expression levels of T cell-activating signals. In addition,
non-tumor antigens and other stimulatory or inhibitory
molecules may be present on cellular aAPCs [13,21]. To
better define the delivery of distinct signals and circum-
vent the use of allogeneic cells, acellular aAPCs have been
developed. Compared to cellular aAPCs, acellular aAPCs
allow for more stringent control over the signals delivered
and are attractive tools because of their relatively easy
preparation. These synthetic entities can be designed to be
either nonspecific or antigen-specific by presenting T cell-
activating antibodies (such as anti-CD3) or peptide–MHC
complexes, respectively. In general, aAPC approaches
have focused on induction of CD8+ CTLs through MHC I

Reinfusion

Isola�on

Isola�on

Ac�va�on and
expansion

An�gen
loading

aAPCaAPC

T cell
engineering

Injec�on

Reinfusion

DC

T T

TT

T T

T

DC

TRENDS in Biotechnology

Figure 1. Different strategies for active cancer immunotherapy. T cell activation can be induced either ex vivo or in vivo by autologous dendritic cells (DCs; blue arrows) or

artificial antigen-presenting cells (aAPCs; red arrows), or by engineering of T cells through transgenic delivery of T cell receptors (TCRs; green arrow) and lifetime

engineering, for example using small-molecule inhibitors (red diamonds). Ex vivo-activated autologous T cells can be adoptively transferred into patients (grey arrows) to

specifically kill cancer cells. Alternatively, injection of APCs can lead to in vivo aAPC immunotherapy without the need for autologous cell cultures (red arrows).
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stimulation, because these cells are capable of antigen-
specific tumor cell lysis. Other immune cells, such as CD4+

T helper cells, can assist in shaping the anti-cancer im-
mune response by helping in the activation of CTLs.
Therefore, efforts have also been made, albeit to a lesser
extent, to activate these cells via MHC II. Artificial APCs
comprising various sizes, surface ligand distributions, li-
gand mobilities, and shapes have been developed, and
these properties can all affect T cell activation. The wide
variety of acellular aAPC structures (Figure 2, Table S1 in
the supplementary material online) reflects different
attempts to mimic different aspects of natural DCs.

Rigid spherical microsized aAPCs
To mimic natural APCs, several cell-sized, rigid, bead-based
aAPCs have been developed. Because of their homogenous
size distribution and straightforward functionalization,
these beads have been extremely useful in determining
the various signals necessary for T cell activation. In addi-
tion, these more simplistic systems have been used to induce
T cell activation for clinical purposes [16].

Latex microbeads

To induce T cell expansion, spherical polystyrene beads can
be coated with antibodies against CD3 and CD28. It was

shown that T cell activation was optimally induced by
microbeads ranging in size between 4 and 5 mm [22]. Ligand
density and bead size, rather than the amount of beads, were
important parameters for T cell activation. However, these
nonspecific particles could only induce long-term prolifera-
tion of CD4+helper T cells, and did not support the growth of
CD8+ CTLs for extended culture periods, indicating that
CD8+ T cells require additional stimulation to maintain
their effector functions [23]. Furthermore, anti-CD3 stimu-
lation has been associated with a loss of antigen specificity
when expanding enriched CD8+ T cell populations [19].
These reported problems can be avoided by replacing an-
ti-CD3 with specific peptide–MHC complexes in combina-
tion with co-stimulatory signals [24].

These beads were successfully used to produce large
numbers of functional antigen-specific CTLs against dif-
ferent targets, including melanoma antigens TRP-2 and
Mart-1 [16,25]. To induce long-term expansion of CD8+ T
cells using latex microbeads, cells require the presence of
IL-2. It was recently demonstrated that IL-2 may also be
replaced by IL-21 or a combination of IL-15 and IL-21,
which leads to unique functional CTL phenotypes [26,27].
Improved stimulation of T cells can also be achieved by
coating beads with anti-4-1BB or 4-1BBL, ICAM-1, and
CD83 [25,28,29].
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Figure 2. Different types of synthetic artificial antigen-presenting cells (aAPCs). (A) Rigid spherical particles: 1, polystyrene latex microbeads; 2, magnetic nano- and

microparticles; 3, nanosized quantum dots; and 4, poly(lactic-co-glycolic acid) (PLGA) microspheres. (B) Nonspherical particles: 5, carbon nanotube bundles; 6, ellipsoid

PLGA microparticles; and 7, nanoworms. (C) Fluidic lipid bilayer-containing systems: 8, 2D-supported lipid bilayers (2D-SLBs); 9, liposomes; 10, RAFTsomes/microdomain

liposomes; and 11, SLB particles.
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A single peptide–MHC complex has low intrinsic affini-
ty for its specific TCR [30]. To enhance this affinity, multi-
mers of MHCs have been developed, such as human
leukocyte antigen (HLA) tetramers [31–33]. In addition,
IgG–HLA dimers, which consist of IgG molecules contain-
ing two MHCs that can be easily uploaded with any desired
antigen, have been developed. In this way, aAPCs can be
made antigen-specific by uploading IgG–HLA dimers with
any desired epitope [34]. Dimers have also been applied to
synthetic nanoparticles, including dextran-coated iron ox-
ide magnetic particles (50–100 nm) and dextran-coated
quantum dots (30 nm). Although previous research using
bead-based systems indicated only very low T cell activa-
tion below 3 mm [22], these nano-aAPCs showed improved
in vivo efficacy compared to microsized beads. Although
first studies demonstrated that these particles exhibited
similar or even improved ex vivo T cell activation, the same
group later showed better activation for micro-aAPCs
using this type of particle [35], which is in accordance with
previous literature [22]. Their ability to stimulate T cells
despite their small size may be attributed to the use of
IgG–MHC, which contains a flexible hinge region [36]. In
general, it is thought that microbeads are better suited to
stimulate T cells because, owing to the lower curvature of
the surface, a microbead can make more interactions with
the cell than a nanosized spherical bead.

Polystyrene-coated magnetic microbeads

Because polystyrene particles are not biodegradable and
may be toxic or induce embolisms in vivo, they must be
removed from the CTL population before ex vivo-expanded T
cells are infused into patients [9]. For this purpose, micro-
sized magnetic latex-coated beads have been developed by
coating an iron oxide core with polystyrene, which allows for
straightforward removal of aAPCs by magnetic depletion
before reinfusion of CTLs. These beads were initially coated
with anti-CD3 and anti-CD28 for nonspecific CD4+ T cell
amplification [37]. Again, replacement of anti-CD3 with
peptide–MHC complexes results in antigen-specific T cell
expansion [31]. Similar to nonmagnetic latex beads, these
particles can be easily prepared and are readily available [9].

Importantly, T cells expanded ex vivo using anti-CD3/
anti-CD28-coated magnetic beads have been applied in
Phase I clinical trials in patients with metastatic breast
cancer, chronic myeloid leukemia, and carcinomas. Al-
though infusion of expanded CTLs resulted in mixed anti-
tumor responses, in some cases bead-expanded cells induced
tumor regression or even complete remission, indicating
that adoptive T cell transfer using bead-based aAPC-ex-
panded T cells could be an effective cancer treatment.
However, these trials also showed a risk of developing
non-tumor-specific cytotoxicity or graft versus host disease
[38–41].

Biodegradable poly(lactic-co-glycolic acid)

microparticles

Bead-based aAPCs can provide strong proliferative signals
to CD8+T cells. Natural APCs provide a third signal (Box 1,
Box 2) besides MHC-mediated antigen presentation and
membrane receptor-based co-stimulation, in the form of
soluble secreted cytokines. CD8+ T cells require continuous

paracrine delivery of cytokines such as IL-2 during the first
few hours for proper activation, and these are initially
provided by APCs and later by CD4+ helper cells. Besides
paracrine delivery, trans-presentation of IL-2 on CD25 also
plays an important role in initial activation of naı̈ve T cells
[42]. At later time points, CTLs also require cytokine
stimulation to maintain proliferation, but high IL-2 con-
centrations and exposure for extended times may nega-
tively impact T cells [43]. When using polystyrene beads,
cytokines have to be added to the culture, leading to high
overall concentrations and possible side effects due to co-
injection of IL-2 during reinfusion of T cells into patients
[9]. Implementation of mechanisms that allow for para-
crine cytokine release by aAPCs may therefore further
improve their potential to activate and differentiate T cells.
In particular, cytokine release may be essential for the
development of functional CD8+ T cells that can generate
potent immune responses. This may be the one most
important characteristics of an aAPC.

To facilitate release of cytokines or other soluble factors
from aAPCs, biodegradable systems have been developed.
These biodegradable aAPCs present signals on their sur-
face, similar to polystyrene particles, but combined with

Box 1. Signals for T cell activation

Activation signal 1: antigen recognition

T cell activation occurs after a T cell receptor (TCR) recognizes a

specific peptide antigen presented on MHC complexes of an

antigen-presenting cell. In general, extracellular peptides are

presented on MHC class II, which is recognized by the TCR in

conjunction with the CD4 T cell co-receptor, whereas MHC class I

carries peptides derived from intracellular proteins and are recog-

nized by the TCR in conjunction with a CD8 T cell co-receptor.

Ligation of the TCR by a peptide–MHC complex or binding of

agonistic antibodies directed towards CD3 leads to activation of the

CD3 signal-transduction complex, which transduces essential

signals necessary for activation of the T cell.

Activation signal 2: co-stimulation

To become fully activated, T cells require a second signal next to

TCR-mediated antigen recognition. This antigen-independent signal

is provided in the form of co-stimulatory molecules that are

upregulated on antigen-presenting cells when they encounter

stress, infection, or cellular damage. These molecules can interact

with receptors on the T cell, of which CD28 is the best studied. This

receptor interacts with co-stimulatory molecules B7-1 (CD80) or B7-2

(CD86) on APCs, which can also transduce inhibitory signals by

ligation of CTLA4 on the T cell. Other co-stimulatory receptors on T

cells include inducible co-stimulator (ICOS), CD27, and 4-1BB

(CD137), which bind to ICOS-L, CD70, and 4-1BBL, respectively.

Activation signal 3: cytokines

T cell activation and differentiation can be further directed through

binding of cytokines to cytokine receptors. These cytokines can be

produced by either APCs or CD4+ T helper cells and, especially for

CD8+ T cells, are essential for cell survival and productive immune

responses. IL-2, the most important cytokine for CD8+ T cell survival,

is secreted in low amounts by APCs during initial T cell encounter,

and is produced in larger amounts by activated CD4+ T cells. Other

cytokines that can assist in T cell activation include IL-12, IL-15, IL-21,

and type I interferons (IFNa/b). In particular, IL-12 and IFNa/b seem

to be essential for effective T cell function. In addition to

immunostimulatory cytokines, immunoinhibitory cytokines such

as IL-4, IL-5, and IL-10 are capable of dampening the immune

response or can lead to tolerance. Therefore, signal 3 is regarded as

the most important in shaping the immune response.
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slow release of IL-2 or other soluble molecules of interest.
Particles composed of the biodegradable co-polymer
poly(lactic-co-glycolic acid) (PLGA) have been extensively
applied in slow release systems. Although it can be chal-
lenging to stably present molecules on the surface of biode-
gradable PLGA particles owing to loss of surface-bound
molecules as the particle degrades [15], incorporation of
avidin–palmitate conjugates facilitated incorporation of
all three signals in one aAPC [44,45]. Surface ligand pre-
sentation of these IL-2-releasing particles was stable for 20
days, and they led to significantly higher induction of IFNg

secretion by murine and human T cells compared to mag-
netic beads in the presence of soluble IL-2 and reached peak
activation profiles at lower aAPC concentrations [45]. Fur-
thermore, it was shown that this paracrine release by
aAPCs, in contrast to exogenous addition, can induce local
accumulation of IL-2 near the contact area with the T cell,
thereby significantly altering the activation and prolifera-
tion of CD4+ CD8+ T cells, leading to apoptosis of CD4+ T
cells and enhanced proliferation of CD8+ killer T cells
[43,46]. It is likely that the high synaptic concentration that
results from paracrine IL-2 delivery can be detected by the
low-affinity IL-2 receptor, which is constitutively expressed
by T cells. After 24 h of antigen stimulation, T cells can also
express the high-affinity IL-2 receptor, and lower amounts
of IL-2 may be needed [43]. Similar to latex beads, PLGA
particles of 6–10 mm in size were most effective inducers of T
cell activation and expansion ex vivo[45].

Cytokines are essential for induction of potent CD8+ T
cells (Box 3), but it is difficult to design non-biodegradable

aAPCs, such as latex microbeads, capable of releasing
cytokines for extended periods of time. To circumvent this
problem, cytokines may be presented by surface receptors
similar to CD25, as also occurs on DCs [42]. However, it is
questionable whether sufficiently high concentrations of
cytokines will be available. Alternatively, agonistic
antibodies may be used, which could also be bound to

Box 2. Signal transmission by APCs

For efficient induction of tumor-specific CTLs, several signals need

to be transferred from APCs to naı̈ve T cells (Figure I). Antigen

recognition represents the first signal, which occurs through the

interaction of specific T cell receptors (TCRs) with peptide–MHC

complexes on APCs. APCs can contain two different types of MHCs.

MHC class I molecules present antigens derived from intracellular

proteins and bind to T cells expressing the CD8 co-receptor,

whereas MHC class II molecules, which present extracellular

peptides, can bind to CD4+ T cells. Activated CD8+ T cells, or CTLs,

are capable of antigen-specific cell lysis, whereas CD4+ T cells,

known as T helper cells, release cytokines to stimulate CTL

activation and antibody production by B cells. In artificial systems,

peptide–MHC complexes can be replaced by antibodies binding the

CD3 subunit of the MHC complex, which leads to non-antigen-

specific T cell activation. Besides signal 1, a second signal, co-

stimulation by APC cell-surface molecules, is passed on to naı̈ve T

cells. This co-stimulation is necessary for proper T cell activation.

CD80 and CD86, which bind to CD28 on T cells, are the most

prominent co-stimulatory signals. Additional co-stimulatory mole-

cules, such as 4-1BB and CD83, are also expressed on APCs. Finally,

to induce more efficient expansion and specific differentiation of T

cells, immune cells release cytokines, such as IL-2, IL-15, and IL-21,

which can be viewed as the third signal. In addition, T cell–APC

interactions are guided by adhesion molecules. Important adhesion

molecule interactions include those of ICAM-1 (CD54) and LFA-3

(CD58) on APCs binding to LFA-1 and LFA-2 on T cells, respectively.

Similar to natural APCs, the success of aAPCs depends to a great

extent on efficient presentation of these different signals to naı̈ve T

cells [6,9,15].
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Figure I. Different signals leading to induction of T cell activation and expansion.

Box 3. Cytokine delivery for T cell activation

Inflammatory cytokines are essential for the survival (in particular IL-

2), proliferation, and functional differentiation of CD8+ T cells.

However, most aAPCs are not capable of releasing sufficient

cytokine levels and require additional cytokines in cell culture,

which may not be as effective as either paracrine delivery or trans-

presentation (by CD25) by APCs [42]. This underscores the

importance of incorporating cytokine release systems in aAPC

designs. IL-2 may also induce regulatory T cells that inhibit immune

responses, so additional cytokines are required to further induce

effective T cell responses and avoid tolerance (non-responsive T

cells). Therefore, development of aAPCs that deliver other soluble

factors, or can trigger cytokine receptors in different ways (e.g., by

using antibodies), could lead to major improvements in T cell

survival and function. Interesting candidates include IL-12 and type I

IFN, usually produced by DCs, which are responsible for prolonged

T cell survival. These cytokines are necessary for memory T cell

development and strong effector function of CD8+ T cells. Another

interesting combination of cytokines is IL-15 and IL-21. IL-15 is

similar to IL-2 but does not lead to CD8+ T cell apoptosis. These

cytokines have been used to rescue tumor-reactive CD8+ T cells in

vivo [87]. In addition, it was demonstrated that IL-21 acts in synergy

with IL-15 [27]. Additional cytokines, such as IFNg and IL-7, can be

secreted by the T cell itself or by stromal cells in lymph nodes and

may therefore not be essential for aAPC-mediated delivery.
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non-biodegradable aAPC structures. So far, only biode-
gradable aAPCs have been used for cytokine delivery,
which may induce a more natural response via paracrine
delivery. However, it should be noted that because of their
biodegradable nature, these aAPCs might release their
stimulatory surface molecules, which may influence their
efficacy for T cell activation.

Importance of ligand mobility and pre-clustering for T
cell activation
Although rigid spherical beads can be efficiently used for T
cell stimulation, the membrane of natural APCs is much
more dynamic than the outer surface of latex-coated and
PLGA particles. To more closely mimic natural systems,
lipid bilayer surfaces and liposomes have been used as
aAPCs, thereby demonstrating a significant effect of mem-
brane fluidity and receptor pre-clustering on T cell activa-
tion.

2D surface membrane mimics

The immunological synapse (IS) was originally identified
as a membrane structure of approximately 70 mm2 that
forms upon APC–T cell contact and consists of peptide–
MHC complexes interacting with TCRs, surrounded by a
ring of interacting adhesion molecules. More recent re-
search indicates that this is a dynamic structure formed
after TCRs cluster together in microclusters that eventu-
ally move towards the IS centre. It was recently shown that
TCR-containing vesicles excreted within the IS are also
important for signal transmission [47]. In general, efficient
CD4+ and CD8+ T cell activation is associated with the
formation of a functional IS [48]. Synthetic 2D cell-surface
mimics have played an important role in elucidation of the
structure, function, and mechanisms of IS formation [48].
Planar membrane surfaces can easily be functionalized
with various ligand compositions and allow for the use
of high-resolution microscopy techniques, making it an
attractive tool to study cell membrane interactions [49].

To examine the effect of membrane fluidity on synapse
formation and T cell activation, lipid bilayers can be de-
posited on glass surfaces to form supported lipid bilayers
(SLBs). Variation of the membrane fluidity of these lipid
bilayers revealed that more fluid membranes are better
capable of forming ISs, leading to improved CD4+ T cell
activation compared to more rigid membranes [50]. In
addition, 2D surface patterning has been used to study
the effect of spatial organization of anti-CD3 and anti-
CD28 on CD4+ T cell activation. Lithographic definition
of the positions of proteins on a surface revealed that
spatial organization is important for efficient IS formation
and thus for T cell activation [51]. T cell responses were
most efficient when co-stimulating molecules (anti-CD28)
surrounded anti-CD3 compared to other organizational
arrangements [51,52]. Incorporation of protein patterns
onto aAPCs may therefore provide a new level of control
over T cell proliferation [53]. Although there may be small
differences between ISs of CD4+ and CD8+ T cells, the
general IS organization and dynamics are similar between
the various T cell subsets [54].

Although synthetic 2D cell surfaces, and in particular
2D-supported lipid bilayers (2D-SLBs), were useful in

clarifying the mechanisms of T cell activation, at present
they are less suitable as ‘off-the-shelf’ aAPCs owing to their
fragility and limited lifetime [53]. Furthermore, it should
be noted that most cell-surface membrane mimics used to
date lack organizers, such as a cytoskeleton, which play an
important role in the distribution of transmembrane mole-
cules, usually resulting in a non-random distribution but
organization into microdomains, whereby groups of surface
receptors are clustered together.

Liposomes, RAFTsomes, and microdomain liposomes

To facilitate T cell activation in a more natural context
similar to the fluid membrane interactions of natural APCs
and T cells, MHC-containing liposomes have been gener-
ated. Phospholipid bilayer vesicles with randomly distrib-
uted peptide–MHC complexes have been used to study the
physiological mechanisms of CD4+ T cell activation [55,56],
but have not been extensively used as aAPCs [16,55].

It has been shown that pre-clustering of peptide–MHC
complexes in lipid raft microdomains on APCs dramatical-
ly increases their antigen presentation efficacy [57]. It is
likely that this allows for better docking to their counter-
part TCRs on T cells, which are initially also distributed as
microdomains. Therefore, liposomes containing lipid raft
microdomains with pre-clustered MHC complexes have
been designed, which aids in IS formation. These lipo-
somes, also known as RAFTsomes, can be made by incor-
porating DC-derived lipid rafts in liposomal phospholipid
bilayers [58]. However, at present these RAFTsomes are
not as efficient as natural DCs or other aAPCs in stimu-
lating CD4+ T cell proliferation [58], probably because they
lack cytoskeleton-mediated surface organization. Another
method for pre-clustering molecules on liposomes makes
use of ganglioside GM1-containing liposomes. A high den-
sity of ligands can be created by taking advantage of the
high affinity of the cholera toxin B subunit for GM1, which
is a component of lipid rafts. These microdomain aAPCs
have been used for ex vivo T cell activation studies, and
showed improved antigen-specific CD4+ T cell stimulation
compared to liposomes with randomly distributed MHC
molecules [59]. Importantly, it has been shown that these
aAPCs are better equipped to stimulate CD8+ T cells
compared to magnetic beads, leading to higher numbers
and more efficient CTLs specific for MART-1 in melanoma
skin cancer [60].

3D-supported lipid bilayers (3D-SLBs)

Although the fluidity of liposomes is a great advantage for
T cell stimulation, they are substantially less stable than
solid particles. This problem may be solved by using solid
particles as a scaffold for a lipid bilayer. These SLB par-
ticles combine the fluidity of liposomal bilayers with ad-
vantageous properties of solid particles, such as their high
stability [15]. Several 3D-SLBs have been constructed,
including lipid bilayers on a core of hydrogel, PLGA, or
silica [61–63]. Using cell-sized silica beads coated with a
lipid bilayer, it was shown that 3D-SLBs can boost CTL
responses in antigen-primed T cells more efficiently than
liposomes. By contrast, 3D-SLBs were not able to initiate
primary T cell expansion, probably due to lack of soluble
factors such as IL-2 [64]. In another approach, lipid
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bilayers were isolated from Ag-bearing cells and adsorbed
onto latex microspheres. Perhaps cytoskeleton-organized
microdomains might be grafted onto these latex spheres,
but no significant change in T cell activation was observed
when compared to rigid latex beads [22].Alternatively,
tumor-cell derived plasma membrane vesicles have been
deposited on both silica and latex microbeads, leading to
large multivalent immunogens, which have an increased
immunostimulating activity compared to the nanosized
tumor-derived vesicles [65]. Although the use of 3D-SLBs
is a promising approach, so far no recent reports have been
made on SLBs that do not need membranes extracted from
tumor cells for T cell activation.

Importance of aAPC shape
Most aAPC systems use spherical particles to stimulate T
cells. However, natural APCs, especially DCs, are not
spherical, and therefore the aAPC shape may be modified
to increase the contact area with T cells. It will be inter-
esting to design and test differently shaped particles and
examine nanoclustering of ligands. This may assist in more
efficient TCR nanoclusters on the T cell surface. As de-
scribed below, shape appears to be an important parameter
for T cell activation that should be taken into account when
designing aAPCs.

Ellipsoid PLGA microparticles

Besides spherical forms, PLGA-based microparticles have
also been used as non-spherical particles [45].To closely
mimic the natural situation and increase the particle
contact area, ellipsoid PLGA-based aAPCs were prepared
using film-stretching methods [66,67]. Interestingly, par-
ticle shape had a significant effect on stimulation of T cells
by aAPCs. Elongated particles with a more ellipsoid shape
were more efficient as aAPCs than spherical particles and
induced stronger CD8+ T cell proliferation. These findings
may be explained by the fact that T cells have more and
larger biomimetic interactions with these aAPCs, thereby
favoring the flatter, longer side of the ellipse, which may
provide a larger IS-like contact area [67].

Carbon nanotube bundles

To both increase the surface area of particles and facilitate
more options for surface modifications, single-walled car-
bon nanotubes have been used for efficient T cell stimula-
tion [68]. Using anti-CD3-coated tubes, large surface
particles evoked higher aspecific T cell activation and
IL-2 production than polystyrene beads. These functional-
ized nanotubes appear to cluster into large microsized
aggregates with a high surface area, perhaps mimicking
cell-surface microdomains [68]. As already demonstrated
for fluid membranes and microdomain liposomes, nano-
patterning is an extremely important issue that deserves
further study to improve aAPC-mediated T cell activation.
Chemical modification of nanotubes might also lead to local
clustering of antibodies on their surfaces, with a positive
effect on T cell activation. Furthermore, this modification
causes the nanotubes to have a negative surface charge
resembling that of natural APCs, which might also help in
interactions with T cells [69]. It was recently demonstrated
that peptide–MHC complexes can also be stably linked to

nanotubes, which makes it possible to use these aAPCs for
antigen-specific T cell stimulation [70]. By combining a
large surface area for interaction, pre-clustered antibodies,
and a negative surface charge, these carbon nanotube
bundles seem extremely potent for ex vivo T cell activation
[68].

Nanoworms

Lipid bilayer aAPCs have shown that membrane fluidity,
which allows ligand motility, positively affects T cell acti-
vation. In addition, the particle shape appears to have a
great influence on this process, resulting in enhanced
responses when T cells have a larger contact area and
can thus better fit onto the aAPCs. A novel promising
approach incorporates both of these features into an aAPC
system exploiting so-called nanoworms, composed of semi-
flexible filamentous polymers comprising poly(isocyano
dipeptide) with oligo(ethylene oxide) side chains, which
can be decorated with molecules for antigen presentation
and co-stimulation in a highly controlled fashion [71]. Anti-
CD3 nanoworms composed of 200–400-nm-long polymers
induced more efficient and more sustained T cell responses
compared to anti-CD3 PLGA microparticles. This can
probably be attributed to the semi-flexible nature of these
polymers, which may assist in the formation of TCR
nanoclusters on the T cell surface. Attachment of pep-
tide–MHC complexes and various co-stimulatory mole-
cules to a polymer backbone could lead to an aAPC that
is highly promising for induction of both ex vivo and in vivo
T cell responses [71].

aAPC development for in vivo immunotherapy
Ex vivo expansion and subsequent injection of autologous
CTLs is one approach for induction of anti-tumor immune
responses. However, the survival and function of these
cells can be highly variable after reinfusion into patients
[33,72,73]. In addition, culturing of autologous T cells is a
time-consuming, labor-intensive, and costly procedure
[74]. Alternatively, to avoid the use of autologous cells,
aAPCs can be administered directly into patients to stim-
ulate CD8+ T cell responses in situ, allowing for true ‘off-
the shelf’ cancer immunotherapy.

When considering in vivo T cell targeting through injec-
tion of aAPCs, several additional properties besides high T
cell stimulation should be taken into account, including the
pharmacokinetics and biocompatibiliy of the system.
Therefore, the optimal size, surface modifications, shape,
and targeting moieties have been extensively investigated
for biomaterials used in drug delivery [67,75–78].

Several aAPCs have been tested for in vivo induction of
tumor cell killing through CD8+ T cell expansion. To the
best of our knowledge, one of the first in vivo aAPC
immunotherapies was performed in mice using silica
microspheres bearing either peptide–MHC class I com-
plexes or tumor cell membranes [64]. In mice, these aAPCs
could not induce immune responses on their own, but were
able to augment responses in the presence of antigen-
bearing stimulator tumor cells, which could not be
achieved using liposomes as aAPCs [79]. In combination
with the chemotherapeutic agent cyclophosphamide, these
particles induced regression of established progressing
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tumors in mice [80]. Variable success was observed for
these large multivalent immunogens in Phase I and II
clinical trials for the treatment of melanoma and renal cell
carcinoma; in some cases, partial responses were induced
[81,82]. However, the limited availability of autologous
tumor-cell membranes to cover the silica beads restricts
the wide applicability of this approach.

In another strategy, microsized polystyrene beads coat-
ed with tumor antigen-specific peptide–MHC complexes,
anti-CD28 and anti-4-1BB, were injected into tumor-bear-
ing mice. These beads efficiently decreased tumor size and
delayed tumor progression [33,83]. Similar results were
obtained for magnetic polystyrene microbeads in a mouse
tumor model [84]. Interestingly, when compared to spheri-
cal PLGA microparticles, ellipsoid particles were most
efficient in reducing tumor size and extending survival
times in melanoma-bearing mice, again emphasizing the
importance of size and shape [67]. Incorporation of IL-2
into biodegradable particles also improved their efficacy
and reduced tumor growth kinetics in mice engrafted with
B16 tumors [9]. IL-2 encapsulation can also be combined in
SLB particles with small-molecule inhibitors, such as TGF-
b inhibitors, which increased the activity of intratumoral T
cells in vivo [85].

Although no in vivo toxicities were observed, several of
the aAPCs used so far are non-deformable, large, and in
some cases non-biodegradable, which may lead to embo-
lisms, making clinical approval for in vivo use difficult [9,16].

Thus, in contrast to microbeads, nanosized particles
might be safer and have a better chance of obtaining
clinical approval. Particle sizes below 100 nm enable easy
entry into the lymphatic system and allow for transporta-
tion to the lymph nodes, where particles can gain access to
larger numbers of T cells [86]. For example, MHC class II-
containing RAFTsomes, which are flexible nanoparticles,
were able to induce CD4+ T cell responses that prevented
EG.7 tumor inoculation and reduced tumor sizes in mice
[58]. Unfortunately, generation of these nanoparticles
requires DC-derived lipid rafts, and therefore does not
completely eliminate the need for isolation and culture
of autologous APCs. Alternatively, completely synthetic
nanosized aAPCs have been tested for their in vivo poten-
tial in cancer immunotherapy. Both dextran-coated iron
oxide magnetic particles (50–100 nm) and dextran-coated
quantum dots (30 nm) can effectively stimulate tumor
antigen-specific T cells and inhibit tumor growth in vivo.
They are also more efficiently distributed and better capa-
ble of reaching T cell pools in mice than micro-aAPCs [36].

Future aAPC development for more potent
immunotherapy
The efficacy of signal presentation by aAPCs and the
resulting T cell activation are highly dependent on the
properties of the materials used. For future aAPC devel-
opment, the previously discussed properties should be
optimally tuned to induce higher clinical responses. Ex
vivo activation of T cells for subsequent reinfusion into
patients has proven most effective with large microsized
particles. To further improve aAPCs for ex vivo T cell
activation, current knowledge about the optimal choice
of surface molecules, cytokine release, particle shape,

ligand mobility, and ligand orientation should be applied
in a microsized system, preferably one that can be quickly
separated from the T cell population before reinfusion into
a patient. The use of 3D-SLB particles constitutes a prom-
ising, yet rarely applied system that would allow for incor-
poration of these features. For example, future acellular
‘off-the-shelf’ aAPCs could be made by coating ellipsoid
PLGA microparticles with GM1-microdomain-containing
lipid bilayers, allowing for more optimally shaped and
stable particles with ligands pre-clustered in microdo-
mains, high membrane fluidity, and an ability to release
paracrine cytokines and small-molecule drugs [15,85].
Furthermore, incorporation of magnetic nanoparticles
may be possible for straightforward separation of particles
and cells after incubation and expansion. aAPCs that
closely mimic features of natural DCs should in this way
improve the clinical efficiency of ex vivo-generated T cells.

In vivo, active aAPC immunotherapy, although more
challenging, is also particularly promising. This approach
does not depend on autologous T cells, so labor and costs are
significantly lower. However, injection of microsized aAPCs
may be unsafe, and therefore biocompatible nanoparticulate
constructs are preferred. Nanoparticles in the size range 10–
100 nm have a favorable biodistribution [36,86]. Similarly,
the use of flexible nanoworms is a promising approach for in
vivo application. These polymers are small in size and have a
high degree of flexibility, allowing extensive contacts with
the T cell membrane and the dynamic interactions neces-
sary for potent signal transduction [71]. For in vivo applica-
tion of aAPCs, development of nanosized particles
combining these properties may be important to boost clini-
cal responses in cancer immunotherapy [15].

Concluding remarks and future perspectives
The development of aAPCs for cancer immunotherapy is a
highly promising approach. The ex vivo use of these sys-
tems for T cell expansion has significant advantages over
the use of autologous APCs, and initial results from clinical
studies are encouraging. Therefore, further development of
microparticles for this purpose should exploit the effects of
size, shape, ligand mobility, and ligand distribution. The
development of nanosized aAPCs with improved flexibility,
optimal shape, and efficient signal presentation for direct
in vivo aAPC immunotherapy is desirable and holds
marked promise. This approach could eliminate the need
for costly and laborious cell culture and lead to broadly
accessible ‘off-the-shelf’ cancer immunotherapeutics. This
highlights the need for research into nano-aAPCs that
exhibit more potent in vivo CTL responses.
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