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The dual boson approach [Ann. Phys. 327, 1320 (2012)] provides a means to construct a
diagrammatic expansion around the extended dynamical mean-field theory (EDMFT). In this paper,
we present the numerical implementation of the approach and apply it to the extended Hubbard
model with nearest-neighbor interaction V . We calculate the EDMFT phase diagram and study
the effect of diagrams beyond EDMFT on the transition to the charge-ordered phase. Including
diagrammatic corrections to the EDMFT polarization shifts the EDMFT phase boundary to lower
values of V . The approach interpolates between the random phase approximation in the weak
coupling limit and EDMFT for strong coupling. Neglecting vertex corrections leads to results
reminiscent of the EDMFT + GW approximation. We however find significant deviations from the
dual boson results already for small values of the interaction, emphasizing the crucial importance
of fermion-boson vertex corrections.

PACS numbers: 71.10.-w,71.10.Fd,71.30.+h

I. INTRODUCTION

The description of correlated electron systems is theo-
retically challenging. Such systems are characterized by
an intricate interplay between the kinetic energy and the
strong Coulomb repulsion. A minimal model to capture
this competition is the Hubbard model. It consists of a
hopping term, which describes the electron motion, and
a local interaction term. For narrow bands, one may ex-
pect the intra-atomic matrix elements of the long-range
Coulomb interaction to dominate. Hubbard proposed to
restrict the interaction to these elements [1]. In a seminal
paper, Anderson conjectured that the model captures the
essential features of the high-temperature cuprate super-
conductors [2].

There may be cases however where nonlocal interaction
parameters are sizable. Adatom systems on semiconduc-
tor surfaces have been found to exhibit nonlocal interac-
tion parameters with a magnitude reaching as much as
30% of the on-site Coulomb interaction [3]. Moreover, the
nonlocal interaction decays slowly as 1/r with distance r,
as determined by the static dielectric constant of the sub-
strate, rendering even long-range contributions to the in-
teraction important. The screening effect of the nonlocal
interaction can make a material appear metallic, which
would be on the verge of the insulating state if only the
on-site Coulomb interaction were considered, as observed
in graphene [4]. For graphene, benzene and silicene, the
nonlocal terms were found to reduce the effective local
interaction by more than a factor of 2 [5]. In metals
and semiconductors, the long-range Coulomb interaction
leads to plasmons and can induce charge-ordering tran-
sitions.

In the extended Hubbard model, nonlocal interaction
terms are added to describe such physics, giving rise to

the Hamiltonian

H =
∑

ijσ

tijc
†
iσcjσ +

∑

i

Uni↑ni↓ +
1

2

∑

ij

Vijninj . (1)

Here Latin indices denote lattice sites, σ =↑, ↓ label the

spin projections and niσ = c†iσciσ and ni =
∑
σ niσ are

density operators. The Hamiltonian depends on the elec-
tron hopping amplitudes tij , the local Hubbard repul-
sion U and nonlocal interaction parameters Vij , respec-
tively [6].

In the absence of a nonlocal Coulomb interaction Vij =
0, it reduces to the Hubbard model. Different approxi-
mations exist to treat this case in the interesting cor-
related regime. Many of them are based on quantum
impurity models (QIMs), which provide a means to sum
local contributions in a non-perturbative manner. Dy-
namical mean-field theory (DMFT) [7, 8] maps the prob-
lem to a local QIM subject to a self-consistency condi-
tion. It has significantly increased our understanding of
the Mott transition. Various extensions to DMFT have
been developed, which aim to include the effects of spa-
tial correlations neglected in the original approach. Clus-
ter generalizations of DMFT [9] treat short-range cor-
relations. They have made it possible to address some
important aspects of Mott physics, such as the nodal-
antinodal dichotomy [10–12] and superconductivity (see,
e.g., Refs. 13 and 14). A clear advantage of cluster
methods is the presence of a control parameter (cluster
size). In practice, however, it is not possible to con-
verge the calculations with respect to this parameter in
the physically interesting medium to low-temperature or
doped regimes. It is therefore important to study dia-
grammatic extensions of DMFT, which provide a com-
plementary viewpoint. In these methods, long-range dy-
namical spatial correlations are treated through a com-
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bination of numerical and analytical techniques. The
work of Kusunose [15], the dynamical vertex approxi-
mation (DΓA) [16], the one-particle irreducible (1PI) ap-
proach [17] and the dual fermion (DF) method [18, 19]
belong to this category.

The extended Hubbard model, on the other hand, is
much less studied and fewer methods are available. One
can account for screening by deriving reduced effective
on-site Coulomb interaction parameters [5]. This way,
one may use above mentioned methods, but one neglects
important effects due to dynamical and nonlocal screen-
ing. Cluster extensions of DMFT can treat the nonlo-
cal interaction within the cluster [20–25]. In the weakly
correlated regime, on the other hand, plasmons and the
dielectric screening are described by the random phase
approximation (RPA), while the self-energy can be com-
puted from the screened interaction W in the so-called
GW - approximation [26].

Extended dynamical mean-field theory (EDMFT) [27–
31] provides a means to address the effects of nonlocal
Coulomb interaction when correlations are strong. As in
DMFT, the lattice problem is mapped to a QIM supple-
mented with a self-consistency condition. The screen-
ing effect of the nonlocal interaction leads to a local
retarded interaction which is determined from an ad-
ditional self-consistency condition on the bosonic bath.
The effect of nonlocal corrections has been included by
combining EDMFT with the GW approximation [32].
EDMFT + GW has recently been reexamined systemat-
ically [33, 34] and applied to aforementioned adatom sys-
tems on surfaces within a first-principles description [3].

The dual boson (DB) approach [35] is a diagrammatic
extension of EDMFT which aims to address the fermionic
degrees of freedom and the collective bosonic excitations,
such as plasmons [36, 37], on equal footing. In can be
applied to correlated lattice fermion models with local
and nonlocal interaction. Strong local correlations are
accounted for on the impurity level, while spatial cor-
relations and nonlocal collective excitations are treated
diagrammatically. This separation is similar to the DF
method.

In this paper, we present an efficient numerical imple-
mentation of the DB approach and apply it to the ex-
tended Hubbard model with nearest-neighbor Coulomb
interaction. The paper is organized as follows: In Sec. II
we derive the approach for the extended Hubbard model
and discuss its formal relation to EDMFT. The computa-
tional scheme is discussed in Sec. III, followed by a short
summary of the implementation details in Sec. IV. To set
the stage for the discussion of the DB results, we first dis-
cuss some numerical results obtained within EDMFT in
Sec V. In particular, we show the phase diagram in the
U–V plane and discuss the behavior of the self-energy,
local susceptibility and the three-leg fermion-boson ver-
tex at some marked points therein. These quantities en-
ter the dual perturbation theory. How the phase dia-
gram is modified through the DB diagrammatic correc-
tions is investigated in Sec. VI. In Sec. VII we consider a

simplified, computationally less demanding approxima-
tion, obtained by systematically neglecting vertex cor-
rections. This allows us to relate the DB approach to
EDMFT + GW and to elucidate the role of vertex cor-
rections. In Sec. VIII we summarize our findings. A dis-
cussion of the technical aspects underlying the formalism
and its implementation as well as detailed derivations are
provided in the appendixes.

II. DUAL BOSON FORMALISM

The DB approach was introduced in Ref. 35. Its
derivation relies on a decoupling of the long-range
Coulomb- interaction via a Hubbard-Stratonovich trans-
formation. Here we provide the derivation of the formal-
ism for the specific case of the extended Hubbard model.
Instead of the transformation based on complex fields for
the decoupling used in the original work, we employ a de-
coupling based on real fields. This approach is similar to
the derivation of EDMFT in Refs. 32 and 34 and there-
fore more clearly reveals the relation of these methods.

We seek the solution of the extended Hubbard model
(1), giving rise to the imaginary-time action

Slatt[c
∗, c] =−

∑

iνσ

c∗iνσ[iν + µ]ciνσ + U
∑

qω

nqω↑n−q,−ω↓

+
∑

kνσ

εkc
∗
kνσckνσ +

1

2

∑

qω

Vqnqωn−q−ω.

(2)

Here c∗ and c denote Grassmann variables. The Fourier
transforms of the hopping amplitudes and nonlocal in-
teraction are denoted by εk and Vq. The fermionic and
bosonic Matsubara frequencies are iνn = (2n + 1)π/β
and iωm = 2mπ/β, respectively, where β = 1/T is the
inverse temperature.

In EDMFT, the lattice problem is mapped to a QIM
with a hybridization function ∆(τ − τ ′) and a local re-
tarded interaction Λ(τ − τ ′). These functions are deter-
mined through self-consistency conditions, which leads to
a dynamical mean-field description of the model. In the
DB approach, the QIM serves as the starting point of the
perturbation expansion. To achieve this, we replace all
sites with QIMs by formally adding and subtracting an
arbitrary hybridization and retarded interaction at each
lattice site. This leaves the original action unaltered and
leads to

Slatt[c
∗, c] =

∑

i

Simp[c∗i , ci]−
∑

kνσ

c∗kνσ(∆νσ − εk)ckνσ

− 1

2

∑

qωσ

nqω(Λω − Vq)n−q−ω.

(3)
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The impurity action Simp is given by

Simp[c∗, c] =−
∑

νσ

c∗νσ[iν + µ−∆νσ]cνσ

+ U
∑

ω

nω↑n−ω↓ +
1

2

∑

ω

nωΛωn−ω. (4)

We now decouple the QIMs by applying suitable
Hubbard-Stratonovich transformations to the remainder
of Eq. (3). This is similar to the DF approach. The
first term is decoupled through the following identity for
Grassmann variables:

∫ ∏

k

df∗kdfke
−f∗i [αfD−1αf ]ijfj−c∗iαfijfi−f∗i α

f
ijci

= det[αfD−1αf ]ec
∗
iDijcj , (5)

where αf and D denote arbitrary matrices. It is natural
to decouple the density-density interaction term in the
charge channel, in particular since we are interested in
the charge fluctuations and screening effects induced by
V . This is achieved through the following transformation
based on real fields:

∫ ∏
i dφi√

(2π)N
e−

1
2φi[α

bW−1αb]ijφj±φiαbijni

=
√

det[αbW−1αb]
−1

e
1
2niWijnj . (6)

Here the matrix W is assumed to be positive definite.1

In the above, we choose the negative sign.2 A priori, the
couplings αf and αb in above equations are arbitrary, but
it is important that the coupling is local. This allows us
to integrate out the fermionic degrees of freedom locally,
leading to a theory in terms of dual variables f, f∗ and
φ only. Note that a local coupling preserves the topo-
logical structure of the diagrams; diagrams describing
processes between nearest-neighbor sites in terms of DFs
correspond to the same kind of (i.e., nearest-neighbor)
processes in terms of the physical fermions.

The equations take a particularly simple form by let-
ting αf → g−1

νσ and αb → χ−1
ω , where the impurity

Green’s function gνσ and charge susceptibility χω are di-
agonal matrices. They are defined as

gνσ := −〈cνσc∗νσ〉 , (7)

χω := − (〈nωn−ω〉 − 〈n〉 〈n〉 δω) , (8)

where here and in the following 〈. . .〉 denotes the impurity
average:

〈. . .〉 :=
1

Zimp

∫
D[c∗, c] . . . e−Simp[c∗,c]. (9)

1 For the case that the matrix W is not positive definite, see Ap-
pendix A.

2 The choice of the sign only affects the sign of the electron-boson
vertex and does not affect end results.

Applying the Hubbard-Stratonovich transformations to
the partition function Z =

∫
D[c∗, c] exp(−Slatt[c

∗, c])
with D = ∆− ε and W = Λ− V and regrouping terms,
we obtain

Z =

∫
D[f∗, f ;φ]

∫
D[c∗, c]e−

∑
i Ssite[c∗i ,ci;f

∗
i ,fi,φi]

×Dfe
−∑

kνσ f
∗
kνσg

−1
νσ (∆νσ−εk)−1g−1

νσ fkνσ

×Dbe
− 1

2

∑
qω φqωχ

−1
ω (Λω−Vq)−1χ−1

ω φqω ,
(10)

where

Df = det[gνσ(∆νσ − εk)gνσ], (11)

D−1
b =

√
det[χω(Λω − Vq)χω] (12)

are the determinants arising from the integral transfor-
mation. While these are irrelevant for the calculation of
expectation values, they are required to establish rela-
tions between the dual and the physical fermion propa-
gators.
Ssite in Eq. (10) is the part of the action which is site

diagonal,

Ssite[c∗, c; f∗, f, φ] = Simp[c∗, c] + Scf[c
∗, c; f∗, f, φ],

(13)

where, in turn,

Scf[c
∗, c; f∗, f, φ] =

∑

νσ

(
f∗νσg

−1
νσ cνσ + c∗νσg

−1
νσ fνσ

)

+
∑

ω

φωχ
−1
ω nω. (14)

In order to arrive at an action which depends on dual
variables only, we formally integrate out the original
fermionic degrees of freedom. It is possible to do this
for each lattice site separately, because the coupling to
the dual variables is local. Evaluation of the path inte-
gral means taking the average over the impurity degrees
of freedom:

1

Zimp

∫
D[c∗, c]e−Ssite[c∗,c;f∗,f,φ] =

〈
e−Scf[c

∗,c;f∗,f,φ]
〉
.

(15)

We expand the generating functional in the sources f, f∗,
and φ. The result can be written in the following form:

ln
〈
e−Scf[c

∗,c;f∗,f,φ]
〉

=−
∑

νσ

f∗νσg
−1
νσ fνσ

− 1

2

∑

ω

φωχ
−1
ω φω − Ṽ [f∗, f ;φ].

(16)

This equation defines the dual interaction Ṽ . Expanding
the logarithm yields the connected correlation functions
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of the impurity model, which are coupled to dual vari-
ables. The leading terms of Ṽ are given by

Ṽ [f∗, f ;φ] = −
∑

ω

φωχ
−1
ω 〈n〉 δω +

∑

νωσ

λσνωf
∗
νσfν+ω,σφω

− 1

4

∑

νν′ω

∑

σi

γσ1σ2σ3σ4

νν′ω f∗νσ1
fν+ω,σ2

f∗ν′+ω,σ3
fν′σ4

. (17)

We neglect higher order terms. The theory thus involves
two types of vertex functions: a three-leg fermion-boson
vertex λ which mediates the coupling between the DFs
and (charge) bosons and a four-leg fermion-fermion ver-
tex γ. These are local and obtained from the impurity
model correlation functions in the following manner:

λσνω :=
g
σ(3)
νω − βgνσ 〈n〉 δω
gνσgν+ω,σχω

, (18)

γσσ
′

νν′ω :=
g

(4)σσ′

νν′ω + βgνσgν+ωσδνν′δσσ′ − βgνσgν′σ′δω
gνσgν+ω,σgν′+ωσ′gν′σ′

(19)

(see Appendix E for details). Here we use the short-hand

notation γσσ
′

:= γσσσ
′σ′ . The three- and four-leg ver-

tex functions are obtained from the impurity correlation
functions

g(3)σ
νω := −

〈
cνσc

∗
ν+ω,σnω

〉
, (20)

g
(4)σσ′

νν′ω := +
〈
cνσc

∗
ν+ω,σcν′+ω,σ′c

∗
ν′σ′
〉
. (21)

It is more convenient to work with the original model
(1) written in terms of density fluctuations, i.e. replacing
ni → n̄i = ni−〈ni〉 so that 〈n̄i〉 = 0. This eliminates the
first term in (17) and is compensated by a shift in the
chemical potential. It is further easy to see that the cor-
relation functions (8) and (18) remain unchanged, since
χω → χ̄ω = −〈n̄ωn̄−ω〉 ≡ χω and similarly λ̄σνω = λσνω.

Combining Eqs. (10) and (16), we obtain the action in
dual variables:

S̃[f∗, f ;φ] =−
∑

kνσ

f∗kνσG̃−1
kνσfkνσ −

1

2

∑

qω

φqωX̃qωφqω

+ Ṽ [f∗, f, φ]. (22)

The bare dual propagators are denoted by calligraphic
symbols. They are given by:

G̃kνσ =
{[
g−1
νσ + (∆νσ − εk)

]−1
}
− gνσ, (23)

X̃qω =
{[
χ−1
ω + (Λω − Vq)

]−1
}
− χω. (24)

We use the following definitions of the propagators in
terms of the fields

G̃kνσ := −〈fkνσf∗kνσ〉 , (25)

X̃qω := −〈φqωφ−q,−ω〉 . (26)

The elements of the dual action are obtained numerically
from the solution of the QIM. We have hence achieved a
description in which the strong local correlation physics
is determined by the QIM, while weaker nonlocal correc-
tions to the (dual) fermionic and bosonic self-energies are
obtained through a Feynman-type diagrammatic expan-
sion in the dual interaction Ṽ . We discuss the perturba-
tion theory in Sec. II B. The diagrammatic rules of this
expansion are provided in Appendix B.

A. Relation to EDMFT

In order to establish the connection of the approach to
EDMFT, we use relations between the dual and physi-
cal lattice propagators. These are obtained by equating
the appropriate derivatives of the generating functional
before and after introducing the dual particles [19, 38].
The determinants of the transformations, Eqs. (11) and
(12), have to be taken into account. A difference to the
complex-field decoupling of Ref. 35 is that here a factor
1/2 appears in the interaction. At the same time, the de-
terminant (12) in the real-field decoupling enters with a
square-root, so that its derivative also produces a factor
1/2. As a result, this factor drops out and the result is
the same as in the original paper:

Gkνσ = (∆νσ − εk)−1+(∆νσ −εk)−1g−1
νσ G̃kνσ

g−1
νσ (∆νσ − εk)−1, (27)

Xqω = (Λω − Vq)−1+(Λω−Vq)−1χ−1
ω X̃qω

χ−1
ω (Λω − Vq)−1. (28)

Inserting the bare dual propagators, Eqs. (23) and (24),

in place of G̃kνσ and χ̃qω, one obtains the EDMFT lattice
Green’s functions:

GEDMFT
kνσ =

[
g−1
νσ + (∆νσ − εk)

]−1
, (29)

XEDMFT
qω =

[
χ−1
ω + (Λω − Vq)

]−1
. (30)

EDMFT can hence be obtained in a theory of nonin-
teracting DFs and bosons. The same argument can
be phrased differently: Defining the dual fermionic and
bosonic self-energies,

Σ̃kνσ = G̃−1
kνσ − G̃−1

kνσ, (31)

Π̃qω = X̃−1
qω − X̃−1

qω , (32)

the transformation rules can also be written in the fol-
lowing form [35]:

G−1
kν=(gνσ + gνσΣ̃kνgνσ)−1 + ∆νσ−εk, (33)

X−1
qω=(χω + χωΠ̃qωχω)−1 + Λω−Vq. (34)

We see again that for Σ̃ ≡ 0 and Π̃ ≡ 0, these are identical
to the EDMFT propagators. Hence EDMFT emerges as
a zero-order approximation in DB. In this sense, the DB
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(a) G̃kνσ (b) X̃qω

ν + ω

ν

ν′ + ω

ν′
γ

(c) γνν′ω

ν + ω

ν
ω

(d) λνω

Figure 1. The building blocks of the dual perturbation the-
ory and frequency conventions. (Top) The bare DF and bo-

son propagators G̃ (a) and X̃ (b). (Bottom) Dual fermions
interact via the vertex function γ. λ is the fermion-boson in-
teraction. ν denotes fermionic frequencies; ω denotes bosonic
Matsubara frequencies.

approach may be regarded as a diagrammatic extension
of EDMFT.

In the above, we have ignored the fact that an EDMFT
solution corresponds to a specific value of the hybridiza-
tion function and retarded interaction. A priori, these
functions are arbitrary in the DB approach. In order
to complete the relation to EDMFT, it remains to fix
their values by imposing proper self-consistency condi-
tions. Identifying the terms in braces in Eqs. (23) and
(24) as the EDMFT single- and two-particle propagators,
we see that the following conditions are equivalent:

1

N

∑

k

G̃kνσ = 0 ⇔ 1

N

∑

k

GEDMFT
kνσ = gνσ, (35)

1

N

∑

q

X̃qω = 0 ⇔ 1

N

∑

q

XEDMFT
qω = χω. (36)

The conditions on the right-hand side are the EDMFT
self-consistency conditions.3 Therefore, enforcing the
conditions on the dual propagators on the left-hand
side and neglecting diagrammatic corrections reproduces
EDMFT. When diagrams are taken into account, we
impose the analogous conditions on the corresponding
renormalized propagators, i.e.,

1

N

∑

k

G̃kνσ = 0, (37)

1

N

∑

q

X̃qω = 0. (38)

How this is achieved in practice is discussed in Ap-
pendix D 2.

3 Imposing the self-consistency condition on the two-particle
Green’s function corresponds to a particular formulation of
EDMFT also used in Refs. 29 and 30. In an alternative for-
mulation, the self-consistency is imposed on the propagator of
the bosonic field. The two formulations are equivalent, as noted
in Ref. 32.

k + q,
ν + ω

q, ω

(a)

k + q,
ν + ω

k, ν

(b)

Figure 2. Second-order diagrams contributing to the nonlocal
fermionic (a) and bosonic (b) DF self-energy Σ̃kνσ and Π̃qω,
respectively.

B. Perturbation theory

The elements of the perturbation theory are depicted
in Fig. 1. These are the DF and boson propagators and
two types of vertices: a (“four-leg”) fermion-fermion ver-
tex and a (“three-leg”) fermion-boson vertex λ. The di-
agrammatic rules for the DB perturbation theory are an
extension of those of the DF approach (see Refs. 38 and
39). We state them explicitly in Appendix B.

The dual self-energy Σ̃ is determined by the sum of
all topologically distinct diagrams where one external
fermion line enters and one exits and which are irre-
ducible with respect to the dual propagators. An exam-
ple of such a diagram is shown in Fig. 2 (a). This particu-
lar diagram describes the effect of renormalization of the
fermionic degrees of freedom due to the bosonic (charge)
excitations in the system. The diagram explicitly evalu-
ates to

Σ̃
(2)
kνσ = − T

N

∑

qω

λσνωG̃
σ
k+qν+ωX̃qωλ

σ
ν+ω,−ω. (39)

The DB self-energy Π̃ is given by all diagrams irreducible
with respect to the propagators and with two external
endpoints where bosonic lines can be attached. As an
example, the second-order diagram is shown in Fig. 2 (b)
and given by

Π̃(2)
qω =

T

N

∑

kνσ

λσν+ω,−ωG̃kνσG̃k+qν+ωσλ
σ
νω. (40)

Diagrams containing a local DF loop cancel because of
the self-consistency condition (37) and the locality of the
vertices. Examples are shown in Fig. 3.

(a) (b)

Figure 3. Second-order diagrams with a local dual fermion
loop.
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C. Invariance with respect to the decoupling
scheme

A priori, the division of the interaction into U and Vij
in the lattice action (2) is arbitrary. One may choose
to decouple the V -term with or without the local inter-
action included. In the EDMFT + GW approach, the
former is referred to as the UV -decoupling scheme and
the latter is the V -decoupling scheme. The two schemes
give the same result in EDMFT but different results in
EDMFT + GW [34]. Using the identity

ni↑ni↓ =
1

2
nini −

1

2
ni, (41)

we can absorb the U - into the V - term with a simultane-
ous shift of the chemical potential:

U
∑

i

ni↑ni↓ +
1

2

∑

ij

Vijninj − µ
∑

i

ni

=
1

2

∑

ij

V ijninj − µ
∑

i

ni. (42)

Here, V ij = Uδij + Vij and µ = µ+ U/2.
The DB theory is invariant under the choice of decou-

pling, as can be seen as follows: The dual action (22)

depends on V only through the propagator X̃ . In addi-
tion, V only appears in the combination (Λ − V ). As a
result, all dual quantities are functions of (Λ − V ). In-
spection of the transformation rules (27),(28) or (33),(34)
shows that this is also the case for physical quantities.

If we absorb the local U term into V according to (42),
the underlying impurity action becomes

Simp[c∗, c] =−
∑

νσ

c∗νσ[iν + µ−∆νσ]cνσ

+
1

2

∑

ω

nωΛωn−ω −
U

2
nω=0. (43)

Because the retarded interaction is an auxiliary quantity,
we have the freedom to shift it by the same amount, i.e.
Λ = Λ + U . As a consequence, Λ − V = Λ − V stays
invariant. Using the local version of the identity (41), we
see that the second line in the equation above becomes

1

2

∑

ω

nωΛ̄ωn−ω −
U

2
nω=0

= U
∑

ω

nω↑nω↓ +
1

2

∑

ω

nωΛωn−ω, (44)

so that we recover the impurity action (4). Hence the
impurity model and thus all results of the theory remain
invariant. The deeper reason is of course that the defini-
tion of the auxiliary impurity is arbitrary and one may
as well choose one which does not contain the local in-
teraction U . That EDMFT is invariant is evident from
the fact that it appears as the zero-order approximation
in our approach.

D. Two-particle excitations

There is a direct connection between the bosonic ex-
citations of dual and physical fermions. Rewriting the
dual Dyson equation (32) in the form

X̃qω =
1

X̃−1
qω − Π̃qω

=
X̃qω

1− Π̃qωX̃qω

, (45)

we see that it represents a geometric series for the dual
susceptibility X̃. In Appendix C we show that it diverges
at exactly the same point as the physical susceptibility
X given by Eq. (34). On the one hand, this is a mani-
festation of the fact that two-particle excitations are the
same for dual and physical fermions. This is also the case
in the DF approach [40]. On the other hand, it means
that when performing a dual expansion around a solu-
tion within the ordered phase, the above series will be
summed beyond its convergence radius and the summa-
tion will fail.

III. COMPUTATIONAL SCHEME

The DB computational scheme is similar to the one
of EDMFT. In both schemes, the hybridization func-
tion ∆νσ and retarded interaction Λω are adapted it-
eratively within a self-consistency loop. In the DB ap-
proach, there is an additional step in each iteration where
diagrammatic corrections are computed. The computa-
tional scheme is also analogous to the one used in DF
calculations [38]. The only difference is that in addition
to the equations for the DF Green’s functions, analogous
equations for the bosonic Green’s functions have to be
handled simultaneously.

The general computational scheme is depicted in Fig. 4
and can be summarized as follows:

(1) Generate an initial guess for ∆νσ and Λω.

(2) Solve the impurity problem based on ∆νσ and Λω
and compute gνσ and χω (sufficient for EDMFT)
and additionally λνω and γνν′ω for DB calculations.

(3) Calculate G̃kνσ and X̃qω according to Eqs. (23) and
(24).

(4) Evaluate diagrams for Σ̃kνσ and Π̃qω using dual
perturbation theory.

(5) Compute renormalized dual propagators G̃kνσ and

X̃qω using the dual Dyson equations (see below).
Go back to step (4) and loop until convergence (in-
ner self-consistency).

(6) Once the inner loop is converged, calculate the
physical propagators Gkνσ and Xqω according to
Eqs. (33) and (34).
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gνσ, χω
γνν′ω, λνω

G̃kνσ, X̃qω

γνν′ω, λνω

G̃kνσ Σ̃kνσ

X̃qω Π̃qω

Gkνσ,Xqω

IS

(23,24)

(3
9,

40
)

(33,34)

(D
4,

D
5)

EDMFT

Dyson
(46,47)

Figure 4. (Color online) Summary of the computational
scheme. The loop is started with an initial guess for the hy-
bridization function and retarded interaction. Local observ-
ables are calculated in the impurity solver (IS) step. Work-
ing with bare dual propagators and neglecting diagrammatic
corrections is equivalent to EDMFT (dashed arrow). Correc-
tions beyond EDMFT are taken into account by evaluating
diagrams for the dual self-energies, which involve dual prop-
agators and the vertex functions λ and γ. The diagrams are
renormalized self-consistently using Dyson equations. From
the dual Green’s functions one obtains the physical lattice
Green’s functions and, in turn, an update for the hybridiza-
tion and retarded interaction.

(7) Update the hybridization function ∆νσ and re-
tarded interaction Λω. Go back to step (2) and
repeat until convergence is reached (outer self-
consistency).

If we skip steps (4) and (5), we work with the bare dual
propagators and recover EDMFT as discussed in Sec. II.
This is indicated by the dashed arrow in Fig. 4. The
vertices need not be calculated in this case.

When diagrammatic corrections are taken into ac-
count, we additionally compute the impurity vertex func-
tions in the impurity solver step. This allows us to
construct diagrammatic approximations to the dual self-
energies Σ̃νkσ and Π̃ωq in dual perturbation theory in
step (4). From the self-energies, we then compute renor-
malized propagators using the Dyson equations

G̃−1
kνσ = G̃−1

kνσ − Σ̃νkσ, (46)

X̃−1
qω = X̃−1

qω − Π̃ωq. (47)

The renormalized propagators are subsequently used in
the diagrams in going back to step (4). This loop is
repeated until convergence. We refer to this as the inner
self-consistency loop. It is indicated at the bottom of
Fig. 4.

Variations of the full scheme are possible. For example,
one may skip the outer self-consistency. After the con-
verged EDMFT solution is found, vertex functions and
diagrams are evaluated only once. This means that the

bath is the same as in EDMFT and that such a scheme
truly corresponds to a diagrammatic expansion around
EDMFT.

IV. IMPLEMENTATION

The implementation of the DB approach is analogous
to that of the DF method. For each equation involv-
ing DF propagators, there is a corresponding one for the
bosonic propagator. We have therefore implemented the
approach by integrating the additional equations into our
existing DF implementation. We work with a fully par-
allelized code. For the solution of the impurity prob-
lem (4) we employ the hybridization expansion quantum
Monte Carlo method (CT-HYB) [41], which can treat a
retarded interaction of density-density type without ap-
proximation (see, e.g., Ref. 34 for details). Here we uti-
lize a modified version of the open source implementation
presented in Ref. 42. We use improved estimators for the
impurity vertex functions and an efficient frequency mea-
surement for the charge susceptibility χω [43]. These im-
provements reduce the Monte Carlo noise and the overall
required computation time. For the vertices, we use cer-
tain symmetry relations which improve the convergence
with respect to the frequency cutoff (Appendixes D 3 and
F). The diagrams are efficiently evaluated by exploiting
lattice symmetries and employing fast Fourier transforms
(FFTs) for the computation of the momentum convolu-
tions on the discrete lattice with periodic boundary con-
ditions. We use a standard size of 64 × 64. Individual
components of the implementation are discussed in more
detail in Appendix D.

V. EDMFT RESULTS

Here and in the rest of the paper, we consider the two-
dimensional, half-filled, extended Hubbard model de-
scribed by the Hamiltonian (1), with nearest-neighbor
hopping t and nearest-neighbor interaction parameter V .
Hence, we have tij = −t and Vij = V if i and j are nearest
neighbors and Vij = 0 otherwise. The dispersion and the
Fourier transform of the nonlocal interaction thus read

εk = −2t(cos kx + cos ky), (48)

Vq = 2V (cos qx + cos qy). (49)

The half-bandwidth 4t = 1 is taken as the energy unit.
We consider the paramagnetic phase only and, hence,
omit spin labels in the following.

As we have seen in Sec. II A, EDMFT is the starting
point of the dual perturbation theory. As a basis for the
discussion of the DB results, it is therefore instructive to
discuss EDMFT results for the extended Hubbard model
first. The EDMFT phase diagram can be computed using
the DB code, because it corresponds to a zero-order DB
calculation (all diagrammatic corrections are neglected).
This also serves as a first test of the implementation.
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Figure 5. (Color online) EDMFT phase diagram for the ex-
tended Hubbard model in the plane of on-site interaction U
and nearest-neighbor interaction V at temperature T = 0.01.
Phase boundaries marked in red have been obtained starting
from a metallic seed, while the boundaries in brown were ob-
tained starting from an insulating solution as the initial guess.
CO, FL and MI denote charge-ordered, Fermi-liquid metallic,
and Mott insulating phases, respectively. Colored points in-
dicate positions at which quantities of interest, such as the
self-energy, are evaluated.

A. EDMFT Phase diagram

The EDMFT phase diagram in the U -V -plane at tem-
perature T = 0.01 is shown in Fig. 5. It is compatible
with the results of Refs. 32, 34, and 44, showing a Fermi-
liquid metal (FL) region for small to moderate values of U
and V , a charge-ordered (CO) phase with checkerboard
order for sufficiently large nearest-neighbor interaction
V and small to moderate values of U , as well as a Mott
insulating (MI) phase for sufficiently large values of the
on-site interaction.

The checkerboard CO phase is characterized by a di-
vergent charge susceptibility at the wave vector q =
(π, π). The phase boundary may therefore be located
by looking for zeros of X−1

ω=0,q=(π,π).
4 The phase bound-

ary between the metallic and MI phases was determined
from the quantity (β/π)G(β/2), which undergoes a steep

4 Here we have determined the critical value Vc of the interaction
from the equivalent condition [34] 1+(U−4Vc)Π

imp
ω=0 = 0, where

Πimp is the impurity polarization.
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Figure 6. (Color online) EDMFT self-energy for fixed on-
site interaction U = 2.2 and different values of the nearest-
neighbor interaction V . The different curves correspond to
the positions marked by circles in the EDMFT phase diagram
in Fig. 5. The inset shows the convergence of the self-energy
to its high-frequency behavior. Horizontal lines mark the cor-
responding calculated values of the first moment.

drop at the transition to the insulator (see Appendix
H). Phase boundaries marked in red are obtained by ap-
proaching the respective phase boundary from the metal-
lic side, while boundaries approached from the insulator
are marked in brown.

Since for V = 0 EDMFT reduces to DMFT, the first-
order transition between the metallic and MI phases
found in DMFT is reproduced here at V = 0. For finite
values of V , the width of the coexistence region decreases,
which is in agreement with the findings of Ref. 45.

In the region around and directly above the top corner
of the metallic region, fluctuations are strong and it is in-
herently difficult to obtain a converged solution. Starting
with the usual metallic initial guess Σν = 0, the impurity
susceptibility is overestimated, which leads to an overes-
timation of the retarded interaction Λω and to numerical
instability. We circumvent this by obtaining a converged
insulating solution for V = 0 (or a smaller V ) first and
using this as an initial guess for calculations at finite V .
If the initial guess is not sufficiently close to the actual
solution, one may encounter the above-mentioned insta-
bilities. The dashed lines indicate that we were not able
to find a converged solution. The phase boundary might
exhibit a jump here, as mentioned in Ref. [44]. We find
it difficult to make a definite statement though, because
of the aforementioned convergence problems. Close to
the lower part of the phase boundary separating the CO
and MI phases, metastable metallic solutions are found
close to the CO phase due to the screening effect of the
nonlocal interaction, which, however, converge to insu-
lating ones after a sufficiently large number of DMFT
iterations. The top corner of the metallic region hence
appears to be completely surrounded by the MI phase.
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Figure 7. (Color online) EDMFT charge susceptibility for
the same parameters as in Fig. 6.

B. Impurity quantities

Let us consider some EDMFT impurity quantities,
which enter the dual perturbation theory. We start with
the self-energy in Fig. 6 for fixed Hubbard interaction U
and different values of V , corresponding to points marked
by circles in the EDMFT phase diagram of Fig. 5. The
self-energy exhibits the characteristics of a FL metal.
With increasing nearest-neighbor interaction V , the so-
lution clearly becomes less correlated. This is also re-
flected in an increase of the quasiparticle residue as V
increases (not shown). It may be an indication of the
screening effect through the nearest-neighbor interaction.
As shown in the inset, the high-frequency behavior of the
self-energy is also affected by the change in V . The first
moment can be calculated from the charge susceptibility
and retarded interaction (horizontal lines) [43]. It is seen
to be enhanced as V increases, in line with an increase of
the local charge susceptibility shown in Fig. 7. Since in
EDMFT, the susceptibility is related to the polarization
through Πimp

ω = −χω/(1+Λωχω), this enhancement indi-
cates the increased effect of screening as V increases [34].

In Fig. 8 we plot the three-leg vertex at the same
parameters as in the previous figures. It mediates the
electron-boson interaction in the DB approach. Because
of the particle-hole symmetry, it is purely real. We see
that it exhibits less structure as the metallicity of the
system is increased and becomes mostly flat as the phase
boundary to the CO state is approached. Note that it
changes sign, except very close to the phase boundary.
We see later that this structure has an important effect
on the DB results. Interestingly, the vertex appears to be
unaffected by the interaction at specific points, so that
the curves cross. We have no explanation for this ob-
servation at the moment. The symmetry of the vertex
under the transformation ν → −ν − ω is clearly visi-
ble. We exploit this symmetry in the DB calculations
(see Appendixes D 3 and F). In Figs. 9 and 10 we show
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Figure 8. (Color online) Three-leg vertex in EDMFT for two
bosonic frequencies ωm = 2mπ/β with m = 0 and m = 4 and
different values of the nearest-neighbor interaction V . The
parameters are the same as in Fig. 6. With increasing V ,
the transition to the CO phase is approached and the vertex
becomes flatter. Note the change of sign.

the behavior of the three-leg vertex when the Mott tran-
sition is approached. We plot it for different values of
U marked by triangles in the phase diagram in Fig. 5.
Figure 9 is for fixed V = 0 and corresponds to DMFT.
As U increases, the vertex develops structure and grows
significantly in magnitude. This behavior reflects the en-
hancement of the fermion-fermion vertex when the tran-
sition is approached, according to Eq. (62). The vertices
diverge at the transition in the zero-temperature limit.
Figure 10 shows the vertex on the same scale as in the
previous figure, albeit for V = 0.6. As the Mott tran-
sition is approached, the magnitude increases, but the
vertex shows less structure and is smaller in magnitude
because the system is less correlated compared to the
case V = 0.

VI. DUAL BOSON RESULTS

The purpose of this paper is to obtain a first under-
standing of the effects caused by different types of dia-
grams in the DB approach. We also aim to get a bet-
ter understanding of EDMFT and EDMFT + GW . We
therefore employ different diagrammatic approximations
and analyze their physical content.

We mainly restrict ourselves to the following type of
calculations: We start from a converged EDMFT solu-
tion, compute the vertices once and take into account
diagrammatic corrections. In other words, the hybridiza-
tion and retarded interaction have the same values as in
EDMFT. The results can be interpreted in terms of a
diagrammatic extension of EDMFT. This corresponds to
DB calculations without the outer self-consistency loop
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Figure 9. (Color online) Three-leg vertex for two differ-
ent bosonic frequencies as a function of fermionic frequency.
The nearest-neighbor interaction is kept fixed at V = 0 corre-
sponding to a DMFT calculation. The corresponding points
are marked by triangles in the phase diagram of Fig. 5. With
increasing values of U , the Mott transition is approached from
the metallic side.

and is computationally significantly less expensive than
the full scheme. We nevertheless discuss the effect of the
full self-consistency scheme at some selected points of
the phase diagram. The inner self-consistency loop is al-
ways iterated until convergence, corresponding to a self-
consistent renormalization of self-energy diagrams and
Green’s functions.

In a first step, we examine the effect of polarization
corrections only: We neglect diagrams to the fermionic
self-energy and only include corrections to the EDMFT
polarization via bosonic self-energy diagrams. In a sec-
ond step, we additionally consider the effect of fermionic
self-energy diagrams. Fermionic diagrams which explic-
itly contain the fermion-fermion vertex will not be con-
sidered. These diagrams also appear in the framework of
the DF approach and their effect has been studied pre-
viously for the Hubbard model (V = 0). For example,
it is known that the second-order approximation includes
dynamical short-range correlations which lead to a reduc-
tion of the critical U of the Mott transition [38]. Similar
effects can be expected for finite V . This renders a com-
parison with EDMFT or EDMFT + GW more difficult.
We therefore leave the study of more complete approxi-
mations for future work.

-15

-10

-5

 0

 5

 10

-10

 0

 10

 20

 30

-6 -4 -2  0  2  4  6

νn

R
e
λ
ν
n
,ω

m
R
e
λ
ν
n
,ω

m

U = 2.30

U = 2.40

U = 2.45

U = 2.50

m = 0

m = 9 V = 0.6

Figure 10. (Color online) Three-leg vertex for different
bosonic frequencies as a function of the fermionic frequency.
The nearest-neighbor interaction is fixed at V = 0.6. Param-
eters are otherwise the same as in Fig. 9. The corresponding
points are marked by diamonds in Fig. 5.

A. Polarization corrections

1. Diagrams

In terms of the charge susceptibility, the physical po-
larization Π is defined through

Xqω =
1

−Π−1
qω − (U + Vq)

. (50)

It should not be confused with the bosonic self-energy Π̃,
which has different dimension. Comparing with Eq. (30),
we see that the EDMFT polarization is independent of
momentum:

Π−1
ω = −χ−1

ω − Λω. (51)

On the other hand, the polarization in the DB approach,
expressed in terms of the bosonic self-energy, becomes
[cf. Eq. (34)]:

Π−1
qω = −(χω + χωΠ̃qωχω)−1 − Λω. (52)

In these equations, Λω contains the static U (cf.
Sec. II C). We see that the momentum dependence intro-
duced through diagrammatic corrections to the bosonic
self-energy directly translates to a momentum depen-
dence of the polarization. If the dual polarization is ne-
glected, Eq. (52) evidently reduces to the EDMFT po-
larization.

We consider the approximations to the bosonic self-
energy diagrams depicted in Fig. 11. The first one shown
in panel (a) is a diagram which is second order in the
electron-boson vertex λ. Using the diagrammatic rules,
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Figure 11. Diagrammatic approximations to the bosonic
self-energy Π̃qω.

we obtain (cf. Appendix B)

Π̃(2)
qω =

T

N

∑

kνσ

λν+ω,−ωG̃kνσG̃k+qν+ωσλνω. (53)

In the approximation shown in Fig. 11 (b), one of the tri-
angular vertices has been replaced with the renormalized
triangular vertex. This diagram explicitly reads:

Π̃(ladder)
qω =

T

N

∑

kν

λν+ω,−ωG̃kνG̃k+qν+ωΛqνω, (54)

where the renormalized triangular vertex Λ is momentum
dependent. It is given in terms of the renormalized lattice
vertex function Γ in the charge channel in the form

Λqνω = λνω −
T

N

∑

k′ν′

Γqνν′ωG̃k′ν′G̃k′+qν′+ωλν′ω, (55)

which is depicted diagrammatically in Fig. 12. Equa-
tion (54) may be referred to as a ladder approxima-
tion: The renormalized lattice vertex Γ contains a ladder-
diagram series generated by the Bethe-Salpeter equa-
tion [46],

Γqνν′ω = γνν′ω−
T

N

∑

k′′ν′′

γνν′′ωG̃k′′ν′′G̃k′′+qν′′+ωΓqν′′ν′ω,

(56)

shown in Fig. 13. We solve it by matrix inversion accord-
ing to

[Γνν′ ]
−1
qω = [γνν′ ]

−1
ω + T χ̃0

qνωδνν′ , (57)

with χ̃0
qνω = (1/N)

∑
k G̃kνG̃k+qν+ω. Note that only

the charge channel Γch := Γ↑↑ + Γ↑↓ contributes to the
polarization. The ladder approximation is equivalent to
the usual expression for the DMFT susceptibility [7],

Xqω = 2T
∑

ν

χ0
qνω − 2T 2

∑

νν′

χ0
qνωΓqνν′ωχ

0
qν′ω, (58)

as long as the (E)DMFT self-consistency condition (35)
is fulfilled [37]. Here χ0

qνω = (1/N)
∑

kGkνGk+qν+ω de-
notes the usual particle-hole bubble.

+=

Figure 12. The renormalized triangular vertex Λqνω in the
ladder approximation.

2. Results

We now discuss the U -V phase diagram computed by
the DB method, and compare it to two established meth-
ods: the RPA and the EDMFT. RPA is expected to be
accurate in the low-U regime and to fail at higher U . On
the contrary, EDMFT is expected to be accurate at large
U , since it captures the atomic-like physics, and to fail
at low U , because it lacks the momentum dependence of
the polarization. The strength of the DB method is pre-
cisely to interpolate between RPA at low U and EDMFT
at large U . In the following, we first discuss these limits
in detail and finally the intermediate coupling regime.

The phase diagram of the Hamiltonian (1), with
nearest-neighbor hopping t and nearest-neighbor interac-
tion parameter V is shown in Fig. 14, albeit at elevated
temperature T = 0.02 compared to Fig. 5 (in units of
the half bandwidth is D = 4t). We focus on the region of
U values for which a metallic solution exists. The phase
boundaries have been determined from the zeros of X−1

qω

at q = (π, π) and ω = 0 and we have verified that the di-
vergence happens at the (π, π) point first. The EDMFT
data in this figure is quantitatively very similar to the
one in Fig. 5, revealing a very small overall temperature
dependence of the phase boundary.

Let us first consider the low-U regime and compare
to RPA. In RPA, the polarization is given by the Lind-

hardt bubble, i.e. ΠRPA
qω = −(T/N)

∑
kνσ G

(0)
kνG

(0)
k+qν+ω.

An explicit calculation of ΠRPA
qω for T = 0.02 shows

V RPA
c ≈ 0.043 + U/4, where the slope is determined

by the number of nearest neighbors z = 4. This phase
boundary is shown by the dash-dotted line in Fig. 14.
The DB results approach the RPA result in the limit
U → 0. In Appendix G we show that DB indeed re-
duces to RPA in the weak-coupling limit (U, V → 0). For
U = 0 but finite V , the local retarded interaction is finite,
but the deviations from RPA remain small. In Fig. 15
we compare the frequency- and momentum dependence
of the ladder DB solution with RPA which confirms this
picture. The second-order approximation forms the dom-
inant part of the corrections by far as expected. EDMFT
fails in this low U limit, because it completely neglects
the momentum dependence of the polarization (cf., e.g.,
Fig. 15 , top panel). The diagrammatic corrections re-

+= γ ΓγΓ

Figure 13. Diagrammatic representation of the Bethe-
Salpeter equation for the renormalized vertex function.
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Figure 14. (Color online) U -V phase diagram in EDMFT
and dual boson (DB) with polarization corrections only, at
T = 0.02. The blue line is for the second-order diagrammatic
correction [Fig. 11 (a)] to the polarization and the green line
includes the ladder diagrams [Fig. 11 (b)]. Finite temperature
RPA data (dash-dotted line) is shown for comparison. The
dashed line corresponds to Vc = U/z, where z = 4 is the
coordination number. The value of the bandwidth is marked
by the vertical dotted line. Arrows bound the location of the
transition according to lattice Monte Carlo results for U = 1
and T = 0.125 (see text for details).

store this momentum dependence.

The DB corrections to EDMFT diminish in the op-
posite large-U limit, where the MI phase is approached
(the Mott transition roughly takes place at the right
end of this figure; cf. Fig. 5). The physics is well de-
scribed within EDMFT. In this limit, the RPA clearly
fails, because it is a weak coupling approach (the static
self-energy and static irreducible vertex are not sufficient
to describe the strong correlation physics).

In the intermediate interaction regime we obtain re-
sults which are compatible with currently available lat-
tice Monte Carlo data for U = 1 and T = 0.125, which
locate the transition roughly between V = 0.25 and
V = 0.3125 [47] (see arrows in Fig. 14). The ladder
and second-order DB approximation give close results.
The four-leg vertex and the long-range vertex correc-
tions built from it, which are included in the former
but not in the latter, have a small effect in determin-
ing the phase boundary. We further see that the DB
phase boundaries run essentially parallel to the V = U/4-
line. This is in agreement with previous results (see,
e.g., Ref. 48 and references therein). The lattice Monte

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 0  1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  1

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.5  1  1.5  2  2.5  3  3.5

 0

 1

 2

 3

 4

 5

 6

 0  0.5  1  1.5  2  2.5  3  3.5

qx/πqx/π

ωmωm

R
e
Π

q
ω

R
e
Π

q
ω

ω = 0π/β

q = (0, 0)

ω = 6π/β

q = (π, π)

U
=

0.
00
0

V
=

0.
04
5

U
=

0.
00
0

V
=

0.
04
5

Figure 15. (Color online) Comparison of the momentum
dependence (top panels) and frequency dependence (bottom
panels) of the polarization in EDMFT (red circles), second-
order DB (blue triangles), ladder DB (green, diamonds) and
RPA (black crosses) for U = 0 and V = 0.045 in the immedi-
ate vicinity of the charge-ordering transition.

Carlo results, however, suggest that the phase boundary
is located above this line. While the ladder approxima-
tion agrees with this result, the second-order approxi-
mation lies below. Related with this observation, the
latter exhibits an artifact, which can be seen in the top
right panel of Fig. 16. The polarization turns negative
for q = (π, π) and the lowest frequency ω = 0. This
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Figure 16. (Color online) Frequency dependence of the phys-
ical polarization Πqω for fixed momentum q = (0, 0) (left
column) and q = (π, π) (right column) in the ladder approx-
imation. We show results for EDMFT (red circles), second-
order DB (blue triangles) and ladder DB (green diamonds).
The colors are the same as in the phase diagram Fig. 14. For
U = 0.5 and q = (π, π), the polarization in second-order DB
turns negative at ω = 0.
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proximation. In EDMFT, this quantity is a constant.

follows directly from the condition for charge ordering,
1+(U−4V )Πq=(π,π),ω=0 = 0. For larger U , the EDMFT
and DB results are relatively close for all frequencies (see
bottom right panel of Fig. 16). The two DB approxima-
tions also differ qualitatively at q = (0, 0). The second-
order approximation (and EDMFT) are finite at finite
frequencies. This implies a violation of the Ward iden-
tity [37], which appears to be more severe for larger U .
Ladder DB shows the required discontinuity at ω = 0
and appears to be conserving for all values of U [35].
Long-range vertex corrections seem necessary to avoid
such artifacts.

The phase diagram of Fig. 14 can also be compared
to cluster methods. It is qualitatively similar to cluster
results on the two-dimensional triangular lattice [25]. For
the square lattice, data for comparison are available only
for T = 0 [24]. In these variational cluster approximation
(VCA) calculations, the phase boundary is located close
to the V = U/4 line.

In Fig. 17 we show the momentum dependence of the
polarization Πqω. At moderate U = 0.5 it exhibits a
rather strong momentum dependence and the correction
is large compared to EDMFT (Πω=0 ∼ 1.25 at these pa-
rameters). It is largest at the vector q = (π, π) at which
the transition occurs (|Vq| is maximal and Vq < 0 at
this point). At large U , the correction is much weaker
and more isotropic (in EDMFT, Πω=0 ∼ 0.274). At finite
Matsubara frequencies, the polarization is rather flat, ex-
cept in the vicinity of the q = (0, 0) point, where it de-
creases to zero. This is a further requirement imposed
by charge conservation [37].

In order to trace the interpolating behavior of the DB
approach, it is instructive to rewrite Eq. (34) in the form

X−1
qω=χ−1

ω (1 + χωΠ̃qω)−1 + Λω−Vq. (59)

Comparing with the EDMFT susceptibility (30), one sees
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Figure 18. (Color online) The diagrammatic correction

χωΠ̃ω,q=(π,π) (see text) in second-order approximation, eval-
uated at the wave vector associated with charge order and
shown as a function of Matsubara frequency. With increasing
values of U , the diagrammatic correction is reduced. Its value
is only weakly dependent on V .

that the term in parentheses plays the role of a renormal-
ization factor, which determines how much the solution
is altered compared to EDMFT. The change of the phase
boundary with respect to EDMFT is hence determined
by the dimensionless quantity χωΠ̃ω,q [at q = (π, π) and
ω = 0]. In Fig. 18, we show its frequency dependence
in second-order approximation at various points in the
phase diagram. For high frequencies it approaches a con-
stant non-zero value because the asymptotic behavior of
the constituents cancels. At low frequencies, diagram-
matic corrections contribute significantly, even for small
interaction. This is due to the fact that the fermion-
boson vertex remains finite even for vanishing interac-
tion [cf. Eq. (E1)]. As U increases, the magnitude of
the vertex increases. At the same time, the dual Green’s
function and the local susceptibility χω become smaller
in magnitude. As electrons become more and more lo-
calized, the net effect is that nonlocal corrections become
less and less important: χωΠ̃qω decreases continuously at
low frequencies as U increases. For example, at U = 2,
V = 0.5, we have χω=0Π̃q=(π,π)ω=0 � 1 so that the DB
phase boundary merges into the EDMFT one for large
U .

Figure 18 further shows that diagrammatic corrections
depend only weakly on V . For small U , results for V = 0
and V = 0.04 are virtually indistinguishable. The value
V = 0.04 is close to the critical value of the charge-
ordering transition, which illustrates that there is no
structural change in χωΠ̃qω near the transition. It is
the interplay with the value of Vq in (59) that triggers
the divergence in X.
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(a) (b) (c)

Figure 19. Second-order DB approximation for the fermionic
(b) and bosonic (c) self-energies defined in terms of a common
dual functional (a). The open triangles stand for the impu-
rity triangular vertices, straight and wiggly lines denote fully
dressed fermionic and bosonic propagators, respectively.

B. Fermionic self-energy diagrams

In this section, we include fermionic self-energy dia-
grams in addition to the bosonic ones. We see that these
corrections have essentially no effect on the phase bound-
aries. They restore a weak momentum dependence of the
self-energy missing in EDMFT.

A priori, different approximations for the fermionic
self-energy can be combined with the previously intro-
duced polarization diagrams. In order to keep the dis-
cussion reasonably simple and reduce the number of pos-
sibilities, we impose the following guiding principle for
constructing approximations: The fermionic and bosonic
self-energies are chosen such that they can be obtained
from a common (dual) functional. In each case, the
fermionic (bosonic) self-energy is given by a functional
derivative with respect to the fermionic (bosonic) dual
Green’s function.

1. Diagrams

The two approximations we consider are depicted in
Figs. 19 and 20, which we refer to as “second-order”
and “ladder” approximations, respectively, in accordance
with the foregoing. The latter differs from the former
in the use of the renormalized triangular vertex instead
of the local impurity one. The approximations generate
the same bosonic self-energies that we considered before.
Note that in the ladder approximation, both vertices
in the self-energy diagram are necessarily renormalized.
This may be checked, for example, by symbolically insert-
ing the graphical definition of the renormalized triangu-

(a) (b) (c)

Figure 20. Dual boson ladder approximation constructed
from a functional involving the renormalized triangular vertex
shown in Fig. 12 (shaded triangle).
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Figure 21. (Color online) Phase diagram for the extended
Hubbard model in the plane of on-site interaction U and
nearest-neighbor interaction V including fermionic self-energy
corrections computed within the approximations depicted in
Figs. 19 and 20. The EDMFT and DB data with polarization
corrections only (labeled “DB, Π”) are the same as in Fig. 14
and included for comparison. Black crosses mark ladder DB
results with full outer self-consistency.

lar vertex, Fig. 12, into Fig. 20 and taking the functional
derivative (i.e., cutting lines) with respect to all internal
Green’s functions while obeying the product rule.

The self-energy in the second-order approximation
reads

Σ̃
(2)
kνσ = − T

N

∑

qω

λσνωG̃k+qν+ωX̃qωλν+ω,−ω, (60)

while in the ladder approximation we have

Σ̃
(ladder)
kνσ = − T

N

∑

qω

ΛqνωG̃k+qν+ωX̃qωΛqν+ω,−ω. (61)

The bosonic self-energies are given by Eqs. (53) and (54),
respectively.

2. Results

Results for the phase diagram within this approxima-
tion are shown in Fig. 21. We include results from the
previous phase diagram for comparison. The effect on
the phase diagram is very small (the phase-boundaries
are pushed to slightly higher values of V ).
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Figure 22. (Color online) Momentum dependence of the non-
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ν for fixed
Matsubara frequencies ν = π/β (left column) and ν = 7π/β
(right column) in the ladder approximation. In EDMFT, this
quantity is a constant (equal to zero).

In Fig. 22 the momentum dependence of Im Σkν −
Im ΣEDMFT

ν is shown for the ladder approximation. The
correction is smallest in the vicinity of the Fermi sur-
face and increases away from it. It is generally negligible
with respect to the EDMFT self-energy as we can see in
Fig. 23. The behavior is qualitatively similar compared
to EDMFT + GW as reported in Refs. 34 and 44. The
polarization remains quantitatively similar as in the case
without self-energy corrections (not shown).
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Figure 23. (Color online) Frequency dependence of the phys-
ical self-energy Im Σkν for fixed momentum q = (π, 0) (left
column) and q = (π, π) (right column) in the ladder approx-
imation. We show results for EDMFT (red circles), second-
order DB (blue triangles), and ladder DB (green diamonds).
The colors are the same as in the phase diagram of Fig. 14.

C. Effect of outer self-consistency

We have performed ladder DB calculations with full
outer self-consistency for U = 0.5, U = 1.0, and U = 1.5,
to see the effect of converging the bath. The suscepti-
bility is smaller in the fully self-consistent calculation,
but the phase diagram is qualitatively unchanged. The
results are marked by black crosses in Fig. 21. The cor-
rections to the phase boundary increase for increasing U ,
but remain marginal.

VII. SIMPLIFIED APPROXIMATION

We have seen that the nonlocal corrections to EDMFT
lead to significant changes in the phase diagram and po-
larization. The DB approach, however, is computation-
ally more expensive, because of the required computation
of vertex functions. Simpler approximations which cap-
ture the essential features would be desirable. This leads
to the question of how important vertex corrections are
for an accurate description of the physics.

A simpler and well-known approximation that goes
beyond EDMFT is the EDMFT + GW approximation
(for a recent discussion, see Ref. 34). The basic idea
of EDMFT + GW is to treat the local self-energies
within EDMFT and add nonlocal contributions from
GW diagrams. The two different decoupling schemes
(see Sec. II C) give different results for the phase bound-
aries [34], while the DB approach is invariant. Formally,
the V -decoupling scheme is closer to the DB approach: In
both cases, we have an electron-electron and an electron-
boson vertex (U and i in the EDMFT + GW ) and the
local interaction is taken into account on the level of the
impurity model. In this section, we formulate a simpli-
fied version of the DB equations that neglects correc-
tions due to the fermion-fermion vertex. We then show
that in the weak coupling regime, this approximation and
EDMFT + GW in the V -decoupling scheme yield similar
results.5

We construct a simplified DB approximation (s-DB)
which does not require the expensive calculation of the
vertices γ and λ by setting γ = 0 in the second-order dia-
grams (higher orders vanish in such an approach). With
the relation (see Ref. 35 and Appendix E)

λσνω =
1

χω

(
T
∑

ν′σ′

γσσ
′

νν′ωgν′σ′gν′+ω,σ′ − 1

)
, (62)

we see that in this case λνω = −χ−1
ω . This simplification

hence neglects the fermionic frequency structure of the
three-leg vertex function. The resulting expressions for

5 In EDMFT + GW within the UV -decoupling scheme, the phase
boundary to the CO state is essentially unaltered with respect
to EDMFT [34].
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Figure 24. (Color online) U -V phase diagram in the
DB approximation with and without vertex corrections and
from EDMFT + GW in the V -decoupling scheme. The
EDMFT + GW data obtained in the V -decoupling scheme
are taken from Ref. 34 (for T = 0.01). Approximations that
neglect the fermionic frequency structure of the three-leg ver-
tex deviate strongly from those with vertex corrections and
from the V = U/4 line, close to where the true phase bound-
ary is expected. For details, see text.

the polarization and self-energy are given in Eqs. (G4)
and (G14). The corresponding EDMFT + GW expres-
sions are provided in Eqs. (G8) and (G15), respectively.

In Fig. 24 we examine the difference between these ap-
proximations numerically. We include DB results from
the phase diagram of Fig. 21 for comparison. Several
observations can be made. First, s-DB agrees with the
second-order approximation with vertex corrections for
U → 0. This is expected by construction. Note, however,
that the two approximations are not exactly equivalent
here because the former neglects the fermionic structure
of the triangular vertex, which is present, but very weak
at U = 0 due to a small but finite retarded interaction.
EDMFT + GW (for T = 0.01) from Ref. 34 agrees within
error bars. We expect that a refined calculation at the
same temperature would give closer (although not per-
fect, because of the finite Λω) agreement for U → 0.

EDMFT + GW and s-DB, however, depart signifi-
cantly from the DB result already for small interaction.
In particular, the slope is different. We can trace this
back to the fact that the fermionic frequency structure of
the fermion-boson vertex λνω is neglected. From Figs. 8–
10, we see that λνω changes sign as a function of ν. Since
s-DB ignores cancellations caused by this structure, we
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agram of Fig. 24. The same quantity in the DB scheme with
vertex corrections is shown in Fig. 16.

expect it to overestimate Π̃qω=0 and, by Eq. (52), the
physical polarization Π. This leads to charge ordering
at smaller V as observed [cf. Eq. (50)]. The devia-
tions are largest in the intermediate coupling regime.
EDMFT + GW shows an overall similar trend as s-DB.6

Given that different methods (see Refs. 48 and 49 and
references therein), including the full DB calculation and
lattice Monte Carlo results [47], locate the phase bound-
ary in the vicinity of the line V = U/4, we conclude
from these results that the frequency-dependence of the
three-leg vertex structure is crucial for an adequate de-
termination of the phase boundary.

Neglecting the vertex corrections also comes at the cost
of severe artifacts, even at relatively small local interac-
tion U . This can be seen in Figs. 25 and 26. In the
left panel of Fig. 26 we can see that the physical polar-
ization in s-DB clearly violates the Ward identity. The
right panel shows that it turns largely negative at small
frequencies (see Fig. 16 for the same quantity in the orig-

6 We note that the EDMFT + GW result was computed including
an outer-loop self-consistency (see Sec. III). We expect this to
have a negligible effect in the weak-coupling region. For larger
U , we are only interested in the qualitative behavior, which we
do not expect to change.
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Figure 28. (Color online) Frequency dependence of the phys-
ical self-energy Σkν for fixed momentum k = (π, 0) (left) and
k = (π, π) (right) in the DB approximation without vertex
corrections (blue triangles). For comparison we show the same
quantity in EDMFT (red circles). The colors correspond to
the ones used in the phase diagram of Fig. 24. The corre-
sponding DB data are shown in Fig. 23.

inal DB approach). Nonlocal corrections are hence over-
estimated and the behavior is non-physical.

In Figs. 27 and 28 we show the corresponding fermionic
self-energy. Compared to the ladder approximation, the
magnitude of the nonlocal corrections is larger. Nonlocal
corrections hence also appear to be overestimated in the
simplified approach.

VIII. CONCLUSIONS

We have presented the first implementation of the DB
approach and applied it to the extended Hubbard model
with nearest-neighbor interaction.

The DB method interpolates between RPA at low in-
teraction and EDMFT at large interaction, as can be
seen from the phase diagram in Fig. 14. It captures the
strong momentum dependence of the polarization, which
is important at low to intermediate interaction and which
is absent in EDMFT. Different choices of diagrammatic
corrections have been shown to lead to very similar phase
diagrams. They are compatible with the currently avail-
able lattice Monte Carlo data on this model.

Examining a simplified version of the DB method, we
also concluded that the nontrivial frequency dependence

ν + ω

ν

ν′ + ω

ν′
γ

ν + ω

ν

ν′ + ω

ν′

ν + ω

ν

ν + ω

ν

Figure 29. Illustration of how to determine the sign of a
diagram. The vertices (left) in a given diagram should sym-
bolically be replaced by interaction lines as indicated on the
right. Each closed fermion loop in the resulting diagram con-
tributes a factor −1. See Appendix B for details.

of the local fermion-boson three-leg vertex is very impor-
tant for the accuracy of the approximation and leads to
large differences with EDMFT + GW results.
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Appendix A: Bosonic Hubbard-Stratonovich
transformation

In order for the integral in (6) to be convergent, the
matrix W = Λ − V must be positive definite, which is
not necessarily the case. This may be resolved by adding
a sufficiently large constant to W and absorbing it into
Λ. A similar approach was used in Ref. 32 and shown
not to affect physical results. In practice, this constant
appears not to be needed. The problem does not exist for
a decoupling using a Hubbard-Stratonovich transforma-
tion based on complex fields. Convergence of the integral
over the complex variables can be ensured by changing
the integration path from the real to the imaginary axis
for negative elements of the diagonalized matrix W when
it is not positive definite [35].
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Appendix B: Feynman rules of the dual
perturbation theory

The Feynman rules for evaluating the expression cor-
responding to a given diagram may be stated as follows:

(i) Draw all topologically distinct, connected diagrams
involving the elements of Fig. 1.

(ii) With each fermion line associate a dual Green’s

function G̃.

(iii) With each boson line associate a dual Green’s func-

tion X̃.

(iv) With each triangular vertex associate a fermion-
boson interaction λ.

(v) With each square vertex associate a fermion-
fermion interaction γ.

(vi) Assign a frequency, momentum and spin label to
each line, taking into account the conservation of
these quantities at each vertex.

(vii) Sum over all internal variables. Include a factor T
for every frequency summation and N−1 for every
momentum summation, where N is the number of
lattice sites.

(viii) Divide the end result by the symmetry factor. Ev-
ery set of n topologically equivalent lines (i.e. con-
necting the same two vertices and pointing in the
same direction) contributes a factor n! to the sym-
metry factor.

(ix) Determine the sign of the diagram as follows: A

diagram for Π̃ has a global minus sign resulting
from the definition −〈φφ〉. Every internal boson
line contributes an additional factor (−1). An ad-
ditional minus sign may arise from fermionic closed
loops. To determine this sign, symbolically replace
all vertices with interaction lines as illustrated in
Fig. 29 and count the number of resulting closed
fermion loops. Every closed loop contributes a fac-
tor (−1).

k + q,
ν + ω

q, ω

(a) Second order

k + q
ν + ω

k, ν

(b) Second order

k + q
ν + ω

k′ + q
ν′ + ω

k, ν k′, ν′

γ

(c) Third order

Figure 30. Second-order diagram for the dual fermionic self-
energy Σ̃kνσ (a) and second-order (b) and third-order (c) di-

agrams contributing to the DB self-energy Π̃qω.

Figure 31. Illustration of how to count the number of
closed fermion loops to determine the sign of the diagram
in Fig. 30(c). The symbolic rules of Fig. 29 yield the diagram
depicted here. It contains two closed fermion loops, which
contribute a factor (−1)2.

Let us exemplify these rules for the diagrams shown in
the figures. The diagram in Fig. 30(a) straightforwardly
evaluates to

Σ̃
(2)
kνσ = − T

N

∑

qω

λσνωG̃
σ
k+qν+ωX̃qωλ

σ
ν+ω,−ω. (B1)

There is no closed loop, but a single boson line. The
overall sign is hence −1.

For the second-order diagram to the bosonic self-
energy, Fig. 30(b), we start with a minus sign and account
for the one resulting from the closed fermion loop after re-
placing the vertices by interaction lines. The overall sign
of the diagram is hence +1. In the third-order diagram
[Fig. 30(c)] we count two closed loops after replacing the
vertices by interaction lines as shown in Fig. 31. Its sign
is hence −1. We therefore obtain

Π̃(2)
qω =

T

N

∑

kνσ

λσν+ω,−ωG̃kνσG̃k+qν+ωσλ
σ
νω, (B2)

Π̃(3)
qω = −(

T

N
)2
∑

kνσ

∑

k′ν′σ′

λσν+ω,−ωG̃
σ
kνG̃

σ
k+qν+ω

× γσσ′νν′ωG̃
σ′

k′ν′G̃
σ′

k′+qν′+ωλ
σ′

ν′ω. (B3)

Appendix C: Instabilities and the Dyson equation

Here we show that the Dyson equation, which is a ge-
ometric series for the dual susceptibility X̃, diverges at
the same point as the physical susceptibility X.

The Dyson equation for bosons reads

X̃−1
qω = X̃−1

qω − Π̃qω =
1− Π̃qωX̃qω

X̃qω

. (C1)

The dual susceptibility X̃ diverges when the numerator
in the above equation vanishes,

1− Π̃qωX̃qω = 0. (C2)

The bare dual Green’s function (24) can be brought into
an alternative form,

X̃−1
qω =

1

(χ−1
ω + Λω − Vq)−1 − χω

=
χ−1
ω + Λω − Vq
−χω(Λω − Vq)

.

(C3)
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Multiplying Eq. (C2) by an appropriate (non zero) factor
and using the form (C3) eventually leads to

1 + χω(Λω − Vq)

χω(1 + χωΠ̃qω)

(
1− Π̃qωX̃qω

)
= 0

1 + χω(Λω − Vq)

χω(1 + χωΠ̃qω)

(
1− Π̃qω

−χω(Λω − Vq)χω
1 + (Λω − Vq)χω

)
= 0

1 + χω(Λω − Vq)

χω(1 + χωΠ̃qω)
+ Π̃qω

χω(Λω − Vq)χω

χω(1 + χωΠ̃qω)
= 0

1

χω(1 + χωΠ̃qω)
+ Λω − Vq = 0

X−1
qω = 0,

(C4)

where (34) was used to obtain the last line. This shows
that the physical susceptibility X diverges at the same
point as the dual susceptibility.

Appendix D: Implementation details

1. Impurity solver

We use a hybridization expansion quantum Monte
Carlo impurity solver (CT-HYB) [42]. The solver takes
the retarded interaction kernel K(τ) and its deriva-
tive K ′(τ) as input.7 The kernel is defined such that
K ′′(τ) = Λ(τ), with boundary conditions K(τ = 0) = 0
and K(τ = β) = 0. In order to interface the DB program
with the impurity solver, we compute K(τ) directly from
the retarded interaction known on Matsubara frequen-
cies Λω. We assume that the infinite frequency limit
limω→∞ Λω =: Λ∞ of the latter vanishes. Otherwise,
we subtract the tail contribution Λ∞ and add it to the
instantaneous part of the interaction inside the solver,
which needs to be treated separately. With this Λ, we
found the following expressions to give maximal numeri-
cal accuracy:

K(τ) =
Λ0

2

(
τ

β
− 1

)
τ+

1

β

∞∑

m=−∞
m6=0

Λiωm
(iωm)2

(
e−iωmτ−1

)
,

(D1)

K ′(τ) =
Λ0

2

(
2τ

β
− 1

)
− 1

β

∞∑

m=−∞
m6=0

Λiωm
iωm

e−iωmτ . (D2)

These can be obtained by Fourier transform while treat-
ing the static contribution explicitly. In practice we com-
pute the sums with a finite frequency cutoff. The formula
(D1) has been obtained independently in Ref. 51. It is

7 The derivative is required for the improved estimator; see Ref. 43.

valid for τ ∈ [0, β]. This result slightly differs from the
formula used in Ref. 34 in that the static component Λ0

is treated separately. This has the advantage that the
summand decays faster than 1/(iω)2 so that the error
due to the finite frequency cutoff of the sum is negligible.

2. Self-consistency loops; Initial guess

In practice, the propagators in subsequent inner self-
consistency loop iterations are mixed linearly according
to

G̃
new,(n)
kνσ = ξG̃G̃

(n)
kνσ + (1− ξG̃)G̃

(n−1)
kνσ ,

X̃new,(n)
qω = ξX̃X̃ (n)

qω + (1− ξX̃)X̃ (n−1)
qω . (D3)

where ξG̃, ξX̃ ∈ (0, 1] are mixing parameters in order to
avoid oscillations. We typically take ξG̃ = ξX̃ = 0.9.
The iterations are stopped once the difference between
two successive iterations according to a suitable differ-
ence measure8 becomes smaller than some small number
ε. Apart from the first few iterations, the convergence of
this inner loop is found to be exponential. The number
of required iterations increases in the vicinity of phase
transitions.

In the outer self-consistency loop, we update the hy-
bridization function and retarded interaction according
to the rules

∆new
νσ = ∆old

νσ + ξ∆[g−1
νσ G̃

local
νσ (Glocal

νσ )−1], (D4)

Λnew
ω = Λold

ω + ξΛ[χ−1
ω X̃ local

ω (X local
ω )−1]. (D5)

Here Glocal
νσ and X local

ω denote the local parts of the lattice

propagators and G̃local
νσ and X̃ local

ω the local parts of the
dual propagators.9 These equations have the same fixed
point as the self-consistency conditions (37) and (38).
Typical values for the mixing parameters of the update
are ξ∆ = ξΛ = 0.9. The convergence is well behaved and
similar as one is used to from DMFT.

As an initial guess for EDMFT or DB calculations, one
may start from Λω = 0 and a hybridization function cor-
responding to the noninteracting case, i.e., ∆νσ is given
by Eq. (D4) with ∆old

νσ = 0, Σνσ = Σimp
νσ = 0 and ξ∆ = 1.

3. Symmetry relations for vertices; Frequency
cutoffs

In order to reduce computation time, we exploit the
symmetries of the vertex functions. The vertices need

8 We use the measure d = (T/N)
∑

kνσ |G̃
(n)
kνσ − G̃

(n−1)
kνσ | and an

analogous expression for the bosonic Green’s function.
9 Note that Glocal

νσ and Xlocal
ω as well as gνσ and χω merely serve

as scaling factors in these equations: Inserting the EDMFT re-
lations G̃ = GEDMFT − g and X̃ = XEDMFT − χ in place of
G̃ and X̃ one sees that the terms in angular brackets reduce to
g−1 −G−1 and χ−1 −X−1, respectively.
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to be computed for positive bosonic frequencies ωm ≥ 0
only, i.e. for m = 0, . . . , Nω − 1, where Nω is the number
of frequencies. For negative ω, they are related to their
values at positive frequencies by (λσν,−ω)∗ = λσ−ν,ω and

(γσσ
′

ν,ν′,−ω)∗ = γσσ
′

−ν,−ν′,ω, which follow from the definition
of the Fourier transform. In our implementation, we fur-
ther use the following symmetry relations for the vertex
functions λ and γ:

(λσν,ω)∗ = λσ−ν−ω,ω, (D6)

(γσσ
′

νν′ω)∗ = γσ
′σ
−ν′−ω,−ν−ω,ω. (D7)

They are derived in Appendix F below. These rela-
tions do not assume particle-hole symmetry. Note the
exchange of spin labels in the second line.

One sees that for a given bosonic frequency ωm the
vertex λ as a function of fermionic frequency is sym-
metric around −ωm/2. This can directly be observed in
Figs. 8–10. As a result, for a given bosonic frequency ωm
the vertex only needs to be computed for fermionic fre-
quency νn ≥ −ωm/2. In terms of indices, n ≥ −(m−1)/2
for m odd and n ≥ −m/2 for m even, respectively.

The diagrams, such as Eqs. (53) and (B3) contain
convolutions of Green’s functions which are of the form
G̃νG̃ν+ω. Important contributions to these diagrams
stem from those combinations of frequencies for which
the product is large. This is the case for ν ≈ 0 and
ν + ω ≈ 0, because G̃ is largest for small frequencies [it
decays as 1/(iν)2]. The dominant contributions ν ≈ 0
and ν ≈ −ω lie symmetrically around −ω/2. If one
computes the vertex functions on an interval for the
fermionic frequencies which is symmetric around 0, i.e.,
n = −Nν , . . . Nν−1, where Nν is the cutoff frequency, the
symmetry relations ensure that the dominant contribu-
tion at ν ≈ −ω is captured even for bosonic frequencies
m > Nν .

For larger ω, the dominant contributions are less
strongly peaked at ν ≈ 0 and ν + ω ≈ 0. It is important
to take a sufficiently large number of fermionic frequen-
cies into account to obtain the correct large ω behavior
of the diagrams.

4. Optimized evaluation of diagrams

The diagrammatic expressions can be decomposed into
a sequence of convolutions in momentum space: Con-
sider, for example, the diagram (60). Notwithstanding
the frequency summations, it contains the convolution∑

q G̃k+qX̃q. X̃q in turn involves diagrammatic correc-

tions such as the one in (53), which also contains a convo-

lution
∑

k G̃kG̃k+q. We compute these using fast convo-

lution. This amounts to, e.g., computing G̃r in real space
using an FFT and then computing the FFT of G̃rG̃−r.
With FFTs, we can compute diagrams at a cost that
scales as N logN with the number of k points N instead
of at least N2 for straightforward momentum summa-
tions.

−

−

+

+

ν

νν

ν

ν

ννν

ν

ν + ων + ω

ν + ων + ων + ω ν′ + ω

ν′

ν′

ν′

ω
ω

γ(4)

γ(3)
〈n〉

gνgν+ωχωλνω︷ ︸︸ ︷

︸ ︷︷ ︸
g(3) conνω

︸ ︷︷ ︸

g
(4) con
νν′ω

︸ ︷︷ ︸

g
(4) disc
νν′ω

︸ ︷︷ ︸
g(3) discνω

Figure 32. Diagrammatic representation of the three-leg
g(3) (top panel) and four-leg correlation function g(4) (bottom
panel) and the definition of the vertex functions in terms of
them. The figure illustrates the relation between the three-
leg and four-leg vertices γ(4) and λ. Wavy lines represent the
charge susceptibility and straight lines with arrows denote
fully dressed single-particle Green’s functions.

We gain additional speedup by using the lattice sym-
metries. The Bethe-Salpeter equation, which is intro-
duced below, has to be evaluated for all points in the Bril-
louin zone and the evaluation is computationally costly.
Using lattice symmetries, we can reduce the computa-
tional effort by roughly a factor of ∼ 8 for the two-
dimensional square lattice and a factor ∼ 48 in the three-
dimensional cubic lattice.

5. Parallelization

We use the message passing interface (MPI) for the
parallelization. The Monte Carlo impurity solver is par-
allelized in the standard way by running different Markov
chains on different threads. The evaluation of the DB
equations is most straightforwardly parallelized over the
bosonic frequencies. The Bethe-Salpeter equation (56),

the diagrammatic expressions for Π̃ω (53), (B3) and con-

tributions to Σ̃ from individual bosonic frequencies may
be computed independently for different ω. Communica-
tion between threads is only needed at the end of each
inner renormalization iteration when the results and the
contributions to the self-energies from different bosonic
frequencies are collected on the master.

Appendix E: Vertex functions

In the DB approach, we have two types of interac-
tion vertices: a fermion-fermion (four-leg) and a fermion-
boson (three-leg) vertex. They are local and computed
from the QIM. Their relation and definition in terms of
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the impurity correlation functions g(3) and g(4) are illus-
trated diagrammatically in Fig. 32. The four-leg vertex
γ(4) is obtained from the connected part g(4)con of the
two-particle Green’s function by amputating the legs.
g(4)con [the numerator in (19)], in turn, is obtained by
subtracting the disconnected part g(4)disc from the two-
particle Green’s function g(4).

The structure of the three- and four-leg correlation
functions is very similar. The three-leg vertex λ, how-
ever, is not obtained by amputating the legs from the
connected part (this would give γ(3)). The reason is es-
sentially that in the decoupling of the interaction, Eq. (6),
the field φ couples to the density n as an entity and not
to c∗ and c individually. As a consequence, the three-
leg vertex is non zero even in absence of interaction. In
terms of the connected correlation function, the three-leg
vertex is given by

λσνω =
g
σ(3)con
νω

gνσgν+ω,σχω
− 1

χω
. (E1)

In the noninteracting case, γ(3) and the connected part
g(3)con vanish and it follows that λσνω = −χ−1

ω .
A relation between the fermion-boson vertex and γ

may be derived by replacing nω = β−1
∑
ω c
∗
ν′cν′+ω in

the expectation value of g(3) [35],

gν+ωσgνσχωλ
σ
νω =−

〈
cνσc

∗
ν+ωσnω

〉
− βgνσ 〈n〉 δω

=− 1

β

∑

σ′ν′

〈
cνσc

∗
ν+ωσc

∗
ν′σ′cν′+ωσ′

〉

− gνσ
∑

σ′ν′

〈
c∗ν′σ′cν′+ωσ′

〉
δω

= +
1

β

∑

σ′ν′

g
(4)σσ′

νν′ω − gνσ
∑

σ′ν′

gν′σ′δω,

(E2)

where we have used the definition (21) of the two-particle

correlation function, g
(4)σσ′

νν′ω :=
〈
cνσc

∗
ν+ωσcν′+ωσ′c

∗
ν′σ′

〉

Taking the definition (19) of the vertex γ and summing
over σ′, ν′, we can write

1

β

∑

σ′ν′

g
(4)σσ′

νν′ω − gνσ
∑

σ′ν′

gν′σ′δω + gν+ωσgνσ

= gν+ωσgνσ
1

β

∑

σ′ν′

γσσ
′

νν′ωgν′σ′gν′+ωσ′ . (E3)

Combining (E2) and (E3) yields the desired relation:

λσνω = χ−1
ω

(
1

β

∑

σ′ν′

γσσ
′

νν′ωgν′σ′gν′+ωσ′ − 1

)
. (E4)

Appendix F: Symmetry relations

The symmetry relation (D7) for the fermion-fermion
vertex can be proven starting from the definition of the

Fourier transform of the two-particle correlation func-
tion,

g
(4)σσ′

ν,ν′,ω :=
1

β

∫
dτi 〈cσ(τ1)c∗σ(τ2)cσ′(τ3)c∗σ′(τ4)〉

× ei[ντ1−(ν+ω)τ2+(ν′+ω)τ3−ν′τ4]. (F1)

Taking the conjugate, commuting the Grassmann vari-
ables and relabeling τ1 ↔ τ3 and τ2 ↔ τ4, we obtain

(
g

(4)σσ′

ν,ν′,ω

)∗
=

1

β

∫
dτi 〈cσ(τ1)c∗σ(τ2)cσ′(τ3)c∗σ′(τ4)〉

× e−i{ντ1−(ν+ω)τ2+(ν′+ω)τ3−ν′τ4}

=
1

β

∫
dτi 〈cσ′(τ3)c∗σ′(τ4)cσ(τ1)c∗σ(τ2)〉

× e−i{(ν′+ω)τ3−ν′τ4+ντ1−(ν+ω)τ2}

=
1

β

∫
dτi 〈cσ′(τ1)c∗σ′(τ2)cσ(τ3)c∗σ(τ4)〉

× e−i{(ν′+ω)τ1−ν′τ2+ντ3−(ν+ω)τ4}

=
1

β

∫
dτi 〈cσ′(τ1)c∗σ′(τ2)cσ(τ3)c∗σ(τ4)〉

× ei{[−(ν′+ω)]τ1−(−ν′)τ2+(−ν)τ3−[−(ν+ω)]τ4}

=:g
(4)σ′σ
−(ν′+ω),−(ν+ω),ω, (F2)

where the last equality follows from comparison with the
definition of the Fourier transform (F1). It remains to
show the analogous relations for the disconnected part
and the denominator in the definition (19) of the vertex
function. We treat the two terms in the disconnected
part separately:

G
(4)σσ′,disc
νν′ω := βgνσgν+ωσδνν′δσσ′ − βgνσgν′σ′δω

=: G
(a)σσ′,disc
νν′ω −G(b)σσ′,disc

νν′ω . (F3)

Using that (gν,σ)∗ = g−ν,σ, we obtain

(G
(a)σσ′,disc
νν′ω )∗ = βg−ν,σg−ν−ω,σδνν′δσσ′

= βg−ν′,σ′g−ν′−ω,σ′δνν′δσσ′

= βg−ν′−ω,σ′g−ν′,σ′δν′νδσ′σ
= βg−ν′−ω,σ′g−ν′,σ′δ−ν′−ω,−ν−ωδσ′σ

=: G
(a)σ′σ,disc
−ν′−ω,−ν−ω,ω,

(G
(b)σσ′,disc
νν′ω )∗ = βg−νσg−ν′σ′δω

= βg−ν′σ′g−νσδω
= βg−ν′−ωσ′g−ν−ωσδω

=: G
(b)σ′σ,disc
−ν′−ω,−ν−ω,ω. (F4)

Let us abbreviate the product in the denominator of the
vertex function (19) by πσσ

′

νν′ω:

πσσ
′

νν′ω := gν,σgν+ω,σgν′,σ′gν′+ω,σ′ . (F5)
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Under conjugation we find

(πσσ
′

νν′ω)∗ := g−ν,σg−ν−ω,σg−ν′,σ′g−ν′−ω,σ′

= g−ν′−ω,σ′g−ν′,σ′g−ν,σg−ν−ω,σ

=: πσ
′σ
−ν′−ω,−ν−ω,ω. (F6)

Because the same symmetry relations hold for all con-
stituents of the vertex function, we can write

(γσσ
′

ν,ν′,ω)∗ = γσ
′σ
−ν′−ω,−ν−ω,ω. (F7)

The corresponding symmetry relation for the electron-
boson vertex λ can be derived by similar means. Alter-
natively, we can use the above symmetry relation for the
electron-electron vertex γ by employing the relation (E4)
between λ and γ . With χ∗ω = χω we have

(λσν,ω)∗ =
1

χω

[
1

β

∑

ν′σ′

(γσσ
′

νν′ω)∗(gν′σ′)
∗(gν′+ω,σ′)

∗ − 1

]

=
1

χω

[
1

β

∑

ν′σ′

γσ
′σ
−ν′−ω,−ν−ω,ωg−ν′σ′g−ν′−ω,σ′−1

]
.

(F8)

Shifting the summation variable according to ν′ → −ν′−
ω, we obtain

(λσν,ω)∗ =
1

χω

[
1

β

∑

ν′σ′

γσ
′σ

ν′,−ν−ω,ωgν′+ω,σ′gν′σ′ − 1

]
.

(F9)

Time-reversal symmetry finally implies [52, 53] γσσ
′

νν′ω =

γσ
′σ

ν′νω, which gives the desired relation

(λσν,ω)∗ =
1

χω

[
1

β

∑

ν′σ′

γσσ
′

−ν−ω,ν′,ωgν′σ′gν′+ω,σ′ − 1

]

=: λσ−ν−ω,ω. (F10)

Appendix G: Approximation without vertex
corrections

1. Polarization

We construct a simplified approximation by letting
γ ≡ 0. In this case, λνω = −χ−1

ω , according to (E4).
Inserting this into the second-order approximation for
the dual bosonic self-energy, Eq. (53) and Fig. 19, one
obtains

Π̃qω =
T

N
χ−1
ω

∑

kνσ

G̃k+qν+ωG̃kνχ−1
ω . (G1)

Using G̃ = GEDMFT−g, which follows from (23) and (29),
we can rewrite the convolution as (the label EDMFT is

omitted in the following)

T

N

∑

kνσ

G̃kν G̃k+qν+ω =
T

N

∑

kνσ

GkνGk+qν+ω

− T
∑

νσ

gνgν+ω =: {GG}nonloc
qω .

(G2)

The result can be interpreted as the nonlocal part of the
bubble because for a self-consistent EDMFT solution, the
local part of the lattice Green’s function G equals the
impurity Green’s function g, i.e. (1/N)

∑
kGkν = gν . In

order to obtain an expression for the physical polarization
Π in terms of the bosonic self-energy Π̃, we use (52)

Π−1
qω = −(χω + χωΠ̃qωχω)−1 − Λω. (G3)

Inserting the above result for Π̃ yields

Π−1
qω = −(χω + {GG}nonloc

qω )−1 − Λω. (G4)

The susceptibility can be decomposed into a bubble con-
tribution and a part containing local vertex corrections
∆χω,

χω =T
∑

νσ

gνgν+ω + ∆χω, (G5)

where

∆χω := T 2
∑

νν′σ

gνgν+ωγνν′ωgν′gν′+ω. (G6)

Inserting (G5) into (G4), we can write the polarization
in the form

Π−1
qω = −({GG}qω + ∆χω)−1 − Λω, (G7)

where the term in brackets is a lattice bubble with local
vertex corrections added.

In EDMFT + GW , the polarization is the sum of the
local EDMFT part and the nonlocal part of the lattice
bubble [34]. In our notation, it reads:

Π−1
qω =

[(
− χ−1

ω − Λω

)−1

− {GG}nonloc
qω

]−1

, (G8)

where the first term is the impurity polarization

Πimp
ω := (−χ−1

ω − Λω)−1 =
−χω

1 + Λωχω
. (G9)

The two expressions (G4) and (G8) obviously give differ-
ent results in general. In the weak-coupling limit (U and
V small), when Λ is small, they give the same result. In
this limit, ∆χω is negligible and χω can be approximated
by the bare local bubble according to (G5). The polar-
ization in both approximations correspondingly reduces
to Πqω ≈ −{GG}qω, i.e., to the (bare) lattice bubble.
This corresponds to RPA.
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2. Fermionic self-energy

In EDMFT + GW , the fermionic self-energy is decom-
posed into the local impurity part and a nonlocal correc-
tion from GW diagrams. In DB, there is an analogous
decomposition [35]:

Σkν = Σimp
ν +

Σ̃kν

1 + gνΣ̃kν

. (G10)

For weak coupling, the dual self-energy and the denom-
inator are small, i.e., Σkν ≈ Σimp

ν + Σ̃kν . The nonlocal
part is then given by the dual self-energy itself. Letting
λνω ≈ −χ−1

ω as for the polarization, we obtain for the
second-order diagram of Fig. 19 and Eq. (60):

Σ̃kν = − T
N

∑

qω

χ−1
ω G̃k+qν+ωX̃qωχ

−1
ω . (G11)

In analogy to the GW approximation, which is con-
structed using the renormalized interaction, we evaluate
it with the renormalized bosonic propagator X̃. Using
Dyson’s equation,

X̃−1
qω = X̃−1

qω − Π̃qω, (G12)

as well as (C3) and the result (G1) and (G2) for the

polarization, we obtain for X̃−1
qω :

X̃−1
qω − Π̃qω =

χ−1
ω − (Vq − Λω)

χω(Vq − Λω)
− {GG}

nonloc
qω

χωχω

=
1− (Vq − Λω)χω − (Vq − Λω){GG}nonloc

qω

χω(Vq − Λω)χω
.

(G13)

Inserting this into (G11) gives the result

Σ̃kν =− T

N

∑

qω

G̃k+qν+ω

× (Vq − Λω)

1 + (Vq − Λω)(−χω − {GG}nonloc
qω )

.

(G14)

The fraction in the second line has the form of a screened
interaction Vq − Λω with a polarization given by −χω −
{GG}nonloc

qω . As noted above, it corresponds to a bub-
ble of lattice Green’s functions with local vertex correc-
tions added. The corresponding EDMFT + GW result of
Ref. 34, in our notation and with our conventions, reads

Σ̃kν =− T

N

∑

qω

Gk+qν+ω
Vq

1 + Vq(Πimp
ω − {GG}nonloc

qω )
.

(G15)

Here we do not consider an additional term of order U2,
which is irrelevant in the low-U region of the phase di-
agram on which we want to focus. A similar contribu-
tion arises in the DB approach from the local fermion-
fermion vertex γ. There are three main differences. (i)
The impurity polarization Πimp

ω in the denominator in
EDMFT + GW is replaced by −χω in DB. According to
(G9), Πimp contains χω to leading order, and they will
be similar to χω when Λω is small. (ii) The full lattice
Green’s function enters the EDMFT + GW self-energy,
while in the DB self-energy, it is only its nonlocal part.
(iii) The interaction in DB is given by Vq−Λω, while it is
simply Vq in EDMFT + GW . The latter two differences
are not fundamental: To leading order in the interaction,
the two expressions are the same. In this case (G14)
becomes

Σ̃kν = −(T/N)
∑

qω

G̃k+qν+ω(Vq − Λω)

= −(T/N)
∑

qω

G̃k+qν+ωVq

= −(T/N)
∑

qω

Gk+qν+ωVq, (G16)

where we have used
∑

k G̃kν = 0 to obtain the second line

and G̃kν = Gkν−gν and
∑

q Vq = 0 for the third line. For
higher orders, the two expression differ, however, because
the above cancellations do not occur for the mixed terms
in the expansion in powers of (Vq − Λω).

Appendix H: Estimating the spectral weight at the
Fermi level

The local density of states (DOS) can be determined
from the local imaginary time Green’s function, e.g., by
maximum entropy (MaxEnt) methods [54]. The DOS
at the Fermi level indicates if the system is metallic or
insulating. In the limit of low temperatures, it can be ob-
tained directly from the imaginary time Green’s function
at τ = β/2 without analytical continuation. To prove
this, use that β/ cosh(E′β/2)→ 2πδ(E′) for β →∞, so

G
(β

2

)
= −

∫ ∞

−∞
dE′A(E′)

1

2 cosh(E
′β
2 )

(H1)

≈ −
∫ ∞

−∞
dE′A(E′)

π

β
δ(E′) (H2)

≈ −A(0)
π

β
, (H3)

A(0) ≈ −β
π
G
(β

2

)
. (H4)

The minus sign with respect to Ref. 54 is due to our
definition of the Green’s function as −〈cc∗〉.
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V. W. Scarola, U. Schollwöck, C. Silva, B. Surer, S. Todo,
S. Trebst, M. Troyer, M. L. Wall, P. Werner, and S. Wes-
sel, J. Stat. Mech.: Theory Exp. 2011, P05001 (2011).

[51] J. Otsuki, Phys. Rev. B 87, 125102 (2013).
[52] G. Rohringer, A. Valli, and A. Toschi, Phys. Rev. B 86,

125114 (2012).
[53] L. Brown, Quantum Field Theory (Cambridge University

Press, 1994).
[54] M. Jarrell and J. Gubernatis, Phys. Rep. 269, 133

(1996).

http://dx.doi.org/10.1098/rspa.1963.0204
http://dx.doi.org/10.1126/science.235.4793.1196
http://dx.doi.org/ 10.1103/PhysRevLett.110.166401
http://dx.doi.org/ 10.1103/PhysRevLett.106.236805
http://dx.doi.org/ 10.1103/PhysRevLett.106.236805
http://dx.doi.org/10.1103/PhysRevLett.111.036601
http://dx.doi.org/10.1103/PhysRevLett.111.036601
http://dx.doi.org/ 10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.77.1027
http://dx.doi.org/10.1103/PhysRevB.80.045120
http://dx.doi.org/10.1103/PhysRevB.80.045120
http://dx.doi.org/ 10.1103/PhysRevB.80.064501
http://dx.doi.org/ 10.1103/PhysRevB.80.064501
http://dx.doi.org/ 10.1103/PhysRevB.82.155101
http://dx.doi.org/10.1103/PhysRevLett.95.237001
http://dx.doi.org/10.1103/PhysRevLett.110.216405
http://dx.doi.org/10.1103/PhysRevLett.110.216405
http://dx.doi.org/10.1143/JPSJ.75.054713
http://dx.doi.org/10.1103/PhysRevB.75.045118
http://dx.doi.org/10.1103/PhysRevB.75.045118
http://dx.doi.org/ 10.1103/PhysRevB.88.115112
http://dx.doi.org/ 10.1103/PhysRevB.88.115112
http://dx.doi.org/10.1103/PhysRevB.77.033101
http://dx.doi.org/10.1103/PhysRevB.79.045133
http://dx.doi.org/10.1103/PhysRevB.67.075110
http://dx.doi.org/10.1103/PhysRevB.67.075110
http://dx.doi.org/10.1103/PhysRevLett.93.086401
http://dx.doi.org/10.1103/PhysRevLett.93.086401
http://dx.doi.org/10.1103/PhysRevB.72.115104
http://dx.doi.org/10.1103/PhysRevLett.99.036404
http://dx.doi.org/10.1103/PhysRevB.70.235107
http://dx.doi.org/10.1103/PhysRevB.81.035106
http://dx.doi.org/10.1103/PhysRevB.81.035106
http://stacks.iop.org/0034-4885/61/i=3/a=002
http://stacks.iop.org/0034-4885/61/i=3/a=002
http://dx.doi.org/10.1103/PhysRevLett.77.3391
http://dx.doi.org/10.1103/PhysRevB.61.5184
http://dx.doi.org/10.1103/PhysRevLett.84.3678
http://dx.doi.org/10.1103/PhysRevLett.84.3678
http://dx.doi.org/10.1103/PhysRevB.63.115110
http://dx.doi.org/10.1103/PhysRevB.63.115110
http://dx.doi.org/10.1103/PhysRevB.66.085120
http://dx.doi.org/10.1103/PhysRevLett.109.226401
http://dx.doi.org/10.1103/PhysRevLett.109.226401
http://dx.doi.org/10.1103/PhysRevB.87.125149
http://dx.doi.org/10.1103/PhysRevB.87.125149
http://dx.doi.org/10.1016/j.aop.2012.01.002
http://dx.doi.org/10.1103/PhysRevLett.113.246407
http://dx.doi.org/10.1103/PhysRevLett.113.246407
http://dx.doi.org/10.1103/PhysRevB.90.235105
http://dx.doi.org/10.1103/PhysRevB.90.235105
http://dx.doi.org/10.1007/978-3-642-10449-7_4
http://dx.doi.org/10.1007/978-3-642-10449-7_4
http://dx.doi.org/10.1007/978-3-642-10449-7_4
http://dx.doi.org/10.1103/PhysRevLett.102.206401
http://dx.doi.org/10.1103/PhysRevLett.102.206401
http://dx.doi.org/ 10.1103/PhysRevLett.97.076405
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2012.12.013
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2012.12.013
http://dx.doi.org/10.1103/PhysRevB.89.235128
http://dx.doi.org/10.1103/PhysRevB.90.195114
http://dx.doi.org/10.1103/PhysRevB.90.195114
http://dx.doi.org/10.1103/PhysRevLett.104.146401
http://dx.doi.org/10.1103/PhysRevLett.104.146401
http://dx.doi.org/10.1103/PhysRevB.77.195105
http://dx.doi.org/10.1103/PhysRevB.77.195105
http://dx.doi.org/10.1103/PhysRevB.39.9397
http://dx.doi.org/10.1103/PhysRevB.76.085115
http://dx.doi.org/10.1103/PhysRevB.76.085115
http://stacks.iop.org/0022-3719/12/i=11/a=015
http://stacks.iop.org/0022-3719/12/i=11/a=015
http://dx.doi.org/10.1103/PhysRevB.87.125102
http://dx.doi.org/10.1103/PhysRevB.86.125114
http://dx.doi.org/10.1103/PhysRevB.86.125114
http://dx.doi.org/ http://dx.doi.org/10.1016/0370-1573(95)00074-7
http://dx.doi.org/ http://dx.doi.org/10.1016/0370-1573(95)00074-7

	Beyond extended dynamical mean-field theory: Dual boson approach to the two-dimensional extended Hubbard model
	Abstract
	I Introduction
	II Dual Boson Formalism
	A Relation to EDMFT
	B Perturbation theory
	C Invariance with respect to the decoupling scheme
	D Two-particle excitations

	III Computational scheme
	IV Implementation
	V EDMFT Results
	A EDMFT Phase diagram
	B Impurity quantities

	VI Dual boson results
	A Polarization corrections
	1 Diagrams
	2 Results

	B Fermionic self-energy diagrams
	1 Diagrams
	2 Results

	C Effect of outer self-consistency

	VII Simplified Approximation
	VIII Conclusions
	 Acknowledgments
	A Bosonic Hubbard-Stratonovich transformation
	B Feynman rules of the dual perturbation theory
	C Instabilities and the Dyson equation
	D Implementation details
	1 Impurity solver
	2 Self-consistency loops; Initial guess
	3 Symmetry relations for vertices; Frequency cutoffs
	4 Optimized evaluation of diagrams
	5 Parallelization

	E Vertex functions
	F Symmetry relations
	G Approximation without vertex corrections
	1 Polarization
	2 Fermionic self-energy

	H Estimating the spectral weight at the Fermi level
	 References


