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The proteomes of eukaryotes, bacteria and archaea are highly diverse due, in part, to the complex post-
translational modification of protein glycosylation. The diversity of glycosylation in eukaryotes is reliant on
nucleotide sugar transporters to translocate specific nucleotide sugars that are synthesised in the cytosol and
nucleus, into the endoplasmic reticulum and Golgi apparatus where glycosylation reactions occur. Thirty years
of research utilising multidisciplinary approaches has contributed to our current understanding of NST function
and structure. In this review, the structure and function, with reference to various disease states, of several NSTs
including the UDP-galactose, UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine, GDP-fucose, UDP-N-
acetylglucosamine/UDP-glucose/GDP-mannose and CMP-sialic acid transporters will be described. Little is
known regarding the exact structure of NSTs due to difficulties associated with crystallising membrane proteins.
To date, no three-dimensional structure of any NST has been elucidated. What is known is based on computer
predictions, mutagenesis experiments, epitope-tagging studies, in-vitro assays and phylogenetic analysis. In
this regard the best-characterised NST to date is the CMP-sialic acid transporter (CST). Therefore in this review
we will provide the current state-of-play with respect to the structure–function relationship of the (CST). In
particular we have summarised work performed by a number groups detailing the affect of various mutations
on CST transport activity, efficiency, and substrate specificity.

© 2014 Hadley et al. Published by Elsevier B.V. on behalf of the Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Protein glycosylation, which in eukaryotes occurs predominantly in
endoplasmic reticulum (ER) and the Golgi apparatus, is the most
prevalent and complex post-translational modification. It was originally

believed that only eukaryotic membrane-bound or secreted proteins
were glycosylated, however it is now known that this process occurs
in a range of eukaryotic nuclear and cytoplasmic proteins, as well as in
bacteria and archaea. The process of glycosylation covalently attaches
a glycan, a reaction catalysed by glycosyltransferases, to the growing
endof a carbohydrate chain on a nascent protein or lipid. These complex
modifications modulate the properties of the proteins they decorate.
Thesemodifications play a crucial role in every aspect of biology includ-
ing increasing protein solubility [1]; increasing structural stability and
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Table 1
Selected members of the SLC35 nucleotide sugar transporter family.

SLC nomenclature NCBI preferred name Substrate Sub-cellular localisation Link to disease Ensembl ID

SLC35A1 CMP-Sia transporter (CST) CMP-Sia Exclusively Golgi Congenital disorder of glycosylation (CDG2F) (OMIM #603585) [15,16] ENSG00000164414
SLC35A2 UDP-Gal transporter (UGT) UDP-Gal;

UDP-GlcNAc
Golgi and/or ER Colon cancer [17]; Wiskott-Aldrich syndrome [18]

CDG2M (OMIM #300896) [19,20]
ENSG00000102100

SLC35A3 UDP-GlcNAc transporter
(NGT)

UDP-GlcNAc Predominantly Golgi Possible link to malaria through UDP-GlcNAc
transporter homolog [21]
Musculoskeletal abnormalities in cattle [22]
Arthrogryposis, mental retardation, and seizures
(OMIM #615553) [23]

ENSG00000117620

SLC35A4 Probable UDP-sugar
transporter; MGC2541

Putative UDP-Gal ENSG00000176087

SLC35A5 Probable UDP-sugar
transporter

Putative UDP-sugar ENSG00000138459

SLC35B1 UGTREL1 Putative sugar transporter ENSG00000121073
SLC35B2 PAPS transporter 1 PAPS Exclusively Golgi Colorectal cancer [24]; Dysplasia [25] ENSG00000157593
SLC35B3 PAPS transporter 2 PAPS Exclusively Golgi Overexpression in hepatocarcinoma cell line [26];

Colon cancer [27] Dysplasia [25]
ENSG00000124786

SLC35B4 UDP-Xyl transporter
(YEA)

UDP-Xyl;
UDP-GlcNAc

Golgi and/or ER Regulation of obesity & glucose homeostasis in mice [28]
PHACE syndrome [29]

ENSG00000205060

SLC35C1 GDP-Fuc transporter
(GFT)

GDP-Fuc Predominantly Golgi Leukocyte adhesion deficiency (CDG2C) (OMIM #266265)
[30,31]; hepatocellular carcinoma [32].

ENSG00000181830

SLC35C2 OVCOV1 Putative GDP-Fuc transporter. Promotes
Notch1 fucosylation [33]

Ovarian cancer [34] ENSG00000080189

SLC35D1 UDP-GlcA/UDP-GalNAc
dual transporter

UDP-GlcA;
UDP-GalNAc

Exclusively ER Schneckenbecken dysplasia (OMIM #269250) [35] ENSG00000116704

SLC35D2 UDP-GlcNAc/UDP-Glc/
GDP-Man transporter
(HFRC1)

UDP-GlcNAc;
UDP-Glc;
GDP-Man (not humans)

Exclusively Golgi ENSG00000130958

SLC35D3 FRCL1 Substrate unknown Chediak-Higashi syndrome [36]; Hermansky-Pudlak syndrome [36]. ENSG00000182747
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protection from proteolysis [2]; assistance in protein folding [1]; partic-
ipation in immune responses [3]; cell–cell and cell-extra cellular matrix
(ECM) recognition [4]; and selective protein targeting in both intra- or
extracellular destinations [5]. Glycosylation permits diversity of the
proteome by encompassing a wide range of variables such as glycosidic
linkages (anomeric configuration; carbon/carbon linkage between
sugars, N- or O-linked), composition, structure and length. In eukary-
otes, before any of these glycosylation reactions can occur, the activated
sugar must be transported into the Golgi or ER lumen where it can be
used as a substrate by glycosyltransferases, a task performed by a family
of transport proteins called nucleotide sugar transporters (NSTs).

Cellular membranes, including those that enclose organelles, are bi-
ological barriers that selectively either allow, inhibit, restrict or dictate
the rate offlowof a range of solutes such as charged organic or inorganic
molecules. Transporter proteins are an effective solution to the move-
ment of selected solutes across these hydrophobic barriers that would
otherwise be excluded. The second largest family ofmembrane proteins
is the solute carriers (SLC). The SLCs, which is a classification of human
transporters, now include 52 families [6]. With such a range of SLC fam-
ilies, there are a wide variety of solutes that can be transported, from
amino acids to sugars, to complex organic molecules. As such, SLCs
also contain different transport strategies and mechanisms to achieve
their function, such as operating as antiporters, symporters or simple
carriers [7]. The solute carrier family SLC35 (HUGO Gene Nomenclature
Committee) comprises members of the evolutionary conserved family
of human NSTs. The solute carrier family SLC35 of human NSTs is divid-
ed into 7 subfamilies (SLC35A-G), identified on the basis of sequence
similarity (SLC35E-G are orphan transporters, that is, their physiological
functions are yet to be determined). Each NST subfamily is then divided
further to differentiate the type of substrate(s) that is/are transported
(Table 1).

2. General features of the nucleotide sugar transporter family

NSTs are highly conserved type III trans-membrane (TM) proteins
that provide a link between the synthesis of nucleotide sugars (in the
ER, nucleus or cytosol), and the glycosylation process that occurs in
the Golgi or ER lumen. It is well-established that NSTs function as
antiporters, exchanging cytosolic nucleotide sugar for the corresponding
lumenal nucleotide monophosphate (Fig. 1) [8–12]. That is, a constant
level of nucleotide sugar is maintained in the Golgi or ER lumen
through the equimolar exchange of nucleotide sugar with nucleotide

monophosphate. The NST antiporter mechanism has been investigated
in NSTs reconstituted into proteoliposomes [12], yeast Golgi vesicles
[13], and directly in Golgi fractions isolated from rat liver [10]. Studies
using CST reconstituted into phosphatidylcholine proteoliposomes
preloaded with CMP significantly stimulated the uptake of CMP-sialic
acid in a phenomenon known as trans-stimulation [12]. However, the
ability of the CST (and other NSTs) to translocate its corresponding
nucleotide sugar in the presence and absence of the antiporter molecular
(nucleotide monophosphate) has lead to the characterisation of this
transport system as “leaky” [9,13,14].

Thirty years of NST research aimed at identification and biochemical
characterisation has identified a number of features that are common to
all currently known NSTs (reviewed in [14]), including:

• Translocation of the entire nucleotide sugar;
• Translocation is saturable; temperature, concentration and time
dependent with apparent Km in the order of 1–10 μM; and is able to
concentrate the nucleotide sugar within the lumen of the ER or Golgi;

• Translocation is insensitive to the presence of ATP and ionophores and
are energised by the coupled translocation of the corresponding
nucleoside monophosphate in the opposite direction (antiporter);

• Translocation is competitively inhibited by the corresponding nucleoside
mono- and diphosphate, but not by the free sugar;

• Some nucleotide sugars are translocated exclusively into the Golgi
apparatus, some exclusively in the ER, while others are translocated in
both, including some being splice variant dependent.

The initial identification of a range of NSTs was achieved through
complementation analysis [31,39–42]. Subsequent characterisation of
the majority of these NSTs was with respect to their ability to translocate
a single nucleotide sugar [43,44], and it was commonly accepted that
NSTs had absolute substrate specificities. More recently however, multi-
substrate transporters of nucleotide sugars have been described in vitro
(Table 1). In Caenorhabditis elegans for example, there are 18 putative
NSTs, three of which have been well characterised. All three of these
have been shown to have multi-substrate specificity including that
encoded by the gene ZK896.9, which is capable of transporting UDP-
glucose (UDP-Glc), UDP-galactose (UDP-Gal), UDP-N-acetylglucosamine
(UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc) [45].
Multi-substrate specificity may be partially explained by a common
evolutionary ancestor [38], or alternatively recent studies have proposed
that NST redundancy may be an evolutionary backupmechanism in case
of NST impairment, deletion or mutation [15].

Fig. 1. The general transportmechanismof NSTs. TheXDP-sugar (nucleotide sugar donor) enters the lumenof the organelle in exchange for the corresponding nucleosidemonophosphate
(XMP). After entering the lumen the sugar is transferred to either a protein or lipid in a reaction catalysed by glycosyltransferases. The diphosphate nucleotide (XDP) is then acted upon by
a membrane-bound nucleotide diphosphatase [37] producing the XMP that is subsequently exported [38]. In some cases where the nucleotide sugar donor is a monophosphate, the
dephosphorylation reaction performed by the diphosphatase is not required.
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Although the amino acid sequence of a number of NSTs from a range
of species has been determined, this information however has not
proven to be a good indicator of substrate specificity. For example, the
mammalian CMP-sialic acid transporter (CST) and UDP-Gal transporter
(UGT) are 43% identical, yet are only able to transport the corresponding
nucleotide sugars (CMP-Neu5Ac and UDP-Gal, respectively) [46],
whereas the UDP-GlcNAc transporter (NGT) from Kluyveromyces lactis,
which shares only 22% identity with the human NGT, has the same
nucleotide sugar substrate [47]. Similarly, in vitro studies show that
the transport of UDP-GlcNAc in humans is maintained by 3 different
NSTs (SLC35A3, SLC35B4 and SLC35D2) from 3 subfamilies that share
very low amino acid identity (see Table 1 and references therein).

Little is known regarding the exact structure of NSTs due to the
difficulty associated with crystallising membrane proteins. To date, no
three-dimensional structure of any NST has been elucidated. What is
known is based on computer predictions, mutagenesis experiments,
epitope-tagging studies and evolutionary analysis [14,48,49]. In general,
NSTmembrane topology has been predicted to comprise between six to
ten trans-membrane (TM) domains linked by hydrophilic loops on both
sides of the Golgi membrane [43,44,50]. All NST topologies predicted to
date suggest that the C- and N-termini are present on the cytosolic side
[51–53], corresponding to an even number of TM domains. A distinct
exception to this classical NST topology is the Aspergillus fumigatus
UDP-galactofuranose transporter which has 11 predicted TM domains
[54]. It has been shown that several Golgi apparatus NSTs such as
those that transport UDP-GalNAc, GDP-Fuc, ATP and PAPS appear as
homodimers [8], whereas the GDP-Man transporter (GMT) from
Leishmania donovani is presumed to be a hexamer in solution [55]. As
well as potential homo-oligomers being formed in the membrane,
there are also reports describing interactions, or possible complexes
being formed between NSTs and glycosyltransferases [56]. Sprong
et al. also concluded that the ceramide galactosyltransferase guarantees
an adequate supply of UDP-Gal in the ER lumen by retaining the UGT in
a molecular complex [57].

Thus far the oligomeric state of a functional NST has not been conclu-
sively determined. For readers interested in invertedmembrane protein
topologies and conformational dynamics of antiporters we recommend
the following reviews [58,59].

3. SLC35A2: UDP-galactose (UGT) and SLC35A3:
UDP-N-acetylglucosamine (NGT) transporters

The cDNA that encodes for the human UDP-Gal transporter (UGT)
was first cloned and characterised by Muira et al., in 1996 [42], and
was believed to have been the first mammalian NST cDNA sequence
described. Detailed characterisation of the UGT was possible using the
mutant cell lines MDCK-RCAr [60,61], CHO-Lec8 [62,63] and Had-1
[51]. Complementation of these UGT defective cell lines restored
transport activity, and expression of recombinant UGT in mammalian
and yeast cells confirmed its localisation and specificity [41,42,64,65].
Interestingly, two isoforms of gene encoding the UGT, UGT1 and UGT2
have been identified in humans [41,42]. Analyses of these human splice
variants show that the only difference is confined to the proteins
extreme C-termini. UGT1 is localised only in theGolgi apparatus, where-
as the UGT2 C-terminus contains a dilysine motif that is responsible for
dual localisation in the Golgi and ER [66]. A recent study concluded that
although UGT2 is more abundant in nearly all mammalian tissues and
cell lines tested, expression of both splice variants is important for
glycosylation of proteins in mammalian cells [67].

Compared to several other well-characterised transporters, the
UDP-GlcNAc transporter (NGT) shows limited amino acid sequence
identity to other NGTs that transport the same substrate, in particular
yeast and mammals [42]. It has been proposed that the transport
mechanisms of the UGT and NGT may be coupled. The overexpression
of NGT in MDCK-RCAr (Madin-Darby canine kidney-ricin resistant)
and CHO-Lec8 mutant cells defective in UGT has been found to restore

galactosylation of N-glycans [68]. These cells lack UDP-Gal transport in
the Golgi apparatus and therefore are unable to add Gal to glycans
[69]. Although NGT overexpression restored UDP-Gal transport, it also
resulted in the decrease of transport of its natural substrate UDP-
GlcNAc into the Golgi. This data suggested that the biological function
of both the NGT and UGT in galactosylation might be coupled. Recent
investigations into substrate specificity of the UGT have shown that
the UGT/CST can function as a chimeric transporter [70], this is
addressed in more detail later in this review.

Using co-immunoprecipitation analysis and FLIM-FRET measure-
ments on living cells, it was demonstrated that NGT and UGT form
complexes when overexpressed in MDCK-RCAr cells [71]. This suggested
that NGT/UGT complexes either mediate transport of both substrates
(UDP-Gal and UDP-GlcNAc) or alternatively these complexes just bring
the NGT and UGT homodimers together. Either way, the ability of NGT
and UGT to interact with each other may be a regulation mechanism of
N-glycan biosynthesis in the Golgi by ensuring adequate supply of both
natural substrates to their respective glycosyltransferases. Itwas conclud-
ed that the NGT and UGT function in glycosylation is combined via their
mutual interaction [71,72]. However, it must be stressed that these
studies are based on overexpression of the NGT and UGT, and there-
fore may not truly reflect the physiological situation. Interestingly,
overexpression of certain receptors [73–75] has been shown to
create a “Brefeldin effect” [76]. Brefeldin A (BFA) is a fungal metabolite
that affects the molecular mechanisms regulating membrane traffic and
organelle structure [75]. Treatment with BFA leads to a rapid accumula-
tion of proteins in the ER and a collapse of the Golgi stacks [77]. The result
is that the Golgi apparatus largely disappears leaving Golgi proteins to
intermix with those in the ER. With overexpression of these particular
proteins, the effects were phenotypically indistinguishable from those
treated with the addition of BFA.

More recently a number of CDGs have been identified due to
SLC35A2 (UGT) and SLC35A3 (NGT) mutation [19,20,23], specifically
SLC35A2 has been implicated in early-onset epileptic encephalopathy
and SLC35A3 in autism.

4. SLC35C1: GDP-fucose transporter (GFT)

The GDP-fucose transporter (GFT) regulates the fucosylation of
glycans predominantly in the Golgi. It was first identified using comple-
mentation cloning during investigations into the Congenital Disease of
Glycosylation-IIc (CDGIIc), now known as Leukocyte Adhesion Defi-
ciency II (LADII). This disease is characterised by a lack of fucosylated
glycoconjugates [30,31] resulting in immunodeficiency and severe
mental and growth retardation [78]. It was purported that a deficient
GFT was responsible for this disease state [30,31]. Interestingly, the
GFT shows a substantial level of amino acid conservation with both
the CST and UGT [30,31] however, even now, the elements essential
for activity and localisation of the GFT remain poorly understood [79].
Although overexpression of SLC35C2 (a putative GFT) also shows slight
competition with the GFT in the O-fucosylation of Notch, GFT is essen-
tial for the core fucosylation of N-glycans [79] and optimal Notch signal-
ling in mammalian cells [33].

As with all NSTs, elucidating the structure–function relationship
remains elusive due to the lack of a crystal structure. Studying the GFT
has had an added challenge due to the lack of an appropriate mutant
cell line. Recently, a novel Chinese hamster ovary (CHO) mutant
(CHO-gmt5) was established that harboured double genetic defects in
both the CST and GFT producing N-glycans deficient in both sialic acid
(Sia) and fucose (Fuc) [79]. Studies using this mutant found that the
C-terminal tail of the GFT was critical for its activity (Fuc-binding lectin
recognition) but not localisation to the Golgi, in contrast to the murine
CST [80] and several other transporters. This latest CHO-gmt5 study
highlights several new structure/function relationships for this
transporter [79].

26 B. Hadley et al. / Computational and Structural Biotechnology Journal 10 (2014) 23–32



5. SLC35D2: UDP-N-acetylglucosamine/UDP-glucose transporter
(HFRC1) also known as GDP-mannose transporter in non-humans
(GMT)

The GDP-mannose transporter (GMT) from L. donovani and Saccharo-
myces cerevisiae was originally identified and characterised in 1997 [81,
82]. In 2003 a novel human nucleotide sugar transporter gene, hfrc1,
was cloned and characterised as being a multi-substrate specific NST
homologous to Drosophila melanogaster fringe connection, C. elegans
sqv-7 and human UGTrel7. In yeast, the heterologous expression of
HFRC1 revealed the multi-substrate transport of UDP-GlcNAc, UDP-
Glc and GDP-Man. Interestingly, and importantly, when expressed in

mammalian cells, UDP-GlcNAc and UDP-Glc were transported but
GDP-Man was not [83]. HFRC1 was subsequently identified and
characterised as a member of SLC35D2 by the same group that had
previously identified and characterised the murine and human SLC35D1
[84,85]. The transporter encoded by hfrc1 is localised in the Golgi appara-
tus and exhibits approximately 50% identity with the human SLC35D1
[84]. It should be stressed that confirming GMT function in yeast is prob-
lematic as yeast possesses a high level of endogenous GDP-Man transport
that can potentially interfere with the detection of heterologous
expressed GMT activity [86].

TheGMT is fundamentally essential for pathogens such asA. fumigatus
whose cell wall is comprised predominantly of galactomannan, the main

Fig. 2. The direct analysis of Aspergillus GMT interaction with GDP-Man, GDP and GMP using STD NMR spectroscopy. 1H (a) and competition STD NMR spectra of Aspergillus Golgi-
enriched fractions complexed with GDP-Man (b) followed by the addition of equimolar amounts of GMP (c) and GDP (d). Some STD signals were found to increase due to overlapping
chemical shifts (e.g. the H1 ribose signal at 5.65 ppm), however the H8 guanine signal of the three ligands does not have the same chemical shift and therefore could be used to monitor
the interaction of the GMTwith GDP-Man, GDP and GMP. The H8 GuaGDP-Man signal (b) is reduced following the addition of GMP and GDP (c and d, respectively) with a corresponding
appearance of H8 guanine signals associated with GMP and GDP. Specific mannose signals were reduced by ∼50% following the addition of equimolar GMP (c), and the signals after
addition of GDP (d) showed a further reduction of ∼50% compared to (c).

27B. Hadley et al. / Computational and Structural Biotechnology Journal 10 (2014) 23–32
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defence against the host immune system [87]. The key role played by the
GMT in the biosynthesis of the fungal galactomannan cell wall was
recently highlighted by the absence of galactomannan synthesis follow-
ing the targeted deletion of the GMT [88]. This suggests that the GMT
may be an attractive target for drug discovery, particularly given the
lack of a human GMT activity [83]. Similarly, the protozoa Leishmania
is protected by a glycocalyx composed mainly of Gal- and Man-
glycoconjugates. This protective coat is a virulence factor that shields
the parasite from hostile environments and supports its development
andmethod of invasion. Aswith the cell wall of A. fumigatus, interruption
of the corresponding essential transporter GMT in L. donovani had a
severe impact on its pathogenicity [89].

We have recently utilised a Saturation Transfer Difference NMR spec-
troscopy (STD NMR) [90,91] approach to complement functional used
assays to monitor the interaction of nucleotides and nucleotide sugars
with the NSTs present in isolated Golgi-enriched fractions [92–94].
STD NMR is based on saturating the protein resonances with a cascade
of selective pulses (on-resonance spectrum). Themagnetization is rapidly
transferred through the entire protein mediated by spin diffusion. If a
ligand is in fast exchange with the protein-binding site then the satura-
tion can be transferred to the binding ligand. Ligand protons that are in
closest contact with the protein will receive a higher degree of saturation
than ligand protons that are more solvent exposed. A spectrum without
any saturation (off-resonance spectrum) is simultaneously acquired and
subtraction of the on-resonance spectrum and the off-resonance
spectrum results in the final difference spectrum (STD) showing only
signals from binding ligands. Additionally, protons in close proximity to
the protein surface will show stronger STD NMR signals compared to li-
gand protons that are solvent exposed. Non-binding ligands will not
show any STD NMR signals at all [95].

Utilising our STD NMR spectroscopy approach we directly investigated
the binding of GDP-Man, GDP, GMP and Man to the Golgi-enriched
fractions isolated from Aspergillus ([93] and Fig. 2). We showed
through STD NMR competition experiments that GDP binds tighter
to the Aspergillus GMT than GMP and GDP-Man, with Man binding
only weakly. Based on these experiments the relative importance/
affinity of individual ligand moieties that bind the Aspergillus GMT
were summarised as follows; GDP ≥ GMP ≃ GDP-Man ≫ Man. The

natural antiporter substrates for the GMT are GDP-Man and GMP. How-
ever, the observation that GDP binds the GMT with higher affinity than
the natural substrates (GMP-Man and GMP) can now be exploited in
the design of novel GMT inhibitors [93]. (See Fig. 2.)

6. SLC35A1 CMP-sialic acid transporter (CST)

The CST is located exclusively in the Golgi apparatus where it co-
localises with ST6GalI in the medial and trans Golgi, and translocates
CMP-sialic acid (CMP-Sia) from the cytosol into the Golgi lumen in
exchange for CMP in an antiporter mechanism (see Fig. 1) [14]. The
cDNA of the murine CST was first isolated in 1996 by complementation
cloning. Chinese hamster ovary mutants of the complementation group
Lec2 (CHO 6B2) express a strong reduction of sialylated glycoconjugates
due to a defect in the CST. By expression cloning, a cDNA encoding the
mCST was identified that complemented the Lec2 phenotype [96]. It
was shown to encode a highly hydrophobic, multiple membrane
spanning protein of 36.4 kDa. Using the same cloning strategy the cDNA
encoding the hamster CSTwas also isolatedwith the amino acid sequence
showing a 95% identity with the mCST [97]. Related cDNAs from human,
S. cerevisiae, and C. eleganswere also identified by homology searches of
gene databases. Expression of the murine CST in yeast was used to
confirm the ability of the cloned CST to translocate CMP-Sia [13].
Due to the fact that yeast does not express Sia, it represented an
ideal background free model to study the CST and to demonstrate that
the cDNA identified by complementation cloning encoded an active
transporter and not just an accessory protein required for CMP-Sia
transport/translocation.

Subsequent to cloning and expression of the CST, independent
groups began structure–function relationship investigations. Initially,
the CST derived from five independent clones of the Lec2 complementa-
tion groupwere analysed to determine themolecular defects leading to
the inactivation of the CST. One of these defects was observed to be a
single missense mutation, Gly189Glu. It was shown that the mutant
CST mRNA expression level was the same as that of the wild-type, and
the mutant was also correctly targeted to the Golgi apparatus. This
indicated that the Gly189Glu mutation was directly responsible for
the inactivation of CST transport activity. Exchanging Gly189 to Ala

Fig. 3.Diagram representing themembrane topology of CST as proposed by independent studies. 1. TM1–TM10were identified using HA-epitope tagging [52]. The position of HA epitopes
used to deduce thismodel is indicated by arrows and arrowheads. Black arrows and arrowheads indicate HA tags that inactivated CST, whereas the green arrowheadsmark the position of
HA tags that did not inactivate the CST. 2. The TM domains coloured in yellow are essential for CST activity as identified through UGT–CST chimeras [100]. When TM2, TM3 and TM7 from
CST were engineered into UGT, the resulting transporter was then able to transport both CMP-Sia and UDP-Gal. 3. Deletion of the four purple coloured amino acids eliminated the export
signals and prevented ER to Golgi translocation [80] 4. The blue coloured Gly residues were identified as contributing to the formation of a putative aqueous channel necessary for the
translocation of CMP-Sia [99]. 5. The orange coloured amino acids ringed in black were identified by GFP-tagging as essential for CST activity. The orange amino acids with no black
ring were identified as essential by point mutations [101]. 6. Amino acids in red were identified as being essential for CST substrate recognition [94]. Diagram modified from Eckhardt,
Gotza & Gerardy-Schahn (1999) [52] and Maggioni, Martinez-Duncker & Tiralongo (2013) [14].
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Table 2
CST and CST/UGT chimeric mutations that altered transport and/or substrate recognition. CST and CST/UGT chimeric mutants shown to affect the transport and/or substrate recognition
have been summarised. A complete list of all CST and CST/UGT mutants (based on the available literature) assessed including those that had no effect on transport and/or substrate
recognition has been included in the supplementary data Table A.

Mutant Location Background Effect Experiment Comments

C16A TMD 1 Site-directed mutagenesis of mouse CST.
Generated and expressed in P. pastoris.

Essential for CST substrate
specificity

STD NMR
spectroscopy

Highly conserved in CSTs, but not
present in Mn & Hn UGT [94].

K65A 2nd loop Site-directed mutagenesis of mouse CST.
Generated and expressed in P. pastoris.

Significant effect on CMP-
Neu5Ac recognition.
Suggests binding the Sia
moiety and not the
nucleotide moiety.

STD NMR
spectroscopy

Highly conserved in CSTs, but not
present in Mn & Hn UGT [94].

Q101H TMD 3 Naturally occurring mutation in patient
with intellectual disability and bleeding diathesis

50% reduction in CST
activity

Functional assay [16]

L112G & D113G
Double mutant

3rd loop CST-GFP12 mutant. Co-transfected with an
EPO vector into CHO MAR-11 cells

Complete inactivation
of CST

EPO/IEF assay a [101]

L136G 4th loop MAR-11 cells Essential for CST activity EPO/IEF assay a Highly conserved in CST. UGT
conserved counterpart, L160G
did not affect UGT [101].

G153A & G154A
Double mutant

TMD 5 Cotransfection of constructs that express
CST into CHO CST-deficient MAR-11 cells.

Slightly reduced activity EPO/IEF assay a [99]

G153I & G154I
Double mutant

TMD 5 Cotransfection of constructs that express
CST into CHO CST-deficient MAR-11 cells.

Clear reduction in activity EPO/IEF assay a [99]

G177A & G179A
Double mutant

TMD 6 Cotransfection of constructs that express
CST into CHO CST-deficient MAR-11 cells.

Slightly reduced activity EPO/IEF assay a [99]

G177I & G179I
Double mutant

TMD 6 Cotransfection of constructs that express
CST into CHO CST-deficient MAR-11 cells.

Clear reduction in activity EPO/IEF assay a [99]

G189A & G192A
Double mutant

TMD 6 Cotransfection of constructs that express
CST into CHO CST-deficient MAR-11 cells.

Clear reduction in activity EPO/IEF assay a [99]

G189E TMD 6 Site-directed mutagenesis. Expressed in
CHO-WT and mutant Lec 2

Clear reduction in activity Complementation
analysis

Gly189 in highly conserved CST
region. Indicates size of aa is
critical for activity — not charge [98].

G189Q TMD 6 Site-directed mutagenesis. Expressed
in CHO-WT and mutant Lec 2

Clear reduction in activity Complementation
analysis

As above [98].

G189I TMD 6 Site-directed mutagenesis. Expressed
in CHO-WT and mutant Lec 2

Clear reduction in activity Complementation
analysis

As above [98].

Y214A TMD 7 Site-directed mutagenesis of Mouse CST.
Generated and expressed in P. pastoris.

Dramatic effect on CMP-
Neu5Ac recognition.
Suggests binding of
the Sia moiety and
not the nucleotide
moiety.

STD NMR
spectroscopy

Highly conserved in CSTs, but not
present in Mn & hUGT [98]

Y214G TMD 7 hUGT/hCST chimera Loss of CST activity
(retained UGT activity)

Complementation
analysis

[70]

S216F TMD 7 hUGT/hCST chimera Loss of CST activity
(retained UGT activity)

Complementation
analysis

[70]

236KGFF239 to
236GGGG239

8th loop CST-GFP12 mutant. Co-transfected with
an EPO vector into CHO MAR-11 cells

Complete inactivation
of CST

EPO/IEF assay a [101]

G256I & G257I
Double mutants

TMD 8 Cotransfection of constructs that
express CST into MAR-11 cells.

Clear reduction
in activity

EPO/IEF assay a [99]

G256A & G257A
Double mutants

TMD 8 Cotransfection of constructs that express CST
into CST-deficient MAR-11 cells.

Clear reduction
in activity

EPO/IEF assay a [99]

267TDNI270 to
267GGGG270

8th loop CST-GFP12 mutant. Co-transfected
with an EPO vector into CHO MAR-11 cells

Complete inactivation
of CST

EPO/IEF assay a [101]

I270G 8th loop CST-GFP12 mutant. Co-transfected
with an EPO vector into CHO MAR-11 cells

Partially reduced
transport activity

EPO/IEF assay a [101]

I270W 8th loop CST-GFP12 mutant. Co-transfected
with an EPO vector into CHO MAR-11 cells

Partially reduced
transport activity

EPO/IEF assay a [101]

K272A 8th loop CST-GFP12 mutant. Co-transfected
with an EPO vector into CHO MAR-11 cells

Complete inactivation of
CST. Essential for CST
transport activity

EPO/IEF assay a [101]

K272G 8th loop CST-GFP12 mutant. Co-transfected with
an EPO vector into CHO MAR-11 cells

Complete inactivation of CST.
Essential for CST
transport activity

EPO/IEF assay a [101]

K272H 8th loop CST-GFP12 mutant. Co-transfected
with an EPO vector into CHO MAR-11 cells

Complete inactivation of
CST. Essential for CST
transport activity

EPO/IEF assay a Changed to His as His is in
hGDP-fucose transporter. [101]

Deletion of last 4
amino acids IIGV

C-
terminal
tail

Eliminated the export signals
and prevented
ER-to-Golgi translocation

[80]

TMD 2 & 3 TMD 2
TMD 3

hUGT-hCST chimera Affects the efficiency of CST [100]

TMD 7 TMD 7 hUGT-hCST chimera Required for substrate
specificity

[100]

CST-GFP4
(GFP loop
interruption)

3rd loop CST-GFP12 mutant. Co-transfected with
an EPO vector into CHO MAR-11 cells

Complete inactivation
of CST

EPO/IEF assay a [52,101]

(continued on next page)
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did not affect transport, though Gly189Gln and Gly189Ile mutants
resembled the inactivate Gly189Glumutant (Table 2 and Supplementary
data Table A). This suggested that the insertion of a large amino acid at
position 189 rather than the charge associated with Glu rendered the
CST inactive. The exchange Gly189 to Glu occurs in a region that is high-
ly conserved in both the mammalian CST and UGT, as well as in
Schizosaccharomyces pombe and C. elegans, suggesting this region is
essential for a functional transporter [98].

The initial topology model established by Eckhardt et al. (1999)
predicted 10 TMdomainswith both theN- andC-terminals facing the cy-
tosolic side of the Golgi membrane (Fig. 3). This model was deduced by
epitope-tagging studies, site-directed mutagenesis and hydrophobicity
plots [52], and established that Gly189 is one of 10 Gly residues spread
across four TMdomains (TM5–8) thatwere presumed to forma putative
hydrophilic channel [98]. The creation of eight double mutants exchang-
ing each Gly pair with Ala and Ile confirmed the importance of these Gly
residues [99] (Fig. 3 and Table 2). In order to assess these and other mu-
tants Lim et al. (2008) established the EPO/IEF assay to assess CST ac-
tivity. Briefly, recombinant human erythropoietin (EPO) is a heavily
glycosylated molecule and a simple analysis of the sialylation pattern
using isoelectric focusing (IEF) can identify any changes in these pat-
terns. MAR-11 CHO cells lack a functional CST and these cells were
used as the host to analyse the relative activities of different mutant
transporters. Using this assay system Lim et al. (2008) concluded
that there was a direct correlation between the increased steric hin-
drance associated with the exchange of Gly with either Ala or Ile and
the reduction of CST substrate translocation [99].

The suggestion of a Gly-rich hydrophilic channel or pore through
which CMP-Sia can pass is contradictory to the hypothesis that the
CST is a simple solute carrier [12] and to the concept of an antiporter
mechanism [44]. This was based on experimental evidence that the
transporter has the ability to alternatively expose its CMP/CMP-Sia
binding site from either the cytosolic or luminal side of the Golgi
membrane [12]. However, the two hypotheses can be reconciled in that
the binding of CMP or CMP-Sia to the CST may permit a conformational
change that allows the formation of a Gly-rich hydrophilic channel,
enabling the selective translocation of the bound molecule. This unfortu-
nately can only be conclusively demonstrated through the elucidation of
the CST crystal structure.

Much of what we know regarding the CST (and UGT) structure–
function relationship comes from a series of elegant studies evaluating
the function of an array of UGT/CST chimeric transporters in both Lec2
and Lec8 CHO complementation groups [46,70,100]. Initial studies
showed that substitution of CST helix 7 into the UGT chimera was
enough to elicit CST activity, with the addition of helices 2 and/or 3
greatly enhancing the efficiency, suggesting that this chimeric CST/
UGT now had the ability to recognise and transport both UDP-Gal and
CMP-Sia [46,100] (Table 2). More recently further analysis of UGT/CST
chimeras has defined a sub-molecular region that is necessary for
CMP-Sia recognition [70]. Analysis of chimeras indicated that the
Val208–Gly217 stretch in the CST (located in the helix 7) was essential
for CST activity. Two of the amino acids located in this stretch, Tyr214
and Ser216 were subsequently identified by site-directed mutagenesis
(both single and double mutants) to be important for CMP-Sia recogni-
tion, with Tyr214 found to be critical for substrate recognition (Table 2).
The authors postulated that hydrogen bond formation involving the

hydroxyl side-chains of these two amino acids may make specific
interaction with the Sia moiety of the substrate [70].

Utilising STD NMR spectroscopywewere able to confirm the impor-
tance of Tyr214 in CMP-Sia recognition, specifically that it is intimately
involved in the recognition and binding to the Sia moiety of CMP-Sia
[94]. The generation of a Tyr214Ala CST mutant leads to the complete
loss of STD signals associated with Sia, even though significant binding
was observed to the CMP moiety. In addition to Tyr214, we were also
able to identify another CST mutant, Lys65Ala that leads to a significant
reduction in CMP-Sia recognition [94]. The latter residue in particularwas
identified using a bio-informatic approach where a sequence alignment
of the mouse and human UGT and seven evolutionary diverse CSTs
(H. sapiens, Mucaca mulatta, Mus musculus, Gallus gallus, Xenopus laevis,
Takifugu rubripes, and Danio rerio) was performed. As shown in
Supplementary Fig. A, a number of structural elements including the 10
Gly residues stretching TM 5–8 that have been implicated in the forma-
tion of a transporter channel [99], and Gln101, Leu136, and Lys272 and
residues in the human CST loop regions shown to be essential for trans-
port activity [101] appear not to confer substrate specificity as they are
conserved in both the CST and UGT. However, Ser216 and Tyr214, inde-
pendently identified by Maggioni et al. [94] and Takeshima-Futagami
et al. [70] as being important for CMP-Sia recognition are highly
conserved in evolutionary distant CST, but are not found in either the
mouse or human UGT. Supplementary Fig. A also reveals the presence
of sevenCys residues absolutely conserved in all CSTs that are not present
in the UGT. Three Cys residues are present within the UGT, but their
locations differ to those present in the CST sequence. To further explore
the role of these Cys residues in disulphide bond formation, a web-
based disulphide bond prediction algorithm DiANNA [102] was used to
analyse the CST and UGT sequence. Of the seven Cys residues in the
CST six were predicted to form disulphide bonds, giving both intra- and
inter-TMD connections. The Cys putatively involved in disulphide bond
formation are Cys16–Cys49 (TMD1–TMD2), Cys127–Cys131 (TMD4–
TMD4) and Cys152–Cys307 (TM5–TM9) (highlighted in Fig. A2). Of the
three Cys residues in the UGT none were predicted to be involved in di-
sulphide bond formation [94].We therefore explored how the disruption
of two of these putative disulphide bonds in the CST (C16A and C152A,
Supplementary Fig. A) affected CST substrate recognition. However
only Cys16Ala had any effect on CMP-Sia binding as assessed by STD
NMR spectroscopy, this is despite the fact that alkylating and reducing
agents completely abolished CST–CMP-Sia interaction [94]. This is inter-
esting in so far as sialyltransferases contain two to four invariant Cys res-
idues that are all involved in CMP-Neu5Ac substrate binding. These Cys
residues are indispensable to the structural and functional integrity of
sialyltransferases, with complete loss of catalytic activity observed fol-
lowing themutation of either invariant Cys toAla or Ser [103]. However,
unlike sialyltransferases where the mutation of single Cys residues
abolishes activity, it would appear that in the CST disruption of multiple
Cys is required to achieve a similar outcome.

In addition to the importance of specific TM domains in CST and UGT
activities, the function of the CST hydrophilic loops throughgreenfluores-
cent protein (GFP) insertion experiments has also been assessed [101].
Three distinct loops that congregate around TMD3 and TMD7, as well as
several highly conserved amino acids were found to be crucial for the
transport activity of both the CST and UGT (Table 2 and highlighted in
orange in Fig. 3).

Table 2 (continued)

Mutant Location Background Effect Experiment Comments

CST-GFP8
(GFP loop
interruption)

7th loop CST-GFP12 mutant. Co-transfected with an EPO
vector into CHO MAR-11 cells

Complete inactivation of CST EPO/IEF assay a [52,101]

CST-GFP10
(GFP loop
interruption)

8th loop CST-GFP12 mutant. Co-transfected with an EPO
vector into CHO MAR-11 cells

Partial inactivation of CST EPO/IEF assay a [52,101]

a EPO/IEF assay: Recombinant human erythropoietin/isoelectric focusing assay.
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7. Summary and outlook

Significant progress has been made over the past decade towards
not only the elucidation of NST structure–function relationship, but
also better understanding the role of NSTs in various disease states
including CDGs and microbial pathogenesis (e.g. A. fumigatus and
Leishmania). These data have been generated using a multidisciplinary
approach employing techniques ranging from site directedmutagenesis
and complementation analyses to STDNMR spectroscopy and transport
assays. The studies covered in this review have provided a fundamental
understanding of several important NSTs. The continued use of multi-
disciplinary approaches towards understanding NST structure and
function will provide further important advances in the field. However,
onlywith the elucidation of the 3-dimensional structure of anNSTwill a
full understanding of the structure–function relationship of this impor-
tant class of transporter be realised.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.csbj.2014.05.003.
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