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The wiring diagram of the human brain can be described in terms of graph measures that
characterize structural regularities. These measures require an estimate of whole-brain
structural connectivity for which one may resort to deterministic or thresholded
probabilistic streamlining procedures. While these procedures have provided important
insights about the characteristics of human brain networks, they ultimately rely on
unwarranted assumptions such as those of noise-free data or the use of an arbitrary
threshold. Therefore, resulting structural connectivity estimates as well as derived graph
measures fail to fully take into account the inherent uncertainty in the structural estimate.
In this paper, we illustrate an easy way of obtaining posterior distributions over graph
metrics using Bayesian inference. It is shown that this posterior distribution can be
used to quantify uncertainty about graph-theoretical measures at the single subject level,
thereby providing a more nuanced view of the graph-theoretical properties of human brain
connectivity. We refer to this model-based approach to connectivity analysis as Bayesian
connectomics.
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1. INTRODUCTION
Connectomics refers to the field of research that aims to unravel
the connectivity pattern between distinct neural populations
within a nervous system (Sporns et al., 2005; Behrens and Sporns,
2012; Seung, 2012; Sporns, 2012). At the macroscopic scale, con-
nectomics strongly relies on non-invasive mapping of anatomical
pathways between brain regions using diffusion weighted imag-
ing (DWI) (Behrens and Sporns, 2012). The resulting structural
connectivity estimates have been used to subdivide brain regions
into functionally coherent clusters via the notion of connectivity-
based parcellation (Beckmann et al., 2009; Cloutman and Ralph,
2012; Mars et al., 2012). Variability in structural connectivity has
also been related to individual differences (de Schotten et al.,
2011; Catani et al., 2012). Furthermore, changes in structural
connectivity have been implicated in several neurodegenerative
diseases (Bassett et al., 2008; Riedl and Honey, 2008; Seeley et al.,
2009; Lo et al., 2010; Raj et al., 2012). It has become commonplace
to summarize structural networks in terms of a wide variety of
graph-theoretical measures (Stam and Reijneveld, 2007; Bullmore
and Sporns, 2009; Rubinov and Sporns, 2010; van den Heuvel
and Sporns, 2011), each reflecting different aspects of network
topology.

The quest for the brain’s connectome is complicated, how-
ever, by the fact that structural connectivity must be inferred
from noisy measurements. In case of DWI, these measurements
pertain to the anisotropic diffusion of water (Jones et al., 2013).
With DWI, one obtains an estimate of water diffusion for each
voxel in a number of different directions. This voxel-wise dif-
fusion profile can be modeled as an ellipsoid, which serves to

determine the principal diffusion direction in that voxel. By
connecting the principal diffusion directions, one can draw a
streamline representing a putative axon bundle, connecting two
regions in a process known as deterministic tractography (Basser
et al., 2000). However, deterministic tractography completely
ignores the uncertainty about diffusion direction in individual
voxels.

An alternative to deterministic tractography is probabilistic
tractography, where streamlines are sampled using a distribution
of principal diffusion directions (Behrens et al., 2003). By repeat-
ing this process, one constructs distributions of streamlines that
reflect the uncertainty in streamlining. An often used heuristic to
infer structural connectivity from these distributions is to assume
the presence of a connection between brain regions if the number
of streamlines connecting those regions survives an (arbitrary)
threshold. Hence, in the end there is still only a point estimate of
the graph and all graph theoretical measures are, therefore, also
limited to point estimates that do not take the stochastic nature
of streamlining into account.

Summarizing, current approaches to inferring structural con-
nectivity either assume noise-free data (deterministic streamlin-
ing) or use an arbitrary threshold (probabilistic streamlining).
Hence, conclusions drawn based on graph-theoretical measures
derived from either approach ignore the inherent uncertainty
in structural connectivity estimation, possibly leading to erro-
neous conclusions. To solve this issue, we advocate a fully
Bayesian approach to estimating neural connectivity patterns,
which we refer to as Bayesian connectomics, or BaCon for
short.
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2. BAYESIAN CONNECTOMICS
Bayesian approaches have become increasingly prevalent in neu-
roscience, providing normative and descriptive models of human
cognition (Griffiths et al., 2008; Clark, 2013), as well as a method-
ologically sound approach to neural data analysis (Penny and
Friston, 2006; Friston et al., 2008). In the same vein, Bayesian con-
nectomics makes use of a generative model in order to explain
observed data. That is, we propose to infer a probability distribu-
tion over brain networks based on (i) our prior knowledge about
brain networks and (ii) a forward model, or likelihood function,
that explains our measurements.

Several methods have been proposed that we would also con-
sider a BaCon approach. These include the Bayesian approaches
to probabilistic streamlining like those proposed in Behrens et al.
(2007). These approaches could also be used to propagate uncer-
tainty to graph level analysis by considering one iteration over
seed voxels as a sample and draw one streamline per modeled fiber
in a voxel. Each of these samples could then be used to construct
a graph. Another example would be the tract-level formulation
proposed by Jbabdi et al. (2007) and used in the TRACULA
framework (Yendiki et al., 2011). These approaches, however, do
not lend themselves well to incorporating assumptions at the level
of graph structure.

In our recent work, we proposed a model formulated at the
network level for structural connectivity (Hinne et al., 2013),
allowing us to place a prior on graph structure. Our results
demonstrated significantly improved macroscopic structural con-
nectivity estimates using the Bayesian approach, as compared
with standard approaches. This previous work focused on the
computational details of inferring a distribution over struc-
tural networks. In the present work, we use an extension of

the original model and show, for the first time, how uncer-
tainty in structural connectivity estimates impacts derived graph-
theoretical measures. We proceed by describing the details of this
model.

Let structural networks be represented by a symmetrical K ×
K adjacency matrix A, where K is the number of regions (in
this work we use the AAL template excluding cerebellum with
K = 90). Here, aij = aji = 1 indicates that a direct anatomical
pathway exists between brain regions i and j, and aij = aji = 0
indicates its absence. The diagonal of this matrix is fixed to 0
to exclude self-loops. We assume that the observed data is given
by a K × K streamline count matrix N as generated by a proba-
bilistic tractography algorithm. Under the generative model, the
observed data N and structural network A have a joint probability
distribution given by

P(N, A) = P(N | A)P(A) (1)

where P(N | A) denotes the likelihood function, modeling how
an unobserved adjacency matrix leads to observed data, and
P(A) denotes the prior on structural networks. Note that both
the likelihood function and the prior depend on a set of hyper-
parameters θ , which is left implicit in Equation (1). The genera-
tive model used in this paper is visualized in Figure 1.

2.1. SPECIFICATION OF THE PRIOR
The prior, indicated in red in Figure 1, models how whole-
brain structural networks are generated. It allows incorporation
of various assumptions about these networks that derive from
background knowledge (Mukherjee and Speed, 2008). These
assumptions can range from the very specific, like including

FIGURE 1 | Generative model of structural connectivity. Red and purple
regions indicate the prior and the likelihood function respectively. Green
nodes indicate hyperparameters, blue nodes are latent variables, the gray
node represents the streamline count matrix N and the white node is the
unobserved variable of interest A. Insets show, from left to right, the prior
distribution of p, a toy example of A and distributions over probability

vectors in X for this toy graph. Distributions over probability vectors for
three example nodes are plotted on a simplex. Each point on the simplex
corresponds to a probability vector. The closer a point is to a vertex, the
more mass is allocated to the corresponding element in the vector. The
color gradients indicate the probability densities over probability vectors
(red is high probability).
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known connections that are difficult to image, e.g., splenial
fibers between ventral visual cortices (Dougherty et al., 2005),
to the very abstract, such as incorporating the assumption that
structural networks have small-world properties (Bassett and
Bullmore, 2009; Bullmore and Bassett, 2011).

We wish to incorporate an assumption on graph density which
can be modeled using a Beta-Binomial prior. We start by intro-
ducing a random variable p that represents the prior probability
of the presence (aij = 1) or absence (aij = 0) of an edge between
any pair of regions i and j in the adjacency matrix A. This edge
existence is modeled using a Bernoulli distribution with param-
eter p, essentially implementing a weighted coin flip, where p is
drawn from a Beta distribution. Hence:

p | α, β ∼ Beta(α, β)

aij | p ∼ Bernoulli(p) for i < j and aij = aji

where ∼ denotes that the left-hand side random variable is dis-
tributed according to the density on the right-hand side. Values
for α and β encode our prior knowledge on connection probabil-
ity. Integrating out p, we obtain the following prior on structural
networks:

P(A | α, β) =
∫

Beta(p | α, β)

⎡
⎣∏

i < j

Bernoulli(aij | p)

⎤
⎦ dp

= B (e1 + α, e0 + β)

B(α, β)
(2)

with B(x, y) = ∫ 1
0 tx − 1(1 − t)y − 1 dt the Beta function, e1 the

number of edges in A, e0 the number of non-edges in A, and
where we respect the constraints that A should be symmetrical
and does not contain self-loops. In this prior, edges are coupled
through their dependence on the global p. Hence, its distribution
corresponds to a prior distribution on graph density. See the inset
of Figure 1 for a plot of the prior on network density.

In our previous work, we used an Erdös-Rènyi model as the
graph prior, which corresponds to a Bernoulli prior on the edges
with a global p. In the beta-binomial prior, we place a hyper
prior on p and integrate it out, which couples the edges through
their dependence on p. The main benefit is that it allows us to
express uncertainty in the expected graph density, hence it is a
more flexible prior.

2.2. SPECIFICATION OF THE LIKELIHOOD FUNCTION
In order to complete the model, we need to specify the likelihood
function, indicated in purple in Figure 1, embodying a forward
model that captures how structural networks lead to observed
data. This raises the question of how to determine the presence
of a connection, especially in the face of asymmetric streamline
counts.

When modeling how structural networks lead to observed
streamline counts, we assume that the presence of an edge
between regions i and j increases the probability that a stream-
line is drawn from i to j (or vice versa) for 1 ≤ j ≤ K and
i �= j. That is, for each region i we draw the probability vector

xi = (xi1, . . . , xi(K−1)) that sums to one and models the prob-
ability of streamlining from i to j, from the following Dirichlet
distribution:

xi | ai, d0, d1 ∼ Dirichlet(d0(1 − ai) + d1ai)

where ai denotes the i-th row of the adjacency matrix A, excluding
aij. The hyper-parameter d0 influences the streamlining proba-
bility from region i to j in the absence of an edge between these
regions. If an edge does exist between two regions, the stream-
lining probability is influenced by d1. For each region i, given a
streamline probability vector xi, the vector of streamline counts
ni is drawn from a Multinomial distribution:

ni | Si, xi ∼ Multinomial(Si, xi)

where Si is the number of streamlines drawn by the tractography
algorithm. The choice of the multinomial follows directly from
the form of the data, i.e., counts over regions. The Dirichlet dis-
tribution is a conjugate prior for the multinomial and provides
the link between the binary, symmetric graph and the asymmetric
streamlining probabilities. In doing so, it allows us to distribute
the probability mass in the streamline probability vector in a
way that is consistent with both graph structure and streamline
counts. Because we use a conjugate prior, we can integrate out the
intermediate variable, xi, to obtain the following distribution on
streamline count matrices:

P(N | A, d0, d1) =
∏

i

⎡
⎣ Si!∏

j xij!
�

(∑
j αij

)

�
(
Si + ∑

j αij

) ∏
j

�
(
xij + αij

)
�

(
αij

)
⎤
⎦

where αij = d0(1 − aij) + d1aij and the constants Si are left
implicit on the left-hand side.

This completes the specification of our generative model, the
behavior of which is fully determined by the vector of hyper-
parameters θ = (α, β, d0, d1). In order to develop an intuition
for how the forward model leads to observed streamline counts,
Figure 1 demonstrates, for a four-node network, how probabil-
ity vectors are drawn and streamline counts are generated. With
d1 = 1 and d0 < d1, probability vectors for node i are uniformly
distributed over all target nodes j where aij = 1, that is, any proba-
bility vector is as likely as the next in the forward model. If aij = 0,
i.e., there is no edge, the most likely vectors are those with low
probability assigned to the unconnected node (note that the dis-
tribution remains uniform between the two connected nodes).
Note that setting d1 > 1, encodes the assumption that stream-
lines from a region tend to be evenly distributed over connections,
whereas d1 < 1 implies a tendency toward a “winner takes all”
regime.

The model specification further demands d0 < d1, but setting
an exact value for d0 can be difficult. The behavior of the model
also depends on the number of connections a region has through
the ratio between d0 and d1. This means d0 needs to be speci-
fied in accordance with assumptions on graph density as well as
expected false positive rates. The relation between d0, node degree
and false positive rate is illustrated in Figure S1. Simulations show
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that, with d0 and a node degree of 18 (connection density of
0.2), we expect 5% of the probability mass to be assigned to non-
edges. This is equivalent to expecting a 5% false positive rate in
the streamline counts.

2.3. INFERENCE
The posterior distribution over structural networks cannot be cal-
culated analytically, so we resort to a Markov Chain Monte Carlo
(MCMC) approach to sample from this distribution (Gelman
et al., 2003). We constructed a Metropolis sampler for our model
which generates a proposal sample A∗ from the previous sample
At − 1 by adding or removing a symmetric edge pair (aij, aji). The
acceptance ratio for this proposal can be written as

log
P(A∗ | N, θ)

P(At − 1 | N, θ)
= log

P(N | A∗, d0, d1)

P(N |, At − 1, d0, d1)

+ log
P(A∗ | α, β)

P(At − 1 | α, β)
. (3)

The terms on the right hand side correspond to the likelihood
function and the prior on networks respectively. A derivation for
the likelihood term can be found in Hinne et al. (2013). The
term representing the prior is obtained by plugging the result of
Equation (2) into Equation (3). The set of samples generated by
this inference procedure forms an approximation of the posterior
over structural networks.

2.4. GRAPH-THEORETICAL MEASURES
The posterior distribution over structural networks can be used
to derive various quantities of interest as illustrated in Figure 2.
The marginal probability of any given connection, for example, is
given by the fraction of samples that contain this link. Likewise,
the posterior over a graph measure is obtained by computing it for
each individual sample from the posterior graph distribution. The
result is a distribution of values for that particular graph measure.

In this paper, we consider a number of different graph mea-
sures. Small-worldness is a graph summary statistic that reflects

the balance between local and global connectivity. High small-
worldness has consistently been found in graphs derived from
both functional and structural connectivity estimates (Bassett
and Bullmore, 2009; Bullmore and Bassett, 2011) and has been
linked to biologically relevant phenotypes (He et al., 2008, 2009;
Schmitt et al., 2008; Yan et al., 2011). It is defined as the ratio
between normalized estimates of the clustering coefficient and
characteristic path length and is therefore influenced by both of
these statistics. Modularity is a measure that reflects the presence
of community structure in a graph, that is, it is a measure of
well the graph can be partitioned into non-overlapping commu-
nities. In terms of brain networks, these communities represent
functional subsystems of the nervous system. Node centrality is
a measure of importance of a node in a network and there are
numerous variants of centrality indices. One of the most straight-
forward examples is betweenness centrality, which is simply the
fraction of shortest paths that pass through the node in question
and can be used to identify hub regions in a network (Sporns
et al., 2007). By computing these graph-theoretical measures for
each of the MCMC samples, we obtain posterior distributions.
Thus, uncertainty is propagated to the level of graph-theoretical
analysis.

3. RESULTS
In order to demonstrate the merits of Bayesian connectomics, we
use diffusion imaging data collected for twenty subjects (these are
shown in Figure S2 as streamline count matrices). Specifically,
we show that we can produce graph summary statistics with an
associated credible interval for individual subjects, which extends
the interpretability of these statistics. To accomplish this, we esti-
mated posteriors of network measures using the BaCon frame-
work and compared these results with point estimates obtained
from graphs based on thresholded streamline count matrices. The
threshold for these was chosen such that thresholded network
density was matched to the mean posterior network density for
each subject individually. These graphs are visualized as adjacency
matrices in Figure S3.

FIGURE 2 | Illustration of how a distribution over networks is

translated to a distribution over graph properties. A ground truth
graph leads to streamlining data, which is used as input to an MCMC
algorithm. This MCMC algorithm approximates inversion of the

generative model given the data, by generating samples from the
posterior distribution. Each of these sampled graphs can be analyzed
using graph theoretical measures. Here, number of edges, resulting in
a distribution over edge counts.
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The arbitrariness of thresholding is illustrated in the top row
of Figure 3, where thresholded graphs are visualized as adjacency
matrices for an example subject (Subject 8; the same subject will
be used as example throughout this section). Clearly, the esti-
mated structural graph heavily depends on the chosen threshold.
The posterior edge probability matrix for that subject is also
depicted in this Figure (Figure S4 for all subjects). Edge prob-
abilities were obtained using our framework by calculating the
ratio between samples containing a given edge and the total num-
ber of samples drawn. Plotting these edge probabilities against
the streamline counts reveals that our approach is able to model
strongly asymmetric streamlining distributions, although it does
generally assign low edge probabilities probabilities to these edges.
A histogram of non-zero edge probabilities reveals that our model
is generally confident about either the presence or absence of
edges, with relatively few intermediate probabilities.

The posterior distribution of networks also allowed us to
subsequently generate estimates for graph-theoretical measures
with credible intervals for individual subjects. Figures 4A–C show
subject specific 95% highest posterior density (HPD) intervals
(Murphy, 2012) for graph density, small-worldness and mod-
ularity, with subjects ordered with respect to posterior graph
density. Subjects differed considerably in posterior graph density,
most likely reflecting differences in data quality based on which
inferences are made. Both small-worldness and modularity were
highly dependent on graph density, as shown by the downward
slope over subject in Figures 4B,C. Point and posterior estimates

were in agreement for both small-worldness and modularity, with
point estimates generally falling within the 95% HPD interval of
the posteriors. However, point estimates were also systematically
higher than posterior means, which implies that the networks
obtained using thresholding are qualitatively different from those
obtained using the Bayesian framework. In Figures 4D–F, the
same measures are plotted as a function of threshold for an exam-
ple subject (Figures S5–S7 show equivalent plots for all subjects).
These figures show that posterior network densities correspond
to an arbitrary range of thresholds. Moreover, posterior small-
worldness and modularity densities were associated with a wider
range of thresholds. These results indicate that these measures
are not only affected by the choice of threshold but also has an
associated uncertainty as captured by our framework.

In the remainder of this section, we examine estimates
obtained for region-specific graph-theoretical measures. Node
centrality is a measure of importance of a node in a network
and there are numerous variants of centrality indices. One of the
most straightforward examples is betweenness centrality, which
is simply the fraction of shortest paths that pass through the
node in question. Betweenness centrality can be used to identify
hub regions in a network (Sporns et al., 2007). To visualize the
relationship between point and posterior estimates of between-
ness centrality, we computed a distance zi as follows for every
region i: zi = (

μt
i − μi

)
/σi, where μt

i is the point estimate of
betweenness centrality, μi the median posterior betweenness cen-
trality and σi the standard deviation of this posterior. The median

FIGURE 3 | Thresholded graphs and posterior edge probabilities. Top
row: illustration of the arbitrariness of thresholded graphs represented as
adjacency matrices for a number of possible streamline thresholds for one
subject (Subject 7). Bottom left: posterior edge probabilities for one subject
as obtained with our Bayesian approach. Bottom middle: scatter plot of
posterior edge probabilities vs. log streamline counts over all subjects, with
edges present in both posterior and point estimates in black and those only in

posterior in red (all edges in the point estimate were present in the posterior).
Each edge is represented in both directions. The lower most line represents
edges with zero streamline counts in one direction, these are the same
edges as the “tuft” of high counts with low probabilities. Bottom right:
histogram of non-zero edge probabilities over all subjects. The symmetric
appearance is due to the mass of low probability edges being concentrated
around very low probabilities.
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FIGURE 4 | Posterior densities and point estimates of graph

measures. Top panels show mean and 95% highest posterior density
intervals (HPD) for graph density (A), small-worldness (B) and
modularity (C) for all subjects sorted by their mean posterior graph
density. Point estimates for thresholded graphs are indicated with red

stars. Bottom panels (D–F) show the same graph measures as a
function of streamline threshold for one subject (subject 8). Only
thresholds resulting in connected graphs are shown. Horizontal dashed
lines indicate the mean posterior estimate and the shaded areas cover
the 95% HPD interval.

FIGURE 5 | Differences in betweenness centrality between point

estimates obtained from thresholded graphs and posterior

distributions. For each subject we computed the distance between
point and posterior estimates as their difference normalized to the

posterior standard deviation. Subcortical and inflated cortical surfaces
show the median of this distance over subjects. Note the
consistent difference for right olfactory cortex, left pallidum and
both thalami.

of zi across subjects is plotted on the (sub)cortical surfaces in
Figure 5.

For most nodes, there was no consistent difference between
point and posterior estimates of betweenness centrality. Notable
exceptions to this, however, are the left and right thalamus,

which had consistently lower betweenness centrality in the point
estimates as compared to posterior means. Another interest-
ing difference can be found in the left pallidum, which was
consistently higher in point estimates. Thresholded graphs also
returned a higher betweenness centrality for right olfactory cortex
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as compared with the posterior distribution. To help explain
these differences, surrogate group-level connection probabili-
ties were estimated by averaging thresholded graphs as well as
the posterior probability matrices over subjects. For all non-
zero probabilities in either approach, we took the difference
between thresholding and posterior estimates and Z-transformed
these differences. Looking at the difference between the aver-
age connectivity profiles over subjects, we find that thresholding
returns lower connection probabilities (Z<−2.3) between left
thalamus and bilateral cingulate cortex, ipsilateral insula, tem-
poral pole and amygdala as well as contralateral superior frontal
cortex and paracentral lobule. Right thalamus had lower con-
nection probabilities to ipsilateral orbito-frontal, cingulate and
inferior parietal cortices as well as ipsilateral amygdala. A lack
of these connections could very well explain the lower tha-
lamic centrality in thresholded graphs and may indicate that
thresholding misses out on relevant connections. Thresholded
graphs had higher global connectivity probabilities for right
pallidum, but these could not be isolated to any specific connec-
tion. Surprisingly, right olfactory cortex showed lower connection
probabilities (Z<−2.3) with ipsilateral amygdala and contralat-
eral olfactory, anterior cingulate, medial superior frontal and
rectus cortex in thresholded graphs. This suggests that the dif-
ference in betweenness-centrality is due to more distant edge
configurations.

4. DISCUSSION
The Bayesian connectomics framework presented in this paper
illustrates that one can obtain structural network estimates, as
well as the uncertainty thereof, using a generative approach which
relies on Bayesian inference. As shown in Figure 3, thresholding
at a streamline count of one results in implausibly dense graphs,
begging the question what threshold is optimal. Our frame-
work, however, does not require an arbitrary threshold. Instead,
it estimates both the number and configuration of connections
supported by the data under our model.

Since our framework produces a distribution of networks, this
can be used to formulate connection probabilities with a clear
interpretability that is not afforded by thresholding. It should
be noted that these connection probabilities are marginal prob-
abilities that integrate out their dependence on the rest of the
graph. In general, as shown, the distribution of networks can
be subjected to any graph-theoretical analysis, providing pos-
terior estimates for these measures with credible intervals. The
general agreement between measures obtained from thresholded
graphs and our model shows that both approaches uncover sim-
ilar topological features. That being said, the employed threshold
was informed by the posterior graph density estimate. Setting
a threshold is considerably less straightforward without such
information.

Providing estimates of uncertainty enables a meaningful com-
parison of graph measures for individual subjects, or even regions
within individual subjects for node-wise metrics, where such a
comparison was previously only interpretable at the group level.
Such estimates of uncertainty can become especially important
when correlating graph-theoretical measures with phenotypes
such as intelligence (Li et al., 2009), motor skills (Wang et al.,

2013) or development (Meunier et al., 2009). In a clinical setting,
the Bayesian framework may lead to more sensitive markers for
disorders which have been shown to be related to differences in
structural connectivity, e.g., schizophrenia (Fornito et al., 2012)
or Alzheimer’s disease (Lo et al., 2010; Reijmer et al., 2013; Tijms
et al., 2013). These approaches rely on reproducibility within sub-
jects, which was not assessed in this work and should be addressed
in future research.

Ultimately, the quality of structural estimates obtained using
the Bayesian approach depends on both the quality of the data
and the validity of the employed model. In terms of data quality,
one important factor is the choice of parcellation, especially when
examining graph metrics. The size and number of parcels greatly
influence graph metrics (de Reus and van den Heuvel, 2013) and
the same holds for our posterior estimates. In this paper, we used
a parcellation of 90 cortical and sub-cortical regions, which is a
rather small number of regions. However, streamlines could be
aggregated at more fine-grained levels to form the data matrix,
though at the cost of increased computational time.

From the modeling point of view, different functional forms
of the prior and likelihood function, reflecting different assump-
tions, may further improve the inferences drawn by the model
presented in this paper. In contrast to thresholding or determin-
istic approaches, such assumptions are easily incorporated in the
framework. In this paper, we used a prior on global graph den-
sity reflecting our knowledge that local density can vary within
a graph, while assuming very little otherwise. Other knowledge
about structural networks can easily be integrated within the
prior, for instance, that these networks tend to have small-world
properties (Bassett and Bullmore, 2009; Bullmore and Bassett,
2011). Moreover, there are connections that are known from, for
example, macaque studies, which are difficult to establish using
diffusion MRI (Dougherty et al., 2005)1. Both of these types of
information, i.e., global and local, can be incorporated into a
prior on structural networks. Exponential random graph mod-
els (ERGMs) are another way to generate a prior distribution of
binary networks and encode prior assumptions on graph struc-
ture (Robins et al., 2007), although their usage is computationally
more costly. Next to the development of more suitable priors,
research may focus on extending the forward model. For exam-
ple, although in the current model we set d0 and d1 to the same
value for all subjects, these Dirichlet parameters could also be
sampled by placing a hyper-prior on them, allowing adaptation
to individual subjects’ data.

A number of studies employ weighted graphs (e.g., Lo et al.,
2010; Raj et al., 2012) and one shortcoming of the model pro-
posed here is that it can only produce a posterior over binary
graphs. Weighted graphs would be a more realistic representa-
tion of brain networks as not all connections are created equal.
It should be possible to generate distributions of weighted net-
works by formulating a sensible forward model that links a matrix
of connection strengths to the appropriate data. This formula-
tion is not straightforward, however, due to interpretation issues
inherent to DWI (Jones et al., 2013).

1Or, more rarely, large streamline counts where connections are known not to
exist.
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Summarizing, the BaCon framework presents a principled
approach to estimating brain networks as well as graph-
theoretical measures thereof. Using a generative model easily
allows incorporation of new model assumptions into the existing
framework. In general, we advocate the use of a hypothetico-
deductive approach in which developed models are continuously
adjusted in the light of incoming data (Gelman and Shalizi, 2013).
It is our hope that the presented framework as well as its possi-
ble extensions will improve the interpretability of results obtained
from connectivity analysis studies.

5. METHODS
5.1. DATA ACQUISITION
Data consisted of T1 and DWI images for twenty subjects, which
was a subset of the data used in van Oort et al. (2014) and kindly
provided by the authors. The reader is referred to this publication
for details on the acquisition protocol. In short, T1 images were
obtained with 1 mm3 isotropic resolution and DWI data with 256
diffusion directions and 2 mm3 isotropic voxels.

5.2. PREPROCESSING
All preprocessing was performed using FSL 5.0 (http://fsl.fmrib.

ox.ac.uk). Structural scans were segmented using FAST (Zhang
et al., 2001) and FIRST (Patenaude et al., 2011). The prepro-
cessing steps for the diffusion data were conducted using FSL
FDT (Behrens et al., 2003) and consisted of correction for eddy
currents and estimation of the diffusion parameters. We used
FDT Probtrackx 2.0 (Behrens et al., 2003, 2007) for probabilis-
tic streamlining, where gray matter voxels served as targets while
voxels on the gray-white matter boundary served as seeds. The
target mask was a combination of the gray matter mask output
from FAST and the interior voxels of the subcortical segmenta-
tion from FIRST, this mask also served as termination mask. The
seed mask consisted of the mixeltype mask representing the mix-
ture of gray and white matter voxels from FAST combined with
the boundary mask for the subcortical structures from FIRST.
Overlap between seed and target mask was removed from the seed
mask.

For each of the seed voxels 5000 streamlines were drawn,
with a maximum length of 2000 steps (step size was 0.5 mm).
Streamlines were stopped when they reached a voxel in the tar-
get mask. Streamlines were restricted by fractional anisotropy and
they were discarded if a sharp angle (< 80◦) occurred or their
length was less than 2 mm. The output thus obtained is a matrix
N, where nij is the number of streamlines drawn from voxel i in
the seed mask to voxel j in the target mask. This matrix was col-
lapsed into 90 cortical and subcortical areas as defined by the AAL
atlas (excluding cerebellum). Streamlines were summed over all
voxels per region, resulting in a 90 × 90 aggregated connectivity
matrix which ranges over regions rather than voxels. The aggre-
gated streamline count matrices are freely available through www.

ccnlab.net.

5.3. NETWORK ESTIMATION
Structural networks were estimated from probabilistic streamline
count data using either a thresholding approach or using our
Bayesian connectomics approach. In order to compare results,

subject-specific thresholds were chosen such as to include the
same number of edges as were present on average in the poste-
rior networks for a given subject (edges were randomly selected
in case of a tie). The streamline count matrices were symmetrized
prior to thresholding by summing counts from either direction (i
to j and vice versa).

Hyper-parameters of the generative model were chosen as fol-
lows. We chose α = 14 and β = 53 as a vague prior on sparse
networks. The forward model has parameters d0 and d1, these
parameters control the distribution of probability vectors for a
given network. Note that a probability vector is drawn for each
row in the adjacency matrix separately. With d1 > 1, one would
encode the expectation that, for any given region, there is uni-
formity in streamlining probabilities and hence, given the large
number of streamlines drawn, uniformity in streamline counts
over connections with other regions. On the other end, setting
d1 < 1 encodes the expectation that a single connection will be
responsible for generating most streamlines from a given region.
We set d1 = 1 and in doing so, encode that we are agnostic to
the way streamlining probabilities are distributed over connec-
tions. Setting d0 < d1 encodes the assumption that false positives
should occur less frequently than true positives. We simulated
draws from a dirichlet distribution with varying d0 and connec-
tion density, while keeping d1 = 1. From these simulations, we
obtained the proportion of probability mass assigned to non-
edges, which corresponds with the expected false positive rate.
We selected d0 = 0.01 so that the expected false positive rate at
a connection density of 0.2 was approximately 5%.

For the initialization of our MCMC sampler, in order to
minimize burn in time, we used a thresholded, symmetrized
streamline count matrix with a density based on the mode of the
prior on graph density. We stored one sample for each complete
graph update, i.e., after all unique edges were flipped in ran-
dom order. Posterior network distributions were approximated
for each subject by drawing 5000 samples in two parallel chains,
for a total of 10000 samples.

Brain network measures were derived from thresholded net-
works and sampled networks using native Matlab scripts and
the Matlab BGL package (http://dgleich.github.com/matlab-bgl).
For each uniqe graph density, 100 random, density-matched
graphs were generated to normalize clustering and path length.
Small-worldness was computed as the ratio of these normalized
estimates. Modularity was selecting the highest score from 100
runs of a Louvain modularity optimization algorithm for each
posterior graph sample and graph point estimate.
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