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Inherited retinal dystrophies (IRDs) represent a heteroge-
neous group of disorders characterized by the degeneration of 
photoreceptor cells. Variable ages of onset and diverse grades 
of involvement of rod and cone photoreceptor cells divide 
these disorders into various clinical subsets [1]. The most 
severe form of retinal degeneration is Leber congenital amau-
rosis (LCA, OMIM #204000), with severely impaired visual 
function from birth and strongly reduced or undetectable 

electroretinogram (ERG) responses within the first year of 
life [2]. Another form of retinal dystrophy, involving initially 
rod photoreceptor degeneration which is followed by cone cell 
death, is retinitis pigmentosa (RP, OMIM #268000) [3]. RP 
is characterized by night blindness, progressive visual field 
deterioration, and eventual loss of central vision. In persons 
with cone-rod dystrophy (CRD, OMIM #120970) [4], cones 
are primarily involved whereas rods are concomitantly or 
later affected. One of the additional symptoms that may occur 
in LCA or CRD is macular atrophy (also called pseudocolo-
boma), which is not related to embryonic fissure closure [5]. 
Until now, mutations in 204 genes were found to be involved 
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Purpose: The gene encoding nicotinamide nucleotide adenylyltransferase 1 (NMNAT1) was recently found to be mutated 
in a subset of patients with Leber congenital amaurosis (LCA) with macular atrophy. The aim of this study was to de-
termine the occurrence and frequency of NMNAT1 mutations and associated phenotypes in different types of inherited 
retinal dystrophies.
Methods: DNA samples of 161 patients with LCA without genetic diagnosis were analyzed for variants in NMNAT1 using 
Sanger sequencing. Variants in exon 5 of NMNAT1, which harbors the majority of the previously identified mutations, 
were screened in 532 additional patients with retinal dystrophies. This cohort encompassed 108 persons with isolated 
or autosomal recessive cone-rod dystrophy (CRD), 271 with isolated or autosomal recessive retinitis pigmentosa (RP), 
and 49 with autosomal dominant RP, as well as 104 persons with LCA in whom the causative mutation was previously 
identified.
Results: Compound heterozygous alterations were found in six patients with LCA and in one person with early-onset 
RP. All except one carried the common p.E257K variant on one allele. Macular atrophy was absent in one patient, who 
carried this variant in combination with a truncating mutation on the other allele. The p.E257K alteration was also found 
in a heterozygous state in five individuals with LCA and one with RP while no mutation was detected on the other al-
lele. Two individuals with LCA carried other NMNAT1 variants in a heterozygous state, whereas no NMNAT1 variants 
in exon 5 were identified in individuals with CRD. The p.E257K variant was found to be enriched in a heterozygous 
state in individuals with LCA (0.94%) compared to Caucasian controls (0.18%), although the difference was statistically 
insignificant (p=0.12).
Conclusions: Although macular atrophy can occur in LCA and CRD, no NMNAT1 mutations were found in the latter 
cohort. NMNAT1 variants were also not found in a large group of patients with sporadic or autosomal recessive RP. The 
enrichment of p.E257K in a heterozygous state in patients with LCA versus controls suggests that this allele could act 
as a modifier in other genetic subtypes of LCA.
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in the pathogenesis of IRDs (RetNet). Recently, NMNAT1, a 
gene involved in nicotinamide adenine dinucleotide (NAD) 
synthesis, was found to be responsible for a subset of LCA 
cases, mainly with macular lesions [6-9].

Earlier studies described three nicotinamide mononucle-
otide adenylyltransferases catalyzing the reaction of nicotin-
amide mononucleotide with ATP to form NAD+ [10], a crucial 
agent in many redox reactions especially important in the 
central nervous system. Whereas NMNAT2 and NMNAT3 
localize to the Golgi apparatus and mitochondria, respec-
tively, NMNAT1 is a nuclear isoform that was previously 
studied in the Wallerian degeneration, slow (Wlds) mouse 
model. In these mice, a fusion protein (Wlds) was identified, 
consisting of Ube4b and the complete coding sequence of 
Nmnat1. Subsequently, this fusion protein was found to have a 
protective effect on axonal degeneration after neuronal injury 
[11,12], and Nmnat1 activity was found to be required for 
this phenomenon [13-15]. Homozygous null mutations in this 
gene in Drosophila melanogaster and murine models result 
in early lethality. Heterozygous knockout mice displayed 
normal development [16], and a retinal knockout in the fruit 
fly resulted in progressive retinal degeneration [17]. NAD+ 
levels rapidly decreased in axons before their degeneration. 
However, retinal degeneration cannot probably be attributed 
to enzymatic activity of NMNAT1. An inactive Nmnat1 
in Drosophila prevented photoreceptor degeneration [17]. 
Therefore, Perrault et al. hypothesized that this protein may 
have an additional chaperone function [9].

The NMNAT1 mutations reported thus far were found 
throughout the entire coding sequence. Most of the muta-
tions (58%), however, are clustered in exon 5. Most variants 
identified in patients with LCA (31/39) are missense muta-
tions. Only six mutations result in C-terminal truncations of 
NMNAT1, one extends the protein, and one abolishes the start 
codon. The most common mutation, p.E257K, was reported in 
27 cases (in one case homozygously) and proven via an NAD/
NADH assay to impede NMNAT1 activity when present in 
homozygous state in vivo and in a mutant construct in vitro 
[8]. The purpose of this study was to assess the prevalence 
of NMNAT1 mutations in a mixed ethnicity LCA cohort and 
to investigate the involvement in other progressive retinal 
degenerations.

METHODS

Patient cohorts: A cohort of 693 patients with inherited 
retinal dystrophies participating in this study was collected 
over a period of 17 years. DNA was extracted from 8 ml of 
peripheral blood using standard salting-out procedure [18], 
and the aliquots were stored at -20°C. The group consisted of 

265 LCA patients (104 with and 161 without a genetic diag-
nosis). In addition, an extended cohort with no established 
causative mutation was included in the study: 271 isolated 
or autosomal recessive RP probands, 49 unrelated cases 
with autosomal dominant RP, as well as 108 persons with 
isolated or autosomal recessive CRD. The patients were of 
mixed ethnic and geographic origin (European, African, or 
Asian). At least 204 healthy, unrelated individuals from the 
Western European population were included in this study 
as controls. Written informed consent was obtained from 
all participants. The study was approved by the local Ethics 
Committee and adhered to the tenets of the Declaration of 
Helsinki. Ophthalmic examination in seven patients with 
NMNAT1 variants included best corrected visual acuity, 
ophthalmoscopy, and fundus photography, if feasible.

Nicotinamide nucleotide adenylyltransferase 1 sequence 
analysis: DNA samples of genetically unsolved patients 
with LCA were screened for mutations in all coding exons 
of NMNAT1. Samples underwent amplification by PCR and 
were analyzed with Sanger sequencing. In addition, RP and 
CRD samples, as well as LCA cases with previously estab-
lished genetic diagnosis, were subjected to sequence analysis 
of exon 5 of NMNAT1. In this group, after a mutation was 
identified in exon 5, all exons of NMNAT1, including the non-
coding exon 1, were tested with sequencing. All identified 
mutations were assessed for pathogenicity using the nucleo-
tide conservation score in 44 vertebrate species (PhyloP), as 
well as amino acid substitution prediction programs (SIFT, 
PolyPhen2). To detect the p.E257K mutation in the control 
individuals, BspCNI restriction of amplified genomic DNA 
fragments was performed, followed by agarose gel electro-
phoresis. The other mutations were assessed in the control 
group using either amplification refractory mutation system 
(ARMS) PCR (p.H206R, p.V244A) or restriction fragment 
length analysis with appropriate enzymes: BsmFI (p.N18S), 
CviAII (p.W85R), BaeGI (p.D158H), and AseI (p.E199*). 
All enzymes were purchased from New England Biolabs 
(Hitchin, UK). All PCR reactions were performed in a volume 
of 20 µl containing 40 ng genomic DNA, 0.2 µM of each 
primer, 2 mM MgCl2, 1 mM dNTPs, PCR buffer provided 
by the manufacturer, and 0.5 U Taq polymerase (Invitrogen, 
Breda, The Netherlands). Primers are listed in Appendix 1. 
Statistical analysis was performed using IBM SPSS Statistics 
version 20 software (IBM, New York, NY).

Segregation analysis: To ensure that the two compound 
heterozygous mutations in exon 5 were located on different 
alleles, and since DNA samples of the parents of the affected 
individuals were not available, both allelic copies of exon 5 
were tested by cloning. The PCR products encompassing 
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both mutations were cloned in the TOPO vector containing 
an ampicillin resistance cassette using the TOPO TA cloning 
kit according to the manufacturer’s instructions (Invitrogen, 
Breda, The Netherlands). Plasmid DNA was isolated using the 
Roti Prep plasmid Mini kit (Carl Roth, Karlsruhe, Germany), 
and the vector was sequenced using the NMNAT1 exon 5 
specific primer.

RESULTS

Among all patients in this study, compound heterozygous 
mutations were found in six families. All patients carrying 
NMNAT1 mutations were of European origin. Six of the 
identified mutations, five missense and one nonsense variant, 
had not been previously reported (Table 1). Two other vari-
ants were described earlier: p.R207W and p.E257K. The 
pathogenicity assessment is presented in Table 2. Single 
heterozygous c.769G>A (p.E257K) alleles were present in 
seven probands with LCA. None of the patients with RP or 
CRD, as well as genetically diagnosed patients with LCA, 
carried NMNAT1 exon 5 mutations. The control population 

did not show the presence of any of these alleles, with the 
exception of p.E257K, which was present in a heterozygous 
state in 1/271 persons. In all cases containing two mutations 
in exon 5, segregation was confirmed with allelic cloning. All 
sequencing results are presented in Table 1.

All patients with compound heterozygous variants were 
legally blind and displayed only light or hand movements 
perception, depending on their age. Patient 4, the only one 
who did not have macular atrophy, did not retain any light 
perception when he was 6 years old. His fundus pictures are 
unavailable, since the right eye was enucleated because of 
corneal pain, and examination of the left eye was impossible 
due to corneal damage. In patient 6, macular atrophy was 
suspected but not possible to determine, since the degen-
eration was too far advanced; on funduscopy, panretinal 
chorioretinal atrophy was visible. In sibship 3, the boy (3.1) 
had distinct macular atrophy at the age of 6 months, while 
his sister (3.2) developed macular atrophy within the first 
two years of life. In all patients in whom electroretinography 
was performed, the signals were not detectable. Abnormal 

Table 1. Mutations in NMNAT1 detected in LCA patients.

Patient Variants Segregation
1    c.53A>G (p.N18S)/c.472G>C (p.D158H) n.d.
2    c.769G>A (p.E257K)/c.253T>C (p.W85R) n.d.

3.1    c.769G>A (p.E257K)/c.617A>G (p.H206A)
yes

3.2    c.769G>A (p.E257K)/c.617A>G (p.H206A)
4    c.769G>A (p.E257K)/c.595G>T (p.E199*) yes
5    c.769G>A (p.E257K)/c.731T>C (p.V244A) yes
6    c.769G>A (p.E257K)/c.619C>T (p.R207W) yes

LCA, Leber congenital amaurosis; n.d., not determined. Novel mutations are marked with bold font.

Table 2. Mutations in NMNAT1: pathogenicity predictions and population frequencies.

Variant PhyloP SIFT PolyPhen2

Heterozygous exome 
variant server occur-

rence (European 
American) per 4,289 

persons
c.53A>G (p.N18S) 4.08 tolerated probably damaging 0
c.115+3A>G (p.?) 0.53 - - 46

c.253T>C (p.W85R) 4.81 deleterious probably damaging 0
c.472G>C (p.D158H) 6.02 deleterious probably damaging 0
c.595G>T (p.E199*) 2.79 - - 0
c.617A>G (p.H206R) 4.89 deleterious probably damaging 0
c.619C>T (p.R207W) 1.90 deleterious benign 2
c.731T>C (p.V244A) 4.48 deleterious probably damaging 0
c.769G>A (p.E257K) 3.84 tolerated benign 11

http://www.molvis.org/molvis/v20/753


Molecular Vision 2014; 20:753-759 <http://www.molvis.org/molvis/v20/753> © 2014 Molecular Vision 

756

peripheral fundus pigmentation was visible in six patients. 
Patient 1 had subcapsular cataracts, whereas patient 6 already 
underwent cataract extraction. The results of all clinical 
examinations are presented in Table 3.

DISCUSSION

Due to high energy consumption, the retina may be sensi-
tive to deficiencies in substrates associated with cellular 
energy supply. NAD+, the product of a reaction catalyzed 
by NMNAT1, is such a substrate. NAD+ is also indirectly 
responsible for posttranslational covalent modifications of 
key proteins (such as mono- and poly-ADP ribosylation) [19]. 
Therefore, it is not surprising that NMNAT1 mutations cause 
a severe form of hereditary retinal degeneration (Figure 1). 
In this study, none of the patients with RP or CRD carried 
NMNAT1 exon 5 mutations. A separate question is the origin 
of the macular atrophy. Atrophic macular lesions may arise 
secondary to photoreceptor death, as it has been described 
in CRD [4], but also in blue cone monochromacy [20] and 
achromatopsia [21]. In LCA, the macular lesions may evolve 
in time: patient 3.2 showed abnormal central pigmentations 
at the age of 4 months, which developed into macular atrophy 
at the age of 2 years. In our study, one of the seven patients 
(patient 4) in whom we identified NMNAT1 mutations did 
not exactly display this feature, but parafoveal atrophy. 
The genetic data gathered from our study, as well as other 
research, suggest that patients with LCA with NMNAT1 vari-
ants have significant residual NMNAT1 activity. Most of the 
variants represent combinations of nonsense mutations or 
missense mutations predicted by in silico prediction programs 
to be severe, with other alterations that are presumed to 
exert a milder effect on the protein. Only one patient with a 
homozygous null mutation (p.W169*) has been reported [9]. 
The lethality of Nmnat1 knockout mice suggests that human 
embryos with such a genotype would not be viable [16]. It is 
not clear how the p.W169* variant would retain any NMNAT1 
activity; however, it was suggested that this phenomenon 
can be ascribed to NMNAT1 chaperone function, which is 
predicted to remain intact [9].

The p.E257K mutation is of particular interest. Deemed 
to be neutral by prediction programs SIFT and PolyPhen2, 
this missense alteration also displays a low level of nucleotide 
conservation, and the physicochemical difference between 
these amino acids, measured with the Grantham score is 
only marginal. Nevertheless, a previous study showed that 
this mutation not only disrupts NMNAT1 activity but also 
has the most profound impact of all five mutations identi-
fied in that study [8]. The mechanism of this negative effect 
is yet unknown. Perrault and colleagues speculated that 

the p.E257K variant is in linkage disequilibrium with a yet 
undiscovered regulatory variant in the same gene, causing 
mRNA to be expressed at a low level. However, the experi-
ments in question were performed by expressing recombinant 
NMNAT1 protein in cell lines, using constructs that did 
not contain regulatory parts of the gene. Another peculiar 
finding is the enrichment of heterozygotes for this mutation 
in patients with LCA compared to control groups, which was 
previously found to be present in 4.4% of the patient alleles 
versus none in 400 control alleles in one study [9], which was 
a statistically significant difference. Nonetheless, the consid-
ered group consisted only of prescreened, unsolved LCA 
probands. In this study, we also screened our LCA cohort 
with patients in whom causal mutations had been previously 
identified. In this cohort, the p.E257K variant was present 
heterozygously in five LCA proband alleles (0.94%; Table 
2) versus only one in 271 Caucasian control alleles (0.18%; 
Fisher’s exact test, p=0.12). Moreover, when the LCA cohort 
was compared to European American frequency in Exome 
Variant Server data, a statistically significant difference was 
observed between the patients with LCA and the controls 
(0.13%, Fisher’s exact test, p=0.002). It can be inferred that 
this variant is specific for the Western European population; 
however, the enrichment in patients with LCA may indicate 
that this variant acts as a modifier in one or several other 
genetic subtypes of LCA. Whole exome sequencing of these 
cases may further shed light on a potential modifier effect of 
this NMNAT1 allele on other genetic subtypes of LCA.

In addition to the p.E257K change, one other mutation, 
p.R207W, was detected in multiple patients. The combina-
tion of p.R207W and p.E257K variants was by far (8/311 
prescreened cases from our and two other studies) the most 
prevalent among NMNAT1-mutated patients with LCA. Eight 
individuals of French origin were found to carry this combi-
nation of variants [8,9], which may indicate that p.R207W is 
a founder mutation in this population.

Two additional, potentially harmful mutations were 
identified only heterozygously in patients with LCA: c.12dup 
(p.E5Rfs*4) and a putative splice site mutation c.115+3A>G 
(p.?). Since they were identified in cases with LCA and RP, 
these mutations may be present in a compound heterozy-
gous state with a missing “second hit” on the other allele; 
for example, an unidentified alteration either deep within 
an intron or in a regulatory sequence. The c.115+3A>G 
alteration, although predicted to diminish the strength of the 
splice site, may however be a benign alteration, since it is 
rather frequent in the Caucasian population (Table 2). All 
other mutations were predicted to have a deleterious effect. 
Functional studies are required to evaluate the potential effect 
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of these alterations on the protein. The indirect assessment 
of NMNAT1 activity by NAD measurement in patients’ 
erythrocytes and lymphoblast cells was previously used for 
evaluating the pathogenicity of a given mutation. Since other 
tissues appear to be unaffected by NMNAT1 mutations, it 
cannot be certain whether the results of these measurement 
reflect the in vivo situation in the retina.

In conclusion, there is a strong association between 
NMNAT1 mutations and macular atrophy, although this 
feature is not always present. NMNAT1 seems to be involved 
in a small subset of LCA cases, since it is responsible for 2.3% 
of the cases in our cohort of 265 patients with LCA. Although 
the difference was not significant, the p.E257K mutation was 
enriched in a heterozygous state in individuals with LCA 
compared to ethnically matched controls, suggesting that this 
allele potentially acts as a modifier in other genetic subtypes 
of LCA.

APPENDIX 1. PRIMER SEQUENCES FOR THE 
AMPLIFICATION OF THE NMNAT1 GENE.

F: forward primer; mut: mutant-specific; R: reverse primer; 
wt: wild-type-specific. To access the data, click or select the 
words “Appendix 1.”
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