
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/135061

Please be advised that this information was generated on 2018-07-07 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/43574025?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/135061

Inference of channel types in micro-architectural
models of on-chip communication networks

Bernard van Gastel and Freek Verbeek
School of Computer Science

Open University of the Netherlands

and

Institute for Computing and Information Sciences

Radboud University Nijmegen

{bvg,fvb}@ou.nl, {b.vangastel,f.verbeek}@cs.ru.nl

Julien Schmaltz
Department of Mathematics and Computer Science

Eindhoven University of Technology

j.schmaltz@tue.nl

Abstract—In the multi-core era, on-chip communication net-
works are key to system correctness and performance. To
deal with their growing complexity, micro-architectural models
capture the intent of architects and provide means for formal
analysis. However, the analysis of such micro-architectural models
is restricted to non-scalable and/or very specific approaches. We
present a novel scalable approach to support the symbolic channel
type inference of large micro-architectural models described in
the XMAS language proposed by Intel. We define an algorithm
that computes all possible messages that can occur in a communi-
cation channel, treating their payload symbolically. These results
can be used for further analysis such as verifying absence of
misrouting, deriving inductive invariants and deadlock detection.
We illustrate our approach on a Spidergon network developed at
STMicroelectronics.

I. INTRODUCTION

Communication networks are crucial to the overall correct-
ness and performance of modern Multi-Processors Systems-
on-Chips (MPSoC’s). When the number of interconnected
system elements increases, performance of bus-based architec-
ture degrades [1]. Networks-on-Chips (NoC’s) have emerged
as solid high performance communications architectures. Re-
cently, Intel proposed a language – called XMAS, for eX-
ecutable Micro-Architectural Specification – to capture the
intent of architects [2], [3]. These models are executable
and also amenable to formal verification. It is possible to
extract high-level information about a Verilog design from
its XMAS abstraction. This information can then be used to
improve model checking the Verilog description [4], [5], [6].
Efficient deadlock verification on large XMAS models was
demonstrated in [7], [8]. Although many concrete simulation
techniques exist, they lack scalability because they simulate a
NoC with clock cycle precision, and are therefore not applica-
ble to communication-centric SoCs [9]. We place ourselves in
the context of the scalable verification at the level of XMAS
models.

Our main contribution is to extend the analysis of XMAS
models with the inference of channel types. Our approach is
based on a symbolic propagation algorithm. This effectively
computes the typing information of all channels, i.e., for each
channel it computes the set of packets that can possibly tra-
verse this channel. We define two symbolic types, enumeration

and interval range. Every component/packet/function in the
network is modelled in terms of sets and operations on sets
of these symbolic types. Due to this modelling, a symbolic
packet can be split and eventually end up in multiple sinks with
different payloads. Our network representation closely matches
the formal semantics of XMAS networks as described in [10],
in order to make it feasible to use this approach in a generic
formal proof. We implemented our algorithm in C++. Starting
from a representation of an XMAS network (including the
description of what kind of packets each node may inject), our
procedure is fully automatic. We demonstrate the application
and scalability of our algorithm to the Spidergon NoC from
STMicroelectronics.

II. XMAS AND SPIDERGON

A. The XMAS language

An XMAS model is a network of primitives connected via
typed channels. A channel is connected to an initiator and
a target primitive. A channel is composed of three signals.
Channel signal c.irdy indicates whether the initiator is ready to
write to channel c. Channel signal c.trdy indicates whether the
target is ready to read from channel c. Channel signal c.data
contains data that are transferred from the initiator output to
the target input if and only if both signals c.irdy and c.trdy
are set to true. Figure 1 shows the eight primitives of the
XMAS language. A function primitive manipulates data. Its
parameter is a function that produces an outgoing packet from
an incoming packet. Typically, functions are used to convert
packet types and represent message dependencies inside the
fabric or in the model of the environment. A fork duplicates
an incoming packet to its two outputs. Such a transfer takes
place if and only if the input is ready to send and the two

source

o

e

a

b

s

i

switch

sink

i

merge

a

b

o

function

i o

f

join

h
o

a

b

fork

a

b

i

f

g

queue

k
i o

Fig. 1: The eight XMAS primitives.978-1-4799-6016-3/14/$31.00 c©2014 IEEE

outputs are both ready to read. A join is the dual of a fork. The
function parameter determines how the two incoming packets
are merged. A transfer takes place if and only if the two inputs
are ready to send and the output is ready to read. A switch
uses its function parameter to determine to which output an
incoming packet must be routed. A merge is an arbiter. It
grants its output to one of its inputs. The arbitration policy is
a parameter of the merge. A queue stores data. Messages are
non-deterministically produced and consumed at sources and
sinks. A source or sink may process multiple packet types.

The execution semantics of an XMAS network consists
in a combinatorial and a sequential part. The combinatorial
part updates the values of channel signals. The sequential
part is the synchronous update of all queues according to
the values of the channel signals. A simulation cycle consists
of a combinatorial and a sequential update. A sequential
update only concerns queues, sinks, and sources. We denote
these primitives as sequential primitives. Other primitives are
denoted as combinatorial.

For each output port o, signal o.irdy is set to true if the
primitive can transmit a packet towards channel o, i.e., port o
is ready to transmit to its target. For each input port i, signal
i.trdy is set to true if the primitive can accept a packet from
input channel i, i.e., the target of channel i is ready to receive.
In a sequential primitive, the values of output signals depend
on the values of the input signals and an internal state. Queues
accept packets only when they are empty. A source and a sink
produces or consumes a packet according to an internal oracle
modelling non-determinism.

B. The Spidergon NoC

Spidergon is a Network-on-Chip developed at STMicro-
electronics [11]. The basic architecture consists of 8 nodes
connected in a ring with across links (see Figure 2). A popular
routing algorithm for this network is across first. The idea is
that if a packet needs to use across links to minimise the travel
distance an across hop is always performed first.

Figure 3 shows a micro-architectural model of a Spidergon
router. The router has 4 inputs and 4 outputs. Packets are
coming from either other routers or from input A, i.e., the
local input. Switches are used to route packets towards their
respective output ports. Arbiters are used to handle conflicting
requests for output ports.

Different kinds of cores can be connected to the routers
(see Figure 3). For sake of an example that includes message
dependencies [12] we have a setup with masters and slaves.
Masters inject requests and consume responses. Slaves trans-
form requests into responses. For a topology of N nodes, a
master injects packets that contain the following fields:

0

1

2

3

4

5

6

7

Fig. 2: Spidergon Topology

(a) Master

(b) Slave

(c) Router

Fig. 3: Spidergon Router with ACR (Across), CW (Clockwise)
and CCW (Counterclockwise) incoming and outgoing connec-
tions, and two types of local nodes (master and slaves).

dst An integer ranging from 0 to N that represents
the destination of the packet. This destination is
always a slave.

src An integer ranging from 0 to N representing
the original injection point of the packet. This is
used to send the packet back after arriving at its
destination.

colour Either request (when it is injected) or response
(when the packet has visited its destination and is
returning to its original injection point).

payload Some 32 bit integer.

In the remainder of this paper, we will use the Spidergon
design as a running example. We will show how one can
define the routing functions within the switches and specify at
sources what kind of packets can be injected. We will use our
algorithm to compute all typing information for configurations
going from 8 to 1024 nodes.

III. SPECIFICATION OF PACKETS

A simple expression based language is needed to express
the intent and effect of primitives. Packets consist of a number
of fields. Each field is either an integer (e.g., dst and src in the
Spidergon example) or an enumeration (e.g., the colour). There
are two kinds of expressions supported: matching expressions
and modifying expressions. Matching expressions are used
in XMAS-sources and XMAS-switches to determine which
packets are injected. Modifying expressions are used in the
XMAS-function to express how a packet is altered.

For example, the following matching expression (automat-
ically generated) corresponds to the XMAS-switch connected
to the local input A (see Figure 3). This switch decides
whether the incoming packet is routed across. We consider the
fourth node in the network, meaning that packets destined for

0, 1, and 7 should be routed across. The following expression
generates two intervals: [−1 .. 1] and [7 .. 9]. As the dst field
signifies a node number (which in the example is between 0
and 7), this expression only matches for nodes 0, 1, and 7, as
desired.

(dst > 4 ? dst > 6 : dst > -2) &&
(dst > 4 ? dst < 10 : dst < 2)

As a second example, the following modifying expression
is used by a slave to transform requests into responses:

dst := src, colour := colour with {req: rsp}

This expression yields a new packet with as destination the
original source. The new colour is obtained by providing the
old colour to a mapping. This mapping turns requests into
responses.

We support the following syntax for matching expressions,
as described by this BNF-grammar:

〈expr〉 ::= 〈enum-match〉 | 〈integer-match〉
| ‘(’ 〈expr〉 ‘)’
| ‘!’ 〈expr〉
| 〈expr〉 ‘?’ 〈expr〉 ‘:’ 〈expr〉
| 〈expr〉 〈logical-op〉 〈expr〉

〈logical-op〉 ::= ‘and’ | ‘&&’ | ‘or’ | ‘||’

〈enum-match〉 ::= 〈variable〉
| 〈variable〉 ‘in’ ‘{’ 〈enum-contents〉 ‘}’
| 〈variable〉 ‘not’ ‘in’ ‘{’ 〈enum-contents〉 ‘}’

〈enum-contents〉 ::= 〈label〉 | 〈label〉 ‘,’ 〈enum-contents〉
〈integer-match〉 ::= 〈variable〉
| 〈variable〉 〈compare-op〉 〈constant〉
| 〈variable〉 ‘in’ ‘[’ 〈constant〉 ‘..’ 〈constant〉 ‘]’
| 〈variable〉 ‘not’ ‘in’ ‘[’ 〈constant〉 ‘..’ 〈constant〉 ‘]’

〈compare-op〉 ::= ‘<’ | ‘<=’ | ‘>=’ | ‘>’

〈constant〉 ::= 〈integer〉
| 〈constant〉 〈constant-op〉 〈constant〉
| ‘(’ 〈constant〉 ‘)’

〈constant-op〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘%’ | ‘ˆ’

For definition of modifying expressions we support another
syntax, as they express another kind of intent. The syntax for
these expressions is described by the following BNF-grammar:

〈expr〉 ::= 〈field-definition〉
| 〈expr〉 ‘,’ 〈field-definition〉

〈field-definition〉 ::= 〈variable〉 ‘:=’ 〈value-expr〉
〈value-expr〉 ::= 〈variable〉 | 〈integer〉 | ‘(’ 〈value-expr〉 ‘)’
| 〈value-expr〉 〈arithmetic-op〉 〈value-expr〉
| 〈value-expr〉 ‘with’ ‘{’ 〈substitution-def 〉 ‘}’

〈arithmetic-op〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’

〈substitution-def 〉 ::= 〈label〉 ‘:’ 〈label〉
| 〈label〉 ‘:’ 〈label〉 ‘,’ 〈substitution-def 〉

If a substitution is defined on an expression, a special
label ‘_’ can be defined, which is the default (fail-over) case
of the substitution.

IV. SYMBOLIC REPRESENTATION OF PACKETS

The basic principle of our symbolic computation is to
represent a set of concrete packets in a significantly smaller set
of symbolic packets. The computation of all paths for concrete
packets is effectively done by propagating their symbolic
representations. Fields of the integer kind are symbolically rep-
resented by intervals, fields of the enum kind are represented
by abstract enumeration labels.

To manipulate symbolic packets, we assume the following
common operations on fields:

• Intersection of two sets.

• Difference of set a and b, defined as a ∩ b. This can
be computed without having the means to take the
complement of a set.

• Subset. Check if a set is a subset of another set.

Note that the union operation is not explicitly listed, as we can
represent the union of two symbolic packets by associating
these two symbolic packets with the same channel indepen-
dently of each other.

These operations are used for the manipulation of symbolic
packets, by applying them in a field-wise fashion. We assume
that each packet-field has a unique label. For each field
operation a�b (� is intersection or difference) and for each
label l of the first argument, if the label is also present in the
second argument, perform al�bl. If the label is not present,
the resulting field for label l in the result is equal to the field
in the first argument a.

Consider again the Spidergon example. For an 8 node
Spidergon, the source and destination fields will be in a range
of 0 to 7. The payload can be any value between 0 and 232−1.
All possible concrete packets of these fields, can be represented
in the following singleton set containing one symbolic packet:{

dst → [0 .. 7] colour → {request, response}
src → [0 .. 7] payload → [

0 .. 232 − 1
] }

We now describe the field operations that are specific for
each field kind.

A. Enumerate kind

This kind is the standard enumeration type, where the
labels are kept symbolic. The only operation defined on this
kind is a mapping operation, converting one value in another
one. We denote an enumerate field by {a, b, c, d}.

B. Interval range kind

Intervals have a lower bound l and an upper bound h, both
represented as an integer for which l ≤ h. A number of integer
arithmetic operations are supported on these types, such as
addition and subtraction on intervals, and comparisons with a
concrete number, like the operators greater than, less than, etc.

Multiplication is supported, but as it can result in multiple non-
continuous regions it is prone to state explosion. An interval
field is denoted by [l .. h].

The addition of two bounds is defined by adding the lower
bounds together for the new lower bound, and doing the
same for the upper bound. Formally, we have the following
definition:

[a .. b] + [c .. d] = [(a+ c) .. (b+ d)]

The unary minus operation is defined as:

− [a .. b] = [−b .. − a]

Combining these two definition, subtraction is defined as
follows:

[a .. b]− [c .. d] = [(a− d) .. (b− c)]

Multiplication results in multiple nonadjacent intervals, and is
defined as follows:

[a .. b]× [c .. d] = ∀i∈[a .. b]∀j∈[c .. d] [(i× j) .. (i× j)]

Division is defined by:

[a .. b] / [c .. d] =

[⌊a
d

⌋
..

⌈
b

c

⌉]

As division by zero is not defined on integers, we also consider
division by an interval that includes zero an error as it should
not occur.

C. Symbolic semantics for XMAS

Queues, merges, forks and sinks do not modify packets,
i.e. all packets going into the primitive propagate to all
the output channels unmodified. XMAS sinks only receive
packets, so no special care is needed for sinks. Regarding the
remaining primitives, they can either filter packets (XMAS-
switch), combine two packets together (XMAS-join) or modify
the packets (XMAS-function). We now detail the semantics of
these primitives.

xMAS-switch: A switch has a switching condition asso-
ciated with it. This condition describes a set of packets that
should be routed to output a. Since a symbolic packet signifies
a set of possible values, a symbolic packet sw can be used to
represent the switching condition.

The effect of the XMAS-switch on packets in the input
channel can be expressed using set operators, specifically the
intersection and difference operators. The intersection of p with
sw will yield the resulting packets that will be propagated to
the channel connected to the a output: p ∩ sw. Calculating
which packets will propagate to the b output can be done
by taking the intersection of p with the complement of sw:
input ∩ sw.

The switching condition is described using the syntax for
matching expressions as described in Section III. We show
by example how we derive a symbolic packet sw from such
an expression. The expression a <= 10 describes the field a
interval [0 .. 10]. Combining this restriction with another can
be expressed by a <= 10 && a >= 5, which will yield the
intersections of [0 .. 10] and [5 ..∞], and result in the interval
[5 .. 10]. The conditional expression can also be expressed as
a series of set operations: we define the semantic of c?a:b

as (c ∩ a) ∪ (c ∩ b), which results in two symbolic packets
stored in the associated channel (as the union operation is not
explicitly defined).

Example 1: A switch routes packets based on the colour of
the packet. From the matching expression colour in {R}
a symbolic representation is derived: {colour → {R}}. If the
symbolic packet {colour → {R,G,B}} is located in c0, the
effect of propagating the packet can be calculated using set op-
erators. The resulting type in c1 will be the intersection of the
input packet with the symbolic representation of the switching
condition: {colour → {R,G,B}} ∩ {colour → {R}}, result-
ing in {colour → {R}}. Likewise, the resulting type in chan-

nel c2 will be {colour → {R,G,B}} ∩ {colour → {R}},
resulting in {colour → {G,B}}.

{color: {R,G,B}}

color in {R}
c1

c2

c0

sink0

switch sink1

source

xMAS-function: The function primitive applies a function
on a packet going through the primitive. Although the function
is defined over concrete packets, the same function can be
applied to symbolic packets. The effect of a XMAS-function
is specific to a kind of a field.

Example 2: A network containing a function with as func-
tion body: result := x + y (with result, x, y of
the interval kind) transforms concrete packets going into the
function. We can also calculate the effect of the function sym-
bolically by using the symbolic semantics on intervals. If the
function is applied to a symbolic packet {x → [0 .. 16] , y →
[8 .. 32]}, the result will be combining the two intervals. The
resulting packet will be {result → [8 .. 48]}.

xMAS-join: A join primitive combines the available sym-
bolic packets of the two inputs into one packet, with each
field prefixed with a_ or b_ to make clear from which input
channel the field came. This is a somewhat different semantics
as opposed to the original XMAS paper [3], as we split their
join in our join and a normal XMAS-function. This eliminates
the need to separately handle the function part of the XMAS-
join, so we do not need to define any additional syntax for
joining expressions.

xMAS-source: An expression on a XMAS-source primitive
signifies which symbolic packets might be inserted at this
point, which constitute a set of possible values that can be
injected. These expressions are also described using the syntax
for matching expressions, the same as for the XMAS-switch.

V. TYPE INFERENCE ALGORITHM

The type inference algorithm (see Algorithm 1) is based on
iteratively propagating a symbolic packet from a channel to the
next channel, connected by a primitive. Propagation continues
until a fix point has been reached, where no new inference
can be performed. The algorithm outputs for each channel the
set of symbolic packets describing which concrete packets can
occur at the channel.

Algorithm 1: The basic propagation algorithm

inject source types into channels;
while not all types in the network are marked as
propagated do

forall the channels in the network do
normalise types in channel;
forall the types in the channel do

if type is not marked as propagated then
propagate;
mark type as propagated;

A normalisation procedure is required to reach a fix point.
If packets are added to a channel, all the available packets in
the channel are normalised. The normalisation consists of two
parts: eliminating symbolic packets that are already contained
in other symbolic packets, and combining two symbolic pack-
ets together if possible. Both parts of the normalisation are
essential.

The elimination step checks whether a symbolic packet
is already described by another symbolic packet. If so, the
symbolic packet can be removed with no effect on correctness.
A symbolic packet is assumed to be described by another
symbolic packet, if for each field in the symbolic packet the
other symbolic packet contains a superset of the values allowed
by that field.

The second step of the normalisation is the combination
step. A symbolic packet is combinable if and only if 1.) all
fields are equal, except for one field, and 2.) if this one field is
combinable independently of the other fields. For enumeration
field kinds, two fields are always combinable. For interval
fields a and b are combinable if and only if (a.min ≤ b.min∧
b.min ≤ a.max+ 1)∨ (a.min ≤ b.max∧ b.max ≤ a.max),
i.e. if one of the bounds of b lies in the interval as represented
by a. For example, an interval of [a .. b] and [(b+ 1) .. c] can
be combined into one interval of [a .. c]. This step is used to
reduce the runtime of the algorithm as it reduces the number
of propagation steps needed.

Example 3: We demonstrate the combination step us-
ing a small network. In this network, the channel at
the source and the sink have the same symbolic type
{colour → {R,G,B}, payload → [0 .. 31]}. In
the input channel of q0 there are only symbolic pack-
ets with {colour → {R}, payload → [0 .. 31]},
as the switching condition only matches packets that are
of colour R. The remaining packets are routed to the
lower route with q1. The merge propagates all the packets
from the channels of the queues to the last channel. The
type occurring at the sink is the result of combining the
types {colour → {R}, payload → [0 .. 31]} with
{colour → {G,B}, payload → [0 .. 31]}. The network
is listed below.

{color: {R,G,B},
 payload: [0..31]}

color in {R}

source
q1

q0

switch

sink

merge

VI. IMPLEMENTATION

We have implemented the aforementioned algorithms as a
single-threaded program called sym-xmas1 in C++11, without
any external library dependencies. To easily create XMAS
networks we have created a graphical interface to easily draw
XMAS networks. The tool chain flow is shown in Figure 4. The
network representation in the JSON format is outputted by this
graphical tool. This JSON file can be read by our sym-XMAS
tool. The file representation of primitives is straightforward,
but for the representation of the functions as used in the
definitions of the XMAS switch, join and function primitives.

The syntax as defined in Section III is read using a
recursive descent parser. For matching expressions a set of
possible values is generated by evaluating the expressions
during parsing. We also added a constant expression evaluator
for convenience of the user, so constant expressions with addi-
tion, subtraction, multiplication are supported. For modifying
expressions we use an internal representation which applies
the operations as defined in Section IV.

Our tool defines on all symbolic packets and field kinds
some extra operations (e.g. hash function and printing a string
representation) that are not essential to the algorithm but aid in
execution speed and the debugging effort. All kinds of typing
errors are detected, both conflicting restrictions on fields as
well as applying expressions on non existent fields.

We developed our tool to be a common foundation to
deploy all sorts of algorithms to analyse various correctness
properties. Therefore it is important to maximise the flexibility
of the network data structure. Two aspects are important. Fore-
most, the data structure supports the visitor design pattern [13],
enabling the decoupling of the algorithm executing on a data
structure and the data structure itself. It enables add methods
to the data structure without modifying the data structure itself,
so a new algorithm or features can be added without modifying
all the code depending on this data structure. Secondly, each
object of the network can have algorithm specific data structure
attached to it. This avoids costly lookups in mappings and
enables easier algorithm design. In the future other algorithms,
e.g. checking if a network conforms to a given specification,
can be based on this foundation.

There are two basic correctness requirements to XMAS
networks: syntactic correctness and absence of combinatorial
cycles. Before we symbolically infer types we check that an
input XMAS network satisfies these correctness properties,
otherwise the results of the type inference are not sound.
Both are implemented using the data structure and the visitor
pattern as mentioned before. The first one is easily checked
by ensuring all ports are connected and output ports are only
connected to input ports. This is a quick superficial check. The
latter requirement is described in the paper introducing XMAS
[3]. In short it ensures a stable state can be reached between
clock cycles, ensuring the data transferred is deterministic. A
combinatorial cycle is a cycle of dependencies of irdy and
trdy wires. Absence can be verified using a standard cycle
detection algorithm for a directed graph [14].

1The source code is available at http://www.open.ou.nl/bvg/sym-xmas

Editor

{type: {R,G,B},
 payload: [0..31]}

type in {R}

source
q1

q0

switch

sink

merge

JSON File
 {"NETWORK": [

 {

 "id": "ring_CW2",

 "type": "queue",

 "outs": [

 {

 "id": "ring_DOWN_sw25",

 "in_port": 0

switch

queue queue

Datastructure

Syntax checker

 Combinatorial cycle

checker

Type inference

of channels

Algorithms

Fig. 4: The tool chain.

VII. APPLICATION TO SPIDERGON

Using our sym-xmas tool, the symbolic types of channels
in the Spidergon NoC were inferred. In our Spidergon example,
the nodes of the first quadrant are slaves. All other nodes are
masters. All packets have a payload of a 32-bits integer. In
order to attain a notion of correctness, we keep the original
injection point in the responses. This allows us to validate that
the packets that are evacuated from the network are indeed
correctly handled by the communication fabric. At the sinks
in the network, the types inferred are stated below, with n the
concrete value of the node number the sink is located in:{

dst → [n .. n] colour → {response}
src → [n .. n] payload → [

0 .. 232 − 1
] }

This expression shows that node n only receives responses
destined for n, that were originally injected at that same node.
In other words, in the network requests and responses are
correctly handled.

Actually during development of our algorithm, the version
we analysed contained (without our knowledge) a wrong
switching expression for the counter clockwise channel, re-
sulting in packets misrouted to the wrong node. This error
was easily detected and corrected.

The experiment was conducted using a single core on a 2
GHz Intel Core i7 2635QM running Mac OS X 10.9.2, with
the gcc 4.8.2 compiler.

Nodes # Primitives Time Memory
4 70 0.008s 1.38 Mb
8 140 0.011s 1.63 Mb

16 280 0.024s 2.23 Mb
32 560 0.050s 3.65 Mb
64 1120 0.226s 7.64 Mb

128 2240 1.739s 19.79 Mb
256 4480 21.693s 65.68 Mb
512 8960 5m22.359s 221.32 Mb

1024 17920 92m31.848s 782.40 Mb

VIII. DISCUSSION

We presented an algorithm that efficiently infers the type
of all channels in large networks described in the XMAS
language proposed by Intel. By ‘channel type’, we denote the
information about which packet can traverse the channel. This
information is key in the analysis of XMAS networks. Our
algorithm produces at every sink, the set of packets which
can possibly reach that sink. It is then relatively easy to
check whether this conforms to the expectation of a designer.
Inferring channel types is also needed, e.g., for the verification
of deadlock freedom [7]. For large networks, the explicit

simulation of all possible values is not feasible. For such
networks, our algorithm provides a scalable alternative. An
interesting direction is the automatic generation of Register
Transfer Level (RTL) descriptions from XMAS networks. In
this context, the knowledge of channel types is required to
determine the bit-width of all wires.

REFERENCES

[1] L. Benini and G. De Micheli, “Networks on Chips: a new SoC
paradigm,” IEEE Computer, vol. 35, no. 1, pp. 70–78, January 2002.

[2] S. Chatterjee, M. Kishinevsky, and Ü. Y. Ogras, “Quick formal model-
ing of communication fabrics to enable verification,” in Proceedings of
the IEEE International High Level Design Validation and Test Workshop
(HLDVT’10), 2010, pp. 42–49.

[3] ——, “xMAS: Quick formal modeling of communication fabrics to
enable verification,” IEEE Design & Test of Computers, vol. 29, no. 3,
pp. 80–88, 2012.

[4] S. Chatterjee and M. Kishinevsky, “Automatic generation of inductive
invariants from high-level microarchitectural models of communication
fabrics,” in Proceedings of the 22nd International Conference on
Computer Aided Verification (CAV’10), ser. Lecture Notes in Computer
Science, T. Touili, B. Cook, and P. Jackson, Eds., vol. 6174. Springer,
July 2010.

[5] A. Gotmanov, S. Chatterjee, and M. Kishinevsky, “Verifying deadlock-
freedom of communication fabrics,” in Verification, Model Checking,
and Abstract Interpretation (VMCAI ’11), vol. 6538, 2011, pp. 214–
231.

[6] S. Chatterjee and M. Kishinevsky, “Automatic generation of inductive
invariants from high-level microarchitectural models of communication
fabrics,” Formal Methods in System Design, vol. 40, no. 2, pp. 147–169,
Apr. 2012.

[7] F. Verbeek and J. Schmaltz, “Hunting deadlocks efficiently in mi-
croarchitectural models of communication fabrics,” in Proceedings of
the International Conference on Formal Methods in Computer-Aided
Design, ser. FMCAD ’11, Austin, TX, 2011, pp. 223–231.

[8] ——, “Automatic generation of deadlock detection algorithms for a
family of micro architectural description languages,” IEEE International
High Level Design Validation and Test Workshop (HLDVT’12), Novem-
ber 2012.

[9] K. Richter, M. Jersak, and R. Ernst, “A formal approach to MpSoC
performance verification,” Computer, vol. 36, no. 4, pp. 60–67, April
2003.

[10] B. van Gastel and J. Schmaltz, “A formalisation of xMAS,” in ACL2,
2013, pp. 111–126.

[11] M. Coppola, M. Grammatikakis, R. Locatelli, G. Mariuccia, and L. Pier-
alisi, Design of interconnect processing units Spidergon STNoC. CRC
Press, 2009.

[12] A. Hansson, K. Goossens, and A. Rǎdulescu, “Avoiding message-
dependent deadlock in network-based systems on chip,” VLSI Design,
2007.

[13] J. Palsberg and C. B. Jay, “The essence of the visitor pattern,” in
Computer Software and Applications Conference, 1998. COMPSAC’98.
Proceedings. The Twenty-Second Annual International. IEEE, 1998,
pp. 9–15.

[14] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction
to Algorithms, 2nd ed. McGraw-Hill Higher Education, 2001.

