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Abstract
We demonstrate how the problem of speaker diarization can be
solved using both gesture and speaker parametric models. The
novelty of our solution is that we approach the speaker diariza-
tion problem as a speaker recognition problem after learning
speaker models from speech samples corresponding to gestures
(the occurrence of gestures indicates the presence of speech and
the location of gestures indicates the identity of the speaker).
This new approach offers many advantages: comparable state-
of-the-art performance, faster computation and more adaptabil-
ity. In our implementation, parametric models are used to model
speakers’ voice and their gestures: more specifically, Gaussian
mixture models are used to model the voice characteristics of
each person and all persons, and gamma distributions are used
to model gestural activity based on features extracted from Mo-
tion History Images. Tests on 4.24 hours of the AMI meeting
data show that our solution makes DER score improvements of
19% on speech-only segments and 4% on all segments includ-
ing silence (the comparison is with the AMI system).
Index Terms: speaker diarization, gestures, speaker recogni-
tion, gaussian mixture models, motion history images

1. Introduction
Speaker diarization is the task of determining who spoke when
from an audio/video recording. It is used in many systems such
as information retrieval and speech recognition. In information
retrieval, it is used to facilitate indexing and searching of audio-
visual recordings. In speech recognition, it is used to enhance
the readability of speech transcription by structuring the tran-
scription in speaker turns.

The standard problem formulation of speaker diarization is
as follows: given an audio or audio-video recording, the task is
to determine the number of speakers and the segments of speech
corresponding to each speaker. In this formulation, the state-
of-the-art technique used to solve the problem is based on the
ICSI system [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. The ICSI system per-
forms three main tasks: speech/non-speech detection, speaker
segmentation, and speaker clustering. The latter two tasks are
performed iteratively using an agglomerative clustering tech-
nique using HMMs, GMMs and BIC.

The assumption in the ICSI-based systems is that the num-
ber of speakers and speaker models remain unknown (uncer-
tain) all along the length of signals. However, this assumption
may not hold for particular scenarios where such information
is known a priori, which is the case in our experiments, or can
be reliably estimated at initial stages. In meeting videos, the
number of speakers can be determined from a few video frames
using standard human/face detection algorithms [11]. Further-
more, speaker models, as this paper will show, can also be esti-
mated for each person based on the occurrence of gestures.

In our previous work [12, 13], we performed speaker di-
arization on meeting videos based on the hypothesis that the
person who is gesturing is also the speaker. In theory, this
should work because there is a tight relationship between
speech and gesture [14], but, in practice, the hypothesis has
limitations: speakers can speak without gesturing and gesture
recognition, by itself, is a challenging problem (e.g. people may
appear to be gesturing when they move for other other reasons).

The goal of this paper is to solve these limitations by us-
ing the best of both worlds. Predictions based on gestures are
used to develop speaker models with first pass on the data. On
subsequent passes of the data, the learned speaker models are
iteratively used to classify the frames of the speech and adapt
speaker models. The iteration is not more than 3.

Summary of contributions: a) speaker diarization is formu-
lated as continuous speaker identification b) speaker models are
learned on the first pass of the data, based on predictions of who
is speaking using gestures c) on the second or more passes of
the data, speaker models are used to identify the speaker. The
rest of the paper gives more details.

2. Speech-gesture representation
Given that the signals from speech and gesture are different (e.g.
audio is 1-dimensional and video is 2-dimensional), how can
we represent them such that they can be used for efficient com-
putation and integration? For audio, we use MFCCs and for
gestures, we use Motion History Images (MHI) [15, 13].

2.1. Speech representation: MFCC

Speech is a time-varying signal and as such is not suitable for
speaker recognition. We, therefore, convert the speech signal
to MFCCs (Mel Frequency Cepstral Coefficents) [16]. MFCCs
are widely used features in speaker and speech recognition. We
extract MFCC features as follows (the numbers correspond to
the parameter values we selected). Our speech signal, which
is sampled at 16 kHz, is divided into a number of overlapping
frames, each 20 ms long (320 samples) with an overlap of 10 ms
(160 samples). After multiplying each frame with a Hamming
window, each frame is FFT-transformed (Fast Fourier Trans-
form). The resulting power spectrum is then warped accord-
ing to Mel-scale using 26 overlapping triangular filters produc-
ing filterbank outputs. The amplitudes of the DCT (Discrete
Cosine Transform) of the logarithms of the filterbank outputs
make the MFCC features. In our experiments, we take the
first 20 MFCC coefficients (including the energy coefficientC0)
plus their first and second order derivatives for a total of 60-
dimensional MFCC feature vector per speech frame. The HTK
toolkit is used to compute the coefficients [17, 18].



2.2. Gesture representation: MHI

To represent gestures, we use Motion History Image (MHI)
[15, 13]. MHI is a single stacked image that encodes motion
that occurred between every frame pair for the last τ number of
frames (where τ is the number we can fix ourselves). The type
of information encoded in the MHI can be binary and, in such a
case, it is called Motion Energy Image (MEI) or it can be scalar.
In the latter case, it is called Motion History Image.

2.2.1. Motion Energy Image

To represent where motion occurred, we form a Motion Energy
Image and it is constructed as follows. Let I(x, y, t) be an im-
age sequence, and let D(x, y, t) be a binary image sequence
indicating regions of motion (we perform frame differencing).
Then the binary MEI E(x, y, t) is defined as follows:

Eτ (x, y, t) =

τ−1⋃
i=0

D(x, y, t− i), (1)

where τ is the temporal extent of motion (for example, a fixed
number of frames). Figure 1(c) shows an image example of an
MEI for a speaker who is also gesturing.

(a) Frames

(b) MHI

(c) MEI

Figure 1: Examples of visualizations of MHI and MEI images.
(a) shows selected frames of a video taken from AMI meet-
ing data. (b) shows the MHI of 25 frames - recent motions are
brighter. (c) shows the MEI of 25 frames - white regions corre-
spond to motion that occurred in any of the last 25 frames.

2.2.2. Motion History Image

To represent how motion occurred, we form a Motion History
Image (MHI) as follows:

Hτ (x, y, t) =

{
τ if D(x, y, t) = 1

0 else if Hτ (x, y, t) < (τ − δ),
(2)

where τ is the current time-stamp and δ is the maximum time
duration constant (τ and δ are converted to frame numbers
based on frame rate). Figure 1 (b) shows an example of an MHI
for a speaker who is also gesturing. Note that an MEI image
can be generated by thresholding an MHI above zero.

3. Our diarization system
At a high-level, our diarization system performs the following
steps:

1. Train a UBM on all audio data of the given recording.

2. Based on the location of gestures in the video, determine
which speech sample belongs to which person (i.e. per-
form speaker diarization based on gestures).

3. Adapt UBM to create speaker models based on current
predictions.

4. Use the current speaker models to identify to which
speaker the next speech sample belongs (i.e. perform
speaker diarization based on speaker models).

5. Repeat steps 3 and 4 N times each time using the lat-
est diarization predictions and speaker models. In our
experiments, N = 3.

3.1. Diarization using gestures

Given video and the number of speakers, we wish to infer, based
on gestures, which person is speaking at time t . The inference
is made using probabilistic models as follows. Let each per-
son’s state (speaking or non-speaking) be represented by zit and
let vi0:t be video measurements (i.e. gestures) for person i, the
objective is then to calculate the probability of zit given vi0:t:

p(zit|vi0:t) =
p(vit|zit)p(zit|vi0:t−1)

p(vit|vi0:t−1)
, (3)

where p(vit|vi0:t−1) is a normalization constant, p(zit|vi0:t−1) is
referred to as a conversation dynamics model and p(vit|zit) is
referred to as the gesture model. The person with the highest
probability, p(zit|vi0:t), is the gesturer and hence, the speaker.
The gesture and conversation dynamics models are described
below.

3.1.1. Gesture model

We use gamma distributions to model gestural and non-gestural
activities. The assumption is that MEI is a strong indicator of
gestural activity. The higher the energy (the sum of MEI val-
ues), the higher the probability of gestural activity. A gamma
distribution has a shape parameter k and scale parameter θ:

p(vit|zit;k,θ) =
(vit)

kz−1 exp(− vit
θz

)

θkzz Γ(kz)
for vit, kz, θz > 0,

(4)
where z = zit , vit is the count of ’on’ pixels in a MEI of speaker
i and xit ∈ {0, 1} represents the probability of gestures for
speaking and non-speaking person. The gamma distributions
for speaking and non-speaking are the same for all speakers and
their parameter are learned from annotated development data.

3.1.2. Conversation dynamics

In a conversation, the act of speaking has its own dynamics.
The current speaker is more likely to have been speaking for a
longer time than just the current frame. We encode this type of
dynamics as follows:

p(zit|vi0:t−1) =
∑
zt−1

p(zit|zit−1)p(zit−1|vi0:t−1), (5)



where p(zit−1|vi0:t−1) is the posterior from the previous time
and p(zit|zit−1) is the conversation dynamics. For simplicity,
we set the conversation dynamics to a fixed matrix based on a
heuristics: a speaker is 90% more likely to remain in the same
state (speaking or non-speaking) as shown below:

p(zit|zit−1) =

[
0.9 0.1
0.1 0.9

]
. (6)

3.2. Diarization using speaker models

The diarization based on gestures gives output at the rate of
video frame rate (40 ms). The MFCC features we get from au-
dio come at the rate of 10ms. To make the two streams compat-
ible, we take four MFCC feature vectors and replace them with
their average vector. Given the average MFCC feature vectors,
we determine which person is speaking at time t using maxi-
mum likelihood:

î(t) = arg max
i

t+∆∑
t′=t−∆

log p(at′ |λi), (7)

where delta, ∆, is a window of frames included for making pre-
dictions at time t and λi =

{
wi,µi,Σ

}
is a speaker model for

speaker i. In our experiments, ∆ is set to 50 (2 seconds). The
speaker models are derived from a UBM as described below.

3.2.1. Universal Background Model

A Universal Background Model (UBM) is a Gaussian Mixture
Model (GMM) model. A GMM model is a weighted sum of M
component densities:

p(at|wj ,µj ,Σj) =

M∑
j=1

wjN (at,µj ,Σj), (8)

where wj are the mixture weights satisfying
∑M
j=1 wj = 1 and

N (at,µj ,Σj) are the individual component densities. Each
density component j a D-variate Gaussian of the form:

N (at,µj ,Σj) =
exp

{
−0.5(at − µj)(Σj)

−1(at − µj)
}

(2π)D/2|Σj |1/2
,

(9)
where µj is the mean vector and Σj is the covariance matrix.

In our system, the UBM is trained on audio features (MFCC
features) from all speakers of a recording (including the si-
lences). The UBM serves two purposes: first, it is used to derive
speaker-dependent GMM models. Second, it is used to serve as
a background or negative speaker model, against which each
particular speaker model is compared to determine if they are
speaking. Our UBM model consists of 64 60-variate Gaussian
components. The covariance type is diagonal. The minimum
variance value of the covariance matrix is limited to 0.01 to
avoid spurious singularities [19]. Parameters of the UBM are
estimated using EM algorithm [20, 21].

3.2.2. Adaptation of Speaker Models

The UBM, represented by λ = {w,µ,Σ}ubm , is trained on all
audio samples of a given recording. To make it model a par-
ticular speaker i, we need speech samples from speaker i and
an adaptation technique. Initially, speech samples are collected
for each speaker based on the occurrence of their gestures but
later speech samples are collected based on speaker models. In
either case, the adaptation technique is the same; we use a form

of Bayesian parameter adaptation [22, 23]. Given λ and train-
ing speech samples for speaker i, Ai = {ai1,ai2, . . . ,aiT }, we
compute the responsibilities of each mixture component mi in
the UBM as follows:

p(mi|at,λ) =
wmN (ait,µm,Σm)∑M
j=1 wjN (ait,µj ,Σj)

(10)

p(mi|at,λ) and at are then used to compute sufficient
statistics for the weight and mean of speaker i as follows1:

nim =

T∑
t=1

p(mi|at,λ). (11)

Eim(a) =
1

nim

T∑
t=1

p(mi|at,λ)ait. (12)

Using Eim(a) and nim, we can now adapt the UBM suffi-
cient statistics for mixture m for speaker i as follows:

ŵim = [αimn
i
m/T + (1− αim)wm]γi. (13)

µ̂im = αimE
i
m(a) + (1− αim)µm. (14)

γi is a normalisation factor to ensure that the adapted mix-
ture weights, ŵim, sum to unity:

γi =
1∑M

j=1 ŵ
i
j

. (15)

αim is an adaptation coefficient used to control the bal-
ance between old and new estimates for the weights and means.
For each mixture mi, a data-dependent adaptation coefficient is
fixed as:

αim =
nim

nim + r
, (16)

where r is a relevance parameter and is set to 16. For more
details on these parameters, see [23].

4. Experiments
4.1. Datasets

We validate our proposed solution on test data of seven video
recordings (≈ 4.24 hours), taken from a publicly available cor-
pus called the AMI corpus [24]. The AMI corpus consists of
annotated audio-visual data of a number of participants engaged
in a meeting. The selected videos (IB4XXX) have four partic-
ipants. The upper body of each participant is recorded using a
separate camera and we put them together before diarization.
For audio, we use the mixed-headset single wave file per video.
Our development data consists of 4.9 hours of videos coming
from IN10XX and IS1009x. The development data are used to
learn parameter values when necessary.

4.2. Evaluation metrics

We report our scores using Diarization error rate (DER). DER
consists of false alarm, missed speech and speaker errors [25].
DER is known to be noisy and sensitive [26] but is still widely
used in many evaluations [7, 3]. A perfect diarization system
scores 0% DER, but a very bad system (e.g. a system that pre-
dicts every speaker is speaking all the time) can go over 100%.

1covariance parameter is kept the same for all speakers; adapting it
with new data decreased performance



5. Results and Discussion
Figure 2 illustrates how training speech samples are collected
for adapting speaker models based on predictions using ges-
tures. The figure clearly shows that the person that is gesturing
is the speaker and the MHI visualization clearly reflects it. As
table 1 shows, this is not always true (i.e. a person could be
moving without speaking or that they could be speaking without
gesturing). Hence, the need to pass through the data iteratively
(adapting speaker models and making predictions).

(a) Frames

(b) MHI

(c) Speech

Figure 2: A snapshot of IN1016-AMI meeting data: (a) Original
frames with the person gesturing identified. (b) The MHI of
the gesturing person. (c) The speech waveform belongs to the
person gesturing and is used to adapt a speaker model for that
person. Each adapted speaker model is then used to identify the
speaker for the given audio frames using maximum likelihood.

Table 1: Speech and motion overlap on all test videos
Speech? Motion? Overlap

Yes Yes 0.96
No Yes 0.82

DER = 72.09
Motion for each speaker is defined as sum(MEI) > 0

After the first diarization using gestures, we have adapted
speaker models. Based on equation 7, we then use the adapted
speaker models to score each audio feature vector – a person
is said to be speaking at frame t when the likelihood for that
person is the largest in a window spanning± 50 frames2 (4 sec-
onds). The scoring is repeated 3 times: new diarization results
are used to adapt speaker models and new adapted speaker mod-
els are used to make new diarization. Based on this procedure,
DER scores are given in tables 2 and 3. The best scores of our
system come after 3 iterations and are better than the baseline
scores (18.79% vs 23.28% and 29.87% vs 31.18%). The base-
line system is the AMI system [27, 28], which is based on an
agglomerative clustering and segmentation technique.

2Note that the assumption is that only one person is speaking at any
frame. The alternative to this assumption is to set a threshold for likeli-
hood, which may be necessary to handle overlapped speech.

Table 2: Speaker diarization scores evaluated on speech-only
segments. Each column in the speaker models section is a di-
arization score of speaker models that are adapted using diariza-
tion results from the previous column.

Diarization Error Rates (%)

Speaker models

Name Baseline Gesture 1st 2nd 3rd

IB4001 19.76 53.81 33.51 27.06 23.76
IB4002 54.40 58.42 52.03 48.12 40.86
IB4003 12.20 44.53 16.13 10.48 10.35
IB4004 39.05 49.68 32.33 27.14 24.79
IB4005 13.56 37.69 17.89 18.70 19.63
IB4010 18.15 50.52 19.34 13.29 12.92
IB4011 14.59 45.76 11.53 10.64 10.37

ALL 23.28 48.04 24.14 20.20 18.79

Table 3: Speaker diarization scores evaluated on all segments
including silences. Evaluating our system on silence segments
increases DER as a result of increase in False Alarms.

Diarization Error Rates (%)

Speaker models

Name Baseline Gesture 1st 2nd 3rd

IB4001 38.26 82.50 61.27 54.78 51.48
IB4002 100.20 104.76 97.62 93.71 86.39
IB4003 13.20 48.89 18.13 12.47 12.34
IB4004 41.15 59.44 37.16 31.94 29.61
IB4005 16.16 47.66 23.80 24.61 25.55
IB4010 20.75 56.18 25.42 19.37 19.00
IB4011 17.59 52.57 18.27 17.38 17.09

ALL 31.18 60.99 35.23 31.28 29.87

6. Conclusions
This study proposed a solution to the speaker diarization prob-
lem based on the exploitation of the best of two worlds: ges-
tures and speech. The use of gestures enables the formulation
of the diarization problem in a non-standard way. A UBM is
first trained on all audio feature vectors of a given recording.
The UBM is then adapted to different speakers based on the
speech samples corresponding to their gestures. Finally, the
adapted speaker models are used to perform diarization (then
adaptation, then diarization and then adaptation . . . ). This new
approach has comparable state-of-the-art performance and is
faster (avoids agglomerative clustering).

Future work can extend our work in many ways. One way
is by enriching the gesture model. Our current gesture model
is quite efficient [13] but may fail to distinguish true gestures
from random body movements. The other way is to make an on-
line version of our system. Our current system makes multiple
passes through the data but this may not be necessary: speaker
models do not need much more than 90 seconds of training sam-
ples [19] and the UBM, which, in our current system, is trained
on the whole audio recording, could be trained on general pop-
ulation. The speaker models could then be adapted online as
more gestures and speech samples arrive.



7. References
[1] J. Ajmera, H. Bourlard, I. Lapidot, and I. McCowan,

“Unknown-multiple speaker clustering using hmm,” in
INTERSPEECH. Citeseer, 2002.

[2] G. Friedland, H. Hung, and C. Yeo, “Multi-modal speaker
diarization of real-world meetings using compressed-
domain video features,” in Acoustics, Speech and Signal
Processing, 2009. ICASSP 2009. IEEE International Con-
ference on, 2009, pp. 4069–4072.

[3] X. Anguera Miro, S. Bozonnet, N. Evans, C. Fredouille,
G. Friedland, and O. Vinyals, “Speaker diarization: A re-
view of recent research,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 20, no. 2, pp. 356–
370, 2012.

[4] S. E. Tranter and D. A. Reynolds, “An overview of auto-
matic speaker diarization systems,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 14, no. 5,
pp. 1557–1565, 2006.

[5] S. Meignier and T. Merlin, “Lium spkdiarization: an open
source toolkit for diarization,” in CMU SPUD Workshop,
vol. 2010, 2010.

[6] D. Vijayasenan and F. Valente, “Diartk: An open source
toolkit for research in multistream speaker diarization
and its application to meetings recordings.” in INTER-
SPEECH, 2012.

[7] C. Wooters and M. Huijbregts, “The ICSI RT07s speaker
diarization system,” Multimodal Technologies for Percep-
tion of Humans, pp. 509–519, 2008.

[8] G. Friedland, A. Janin, D. Imseng, X. Anguera Miro,
L. Gottlieb, M. Huijbregts, M. Knox, and O. Vinyals, “The
ICSI RT-09 speaker diarization system,” IEEE Trans-
actions on Audio, Speech, and Language Processing,
vol. 20, no. 2, pp. 371–381, 2012.

[9] M. Huijbregts, D. van Leeuwen, and C. Wooters, “Speaker
diarization error analysis using oracle components,” IEEE
Transactions on Audio, Speech, and Language Process-
ing, vol. 20, no. 2, pp. 393–403, 2012.

[10] M. Rouvier, G. Dupuy, P. Gay, E. Khoury, T. Merlin, and
S. Meignier, “An open-source state-of-the-art toolbox for
broadcast news diarization,” 2013.

[11] P. Viola and M. J. Jones, “Robust real-time face detec-
tion,” International journal of computer vision, vol. 57,
no. 2, pp. 137–154, 2004.

[12] B. G. Gebre, P. Wittenburg, and T. Heskes, “The gesturer
is the speaker,” in Acoustics, Speech and Signal Process-
ing (ICASSP), 2013 IEEE International Conference on,
2013, pp. 3751–3755.

[13] B. G. Gebre, P. Wittenburg, T. Heskes, and S. Drude,
“Motion history images for online speaker/signer diariza-
tion,” in Proceedings of the 2014 IEEE International
Conference on Acoustics, Speech, and Signal Processing
(ICASSP). IEEE, 2014.

[14] D. McNeill, “So you think gestures are nonverbal?” Psy-
chological review, vol. 92, no. 3, p. 350, 1985.

[15] J. W. Davis and A. F. Bobick, “The representation and
recognition of human movement using temporal tem-
plates,” in 1997 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. IEEE, 1997,
pp. 928–934.

[16] S. Davis and P. Mermelstein, “Comparison of parametric
representations for monosyllabic word recognition in con-
tinuously spoken sentences,” Acoustics, Speech and Sig-
nal Processing, IEEE Transactions on, vol. 28, no. 4, pp.
357–366, 1980.

[17] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw,
X. Liu, G. Moore, J. Odell, D. Ollason, D. Povey et al.,
“The htk book (for htk version 3.4),” Cambridge univer-
sity engineering department, vol. 2, no. 2, pp. 2–3, 2006.

[18] S. Young, G. Evermann, D. Kershaw, G. Moore, J. Odell,
D. Ollason, V. Valtchev, and P. Woodland, The HTK
book. Entropic Cambridge Research Laboratory Cam-
bridge, 1997, vol. 2.

[19] D. A. Reynolds and R. C. Rose, “Robust text-independent
speaker identification using gaussian mixture speaker
models,” Speech and Audio Processing, IEEE Transac-
tions on, vol. 3, no. 1, pp. 72–83, 1995.

[20] A. P. Dempster, N. M. Laird, D. B. Rubin et al., “Max-
imum likelihood from incomplete data via the em algo-
rithm,” Journal of the Royal statistical Society, vol. 39,
no. 1, pp. 1–38, 1977.

[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg et al., “Scikit-learn: Machine learn-
ing in python,” The Journal of Machine Learning Re-
search, vol. 12, pp. 2825–2830, 2011.

[22] J. Gauvain and C.-H. Lee, “Maximum a posteriori es-
timation for multivariate gaussian mixture observations
of markov chains,” Speech and Audio Processing, IEEE
Transactions on, vol. 2, no. 2, pp. 291–298, Apr 1994.

[23] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker
verification using adapted gaussian mixture models,” Dig-
ital signal processing, vol. 10, no. 1, pp. 19–41, 2000.

[24] J. Carletta, S. Ashby, S. Bourban, M. Flynn, M. Guille-
mot, T. Hain, J. Kadlec, V. Karaiskos, W. Kraaij, M. Kro-
nenthal et al., “The AMI meeting corpus: A pre-
announcement,” Machine Learning for Multimodal Inter-
action, pp. 28–39, 2006.

[25] X. A. Miro, Robust speaker diarization for meetings.
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