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RESEARCH ARTICLE

Bcl-2 binds to and inhibits ryanodine receptors

Tim Vervliet1, Elke Decrock2, Jordi Molgó3, Vincenzo Sorrentino4, Ludwig Missiaen1, Luc Leybaert2,
Humbert De Smedt1, Nael Nadif Kasri5, Jan B. Parys1 and Geert Bultynck1,*

ABSTRACT

The anti-apoptotic B-cell lymphoma-2 (Bcl-2) protein not only

counteracts apoptosis at the mitochondria by scaffolding pro-

apoptotic Bcl-2-family members, but also acts at the endoplasmic

reticulum, thereby controlling intracellular Ca2+ dynamics. Bcl-2

inhibits Ca2+ release by targeting the inositol 1,4,5-trisphosphate

receptor (IP3R). Sequence analysis has revealed that the Bcl-2-

binding site on the IP3R displays strong similarity with a conserved

sequence present in all three ryanodine receptor (RyR) isoforms.

We now report that Bcl-2 co-immunoprecipitated with RyRs in

ectopic expression systems and in native rat hippocampi, indicating

that endogenous RyR–Bcl-2 complexes exist. Purified RyR

domains containing the putative Bcl-2-binding site bound full-

length Bcl-2 in pulldown experiments and interacted with the BH4

domain of Bcl-2 in surface plasmon resonance (SPR) experiments,

suggesting a direct interaction. Exogenous expression of full-

length Bcl-2 or electroporation loading of the BH4 domain of Bcl-2

dampened RyR-mediated Ca2+ release in HEK293 cell models.

Finally, introducing the BH4-domain peptide into hippocampal

neurons through a patch pipette decreased RyR-mediated Ca2+

release. In conclusion, this study identifies Bcl-2 as a new inhibitor

of RyR-based intracellular Ca2+-release channels.

KEY WORDS: Ca2+ signaling, Bcl-2, Ryanodine receptor,

Hippocampus

INTRODUCTION
The B-cell lymphoma-2 (Bcl-2) family of proteins consists of

both anti- and pro-apoptotic family members. To exert their

function, Bcl-2-family members depend on the presence of one or

more Bcl-2-homology (BH) domains (Letai, 2008). The role of

anti-apoptotic Bcl-2 proteins, which contain four BH domains, as

crucial gate keepers of mitochondrial outer-membrane integrity

has been well established (Brunelle and Letai, 2009; Chipuk and

Green, 2008). This is achieved by scaffolding and neutralizing

pro-apoptotic proteins, like Bax and/or Bak and BH3-only

proteins, through the hydrophobic cleft, which is formed by the

BH3, BH1 and BH2 domains. It has become increasingly clear

that Bcl-2 proteins also modulate intracellular Ca2+ signaling

events by directly targeting Ca2+ transport mechanisms at

different cellular locations. At the level of the endoplasmic

reticulum (ER), the main intracellular Ca2+ store, Bcl-2-family

members target the inositol 1,4,5-trisphosphate (IP3) receptor

(IP3R) (Monaco et al., 2012a; Oakes et al., 2005; Rong et al.,

2008; White et al., 2005), sarco/endoplasmic-reticulum Ca2+-

ATPases (SERCAs) (Kuo et al., 1998) and Bax inhibitor 1 (BI-1,

also known as TMBIM6) (Ahn et al., 2010; Xu and Reed, 1998).

At the mitochondrial outer membranes, Bcl-2 proteins target the

voltage-dependent anion channels (VDACs) (Arbel and Shoshan-

Barmatz, 2010; Arbel et al., 2012; Plötz et al., 2012). More

recently, Bcl-2 has been shown to regulate plasma-membrane

Ca2+-ATPase (PMCA) activity (Ferdek et al., 2012). Therefore,

the function of Bcl-2 in cells seems to be tightly linked to its

ability to modulate intracellular Ca2+ homeostasis and dynamics.

This is important, given the central role of both Bcl-2 and of Ca2+

signaling in cell-fate decisions, mitochondrial bioenergetics,

autophagy, ER stress and apoptosis (Chipuk et al., 2010; Giorgi

et al., 2008; Kiviluoto et al., 2013). Recent evidence indicates that

the regulation of intracellular Ca2+ handling by Bcl-2-family

proteins is also important for non-apoptotic functions, including

neuroplasticity, cellular migration, cell cycle regulation and

embryonic development (Bonneau et al., 2013).

The molecular determinants underlying the formation of the

IP3R–Bcl-2 complex have been identified (Rong et al., 2009;

Rong et al., 2008). The BH4 domain of Bcl-2 has been shown to

be responsible for binding to a stretch of 20 amino acids located

in the central modulatory domain of the IP3R. Moreover, Lys17,

located in the BH4 domain of Bcl-2, seemed important for its

binding to the IP3R and for regulating IP3R-mediated Ca2+

release. Lys17 corresponds to Asp11 in the BH4 domain of Bcl-

XL and this divergence underlies a striking functional difference

between the BH4-domain biology of Bcl-2 and Bcl-XL in

inhibiting IP3R channels and subsequent Ca2+ signaling (Monaco

et al., 2012b). Sequence analysis of this Bcl-2-binding site on the

IP3R revealed a significant resemblance to a highly conserved

stretch of 22 amino acids present in the ryanodine receptor (RyR)

channels, the other major class of tetrameric intracellular Ca2+-

release channels (Lanner et al., 2010).

Guided by this remarkable sequence similarity, we now show

that Bcl-2, through its BH4 domain, directly targets RyR channels

in both ectopic expression systems and native rat hippocampi,

thereby inhibiting RyR-mediated Ca2+ release in RyR-expressing

cell models as well as in hippocampal neurons.

RESULTS
Bcl-2 interacts with RyR channels in HEK293 cell models and
in rat hippocampal brain lysates
The Bcl-2-binding site located in the central modulatory domain

of the IP3R (amino acids 1389–1408 for mouse IP3R1) is well

characterized (Rong et al., 2008). This binding site shows great
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similarity with a region located in the central part of the RyR
(amino acids 2448–2469 for rabbit RyR1). Given that IP3Rs

and RyRs share several binding partners important for their
regulation, it was plausible that Bcl-2 also affects RyR function.
In order to verify this, a co-immunoprecipitation approach in
HEK293 cells stably overexpressing either RyR1 or RyR3 (HEK

RyR1 and HEK RyR3, respectively) was first set up. In these
clonal cell lines, RyR levels and endogenous Bcl-2 expression
were assessed (Fig. 1A). RyR1 protein expression levels

were lower compared to RyR3 in their respective cell lines.
The RyR antibody also detected a stable breakdown product of
RyR1 and RyR3, resulting in a double signal in the RyR-

stained immunoblot, as described previously (Xiao et al., 2002).
Interestingly, overexpressing either RyR1 or RyR3, respectively,
induced a 2.3660.30- and 2.7760.45-fold (mean6s.d.) increase

of endogenous Bcl-2 protein levels in comparison to the
HEK cells stably expressing the empty vector (HEK mock).
Immunoprecipitation of either RyR3 from HEK RyR3 cells
(Fig. 1B) or RyR1 from HEK RyR1 cells (Fig. 1C) resulted in the

co-immunoprecipitation of endogenous Bcl-2 (lanes 1 and 2) as
well as of transiently overexpressed 36FLAG–Bcl-2 (lanes 3 and
4). We have previously described that the Bcl-2K17D mutant

displayed much weaker binding to the regulatory domain of the
IP3R than does wild-type Bcl-2 (Monaco et al., 2012b). However,

36FLAG–Bcl-2K17D still co-immunoprecipitated with both RyR3
and RyR1 proteins (Fig. 1D,E). Next, we examined whether

endogenous RyR–Bcl-2 complexes were present in vivo. Hence,
lysates from rat hippocampi, which express all three known RyR
isoforms, with RyR2 being the most abundantly expressed
isoform (Martin et al., 1998; Sharp et al., 1993), were prepared.

In these lysates, Bcl-2 co-immunoprecipitated with the
endogenous RyRs using the pan-RyR antibody, indicating the
presence of endogenous RyR–Bcl-2-protein complexes (Fig. 1F).

Bcl-2 targets the central domain of the different RyR
isoforms through its BH4 domain
The above experiments established that Bcl-2 is found in RyR-
containing protein complexes, but neither clarified whether Bcl-2
directly binds to RyR channels nor identified the molecular

determinants underlying this interaction. Therefore, we exploited
previously gained insights into the domains of IP3Rs and Bcl-2
responsible for IP3R–Bcl-2-complex formation (Monaco et al.,
2012a; Monaco et al., 2012b; Rong et al., 2009). Fig. 2A shows

the sequence comparison between the different IP3R and RyR
isoforms, focusing on the known Bcl-2-binding site on the IP3Rs
(Rong et al., 2008). RyR protein domains covering ,400 amino

acids of the central region and containing the putative Bcl-2-
binding site on RyR1, RyR2 and RyR3 [amino acids 2404–2827

Fig. 1. Bcl-2 interacts with both overexpressed and endogenous RyRs. (A) Immunoblot showing the expression of RyRs, Bcl-2 and GAPDH (loading
control) in cell lysates from empty-vector-expressing HEK cells (HEK mock), RyR1-expressing HEK cells (HEK RyR1) and RyR3-expressing HEK cells (HEK
RyR3). (B,C) Immunoblots from co-immunoprecipitation experiments using HEK RyR3 (B) and HEK RyR1 (C) cell lysates. RyR3 or RyR1 was
immunoprecipitated using a pan-RyR antibody. Co-immunoprecipitation of endogenous Bcl-2 with RyRs (lanes 1 and 2) was assessed by immunoblotting using
a Bcl-2 antibody. Co-immunoprecipitation of ectopically expressed 36FLAG–Bcl-2 (lanes 3 and 4) was assessed by immunoblotting using a FLAG antibody.
(D,E) Lanes 1 and 2 show similar experiments performed as in B and C (lanes 3 and 4), but utilizing the 36FLAG–Bcl-2K17D mutant. Immunoprecipitations using
non-specific IgGs were included for every condition to assess the level of non-specific binding. 0.2 and 0.5 mg of total cell lysate was taken as input
for the 36FLAG-tagged proteins and the RyR, respectively (input). (F) Immunoblots showing a typical co-immunoprecipitation experiment using lysates obtained
from 21-day-old rat hippocampi. The endogenous RyRs were immunoprecipitated and the presence of endogenous Bcl-2–RyR complexes was assessed using
a Bcl-2 antibody. The IgG co-immunoprecipitation was used as negative control. 10 mg of total lysates was used as input. Each experiment was performed at
least three times utilizing each time a newly prepared cell or hippocampal lysate. The double lines in panel B to E indicate where two parts of the same
immunoblot (taken with the same exposure time) were merged.
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for RyR1 (rabbit), 2369–2794 for RyR2 (rabbit) and 2263–2688
for RyR3 (mink)] were cloned, expressed and purified as

recombinant GST fusion proteins. The different purified GST–
RyR domains were used in GST pulldown assays in combination
with cell lysates from COS-1 cells transiently overexpressing

36FLAG–Bcl-2 (Fig. 2B). The previously characterized domain
3 of the IP3R1 was used as a positive control (Rong et al., 2008).
36FLAG–Bcl-2 was pulled down by the IP3R1 domain as well

as by the different RyR domains (Fig. 2B). The binding of
36FLAG–Bcl-2 to the purified GST–RyR domains was
consistently higher than its binding to GST (supplementary

material Fig. S1). These data suggest that Bcl-2 interacts with all
three RyR isoforms through a binding site that is located in the
central domain of the RyRs.

To assess whether Bcl-2 is able to directly bind to the purified

RyR domains and clarify whether this binding occurs through the
BH4 domain of Bcl-2, we performed surface plasmon resonance
(SPR) experiments. In addition, these data allow for a more

quantitative assessment of the RyR–Bcl-2 interaction. In these
experiments, the binding of the purified GST–RyR domains to a

biotinylated version of the BH4 domain of Bcl-2 was monitored.
All signals were corrected for background binding to a
biotinylated scrambled BH4 peptide immobilized to another

channel on the same chip. Purified GST–IP3R1 domain 3 (the
positive control) and the respective GST–RyR domains
were used as analytes. A concentration-dependent increase in

resonance units (RU) indicated a specific binding to biotin–
BH4-Bcl-2 for the GST–IP3R1 domain 3 as well as for the
various GST–RyR domains (Fig. 2C,D). Purified GST did not

show any substantial binding to the BH4 domain of Bcl-2
(Fig. 2C). In all cases, the dissociation of the IP3R and
RyR domains from biotin–BH4-Bcl-2 was very slow. Fitted
concentration–response curves (Fig. 2D) were determined and

used to obtain approximated EC50 values (Table 1). The EC50

value for GST–IP3R1 domain 3 (0.38 mM) was very similar
to those obtained for the GST–RyR2 domain (0.38 mM) and

Fig. 2. Bcl-2 binds to RyRs through its BH4 domain. (A) Sequence alignment of the relevant sites on the three mouse IP3R isoforms (IP3R1, amino acids
1389–1408; IP3R2, amino acids 1390–1409; IP3R3, amino acids 1380–1499) and the three RyR isoforms (rabbit RyR1, amino acids 2448–2469; rabbit RyR2,
amino acids 2415–2436; mink RyR3, amino acids 2309–2330) based on the known Bcl-2-binding site on the IP3R. Identical (green) or similar (red) amino
acids are indicated. (B) Example of the performed GST pulldown experiments. Top: GelCode Blue staining of an immunoblot showing total amounts of the
pulled-down GST or GST-tagged proteins. Bottom: immunoblot stained with FLAG antibody showing the amounts of pulled-down 36FLAG-Bcl-2 protein. GST
was used as a negative control. 0.1 mg of total COS-1 lysates was used as input. The experiments were repeated at least five times using at least three different
batches of the GST-tagged domains and a new COS-1 cell lysate each time. (C) Representative, background-corrected sensorgrams obtained from SPR
experiments in which biotin–BH4-Bcl-2 immobilized to streptavidin-coated sensor chips was exposed to GST-tagged proteins (1.1 mM) or GST alone (5 mM).
Binding is expressed in resonance units (RU) as a function of time. Binding of the GST fusion proteins to the biotin–BH4-Bcl-2 was corrected for non-specific
binding by subtracting the response of these proteins to the biotin-scrambled BH4 domain loaded in a different channel on the same sensor chip. The first
arrow indicates the start of the association phase (addition of the GST fusion proteins or GST diluted in running buffer); the second arrow indicates the
start of the dissociation phase (running buffer alone). All experiments were performed using different sensor chips and at least three different preparations
of the GST-tagged proteins. (D) Averages of the responses to the GST-tagged proteins for each tested concentration were determined and used to fit dose–
response curves. For clarity reasons, the fitted curve corresponding to the RyR2 domain is depicted here as a dashed line. Data points indicate mean6s.e.m.
(n53).
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GST–RyR3 domain (0.37 mM). Only the binding of the GST–

RyR1 domain seemed to display a lower affinity (EC50 value of
1.53 mM). This indicates that the BH4 domain of Bcl-2 binds to
the RyR2 and RyR3 with nearly similar affinities to that of

IP3R1, whereas the affinity of Bcl-2 binding to RyR1 is lower.
Given that the binding of Bcl-2 to GST–IP3R1 domain 3
is dependent on the presence of Lys17, we also monitored the

binding of the different GST–RyR domains to the biotin–BH4-
Bcl-2K17D mutant. The binding of wild-type BH4-Bcl-2 and
BH4-Bcl-2K17D to each GST fusion protein were compared

(Fig. 3) and the obtained EC50 values are presented in Table 1.
In agreement with our previous findings (Monaco et al., 2012b),
binding of the GST–IP3R1 domain to biotin–BH4-Bcl-2K17D was
severely compromised in comparison to binding of biotin–BH4-

Bcl-2. In contrast, the binding of the GST–RyR domains was
either not affected (in the case of RyR1) or only slightly affected
(in the case of RyR2 and RyR3).

Collectively, these data indicate that Bcl-2, through its BH4
domain, directly binds to a central region in all three RyR
isoforms. Although the BH4 domain was found to be responsible

for binding to both the RyR and the IP3R, the molecular
determinants for binding to the RyR were not identical to those
for binding to IP3Rs.

Bcl-2 overexpression inhibits RyR-mediated Ca2+ release
We next set out to identify possible functional effects of the

Bcl-2–RyR interaction. We performed single-cell [Ca2+]
measurements to assess the ability of full-size Bcl-2 to inhibit
RyR-mediated Ca2+ release in a cellular environment. The empty
pCMV24 vector, a 36FLAG–Bcl-2 or a 36FLAG–Bcl-2K17D-

containing vector was co-transfected with an mCherry-expressing
plasmid in HEK RyR3 cells. Fura-2-AM was used as a
cytosolic Ca2+ indicator in mCherry-positive cells. All these

[Ca2+] measurements were performed in the presence of
an extracellular Ca2+ chelator (BAPTA) in order to study
intracellular Ca2+-release events. Caffeine concentrations

(1.5 mM) generating sub-maximal responses in these cells were
used to induce RyR-mediated Ca2+ releases. A typical experiment
showing averaged calibrated single-cell [Ca2+] traces of Fura-2-

loaded HEK RyR3 cells expressing the empty vector, 36FLAG–
Bcl-2 or 36FLAG–Bcl-2K17D is shown in Fig. 4A. Overall,
overexpression of 36FLAG–Bcl-2 or 36FLAG–Bcl-2K17D

inhibited the caffeine-induced Ca2+ release by ,30% compared

to the empty-vector control (Fig. 4B). The ER Ca2+-store content
was measured by blocking SERCA using 1 mM thapsigargin in
the presence of extracellular BAPTA and assessing the total

amount of Ca2+ released from the stores (area under the curve).
These results are summarized in Fig. 4C and indicate that
overexpression of 36FLAG–Bcl-2 or 36FLAG–Bcl-2K17D did

not significantly affect the ER Ca2+-store content in these cells.
Similar findings were obtained by overexpressing Bcl-2 or the
Bcl-2K17D mutant in HEK RyR1 cells (supplementary material

Fig. S2). Because RyR1 expression levels were slightly lower
compared to RyR3 (Fig. 1A) and it was previously reported that,
in contrast to the HEK RyR3 cells, these HEK RyR1 cells are less
sensitive to stimulation with caffeine (Rossi et al., 2002), a higher

concentration of caffeine (4.5 mM) was used to obtain adequate
sub-maximal responses.

To verify whether the caffeine-induced Ca2+ release was

dependent on the RyR, similar experiments were also performed

Table 1. Affinity of biotin–BH4-Bcl-2 and biotin–BH4-Bcl-2K17D

for the used GST-tagged IP3R1 and RyR domains

Approximate EC50 values (mM)

BH4 BH4K17D

RyR1 domain 1.53 1.61
RyR2 domain 0.38 0.80
RyR3 domain 0.37 0.78
IP3R1 domain 3 0.38 1.87

Approximated EC50 values obtained from fitting using the Hill equation of the
data presented in Fig. 3.

Fig. 3. Comparison of biotin–BH4-Bcl-2
and biotin–BH4-Bcl-2K17D for binding to
the GST-RyR domains. Binding of the
different GST domains to biotin–BH4-Bcl-2
and biotin–BH4-Bcl-2K17D was compared in
SPR experiments similarly performed to
Fig. 2C,D. Biotin–BH4-Bcl-2K17D was
immobilized to a different channel on the
same sensor chip as biotin–BH4-Bcl-2.
Averages of the responses to the GST-
tagged proteins for each concentration were
determined and plotted for both the wild-type
BH4-Bcl-2 and the BH4-Bcl-2K17D mutant.
Data points indicate mean6s.e.m. (n53).
Estimated EC50 values obtained from the
fitted dose response–curves are shown in
Table 1.
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using HEK mock cells lacking RyRs. In contrast to the HEK
RyR3 cells, administering caffeine did not generate a Ca2+

response in HEK mock cells (Fig. 4D). Addition of 2 mM
ionomycin resulted, however, in a rise in cytosolic [Ca2+] in both
cell lines, showing that the lack of a caffeine response in HEK
mock cells was due to the absence of RyRs. The ionomycin

response was lower in the HEK RyR3 cells owing to a partial
depletion of the ER Ca2+ pool generated by the caffeine response
prior to the addition of ionomycin.

Given that Bcl-2 is known to inhibit IP3Rs and Ca2+ release
from IP3Rs can activate RyRs via Ca2+-induced Ca2+ release, we
wanted to exclude that Bcl-2’s inhibitory effect on the caffeine-

induced Ca2+ release occurred via an indirect effect on the IP3R.
To completely exclude this possibility, [Ca2+] measurements
were performed in HEK RyR3 cells in the presence of 2 mM
xestospongin B (XeB), an IP3R inhibitor (Jaimovich et al., 2005).

Overexpression of 36FLAG–Bcl-2 remained equally potent in
inhibiting caffeine-induced Ca2+ release in RyR3-expressing
HEK cells in the presence of XeB (and thus absence of IP3R

activity) (Fig. 4E,F). Given that Bcl-2 inhibits RyR-mediated
Ca2+ release in the presence of a pharmacological IP3R inhibitor
and because the Bcl-2K17D mutant is equally potent in inhibiting

RyR-mediated Ca2+ release as wild-type Bcl-2, we postulate that
the Bcl-2-mediated inhibition of caffeine-induced Ca2+ release is

due to an inhibition of the RyRs and is not a result of inhibition of
IP3Rs or altered ER store content.

The BH4 domain of Bcl-2 is sufficient to inhibit RyR-mediated
Ca2+ release in HEK RyR3 cells
The single-cell [Ca2+] measurements indicated that the RyR–Bcl-

2 interaction inhibits RyR-mediated Ca2+ release. In addition, the
SPR data (Fig. 2) showed that the Bcl-2–RyR interaction occurs
at least in part through the BH4 domain of Bcl-2. We next wanted

to identify whether the BH4 domain of Bcl-2 was sufficient to
inhibit RyR channels. Hence, we measured RyR-mediated Ca2+

release in Fluo-3-loaded HEK RyR3 cells loaded with different

concentrations of BH4-Bcl-2 peptide or a scrambled counterpart
(Fig. 5A,B). Entry of the peptide into the cells was mediated by
electroporation loading, as previously described (De Vuyst et al.,
2008). Compared to the vehicle control, electroporation loading

of the cells with BH4-Bcl-2 (20 mM) caused a prominent
decrease in the caffeine-induced Ca2+ release. Performing
the same experiment with the scrambled BH4-Bcl-2 peptide

(20 mM) did not alter caffeine-induced Ca2+ release (Fig. 5A).
Electroporation loading of increasing concentrations of BH4-Bcl-
2 resulted in a concentration-dependent inhibition of the caffeine-

induced Ca2+ release, which was not observed utilizing the
scrambled BH4-Bcl-2 (Fig. 5B).

Fig. 4. Overexpression of Bcl-2 inhibits RyR-mediated Ca2+ release. Fura-2-loaded transfected (mCherry-positive) HEK RYR3 cells were selected for
single-cell [Ca2+] measurements. (A) Mean calibrated [Ca2+] traces (20 cells) from HEK RyR3 cells containing the pCMV24 vector, 36FLAG–Bcl-2 or 36FLAG-
Bcl-2K17D obtained in one experiment. The administration of BAPTA (3 mM) and caffeine (1.5 mM) is indicated by the arrows. (B) Quantitative analysis of the
caffeine responses in HEK RyR3 cells; values show mean6s.e.m. of at least four independent experiments (n.100 cells). (C) Quantitative analysis of the ER
Ca2+-store content. The ER Ca2+-store content was determined similarly to A, except that thapsigargin (1 mM) was used instead of caffeine. The area
under the curve (AUC) of the calibrated traces was used for determining the total ER Ca2+-store content. The bar graph indicates the mean AUC (6s.e.m.) of at
least three independent experiments (n.80 cells) for each condition. (D) Average calibrated [Ca2+] traces (20 cells) from HEK mock or HEK RyR3 cells. The
administration of caffeine (1.5 mM) and ionomycin (2 mM) is indicated by the arrows. (E) Typical experiment depicting mean calibrated [Ca2+] traces
(20 cells) from empty-vector control cells and 36FLAG–Bcl-2-expressing cells showing caffeine-induced Ca2+ release in the presence of 2 mM of the IP3R
inhibitor XeB. The administration of BAPTA (3 mM) and caffeine (1.5 mM) is indicated by the arrows. (F) Quantification of the caffeine responses for each
condition in the presence of XeB. Values depict mean6s.e.m. of at least five independent experiments (n.80 cells per condition).
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The BH4 domain of Bcl-2 inhibits RyR-mediated Ca2+ release
in hippocampal neuronal cultures
The present data clearly show that the BH4 domain of Bcl-2 is
sufficient to bind to and inhibit RyRs. Because these experiments
were all performed in cellular models overexpressing RyRs, we
next wanted to examine whether the BH4 domain of Bcl-2 is also

able to inhibit endogenous RyR channels. Given the presence of
endogenous RyR–Bcl-2 complexes in rat hippocampal neurons
(Fig. 1F), we opted to study the regulation of RyR channels by

the BH4 domain of Bcl-2 in these cells.
Dissociated hippocampal neurons were infected at 7 days in

vitro (DIV) with an adeno-associated virus expressing GCaMP3.

Single-cell [Ca2+] measurements were performed between 14 and
18 DIV. GCaMP3 was used as a genetically encoded fluorescent
Ca2+ indicator (Yamada and Mikoshiba, 2012). Utilizing whole-
cell voltage-clamp, the membrane potential was clamped at

260 mV thereby preventing Ca2+ influx from the extracellular
space through voltage-gated Ca2+ channels. In this way, the
measured changes in fluorescence could be attributed to changes

in intracellular Ca2+ release and were not due to Ca2+ influx
across the plasma membrane. At the same time the BH4 domain
of Bcl-2, the scrambled BH4-domain peptide or the vehicle

control (DMSO) were introduced into the neurons by means of
the patch pipette. A scheme of the experimental protocol is
provided in Fig. 6A. Local application of 10 mM caffeine

resulted in RyR-mediated Ca2+ release. Fig. 6B shows
representative images from a time-lapse experiment, and
Fig. 6C shows a typical trace obtained for each condition.
Introducing the BH4 domain of Bcl-2 (20 mM) into the soma of

the neurons led to a prominent inhibition of the caffeine-induced
Ca2+ release compared to introducing either the vehicle (DMSO)
control or the scrambled BH4 domain of Bcl-2 in the neurons

(Fig. 6B–D). Pretreatment of the neurons with 50 mM ryanodine
almost completely blocked caffeine-induced Ca2+ release,
indicating that the observed Ca2+ release can be attributed to

RyR activity (Fig. 6E). Taken together, these data indicate that
the BH4 domain of Bcl-2 can inhibit native RyR channels in
hippocampal neurons.

DISCUSSION
The major finding of this study is that RyR channels, an
important class of intracellular Ca2+-release channels, are targets

for the anti-apoptotic Bcl-2 proteins in both ectopic-RyR-
expressing cell systems and primary tissues, like the

hippocampus. We showed that Bcl-2, through its BH4 domain,
directly binds to the central domain of the RyR channels, thereby
suppressing RyR-mediated Ca2+ release. These findings clearly
underpin the emerging role for Bcl-2 proteins in intracellular

Ca2+ signaling by directly targeting an increasing number of
Ca2+-transporting systems at intracellular and plasmalemmal
membranes, including IP3Rs (Hanson et al., 2008; Rong et al.,

2009; Rong et al., 2008), SERCA (Kuo et al., 1998), VDAC
(Arbel and Shoshan-Barmatz, 2010), BI-1 (Ahn et al., 2010; Xu
and Reed, 1998) and PMCA (Ferdek et al., 2012).

The binding of Bcl-2 to the RyR shows a striking resemblance
with the binding of Bcl-2 to the IP3R. The latter is interesting
because IP3Rs and RyRs show many similarities at both the
structural and functional level (Furuichi et al., 1994; Seo et al.,

2012). Both intracellular Ca2+-release channels are modulated
by the same cellular factors, like Ca2+, ATP and Mg2+

(Bezprozvanny et al., 1991; Bull et al., 2007; Dias et al., 2006;

Maes et al., 2001; Mak and Foskett, 1998). In addition, several
kinases target both channels e.g. protein kinase A (PKA), PKC,
PKG and Ca2+/calmodulin-dependent protein kinase II (Furuichi

et al., 1994; Lanner et al., 2010; Vanderheyden et al., 2009).
Different regulatory proteins interact with both the IP3Rs and the
RyRs. Calmodulin for example regulates the Ca2+ sensitivity of

IP3Rs (Kasri et al., 2004) and RyRs (Balshaw et al., 2001). Our
data now clearly indicate that, in a similar way as for the IP3R
(Rong et al., 2008), RyRs are also targets of Bcl-2. Importantly,
the RyRs contain a sequence that has ,60% similarity to the Bcl-

2-binding site located in the central modulatory region of IP3Rs
(Rong et al., 2008). Bcl-2 binds to this site on the IP3R through its
BH4 domain (Rong et al., 2009). Our results (Fig. 2) indicate that

Bcl-2 behaves in a similar manner with respect to the RyRs. This
similarity extends to the functional level because binding of the
BH4 domain of Bcl-2 leads, in both IP3Rs (Rong et al., 2009) and

RyRs, to a suppression of channel-mediated Ca2+ release.
Sequence alignment revealed a 22-amino-acid spanning region

(amino acids 2309–2330, mink RyR3) in the RyR that displays
striking similarity to the known Bcl-2-binding site of the IP3R. In

addition, the proposed region is highly conserved across all RyR
isoforms of different species. It can be anticipated that regulation
of RyRs by Bcl-2 is important, as the proposed Bcl-2-binding site

Fig. 5. The BH4 domain of Bcl-2 is sufficient for inhibiting RyR3-mediated Ca2+ release. Single-cell Fluo-3 [Ca2+] measurements were performed in HEK
RyR3 cells. The vehicle (DMSO), the BH4 domain of Bcl-2 or the scrambled peptide were loaded by electroporation (10, 20 or 40 mM), after which 1 mM of
caffeine was used as stimulus. (A) Typical traces obtained for each condition after electroporation loading with 20 mM of the peptides or the vehicle. The arrow
indicates the time when caffeine (1 mM) was added. The traces are represented as (F2F0)/F0. (B) Quantitative analysis of all experiments. Means of five
independent experiments are given as relative responses (6s.e.m.) compared to the DMSO control. The caffeine responses were normalized to the vehicle
control.
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on the RyR is already known to be a crucial regulatory site for
RyR channel stability. Structural coupling (RyR zipping) of this

centrally located site to the N-terminus is crucial for adequate
RyR functioning (Ikemoto and Yamamoto, 2002; Yamamoto and
Ikemoto, 2002). Disruption of this interaction (RyR unzipping)
generates leaky RyR channels and triggers irregular channel

activity. This central site is also part of a mutational hotspot in
RyR1 and RyR2 involved in the onset of malignant hyperthermia
(Hwang et al., 2012) and arrhythmia (Yano, 2008), respectively.

Structural information about this mutational hotspot has been
obtained from 3D cryo-EM studies. In an elegant study, a GFP
tag was introduced at residue 2367 of RyR2 (Liu et al., 2005),

,60 amino acids upstream of the Bcl-2-binding site described
here. The location of the GFP insert was mapped to a bridge area
between domain 5 and domain 6 (Liu et al., 2005). This area is
known to be located at the cytoplasmic face of the RyR

(Radermacher et al., 1994). Thus, we anticipate that the region
where the Bcl-2-binding site is located should be accessible for

interaction.
In addition, a proposed binding site for the 12-kDa and 12.6-

kDa FK506-binding proteins [FKBP12 and FKBP12.6 (also
known as FKBP1A and FKBP1B, respectively)] on the different

RyR isoforms is located within the binding domain for Bcl-2 on
the RyRs identified in this study (Brillantes et al., 1994; Bultynck
et al., 2001b; Gaburjakova et al., 2001; Marx et al., 2000;

Van Acker et al., 2004). Both FKBP12 and FKBP12.6 are
immunophilins that are tightly associated with the RyR and are
necessary for stabilizing the channel (Brillantes et al., 1994). In

this way, these proteins inhibit excessive Ca2+ leak through RyRs.
Given that Bcl-2 targets a site in close proximity to a FKBP12- or
FKBP12.6-binding site, it is not surprising that Bcl-2 binding to
RyRs has functional consequences. It remains to be determined

Fig. 6. The BH4 domain of Bcl-2 inhibits RyR-mediated Ca2+ release in hippocampal neuronal cultures. Single-cell [Ca2+] measurements were performed
on 14- to 18-day-old dissociated hippocampal neuronal cultures. GCaMP3-positive cells were selected for the measurements. The vehicle (DMSO), a scrambled
version of the BH4 domain of Bcl-2 (20 mM) or the BH4 domain of Bcl-2 (20 mM) were introduced into the cell through the patch pipette. At the same time, the
membrane potential was clamped at 260 mV. (A) Scheme of the performed experiment starting from the time when the whole-cell voltage-clamp was
obtained. Caffeine (10 mM) was locally applied through a second patch pipette positioned next to the cell. (B) Time lapse of a typical experiment for each tested
condition performed, focusing on the time when caffeine was applied locally. Scale bar: 5 mm. (C) Typical caffeine-induced Ca2+-release responses measured in
the soma of one neuron for each tested condition. The fluorescence was normalized to the baseline fluorescence and represented as (F2F0)/F0. The arrow
indicates the time point when caffeine was applied. (D) Summary of all performed measurements for the scrambled BH4 domain of Bcl-2 and the BH4 domain of
Bcl-2 normalized to the vehicle control. The circles indicate the average of all [Ca2+] measurements (2 to 4 cells) performed per condition each day. [Ca2+]
measurements performed on the same day are indicated in the same color. The mean6s.e.m. of six independent experiments is indicated in black (n519 cells
for each condition). (E) Typical single-cell [Ca2+] measurement performed in neurons pretreated for 20 min with either the vehicle (DMSO) (black) or 50 mM
ryanodine (gray). The arrow indicates the time point when caffeine was applied. The fluorescence was normalized to the baseline fluorescence and represented
as (F2F0)/F0. Experiments were performed at least five times.
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whether the binding of immunophilins and Bcl-2 family proteins
compete for the same, similar or overlapping sites, and whether

RyR–Bcl-2 complexes are present in tissues containing high levels
of FKBP12 and/or FKBP12.6, such as skeletal and cardiac muscle.
In any case, further experiments are needed, as additional FKBP12-
and/or FKBP12.6-binding sites on RyR channels have been

proposed. More specifically, for the cardiac RyR2 channel,
FKBP12.6 has been described to bind to both an N-terminal site
(Masumiya et al., 2003) and a C-terminal site (Zissimopoulos and

Lai, 2005a; Zissimopoulos and Lai, 2005b). Further experiments
investigating competition between Bcl-2 and FKBP12 and/or
FKBP12.6 for the binding to the different RyR isoforms

might therefore provide additional insights into these apparent
discrepancies. Furthermore, we previously reported that despite
sequence similarities between the proposed FKBP12-binding

site on IP3Rs and RyRs, their properties and secondary structure
might be different (Bultynck et al., 2001a; Bultynck et al., 2001b).
Hence, these differences might contribute to the fact that in IP3Rs
this site preferentially binds Bcl-2 over the Bcl-2K17D mutant,

whereas for the equivalent site in the RyRs there was a nearly
similar binding of Bcl-2 and Bcl-2K17D. Finally, other factors, such
as ATP, might also influence Bcl-2 binding to the RyR as the

proposed site for Bcl-2 binding in RyRs has also been implicated in
ATP binding (Blayney et al., 2013; Zissimopoulos and Lai, 2005b).

The role of RyRs in cell survival and cell death decisions

is much less well documented than for the IP3R. RyRs,
however, can, similar to IP3Rs, also mediate Ca2+ signaling into
mitochondria (Hajnóczky et al., 2002). The exact molecular

mechanisms of this Ca2+ transfer to the mitochondria remain
poorly understood. A recent paper has shown that VDAC2 is
coupled to RyR2 in the heart (Min et al., 2012), allowing a direct
coupling of RyR-mediated Ca2+ release to Ca2+ uptake in the

mitochondria. Moreover, RyR-mediated Ca2+ signaling has been
implicated in ATP production and metabolic flexibility in the
heart (Bround et al., 2013). Other studies have implicated RyRs in

the regulation of apoptosis (Kim et al., 2002) and ER-stress-
mediated cell death (Luciani et al., 2009; Ruiz et al., 2009) in
various cell types, including neurons and pancreatic b cells. The Bcl-

2–RyR interaction described here could therefore provide an
important regulatory mechanism by which RyR activity controls
cell fate. Further studies will be needed to unravel the exact cell
biological and/or physiological role of Bcl-2 binding to RyRs in cell

fate decisions and functions beyond apoptosis. It is becoming
increasingly clear that Ca2+ signaling and RyRs play important roles
in memory formation and neurodegenerative diseases (Berridge,

2013; Berridge, 2011). The presence of RyR–Bcl-2 complexes in the
hippocampus (Fig. 1F) and the observation that the BH4 domain of
Bcl-2 is able to inhibit RyR-mediated Ca2+ release in hippocampal

neurons (Fig. 6) might suggest that Bcl-2, through regulating RyR
channels, has an important function in the brain.

In conclusion, we identified RyR channels as new cellular

targets for anti-apoptotic Bcl-2 proteins. Our findings show that
Bcl-2 targets and regulates the two main families of intracellular
Ca2+-release channels, IP3Rs and RyRs, in a similar way. This
further strengthens the role of Bcl-2 proteins as essential regulators

of Ca2+-signaling events and places RyR channels in the growing
list of Ca2+ transport systems that are targeted by Bcl-2.

MATERIALS AND METHODS
Chemicals, antibodies and peptides
Unless otherwise specified, all chemicals were purchased from Sigma-

Aldrich (St Louis, MO). XeB was isolated from Xestospongia exigua as

previously described (Quirion et al., 1992). Mouse monoclonal anti-FLAG

M2 antibody (1:3000; Sigma-Aldrich), mouse monoclonal anti-GAPDH

antibody (GAPDH-71.1) (1:50000) (Sigma-Aldrich), mouse monoclonal

anti-RyR antibody (34C; 1:1000; Thermo Scientific, Rockford, IL) and

rabbit monoclonal anti-Bcl-2 antibody (50E3; 1:1000; Cell Signaling

Technology, Boston, MA) were used throughout this study. The sequences

of the peptides used in this study were: biotin–BH4-Bcl-2, biotin–

RTGYDNREIVMKYIHYKLSQRGYEW; biotin–BH4-Bcl-2K17D, biotin-

RTGYDNREIVMDYIHYKLSQRGYEW; Biotin-scrambled BH4-Bcl-2,

biotin–WYEKQRSLHGIMYYVIEDRNTKGYR. These peptides were

synthesized by Life Tein (Hillsborough, NJ). The BH4-Bcl-2 and

scrambled BH4-Bcl-2 peptides were also obtained without a biotin tag.

Plasmids and constructs
36FLAG–Bcl-2 and 36FLAG–Bcl-2K17D were obtained as described

previously (Monaco et al., 2012b). The rabbit RyR1 (7212–8481), RyR2

(7107–8382) and mink RyR3 (6789–8064) GST-tagged constructs were

developed using previously described methods for cloning (Monaco

et al., 2012b), utilizing the BamHI and EcoRI restriction enzymes and

the following primer sets: RyR1 forward, 59-GCGGCGGGATCCCACT-

TTGGGGAGGAGCCCCCTG-39 and reverse, 59-GCGGCGGAAT-

TCCTACCTGGCCTTCTCGATCGTCC-39; RyR2, forward, 59-GCG-

GCGGGATCCAGCAAAACACTTGATACGGAGGAG-39 and reverse,

59-GCGGCGGAATTCCTATCGGGTTCTTTCAATCCTCC-39; RyR3

forward, 59-GCGGCGGGATCCAAGAGAGAAGTCATGGAGGAC-

GG-39 and reverse, 59-GCGGCGGAATTCCTATTTGGTCCTCTCCA-

CAGACC-39.

Protein purification
GST fusion protein purification was performed as described previously

(Bultynck et al., 2001b) except for the induction of protein synthesis,

which was performed with 0.1 mM isopropyl b-d-thiogalactoside for

20 h at 14 C̊. After the purification, dialysis and handling of the proteins

was performed as described previously (Monaco et al., 2012b).

Cell culture and transfections
All media and supplements added to the medium used in this paper were

purchased from Life Technologies (Ghent, Belgium). HEK293 cells

stably expressing an empty pcDNA3.1(-) vector (HEK mock) or stably

overexpressing RyR1 or RyR3 (Rossi et al., 2002) were cultured at 37 C̊

in a 5% CO2 incubator in a-minimum essential medium supplemented

with 10% fetal calf serum, 100 IU/ml penicillin, 100 mg/ml streptomycin,

2 mM glutamax and 800 mg/ml G418. COS-1 cells were cultured in

Dulbecco’s Modified Eagle’s medium (DMEM), containing 10% fetal

calf serum, 100 IU/ml penicillin, 100 mg/ml streptomycin, 2.5 mg/ml

fungizone and 2 mM glutamax at 37 C̊ under 10% CO2.

At 1 day after seeding, cells were transiently transfected with either

empty p3XFLAG-Myc-CMV-24 or with the same vector containing Bcl-

2 or Bcl-2K17D. JETprime transfection reagent (Polyplus Transfections,

Illkirch, France) was used according to the manufacturer’s instruction.

After 2 days, HEK mock, HEK RyR1 or HEK RyR3 cells were harvested

and lysed using a CHAPS-based lysis buffer [50 mM Tris-HCl pH 7.5,

100 mM NaCl, 2 mM EDTA, 50 mM NaF, 1 mM Na3VO4, 1% CHAPS

and protease inhibitor tablets (Roche, Basel, Switzerland)]. For COS-1

cells a Triton-X-100-based lysis buffer (25 mM HEPES pH 7.5, 100 mM

NaCl, 1.5 mM MgCl2, 0.5 mM DTT, 10% glycerol, 1% Triton X-100

and protease inhibitor tablets) was used. Cells for [Ca2+] measurements

were seeded in two-chamber slides and transfected 2 days later using the

X-tremeGENE HP DNA transfection reagent (Roche) according to the

manufacturer’s protocol. As a selection marker pcDNA 3.1(-) mCherry

vector was co-transfected at a 1:3 ratio to the p3XFLAG-Myc-CMV-24

vectors.

Dissociated hippocampal cultures
Dissociated hippocampal neurons were prepared as described previously

(Nadif Kasri et al., 2011). Briefly, embryonic day 18 rat hippocampi were

dissected and washed with ice-cold Hanks’ balanced salt solution (HBSS)

without Mg2+ or Ca2+ (Life Technologies) supplemented with 10 mM
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HEPES at pH 7.3. Following a 15-min incubation with 0.25% trypsin at

37 C̊, the hippocampi were again washed with the HBSS solution. After

removing the last wash, seeding medium (neurobasal medium containing

10% FBS, 100 IU/ml penicillin, 100 mg/ml streptomycin and 2% B27

supplement) was added. Using polished Pasteur pipettes the hippocampi

were dissociated and seeded on polyethylene-treated coverslips at 50,000

cells per coverslip. After 4 h, half of the seeding medium was replaced

with culturing medium (neurobasal medium containing 2 mM glutamax,

100 IU/ml penicillin, 100 mg/ml streptomycin and 2% B27 supplement).

Half of the medium was replaced with culturing medium every 3 days.

All animal experiments were performed according to approved

guidelines.

GST pulldown
The purified GST fusion proteins or parental GST (0.5 mM) were

incubated in the Triton X-100 lysis buffer together with 70 mg of COS-1-

cell lysates overexpressing the 36FLAG–Bcl-2 protein (final volume

500 ml). The incubation was performed at 4 C̊ using a head-over-head

rotator. After 1 h, the GST fusion proteins were immobilized to

glutathione-SepharoseH 4B beads (GE Healthcare, Diegem, Belgium).

At 1.5 to 2 h later, the Sepharose beads were washed five times using

Triton X-100 lysis buffer. Subsequently, the complexes were eluted

in 40 ml 26LDS (Life Technologies) supplemented with 1:200 b-

mercaptoethanol for 5 min at 95 C̊. A total of 10 ml of the collected

eluate was used for immunoblot analysis. GelCode Blue (Thermo

Scientific) was used to determine the total amount of protein present

on the PVDF membrane (Millipore, Billerica, MA, USA). For

quantification, the amount of 36FLAG–Bcl-2 bound to the different

GST fusion proteins was divided by the amount of GST-tagged protein

present on the membrane corrected for their difference in molecular

mass. Values are presented relative to the amount bound to the positive

control (GST-tagged IP3R1 domain 3).

SPR analysis
SPR analysis was performed using a Biacore T100 (GE Healthcare).

Immobilization to the streptavidin-coated sensor chip (BR-1005-31; GE

Healthcare) and SPR measurements were performed as described

previously (Monaco et al., 2012b). NaOH (50 mM) with 0.0026% SDS

was used as a regeneration buffer. Dose–response curves were fitted

using the Hill equation. For comparing the binding of the GST-tagged

domains to the wild-type BH4-Bcl-2 and the BH4-Bcl-2K17D mutant, the

Vmax of the fitted curves was fixed to the estimated value for the wild-

type BH4 domain for each GST fusion domain.

Co-immunoprecipitation experiments
A co-immunoprecipitation kit (Thermo Scientific) was used. A total of

5 mg of either the RyR antibody or a mouse IgG control antibody

was covalently immobilized to 20 ml of the resin according to the

manufacturers’ protocol except for the final washing step, which was

performed using the CHAPS-based lysis buffer. Next, when using lysates

of cells overexpressing RyRs and 36FLAG–Bcl-2 proteins, 200 mg of

pre-cleared cell lysate was incubated overnight at 4 C̊ in CHAPS lysis

buffer together with the resin containing the antibody. For detection of

interactions with endogenous Bcl-2 in the RyR-overexpressing HEK

cells, 400 mg of cell lysate was used without prior pre-clearing. The next

day, the resin was washed four or five times with CHAPS lysis buffer,

after which the elution was performed by boiling the samples for 5 min at

95 C̊ in 50 ml of 26LDS supplemented with 1:200 b-mercaptoethanol.

21-day-old rat hippocampi were homogenized in the CHAPS lysis

buffer and incubated for 30 min at 4 C̊. After centrifugation (4000 g)

the supernatant was used for co-immunoprecipitation of endogenous

Bcl-2–RyR complexes. The same protocol was used as for the co-

immunoprecipitations in the HEK RyR cells with endogenous Bcl-2 with

the exception that, the amount of washes was reduced to two.

Immunoblot analysis
Samples were prepared and used as previously described (Monaco et al.,

2012b). For visualization of RyRs, NuPAGE 3–8% Tris acetate gels were

run. Detection was performed using Pierce ECL Western Blotting

Substrate (Thermo Scientific). For developing, CL-Xposure Films

(Thermo Scientific) were used in combination with either an X-OMAT

1000 processor (Kodak, Zaventem, Belgium) or a ChemidocTM MP

system (Bio Rad, Nazareth Eke, Belgium).

Electroporation loading and Ca2+ imaging
HEK RyR3 cells were grown as adherent monolayers to near confluency

on 18-mm-diameter glass coverslips. Cell cultures were ester-loaded

for 45 min with 10 mM Fluo-3-AM (Life Technologies) in HBSS with

Ca2+ and Mg2+ (Life Technologies) supplemented with 25 mM HEPES

(HBSS-HEPES) and 0.01% pluronic F-127 (Life Technologies) at room

temperature, followed by de-esterification for 15 min. Subsequently, a

fine narrow zone of cells was loaded with Bcl-2 peptides and the

fluorescent dye Dextran TEXAS Red (100 mM; Life Technologies) using

an in situ electroporation technique, as described previously (De Vuyst

et al., 2008; Decrock et al., 2009; Monaco et al., 2012b; Decrock et al.,

2014). Briefly, cells were rinsed three times with HBSS-HEPES followed

by three washes with a low-conductivity electroporation buffer (4.02 mM

KH2PO4, 10.8 mM K2HPO4, 1.0 mM MgCl2, 300 mM sorbitol, 2.0 mM

HEPES, pH 7.4). The cells were positioned 400 mm underneath a two-

wire Pt-Ir electrode on the microscopic stage and electroporated in

the presence of a tiny amount of electroporation solution (10 ml).

Electroporation was performed with 50 kHz bipolar pulses at a field

strength of 2000 V/cm and applied as 15 trains of 10 pulses of 2 ms

duration each. After electroporation, cells were thoroughly washed with

HBSS-HEPES and left 5 min to recover before proceeding with the Ca2+

imaging. For the latter, cells were superfused for 1 min with HBSS-

HEPES, followed by 8 min with 1 mM caffeine in HBSS-HEPES.

Imaging was carried out using an inverted Nikon Eclipse TE300

fluorescence microscope (Nikon, Brussels, Belgium) equipped with a

640 oil immersion objective and an EM-CCD camera (QuantEM 512SC,

Photometrics, Tuscon, AZ, USA). Images (one per second) were

generated with custom-developed FluoFrames software written in

Microsoft Visual C++ 6.0. Fluorescence-intensity changes in all cells

were analyzed with FluoFrames software. For each individual trace, the

relative change of Fluo-3 fluorescence [(F2F0)/F0] was calculated.

Subsequently, relative cytoplasmic [Ca2+] changes were quantified as the

area under the curve of the separate Ca2+ traces. Data were normalized to

the vehicle (DMSO) condition, which was set as 100%.

Fura-2-AM [Ca2+] measurements
A Zeiss Axio Observer Z1 Inverted Microscope equipped with a 206air

objective and a high-speed digital camera (Axiocam Hsm, Zeiss, Jena,

Germany) were used. HEK RyR1 or HEK RyR3 cells co-transfected with

0.133 mg mCherry and 0.333 mg of the 36FLAG constructs, and cells

were loaded 2 days after transfection, at room temperature, using Fura-2-

AM (1.25 mM; Biotium, Hayward, CA, USA) in modified Krebs buffer

(135 mM NaCl, 6.2 mM KCl, 1.2 mM MgCl2, 12 mM HEPES, pH 7.3,

11.5 mM glucose and 2 mM CaCl2). After 30 min, de-esterification was

allowed to occur for 30 min at room temperature. Before starting the

[Ca2+] measurements, mCherry-positive cells were selected. During the

experiment, 3 mM BAPTA (Alfa Aesar, Ward Hill, MA, USA) was

added to buffer extracellular Ca2+. Caffeine and thapsigargin (Alomone

Labs, Jerusalem, Israel) responses were measured. For calibration,

minimal and maximal Fura-2 responses were subsequently determined

using 2 mM of ionomycin (Enzo Life Sciences, Farmingdale, NY, USA)

supplemented with 50 mM EGTA or 500 mM CaCl2, respectively, in

modified Krebs buffer. When XeB (2 mM) was used, it was added to the

cell medium 1 h prior to Fura-2-AM loading of the cell. XeB was

also included during all steps of the loading process. The cytosolic [Ca2+]

was calculated using [Ca2+] (nM)5Kd6(F380max/F380min)6(R2Rmin)/

(Rmax2R), where Kd is the dissociation constant of Fura-2 for Ca2+ at

room temperature (220 nM). In each experiment, 15–20 mCherry-

positive cells were measured, which was repeated on at least three

different days. Maximum peak values were calculated for each calibrated

trace by subtracting the baseline [Ca2+] from the maximum response,

followed by averaging individual data points. Replicate experiments
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within the same day were also averaged and used for obtaining final

averages for all days. For thapsigargin experiments, the area under the

curve was determined by integrating the curves from the time point when

thapsigargin was added, until calibration was started 10 min later.

Hippocampal [Ca2+] measurements
At 1 week before measuring, a genetically encoded GCaMP3 Ca2+

indicator was introduced in the neurons by adenoviral infection. 14- to

18-day-old hippocampal neurons were used for these experiments. The

coverslips were placed in the perfusion chamber of a Slice Scope

microscope (Scientifica, East Sussex, UK). The neurons were perfused

with heated (30 C̊), oxygenated artificial cerebrospinal fluid (aCSF)

containing: 124 mM NaCl, 1.25 mM NaH2PO4, 3 mM KCl, 26 mM

NaHCO3, 2 mM CaCl2, 1 mM MgCl2 and 10 mM glucose at pH 7.4.

Tetrodotoxin (1 mM) (Tocris Bioscience, Bristol, UK) was added just

before use. Patch pipettes with a 4 MV resistance were pulled from

borosilicate capillaries (Science Products GmBH, Hofheim, Germany).

These were filled with the following solution: 115 mM CsMeSO3,

20 mM CsCl, 10 mM HEPES, 2.5 mM MgCl2, 4 mM Na2-ATP, 0.4 mM

Na2-GTP, 10 mM Na-phosphocreatine and 0.1 mM EGTA. The vehicle

(DMSO) or 20 mM of either the scrambled BH4-Bcl-2 or the BH4-Bcl-2

peptide was added to this solution just before the experiment. Utilizing

whole-cell voltage clamp the membrane potential was clamped at

260 mV using a MultiClamp 700B amplifier (Molecular Devices,

Biberach an der Riss, Germany). After 5 min of incubation with the

peptide, the [Ca2+] measurement was started. Using a pneumatic drug-

ejection system (PDES-02DX from NPI, Tamm, Germany), a local

10 mM caffeine puff was administrated after 1 min through a second

patch pipette positioned 15–25 mm from the cell. Imaging was performed

using a CoolLED pE-2 excitation system (Life Sciences & Analytical,

Andover, UK) in combination with an ORCA-Flash2.8 C11440-10C

camera (Hamamatsu, Almere, The Netherlands). HCImage software

(Hamamatsu) was used for analyzing the [Ca2+] measurements.

Statistical analysis
When comparing two conditions, two-tailed unpaired Student’s t-tests

were performed. For comparing three or more groups, repeated measure

ANOVA with Bonferroni post test was performed. Significance was

taken at P,0.05. The exact P-values have been indicated in the figures,

where feasible.
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competitive inhibitor of IP3-mediated Ca2+ signalling in cultured rat myotubes,
isolated myonuclei, and neuroblastoma (NG108-15) cells. FEBS Lett. 579,
2051-2057.

Kasri, N. N., Parys, J. B., Callewaert, G., Missiaen, L. and De Smedt, H. (2004).
Calmodulin and calcium-release channels. Biol. Res. 37, 577-582.

Kim, B. C., Kim, H. T., Mamura, M., Ambudkar, I. S., Choi, K. S. and Kim, S. J.
(2002). Tumor necrosis factor induces apoptosis in hepatoma cells by
increasing Ca2+ release from the endoplasmic reticulum and suppressing Bcl-
2 expression. J. Biol. Chem. 277, 31381-31389.

Kiviluoto, S., Vervliet, T., Ivanova, H., Decuypere, J. P., De Smedt, H.,
Missiaen, L., Bultynck, G. and Parys, J. B. (2013). Regulation of inositol
1,4,5-trisphosphate receptors during endoplasmic reticulum stress. Biochim
Biophys Acta 1833, 1612-1624.

Kuo, T. H., Kim, H. R., Zhu, L., Yu, Y., Lin, H. M. and Tsang, W. (1998).
Modulation of endoplasmic reticulum calcium pump by Bcl-2. Oncogene 17,
1903-1910.

Lanner, J. T., Georgiou, D. K., Joshi, A. D. and Hamilton, S. L. (2010).
Ryanodine receptors: structure, expression, molecular details, and function in
calcium release. Cold Spring Harb. Perspect. Biol. 2, a003996.

Letai, A. G. (2008). Diagnosing and exploiting cancer’s addiction to blocks in
apoptosis. Nat. Rev. Cancer 8, 121-132.

Liu, Z., Wang, R., Zhang, J., Chen, S. R. andWagenknecht, T. (2005). Localization
of a disease-associated mutation site in the three-dimensional structure of the
cardiac muscle ryanodine receptor. J. Biol. Chem. 280, 37941-37947.

Luciani, D. S., Gwiazda, K. S., Yang, T. L., Kalynyak, T. B., Bychkivska, Y.,
Frey, M. H., Jeffrey, K. D., Sampaio, A. V., Underhill, T. M. and Johnson, J. D.
(2009). Roles of IP3R and RyR Ca2+ channels in endoplasmic reticulum stress
and beta-cell death. Diabetes 58, 422-432.

Maes, K., Missiaen, L., Parys, J. B., De Smet, P., Sienaert, I., Waelkens, E.,
Callewaert, G. and De Smedt, H. (2001). Mapping of the ATP-binding sites
on inositol 1,4,5-trisphosphate receptor type 1 and type 3 homotetramers by
controlled proteolysis and photoaffinity labeling. J. Biol. Chem. 276, 3492-
3497.

Mak, D. O. and Foskett, J. K. (1998). Effects of divalent cations on single-channel
conduction properties of Xenopus IP3 receptor. Am. J. Physiol. 275, C179-C188.

Martin, C., Chapman, K. E., Seckl, J. R. and Ashley, R. H. (1998). Partial cloning
and differential expression of ryanodine receptor/calcium-release channel genes
in human tissues including the hippocampus and cerebellum. Neuroscience 85,
205-216.

Marx, S. O., Reiken, S., Hisamatsu, Y., Jayaraman, T., Burkhoff, D., Rosemblit,
N. and Marks, A. R. (2000). PKA phosphorylation dissociates FKBP12.6 from
the calcium release channel (ryanodine receptor): defective regulation in failing
hearts. Cell 101, 365-376.

Masumiya, H., Wang, R., Zhang, J., Xiao, B. and Chen, S. R. (2003).
Localization of the 12.6-kDa FK506-binding protein (FKBP12.6) binding site to
the NH2-terminal domain of the cardiac Ca2+ release channel (ryanodine
receptor). J. Biol. Chem. 278, 3786-3792.

Min, C. K., Yeom, D. R., Lee, K. E., Kwon, H. K., Kang, M., Kim, Y. S., Park, Z. Y.,
Jeon, H. and Kim, H. (2012). Coupling of ryanodine receptor 2 and voltage-
dependent anion channel 2 is essential for Ca2+ transfer from the sarcoplasmic
reticulum to the mitochondria in the heart. Biochem. J. 447, 371-379.

Monaco, G., Beckers, M., Ivanova, H., Missiaen, L., Parys, J. B., De Smedt, H.
and Bultynck, G. (2012a). Profiling of the Bcl-2/Bcl-X(L)-binding sites on type 1
IP(3) receptor. Biochem. Biophys. Res. Commun. 428, 31-35.

Monaco, G., Decrock, E., Akl, H., Ponsaerts, R., Vervliet, T., Luyten, T.,
De Maeyer, M., Missiaen, L., Distelhorst, C. W., De Smedt, H. et al. (2012b).
Selective regulation of IP3-receptor-mediated Ca2+ signaling and apoptosis by
the BH4 domain of Bcl-2 versus Bcl-Xl. Cell Death Differ. 19, 295-309.

Nadif Kasri, N., Nakano-Kobayashi, A. and Van Aelst, L. (2011). Rapid
synthesis of the X-linked mental retardation protein OPHN1 mediates mGluR-
dependent LTD through interaction with the endocytic machinery. Neuron 72,
300-315.

Oakes, S. A., Scorrano, L., Opferman, J. T., Bassik, M. C., Nishino, M.,
Pozzan, T. and Korsmeyer, S. J. (2005). Proapoptotic BAX and BAK regulate
the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic
reticulum. Proc. Natl. Acad. Sci. USA 102, 105-110.
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