
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/137036

 

 

 

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/43577658?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/137036


Genes 2014, 5, 176-195; doi:10.3390/genes5010176 
 

genes 
ISSN 2073-4425 

www.mdpi.com/journal/genes 
Review  

The Molecular Basis of Retinal Dystrophies in Pakistan 

Muhammad Imran Khan 1,2,†, Maleeha Azam 1,2,†, Muhammad Ajmal 1,2, Rob W. J. Collin 2,3,  
Anneke I. den Hollander 2,4, Frans P. M. Cremers 1,2,3,†,* and Raheel Qamar 1,5,†,* 

1 Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, 
Islamabad 45600, Pakistan; E-Mails: MuhammadImran.Khan@radboudumc.nl (M.I.K.); 
malihazam@gmail.com (M.Az.); chmajmal@gmail.com (M.Aj.) 

2 Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB,  
The Netherlands; E-Mails: Rob.Collin@radboudumc.nl (R.W.J.C.); 
Anneke.denHollander@radboudumc.nl (A.I.H.) 

3 Radboud Institute for Molecular Life Sciences, Radboud University Medical Center,  
Nijmegen 6500 HB, The Netherlands 

4 Department of Ophthalmology, Radboud University Medical Center, Nijmegen 6525 EX,  
The Netherlands 

5 Al-Nafees Medical College & Hospital, Isra University, Islamabad 45600, Pakistan 

† These authors contributed equally to this work. 

* Authors to whom correspondence should be addressed; E-Mails: Frans.Cremers@radboudumc.nl 
(F.P.M.C.); raheelqamar@hotmail.com (R.Q.); Tel.: +31-24-3613750 (F.P.M.C.);  
Fax: +31-24-3668752 (F.P.M.C.); Tel.: +92-51-9049210 (R.Q.); Fax: +92-51-9247006 (R.Q.) 

Received: 21 January 2014; in revised form: 14 February 2014 / Accepted: 14 February 2014 / 
Published: 11 March 2014 
 

Abstract: The customary consanguineous nuptials in Pakistan underlie the frequent 
occurrence of autosomal recessive inherited disorders, including retinal dystrophy (RD).  
In many studies, homozygosity mapping has been shown to be successful in mapping 
susceptibility loci for autosomal recessive inherited disease. RDs are the most frequent 
cause of inherited blindness worldwide. To date there is no comprehensive genetic 
overview of different RDs in Pakistan. In this review, genetic data of syndromic and  
non-syndromic RD families from Pakistan has been collected. Out of the 132 genes known 
to be involved in non-syndromic RD, 35 different genes have been reported to be mutated 
in families of Pakistani origin. In the Pakistani RD families 90% of the mutations causing 
non-syndromic RD and all mutations causing syndromic forms of the disease have not 
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been reported in other populations. Based on the current inventory of all Pakistani  
RD-associated gene defects, a cost-efficient allele-specific analysis of 11 RD-associated 
variants is proposed, which may capture up to 35% of the genetic causes of retinal 
dystrophy in Pakistan. 

Keywords: inherited retinal dystrophies; homozygosity mapping; genetic testing 
 

1. Introduction 

Inherited retinal dystrophies (RD) belong to a group of clinically and genetically heterogeneous 
disorders [1]. The clinical sub-classification of this group of diseases is based on the nature of the 
disease (stationary or progressive), the inheritance pattern, and the dysfunctional part of the retina [2]. 
The disease is either congenital, occurring early in life, such as Leber congenital amaurosis (LCA; 
MIM# 204000), and congenital stationary night blindness (CSNB; MIM# 310500), or might have a later 
onset, such as in retinitis pigmentosa (RP; MIM# 268000), cone-rod dystrophy (CRD; MIM# 604116), 
and cone dystrophy (CD; MIM# 602093) [3]. In addition to disorders confined to the eye, there are 
syndromic forms of the disease in which retinal dystrophy is either among the primary clinical 
symptoms or might manifest at an advanced stage. The most common syndromic form of RD is Usher 
syndrome (USH; MIM# 276900), in which RP is associated with variable degrees of hearing loss and 
vestibular dysfunction [4]. Other types of syndromic RD include Bardet-Biedl syndrome (BBS; MIM# 
209900), Senior-Loken syndrome (SLSN; MIM# 266900), Joubert syndrome (JBTS; MIM# 213300), 
and Meckel syndrome (MKS; MIM# 249000). All these syndromes exhibit severe clinical features in 
addition to retinal degeneration [5,6]. 

The estimated worldwide prevalence of RD is 1 in 3000 individuals [7]. RP is the most frequent 
phenotype among the RDs, affecting 1 in 4000 individuals [8,9]. In Pakistan the frequency of RD is 
not very well defined, but a hospital-based study estimated autosomal recessive RP to be the most 
prevalent [10]. In several developing countries, as opposed to Western countries, consanguinity has 
always been a major contributing factor in the high prevalence of autosomal recessive disorders [11]. 
In Pakistan more than 60% of marriages are consanguineous and among them about 80% are between 
first cousins [12]. Such consanguineous families are ideal for homozygosity based genetic mapping 
studies aimed at the identification of the underlying genetic defect [13,14]. 

As a result of several technological advances, 201 genes implicated in different forms of RD  
have been identified to date [15]. Among these genes, 132 are linked to non-syndromic forms of the 
disease with some genetic overlap between different classes [1,3,16]. In the developed countries, 
genetic testing using medium-to-high throughput genotyping methods are now being routinely used for 
proper disease diagnosis [17]. This has resulted in the establishment of many genotype-phenotype 
correlations [17–19]. In the last two decades, several studies have described the genetic causes of 
different retinal dystrophies in consanguineous Pakistani families. However, to date, there has been no 
comprehensive ophthalmogenetic overview of all forms of RD that have been identified in Pakistan. 
Therefore, this literature review provides an overview of all published genetic data of syndromic and 
non-syndromic RD that have been described for Pakistani families. 
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2. Experimental 

A comprehensive literature review was performed for mutations and loci, which have been 
described previously for Pakistani individuals with syndromic and non-syndromic retinal diseases.  
The Retinal Network (RetNet) [15], National Centre for Biotechnology Information (NCBI) [20], 
Online Mendelian Inheritance in Man (OMIM) [21], The Human Gene Mutation Database (HGMD) [22], 
and published literature were used to search for the causative genes. In order to predict the 
pathogenicity of the reported missense mutations, in silico analysis including, polymorphism phenotyping 
(PolyPhen-2) [23], and sorting tolerant from intolerant (SIFT) [24] were performed. The frequency of 
these variants in the healthy population was checked via the exome variant server (EVS) [25]. 

3. Results 

3.1. Overview of Molecular Genetic Studies in Non-Syndromic RD in Pakistan 

Thus far, fifty-six studies have reported on the genetic causes of non-syndromic RD including 
arCRD, arCSNB, arLCA, and arRP in Pakistani persons, most of which belong to consanguineous 
families. The genetic data of a total of 466 Pakistani RD patients from 103 families (Tables 1 and 2), 
have been described in the current review. Among these retinal phenotypes, arRP was found to be the 
most frequently occurring RD (59%), followed by arLCA (19%), arCRD (10%), and arCSNB (9%) 
(Tables 1 and 2; Figure 1). Autosomal recessive inheritance seems to predominate in the RD families 
(96%) and only two autosomal dominant RP (adRP) families have been described (Tables 1 and 2). Of 
these, one adRP family carries a mutation in RHO (MIM# 180380) [26], while in one family a frequent 
variant (c.2138G>A) in SEMA4A (MIM# 607292) has been described to cause adRP, however  
in silico prediction and exome variant server (EVS) frequency do not support the pathogenicity of the 
latter variant (Table 2) [27]. The compiled data demonstrate that out of the 132 genes known to be 
involved in non-syndromic RD, mutations in 36 different genes are causing disease in patients of 
Pakistani origin (Table 1; Figure 2), reflecting the genetic heterogeneity of the disease in this population. 
The most frequently mutated genes were AIPL1 (MIM# 604392), CRB1 (MIM# 604210), TULP1 
(MIM# 602280), RPGRIP1 (MIM# 605446), RP1 (MIM# 180100), SEMA4A, LCA5 (MIM# 611408), 
and PDE6A (MIM# 180071) (Figure 2). Most of the reported mutations, and those identified in  
the current cohort, were novel to this population except for mutations in ABCA4 (MIM# 601691), 
CRB1, CERKL (MIM# 608381), RPE65 (MIM# 180069), RPGR (MIM# 312610), and SPATA7 
(MIM# 609868), which were initially identified in persons of different ethnicity (Table 1). As 
expected, all the reported disease associated alleles are rare variants and in silico analysis predicted 
these variants to have a deleterious effect on protein function (Table S1). 

Table 1. Mutations identified in Pakistani patients with non-syndromic retinal dystrophies. 

Gene RefSeq Id Nucleotide variant Protein variant Phenotype # Families # Patients References 

ABCA4 NM_000350.2 c.6658C>T p.(Gln2220*) arRP 1 6 [28,29] 
ADAM9 NM_003816.2 c.766C>T p.(Arg256*) arCRD 1 4 [30] 
AIPL1 ‡ NM_201253.2 c.116C>A p.(Thr39Asp) arLCA 1 6 [31] 
AIPL1 ‡ NM_014336.3 c.834G>A p.(Trp278*) EORP 11 25 [29,31–34] 
BEST1 ‡ NM_001139443.1 c.418C>G p.(Leu140Val) arRP 1 4 [35] 
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Table 1. Cont. 

Gene RefSeq Id Nucleotide variant Protein variant Phenotype # Families # Patients References 

CERKL NM_001030311.2 c.316C>A p.(Arg106Ser) arRP 1 3 [36] 
CERKL NM_001030311.2 c.847C>T p.(Arg283*) arRP 1 6 [29,37,38] 
CLRN1 † NM_001195794.1 c.92C>T p.(Pro31Leu) arRP 1 6 [39] 
CLRN1 † NM_001195794.1 c.461T>G p.(Leu154Trp) arRP 1 6 [39] 
CNGA1 NM_00142564.1 c.626_627del p.(Ile209Serfs*26) arRP 1 7 [40] 
CNGA1 NM_00142564.1 c.1298G>A P.(Gly433Asp) arRP 1 3 [41] 
CNGA3 NM_001298.2 c.822G>T p.(Arg274Ser) arCRD (ACHM) 1 4 [42] 
CNGA3 NM_001298.2 c.827A>G p.(Asn276Ser) arCRD (ACHM) 1 6 [43] 
CNGB1 NM_001297.4 c.412-1G>A p.(?) arRP 1 10 [44] 
CNGB1 NM_001297.4 c.2284C>T p.(Arg762Cys) arRP 1 5 [44] 
CNGB1 NM_001297.4 c.2493-2A>G p.(?) arRP 1 10 [41] 
CNGB3 NM_019098.4 c.1825del p.(Val609Trpfs*9) arCRD (ACHM) 1 2 [42] 
CRB1 NM_201253.2 c.107C>G p.(Ser36*) arLCA 1 10 [33] 
CRB1 NM_201253.2 c.2234C>T p.(Thr745Met) arRP 1 2 [41,45] 
CRB1 NM_201253.2 c.2536G>A p.(Gly846Arg) arRP 1 6 [31] 
CRB1 NM_201253.2 c.3101T>C p.(Leu989Thr) arLCA 1 8 [31] 
CRB1 NM_201253.2 c.3296C>A p.(Thr1099Lys) arRP 1 9 [44] 
CRB1 NM_201253.2 c.3343_3352del p.(Gly1115Ilefs*23) arRP 1 9 [46] 
CRB1 NM_201253.2 c.3347T>C p.(Leu1071Pro) arRP 1 7 [31] 
CRB1 NM_201253.2 c.3962G>C p.(Cys1321Ser) arRP 1 5 [46] 
EYS NM_001142800.1 c.8299G>T p.(Asp2767Tyr) arRP 1 7 [47] 

GNAT1 NM_144499.2 c.386A>G p.(Asp129Gly) arCSNB 1 1 [48] 
GRK1 NM_ 002929 c.614C>A p.(Ser205*) arCSNB (Oguchi) 1 9 [49] 
GRK1 NM_ 002929 c.827+623_883del p.(?) arCSNB (Oguchi) 1 3 [50] 

IMPG2 ‡ NM_016247.3 c.1680T>A p.(Tyr560*) arRP 1 2 [51] 
LCA5 ‡ NM_181714.3 c.643del p.(Leu215Tyrfs*11) arLCA 1 4 [52] 
LCA5 ‡ NM_181714.3 c.1151del p.(Pro384Glnfs*17) arLCA 3 13 [33,53] 
MERTK NM_00634.2 c.718G>T p.(Glu240*) arRP 1 4 [54] 

NMNAT1 ‡ NM_022787.3 c.25G>A p.(Val9Met) arLCA 1 5 [55] 
NMNAT1 ‡ NM_022787.3 c.838T>C p.*280Glnext*16 arLCA 1 8 [56] 

PDE6A NM_000440.2 c.889C>T p.(Gly297Ser) arRP 1 4 [57] 
PDE6A NM_000440.2 c.1264-2A>G p.(?) arRP 1 5 [57] 
PDE6A NM_000440.2 c.1630C>T p.(Arg544Trp) arRP 1 3 [29] 
PDE6A NM_000440.2 c.2218_2219insT p.(Ala740Valfs*2) arRP 1 3 [57] 
PDE6B NM_000283.3 c.1160C>T p.(Pro387Leu) arRP 1 6 [58] 
PDE6B NM_000283.3 c.1655G>A p.(Arg552Gln) arRP 1 9 [58] 
PDE6B NM_000283.3 c.1722+1G>A p.(?) arRP 1 4 [44] 
PROM1 NM_006017.2 c.1726C>T p.(Gln576*) arRP 1 6 [59] 
RDH12 NM_152443.2 c.506G>A p.(Arg169Gln) arLCA/EORD 2 2 [60] 
RDH12 NM_152443.2 c.619A>G p.(Asn207Asp) arLCA/EORD 1 1 [60] 
RDH5 NM_001199771.1 c.758T>G p.(Met253Arg) arCSNB (FA) 1 6 [61] 
RDH5 NM_001199771.1 c.913_917del p.(Val305Hisfs*29) arCSNB (FA) 1 2 [61] 
RHO NM_000539.3 c.448G>A p.(Glu150Lys) arRP 2 6 [62] 
RHO NM_000539.3 c.1045T>G p.(*349Gluext*52) adRP 1 8 [26] 

RLBP1 NM_000326.4 c.346G>C p.(Gly116Arg) FA 1 4 [63] 
RLBP1 NM_000326.4 c.466C>T p.(Arg156*) FA 1 6 [63] 

RP1 NM_006269.1 c.1458_1461dup p.(Glu488*) arRP 2 9 [64,65] 
RP1 NM_006269.1 c.4555del p.(Arg1519Glufs*2) arRP 1 5 [65] 
RP1 NM_006269.1 c.5252del p.(Asn1751Ilefs*4) arRP 1 4 [65] 

RPE65 NM_000329.2 c.131G>A p.(Arg44Gln) EORP 1 3 [41,66,67] 
RPE65 NM_000329.2 c.361del p.(Ser121Leufs*6) EORP 1 4 [41,67] 
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Table 1. Cont. 

Gene RefSeq Id Nucleotide variant Protein variant Phenotype # Families # Patients References 

RPE65 NM_000329.2 c.751G>T p.(Val251Phe) arLCA 1 6 [33] 
RPGR NM_001034853.1 c.2426_2427del p.(Glu809Glyfs*25) xlRP 1 8 [41,68] 

RPGRIP1 NM_020366.3 c.587+1G>C p.(?) arLCA 1 1 [33] 
RPGRIP1 NM_020366.3 c.1180C>T p.(Gln394*) arLCA 1 1 [33] 
RPGRIP1 NM_020366.3 c.2480G>T p.(Arg827Leu) arCRD, arLCA 2 9 [33,69] 
RPGRIP1 NM_020366.3 c.3620T>G p.(Leu1207*) arLCA 1 1 [33] 

SAG NM_000541.4 c.916G>T p.(Glu306*) arCSNB 1 1 [70] 
SEMA4A ‡ NM_022367.3 c.1033G>C p.(Asp345His) 

arCRD, arRP 4 4 [27] 
SEMA4A ‡ NM_022367.3 c.1049T>G p.(Phe350Cys) 
SLC24A1 ‡ NM_004727.2 c.1613_1614del p.(Phe538Cysfs*23) arCSNB 1 5 [71] 

SPATA7 NM_018418.4 c.253C>T p.(Arg85*) arLCA/arRD 2 3 [72] 
SPATA7 NM_018418.4 c.960dup p.(Pro321Thrfs*6) arLCA/arRD 1 6 [72,73] 
TTC8 † NM_144596.2 c.115-2A>G p.(?) arRP 1 4 [74] 
TULP1 NM_003322.3 c.1138A>G p.(Thr380Ala) arRP 3 34 [33,75,76] 
TULP1 NM_003322.3 c.1445G>A p.(Arg482Gln) arRP 1 8 [75] 
TULP1 NM_003322.3 c.1466A>G p.(Lys489Arg) arRP 4 19 [41,76,77] 
ZNF513 NM_144631.5 c.1015T>C p.(Cys339Arg) arRP 1 4 [78,79] 

ACHM, achromatopsia; ad, autosomal dominant; ar, autosomal recessive; CSNB, congenital stationary night blindness; 

CRD, cone rod dystrophy; EORD, early onset retinal dystrophy; EORP, early onset RP; FA, fundus albipunctatus; LCA, 

Leber congenital amaurosis; RD, retinal dystrophy; RefSeq Id, reference sequence identifier; RP, retinitis pigmentosa; 

xlRP, X-linked RP; ‡ novel gene identification; † novel phenotype association. 

Out of the 47 non-synonymous variants identified in Pakistani non-syndromic RD families (Table 1) 
three variants (SEMA4A, c.2138G>A; RP1, c.1118C>T; RPGRIP1, c.1639G>T), are reported as single 
nucleotide polymorphisms (SNP) with high frequencies in the EVS (Table 2) [27,64,69]. In addition, 
SIFT also predicts these changes to be tolerated while except for the RPGRIP1 variant, the other two 
are considered to be benign by PolyPhen-2 (Table 2). Therefore, these variants could be segregating 
with the disease in the family by chance and the causative mutation may reside in another gene. 

Table 2. Common variants reported as mutations in Pakistani patients with non-syndromic 
retinal dystrophies and their in silico pathogenicity prediction. 

Gene RefSeq Id 
Nucleotide 

variant 

Protein 

variant 
Phenotype 

# 

Families 

# 

Patients 
Ref. phyloP 

Grantham 

distance 
PolyPhen SIFT EVS 

RP1 NM_006269.1 c.1118C>T p.(Thr373Ile) arRP 2 11 [64] 0.61 89 
Benign 

(0.01) 

Tolerated 

(0.50) 

T = 152;  

C = 12,854 

(rs77775126) 

RPGRIP1 NM_020366.3 c.1639G>T p.(Ala547Ser) arCRD 3 12 [69] 0.29 99 

Probably 

damaging 

(1.00) 

Tolerated 

(0.49) 

T = 2,792;  

G = 9,214 

(rs10151259) 

SEMA4A NM_022367.3 c.2138G>A p.(Arg713Gln) adRP 1 4 [27] 1.25 43 
Benign 

(0.23) 

Tolerated 

(0.43) 

A = 451;  

G = 12,555 

(rs41265017) 

Ad, autosomal dominant; ar, autosomal recessive; CRD, cone-rod dystrophy; EVS, exome variant server; PolyPhen, 

polymorphism phenotyping; RefSeq Id, reference sequence identifier; RP, retinitis pigmentosa; SIFT, sorting tolerant 

from intolerant. 
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Figure 1. Distribution of non-syndromic Pakistani RD families according to their 
phenotypes. Ad, autosomal dominant; ar, autosomal recessive; CRD, cone-rod dystrophy; 
CSNB, congenital stationary night blindness; LCA, Leber congenital amaurosis; RP, 
retinitis pigmentosa; xl, X-linked. 

 

Figure 2. Occurrence of gene defects in non-syndromic RD families in Pakistan. Numbers 
of families with mutations in respective genes are indicated between parentheses. 

 

3.2. Overview of Molecular Genetic Studies in Syndromic RDs in Pakistan 

In addition to the non-syndromic families, data of 52 syndromic RD families with a total of  
139 affected individuals were collected from 22 studies. Usher syndrome represented about 36% of the 
families in this group, whereas BBS (33%), MKS (13%), JBTS (10%), and SLSN (8%), accounted for 
the other families (Table 3; Figure 3). The most commonly mutated gene associated with syndromic 
RD in the Pakistani population was cadherin 23 (CDH23; MIM# 605516), which has been reported to 
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be mutated in persons with Usher type 1, followed by TMEM67 (MIM# 609884), the gene mutated in 
persons with autosomal recessive MKS (Table 3; Figure 4). As expected for the syndromic mutations, 
all the reported disease associated alleles are rare variants and in silico analysis predicted these 
variants to have a deleterious effect on protein function (Table S2). 

4. Discussion 

The Pakistani population is known for its high rate of consanguinity (>60%), but it is still 
remarkable that 97% of the families with inherited RDs had an autosomal recessive mode of 
inheritance. It is, therefore, not surprising that Pakistani families have been instrumental in pinpointing 
a number of the underlying gene defects through homozygosity mapping [80,81]. Genetic studies of 
Pakistani families with RD have previously facilitated the identification of eleven novel RD genes, i.e., 
AIPL1 [34], BEST1 [35], CC2D2A (MIM# 612013) [82], CDH23 (MIM# 605516) [83], IMPG2 
(MIM# 607056) [51], LCA5 (MIM# 611408) [53], NMNAT1 (MIM:608700) [55,56], ZNF513 (MIM# 
613598) [78], PCDH15 (MIM# 605514) [84], SEMA4A [27], and SLC24A1 (MIM# 603617) [71]. In 
addition, mutations in CLRN1 (MIM# 606397) and TTC8 (MIM# 608132), which had been previously 
implicated in the syndromic retinal phenotypes USH3 (MIM# 276902), and BBS (MIM# 209900), 
respectively, were found to cause non-syndromic arRP [39,74]. Mutations in RP1, which had previously 
been shown to be involved in adRP, were found to segregate in a recessive manner in 3 Pakistani 
families [64]. In addition to the novel genes identified in the affected Pakistani families, five novel RD 
loci including three non-syndromic, i.e., CORD8 (MIM# 605549), [85], RP29 (MIM# 612165), [86], 
and RP32 [87], and two syndromic, i.e., USH1H (MIM# 612632), [88], and USH1K [89], have also 
been identified in Pakistani families. 

Table 3. Mutations identified in Pakistani patients with syndromic retinal dystrophies. 

Gene RefSeq Id Nucleotide variant Protein variant Phenotype # Families # Patients References 

AHI1 NM_017651.4 c.2370dup p.(Lys791*) arJBTS 1 2 [90] 

ARL6 NM_032146.3 c.281T>C p.(Ile94Thr) arBBS 1 5 [91] 

ARL6 NM_032146.3 c.123+1119del p.(?) arBBS 1 1 [92] 

ARL13B NM_182896.2 c.236G>A p.(Arg79Gln) arJBTS 1 3 [93] 

BBS1 NM_02464.9.4 c.47+1G>T p.(?) arBBS 1 2 [94] 

BBS1 NM_02464.9.4 c.442G>A p.(Asp148Asn) arBBS 1 2 [94] 

BBS2 NM_031885.3 c.1237C>T p.(Arg413*) arBBS 1 1 [95] 

BBS5 NM_152384.2 c.2T>A p.(Met1Lys) arBBS 2 2 [95] 

BBS10 NM_024685.3 c.271dup p.(Cys91Leufs*5) arBBS 2 4 [96] 

BBS10 NM_024685.3 c.1075C>T p.(Gln359*) arBBS 1 7 [91] 

BBS10 NM_024685.3 c.1091del p.(Asn364Thrfs*5) arBBS 1 1 [96] 

BBS10 NM_024685.3 c.1958_1967del p.(Ser653Ilefs*4) arBBS 1 2 [97] 

BBS10 NM_024685.3 c.2121dup p.(Lys708*) arBBS 1 1 [96] 

BBS12 NM_152618.2 c.1589T>C p.(Leu530Pro) arBBS 2 2 [95] 

BBS12 NM_152618.2 c.2102C>A p.(Ser701*) arBBS 1 3 [98] 

CC2D2A ‡ NM_001080522.2 c.2003+1G>C p.(?) arJBTS 1 5 [82] 

CDH23 ‡ NM_022124.5 c.1114C>T p.(Gln372*) arUSH1 1 3 [83] 

CDH23 NM_022124.5 c.2587+1G>A p.(?) arUSH1 1 4 [99] 
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Table 3. Cont. 

Gene RefSeq Id Nucleotide variant Protein variant Phenotype # Families # Patients References 

CDH23 NI NI p.(Arg1305*) arUSH1 1 4 [99] 

CDH23 ‡ NM_022124.5 c.3106_3106+11delinsTGGT p.(Gly1036delinsTrpCys) arUSH1 1 5 [83] 

CDH23 ‡ NM_022124.5 c.6050-9G>A p.(?) arUSH1 4 13 [83] 

CDH23 ‡ NM_022124.5 c.6050-1G>C p.(?) arUSH1 1 6 [83] 

CDH23 ‡ NM_022124.5 c.6054_6074del p.(Val2019_Val2025del) arUSH1 1 3 [83] 

CDH23 ‡ NM_022124.5 c.6845del p.(Asn2282Thrfs*91) arUSH1 1 3 [83] 

CDH23 ‡ NM_022124.5 c.7198C>T p.(Pro2400Ser) arUSH1 1 4 [83] 

CDH23 ‡ NM_022124.5 c.8150A>G p.(Asp2717Gly) arUSH1 1 3 [83] 

CDH23 ‡ NM_022124.5 c.8208_8209del p.(Val2737Alafs*2) arUSH1 2 11 [83] 

CEP290 NM_025114.3 c.5668G>T p.(Gly1890*) arJBTS 1 1 [100,101] 

IQCB1 NM_001023570.2 c.488-1G>A p.(?) arSLSN 1 1 [41,102] 

IQCB1 NM_001023570.2 c.1465C>T p.(Arg489*) arSLSN 1 1 [102] 

IQCB1 NM_001023570.2 c.1796T>G p.(*599Serext*2) arSLSN 1 1 [102] 

NPHP4 NM_015102.3 c.3272dup p.(Ser1092Valfs*11) arSLSN 1 1 [102] 

PCDH15 ‡ NM_001142763.1 c.7C>T p.(Arg3*) arUSH1 1 5 [84] 

PCDH15 ‡ NM_001142763.1 c.1927C>T p.(Arg643*) arUSH1 1 3 [103] 

PCDH15 ‡ NM_001142763.1 c.3389-2A>G p.(?) arUSH1 1 3 [84] 

TCTN2 NM_024809.3 c.1873C>T p.(Gln625*) arJBTS 1 4 [104] 

TMEM67 NM_153704.5 c.647del p.(Val217Leufs*5) arMKS 1 2 [105] 

TMEM67 NM_153704.5 c.715-2A>G p.(?) arMKS 1 1 [105] 

TMEM67 NM_153704.5 c.1127A>C p.(Gln376Pro) arMKS 2 2 [105] 

TMEM67 NM_153704.5 c.1575+1G>A p.(?) arMKS 3 5 [105] 

TTC8 NM_144596.2 c.1049+2_1049+4del p.(?) arBBS 1 3 [106] 

USH1G NM_173477.2 c.163_164+13del p.(Gly56*) arUSH1 1 4 [107] 

Ar, autosomal recessive; BBS, Bardet-Biedl syndrome; JBTS, Joubert syndrome; MKS, Meckel syndrome; NI, not 

indicated; RefSeq Id, reference sequence identifier; SLSN, Senior-Loken syndrome; USH1, Usher syndrome type 1; ‡ 

novel gene identification; † novel phenotype association. 

Figure 3. Prevalences of syndromic RD phenotypes. BBS, Bardet-Biedl syndrome;  
JBTS, Joubert syndrome; MKS, Meckel syndrome; SLS, Senior-Loken syndrome; USH, 
Usher syndrome. 
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Figure 4. Occurrence of gene defects in syndromic RD families in Pakistan. Numbers of 
families with mutations in respective genes are indicated between parentheses. 

 

In the 103 non-syndromic Pakistani RD families described so far, mutations were most frequently 
found in AIPL1, CRB1, TULP1, RPGRIP1, RP1, SEMA4A, LCA5, and PDE6A (Table 1; Figure 2). A 
direct comparison with other RD populations is difficult as comprehensive studies of this kind are rare. 
In a recent study of Abu-Safieh et al. (2012) comprising 150 Saudi Arabian RD families, similar 
results were observed as RP1, TULP1, RPGRIP1, and CRB1 were found to be the most frequently 
mutated genes [108]. 

A worldwide general literature study revealed arRP-associated mutations distributed in USH2A 
(12%; MIM# 276901), ABCA4 (8%), PDE6B (7%; MIM# 180072), CNGB1 (6%), and PDE6A (5%; 
MIM# 180071) [109]. In a more recent study of 230 Dutch persons with isolated or arRP [110], the 
most frequently mutated genes were EYS (11%; MIM# 602772), and CRB1 (11%) followed by USH2A 
(10%), ABCA4 (9%), and PDE6B (7%). As opposed to these studies the absence of USH2A variants in 
individuals of Pakistani origin is probably due to the fact that the most frequent arRP-associated 
variant, c.2299del;p.(E767fs), is almost invariably found in compound heterozygous states with  
second mutations that are considered to be mild [111], precluding their detection in a homozygosity 
mapping approach. Other differences can only be attributed to divergent genetic backgrounds of these 
populations [112,113]. 

Although 113/118 variants listed in Tables 1 and 3 have only been identified in Pakistani patients, 
seven variants (SEMA4A, p.(Asp345His) and p.(Phe350Cys); TULP1, p.(Thr380Ala); LCA5, 
p.(Pro384Glnfs*17); RPGRIP1, p.(Arg827Leu); TMEM67, c.1575+1G>A and p.(Gln37Pro)), are more 
frequent than others, and therefore they seem to be population-specific. The six most frequent variants, 
p.(Trp278*) in AIPL1, p.(Lys489Arg) and p.(Thr380Ala) in TULP1, p.(Asp345His) and p.(Phe350Cys) 
in SEMA4A, p.(Pro384Glnfs*17) in LCA5 (Table 1), explain about 25% of the non-syndromic 
Pakistani RD families. The p.Trp278* variant has been identified as the most frequent AIPL1 variant 
worldwide in many LCA studies [114,115], suggesting that this variant is relatively old. The six 
frequent variants mentioned above, together with five other variants in RDH12 (MIM# 608830), 
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p.(Arg169Gln); RHO, p.(Glu150Lys); RP1, p.(Glu488*), RPGRIP1, p.(Arg827Leu), and SPATA7, 
p.(Arg85*), account for approximately 34% (35/103) of all non-syndromic RD families from Pakistan. 
A cost-effective initial genetic screening of Pakistani persons with RD therefore could be to analyze 
these variants using Sanger sequencing. For example, 10 amplicons covers the most frequent variants 
mentioned above. Alternatively, a larger subset of variants can be captured by arrayed primer 
extension (APEX) analysis or other allele-specific genotyping methods [116–119]. 

Three of the 47 missense mutations (RP1: c.1118C>T, RPGRIP1: c.1639G>T, SEMA4A: c.2138G>A) 
reported to be associated with RD in Pakistani families are found at higher frequencies in EVS. In 
silico analysis also predict them likely to be non-pathogenic, therefore they should be considered as 
non-causative (Table 2) [27,64,69]. As these variants on their own are not sufficient to explain the 
phenotype in these six families (two, three and one with RP1, RPGRIP1 and SEMA4A mutations, 
respectively) they must still be considered genetically unresolved. 

Of all the non-syndromic and syndromic arRD families (n = 146), which are genetically resolved, 
compound heterozygous mutations were identified in only four non-syndromic RD families  
(4/146 = 2.7%). These compound heterozygous mutations were identified in SEMA4A. This finding on 
one hand favors the utility of homozygosity based gene identification strategies for Pakistani RD 
families. While on the other hand it also indicates that in a small but significant proportion of the 
families (~2/100), compound heterozygous mutations might be able to explain the phenotype. These 
mutations will certainly be overlooked if one only considers homozygosity mapping based approaches 
to pinpoint causative genetic defects. 

5. Conclusions 

This review provides a comprehensive overview of genetic causes of non-syndromic and syndromic 
retinal diseases in Pakistan, the results of which can be used to design a cost-effective screening 
platform for future genetic testing in Pakistan. For genetically unsolved non-syndromic RD cases, we 
propose a sequencing-based pre-screening genetic test in which 10 different amplicons capture the 
most frequent mutations described for Pakistani RD patients. In consanguineous families, 
homozygosity directed sequence analysis has demonstrated its potential to unravel genetic defect 
underlying recessive diseases. 
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