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ABSTRACT: We perform the resummation of soft-gluon emissions for squark and gluino
production at next-to-next-to-leading logarithmic (NNLL) accuracy. We include also the
one-loop hard matching coefficients as well as Coulomb corrections to second order, using
Mellin-moment methods. We study the characteristics of this resummation in detail for a
centre-of-mass (CM) energy of 8 TeV at the LHC, and for squark and gluino masses up to
2.5 TeV. We find significant enhancing effects for all four processes of squark- and gluino-
pair production. Scale dependence is generally reduced compared to NLL resummation,

except for gluino-pair production where we find a moderate enhancement.
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1 Introduction

Supersymmetry (SUSY) [1, 2] is one of the most promising extensions of the Standard
Model, which can offer a solution to the hierarchy problem, result in gauge unification and
provide a dark-matter candidate. In order for SUSY to be able to accommodate these
solutions its scale needs to be comparable to the weak scale, leading to supersymmetric
particles with masses near the TeV range. These particles, especially the coloured ones
(squarks (¢) and gluinos (§)), could be within range of the Large Hadron Collider (LHC).
The current lower limit for the masses of the coloured supersymmetric particles has been
set to around or above 1 TeV, depending on the model [3-7].

In the context of the Minimal Supersymmetric Standard Model (MSSM) [8, 9] with
R-parity conservation, supersymmetric particles are formed in pairs in collisions of two
hadrons h; and hy. Squarks and gluinos can then be produced in the following manner:

hihy — 44, 44, 49, 99 + X.
Here and in the rest of this paper the chiralities of the squarks ¢ = (qr, ¢r) will be sup-
pressed, nor will we explicitly state the charge conjugated process.

Accurate theoretical predictions for inclusive production of squarks and gluinos are
needed in order to improve exclusion limits and, should supersymmetry be found, more
accurately study the masses and properties of the particles [10, 11]. These predictions can
be improved by including higher-order QCD corrections. The next-to-leading order (NLO)
corrections have already been known for some time [12-15]. A significant contribution
to the NLO corrections comes from the region near threshold, where the partonic center-
of-mass energy is close to the kinematic restriction for the on-shell production of these



particles, i.e. s > 4m2, with m,, being the average mass of the two produced particles. In
this region the dominant corrections originate from the soft-gluon emission off the initial
and final state as well as the exchange of a gluon between the slowly moving heavy final-
state particles, giving rise to the Coulomb corrections. The soft-gluon corrections can
be taken into account to all orders in perturbation theory using threshold resummation
techniques [16-21].

Threshold resummation has been performed for all MSSM squark and gluino pro-
duction processes at next-to-leading logarithm (NLL) accuracy [22-27]. For both squark-
antisquark and gluino-pair production, in addition to the soft-gluon resummation, the
Coulomb corrections have been resummed both by using a Sommerfeld factor [23] and
by using the framework of effective field theories [28, 29]. Furthermore, the dominant
next-to-next-to-leading order (NNLO) corrections, coming from the resummed next-to-
next-to-leading logarithm (NNLL) expression, have been calculated for squark-antisquark
and gluino-pair production [30, 31]. For squark-antisquark production, soft-gluon emissions
have been resummed to NNLL level [32], and the same has been achieved for gluino-pair
production [33]. Recently, NNLL predictions have been obtained for stop-pair production
in the framework of soft-collinear effective theory [34]. The finite-width effects have also
been studied for squark and gluino production processes in [35].

In this paper, to illustrate the effects of NNLL resummation, we consider all four pair-
production processes of squarks and gluinos at the LHC with /S = 8 TeV. We examine
squark and gluino masses up to 2.5 TeV, and use the Mellin-moment-space approach. These
settings allow us to examine the resummation technique for processes that carry large colour
factors in an extreme setting, i.e. very close to threshold. In the near future we plan to
upgrade the NLL resummation code NLL-FAST' to NNLL level, which will also involve
producing NNLL resummed results for the LHC at /S = 13 TeV.

The paper is structured as follows. In the next section we briefly review the theoretical
expressions for NNLL-resummed cross sections applied to the particular case of pair pro-
duction of squarks and gluinos. In section 3 we discuss the numerical predictions for the
NNLL-resummed cross sections matched to the approximate NNLO results. Section 4 con-
tains our conclusions. The appendices contain the one- and two-loop Coulomb corrections
in Mellin-moment space.

2 NNLL resummation

Before the calculation of the NNLL resummation, we will first briefly review the formalism
of threshold resummation for the pair production of squarks and gluinos. The inclusive
hadronic cross section for the production of particles k and I, ox,p,— ki, can be written in
terms of the partonic cross section, o;;_x, in the following manner

Ohyhy—kl (pa {mQ}) = Z/diﬁldm dp o <ﬁ - L >
1,J

Z122

X firm @1, 12) fine (@2, 1%) 03ma (B, {m*}, 1) (2.1)

'Publicly available from https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSY CrossSections.
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where {m?} denotes all the masses entering the calculation, i and j are the initial-state
parton flavours, f;/,, and f;/,, are the parton distribution functions, p is the common
factorisation and renormalisation scale, z1 and x5 are the momentum fractions of the
partons inside the hadrons h; and hg, and p and p are the hadronic and partonic threshold
variables respectively. The threshold for the production of two final-state particles k and
[ with masses m; and m; corresponds to a hadronic center-of-mass energy squared of
S = (mp + ml)2. Therefore we define the hadronic threshold variable p, measuring the
distance from threshold in terms of a quadratic energy fraction, as

. (mk + ml)2
S

In the threshold region, the dominant contributions to the higher-order QCD correc-
tions due to soft-gluon emission have the general form

2
alog™p?, m < 2n with f=1-p=1- 2 (2.2)
where s = x1x9S5 is the partonic center-of-mass energy squared, «y is the strong coupling
and may = (Mg +m;)/2 is the average mass of the final-state particles k and I. We perform

the resummation of the soft-gluon emission after taking the Mellin transform (indicated by
a tilde) of the cross section:

Ghyha—skt (N, {m*})

1
/O dp pN 1 Thyng sk (p, {m*})

= Z Firni (N + 1,02 fi (N + 1, 4%) 635 (N, {m?}, i) . (2.3)

1,J

The logarithmically enhanced terms now take the form of af log™ N, m < 2n, where the
threshold limit § — 0 corresponds to N — oco. The all-order summation of such logarithmic
terms follows from the near-threshold factorisation of the cross section into functions that
each capture the contributions of classes of radiation effects: hard, collinear and wide-angle
soft radiation [16-21]. Near threshold the resummed partonic cross section takes the form:

S (N Am? ) 1?) = 30 610 (N Am?Y, 1) Coya r (N, {m?}, 22)
I

< Ai(N+1,Q% 12) A;(N +1,Q2%,1®) AL 1 (Q/ (N ), 12)
(2.4)

where we have introduced the hard scale Q? = 4m?2 . The soft radiation is coherently sen-
sitive to the colour structure of the hard process from which it is emitted [18-21, 36, 37].
At threshold, the resulting colour matrices become diagonal to all orders by performing the
calculation in the s-channel colour basis [22, 23, 38]. The different contributions then corre-
spond to different irreducible representations I. Correspondingly, &g])_) i,
are the colour decomposed leading-order (LO) cross sections. The collinear radiation effects

; in equation (2.4)



are summed into the functions A; and A; and the wide-angle soft radiation is described

by AZ(])_M ;- The radiative factors can then be written as

JANYAY ASLM ; = exp [Lgl (asL) + ga(asL) + asgs(asL) + ... | . (2.5)

This exponent contains all the dependence on large logarithms L = log N. The leading
logarithmic approximation (LL) is represented by the g; term alone, whereas the NLL
approximation requires additionally including the gs term. Similarly, the g3 term is needed
for the NNLL approximation. The customary expressions for the g; and g» functions can
be found in e.g. [23] and the one for the NNLL g3 function in e.g. [32].

The matching coefficients Cjj_,1 1 in (2.4) collect non-logarithmic terms as well as log-
arithmic terms of non-soft origin in the Mellin moments of the higher-order contributions.
The coefficients Cj;j_;  factorise into a part that contains the Coulomb corrections and a
part containing hard contributions [28]

Clijshi,r = <1+ =t + chi‘}d(} +> (1 + 20+ = ijLklIJr > .
(2.6)
Apart from the terms of O(«s), which need to be included in Cj;_5,; when performing
resummation at NNLL, some of the O(a?) terms are also known and can be included in
the numerical calculations. Expanding (2.6) we have

(& Coul,
O =1+ 22 (Gt (N fm?, 1) + €, s () 1))
2
Coul,
+— (CU—)kl(%T) (N7 {m2}’ MZ) + C7L(j2)—>kl,l({m2}v N2)

1 Coul
Cl(J)—”fll({mQ} 'u’ 2]—>klI N {mQ} 12 ) (2.7)
(1)

The first-order hard matching coefficients CU Sk,

; were calculated in [27], whereas the

expressions for the first-order Coulomb corrections Cg_‘:,ld(ll) in Mellin-moment space are
listed in appendix A. The form of the two-loop Coulomb corrections in -space is known in
Coul,(2)

the literature [39]. We calculate the C, ikt coefficient by taking Mellin moments of the
near-threshold approximation of these two-loop Coulomb corrections, the result of which

(2)

can be found in appendix B. The second-order hard matching coefficient C; kLT is not

known at the moment and we put CSLMJ =0 in (2.7).

Once we have the NNLL resummed cross section in Mellin-moment space, we match
it to the approximated NNLO cross section, which is constructed by adding the near-
threshold approximation of the NNLO correction [39] to the full NLO result [14]. The
matching is performed according to

(NNLL matched) 2 2y
O hyhy—kl (b, {m™}, %) =
(NNLO A pprox)
Ohahgshl ( Am?}, 1) (2.8)

+ Z / 5 P Fim (N +1,08%) finy (N + 1, 1%)

~ ,NNLL) 2 NNLL) 2 2
X [Uge—ikl (N {m } H ) z(;e—ik:l (Na {m }7:“’ )|(NNLOAppmx)i| '



To evaluate the inverse Mellin transform in (2.8) we adopt the “minimal prescription” of
reference [40] for the integration contour CT. We will refer to the second term, i.e.

- NNLL
Z/ omi” PN Finy (N +1,4%) fin, (N + 1, 4%)6 gfm )(N, {m?}, u?)
as the resummed part of the cross section, while the third term

res,NNLL)
Z /CT 27m fl/hl(N+ Ly )fJ/hQ(N+ Ly ) z(]—>kl (N7 {m2}7:“’2) |(NNLOApprOX)

provides the NNLL resummed cross section expanded to NNLO accuracy.

3 Numerical results

In this section we present numerical results for the NNLL resummed cross sections matched
to the approximated NNLO results for pair production of squarks and gluinos at the LHC
with v/S = 8 TeV.

All flavours of final-state squarks are included and summed over, except top squarks,
due to the large mixing effects and the mass splitting in the stop sector [41]. We sum
over squarks with both chiralities (¢;, and §r), which are taken as mass degenerate. All
light-flavour squarks are also assumed to be mass degenerate. The QCD coupling ag and
the parton distribution functions at NLO and NNLO are defined in the MS scheme with
five active flavours. The renormalisation and factorisation scales are taken to be equal
p = pr = pr and a top-quark mass of m; = 173.07 GeV [42] is used.

As our default for NNLL and approximated NNLO calculations, we use the MSTW
2008 NNLO parton distribution function (pdfs) [43] with the corresponding as(Myz) =
0.117. The NLO and NLL results presented for reference are obtained using the MSTW
2008 NLO parton distribution functions [43] with the corresponding ag(Mz) = 0.120. In
order to use standard parametrisations of pdfs in z-space we employ the method introduced
in reference [44]. Alternatively, where appropriate, we use the program PEGASUS [45] to
derive the Mellin moments of the pdfs based on the MSTW parametrisation at the initial
factorisation scale [43].

In the following discussion we present predictions for the LHC squark and gluino cross
sections for a center-of-mass energy of 8 TeV, at various levels of theoretical accuracy:

e The NLO cross sections [14], denoted as &,

e The NLL cross sections matched to NLO results, based on the calculations presented
in [22-24] and using the MSTW 2008 NLO parton distribution functions. They are

denoted as ¢NLO+NLL

e The approximated NNLO cross sections, calculated by adding near-threshold ap-
proximations of the NNLO corrections [39] to the NLO cross sections. These cross

sections are denoted as o NNEOApprox

e The NNLL matched cross sections o NNLL matched = The NNTO Approx + NNLL accu-
racy, as detailed in equation (2.8), applies to the s-wave channels. The contributions



from the %-suppressed p-wave channels are taken into account at NLO+NLL ac-
curacy. Both the s-wave and the p-wave contributions have been convoluted with
the MSTW 2008 NNLO parton distribution functions. We have checked that using
NNLO pdfs instead of NLO pdfs for the suppressed p-wave channel contributions
leads to a negligible modification of the full result.

Apart from the NLO cross sections, which were calculated using the publicly available
PROSPINO code [46], all our results were obtained using two independent computer codes.
We have chosen squark and gluino masses going up to 2.5 TeV, as with the reported in-
tegrated luminosities by the ATLAS and CMS experiments, a few events are observable
in the mass range from 2 to 2.5 TeV for the cross section on inclusive coloured sparticle
production. In addition, the behaviour of the cross sections at large masses is interesting
from a theoretical point of view, and the choice of the mass range furthermore leads to an
easy comparison with the results obtained in soft-collinear effective theory. We now discuss
our findings.

In figures 1 and 2, and in table 1 we present the NNLL matched cross section predictions
for the four different pair-production processes for squarks and gluinos as well as the sum
of the NNLL matched cross sections for these four SUSY-QCD processes. The theoretical
uncertainty includes the scale error as well as pdf and ag errors. It is obtained by linearly
adding the scale dependence in the range m/2 < p < 2m to the combined 68% C.L. pdf and
a uncertainties, the latter two added in quadrature. We see uncertainties grow from small
for masses near the present lower bounds, to sizeable for masses approaching 2.5 TeV. For
comparison, we also show the NLO+4NLL scale and total uncertainty in figures 1 and 2.
We find that the scale uncertainty at NNLL is reduced with respect to the NLO+NLL
prediction, except for gluino-pair production. We return to the scale dependence of the
NNLL gluino-pair cross section later in this section, see figure 6 and the corresponding text.
On the other hand, the pdf and «ag errors are larger for the NNLL matched than for the
NLO+NLL prediction, and dominate the total NNLL matched uncertainty, in particular
at larger squark and gluino masses. We note that this increase is driven by the increase
in the ag uncertainty when going from the NLO to NNLO MSTW pdfs. See table 1 for a
breakdown of the uncertainties of the NNLL matched prediction.

Next we study how large the various corrections are with respect to the NLO correc-

tions. For this purpose we define the K-factor:

X

Kx = NG

where X indicates the accuracy of the considered predictions. The mass dependence of the
K x-factors for the four squark and gluino production processes in the case of equal squark
and gluino masses is shown in figure 3.

The NNLL corrections are positive and become larger as the masses of the produced
particles increase. This is to be expected, since in general higher masses cause a process
to take place closer to the production threshold. For all processes, the NNLL corrections
lead to higher cross sections than previously known for the NLO+NLL results. The largest
effect can be observed for gluino-pair production with the NNLL Knnr1-factor approaching

a value of 3 for very high gluino masses.

2See http://tiger.web.psi.ch/prospino/ or http://www.thphys.uni-heidelberg.de/~plehn/index.php?show=prospino.
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process | m[GeV] | gNNLL matched [ | Geale Error | pdf Error | ag Error | Total Error
i 500 2.90 0| ek | B |
g | 1000 | 180x1072 M B | Tate | R
i 1500 2.37 x 10~ 124% iz o e
i 2000 2.86 x 106 27% 0% i it
i 2500 2.01 x 10~ +3.0% T iy G
7 500 3.72 e tom | Ti e
33 1000 1.30 x 102 o3 A e B
Gi 1500 1.33 x 1074 o M e 0
33 2000 1.49 % 106 L e 3 oo
i3 2500 1.05 x 108 12 9% o 4
Qi 500 413 o e | Te | B
g | 1000 | 751x107 i Bl e | Tt
ii 1500 2.39 x 103 +46% SO € on
G | 2000 | 6.66x 107 e kO e O
@@ | 2500 | 1.07x10° e | S|
i 500 12.1 oo MO B R
i 1000 | 8.74x 1072 T x| T Bt
ii 1500 1.52 x 1073 o ol 82 e
ii 2000 2.72 x 1077 e e o V4
ii 2500 3.05 x 107 o 2% 2% s
inclusive 500 22.9 f?,ﬁgg f}g;ﬁ ﬂggg jg;gz
inclusive | 1000 1.94 x 10! 2:3% T2 T2 e
inclusive | 1500 4.29 x 1073 2.0% s e o
inclusive | 2000 9.81 x 1079 3.6% v o
inclusive | 2500 1.40 x 106 a2 oo o o

Table 1. The NNLL matched cross section prediction for different SUSY-QCD processes at the
LHC with v/S = 8 TeV. The scale, pdf, a, and total uncertainty are shown separately. The MSTW
2008 NNLO pdfs [43] have been adopted, the squark and gluino masses have been taken equal and
the common renormalisation and factorisation scale has been set equal to the squark/gluino mass.
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Figure 1. The NNLL matched cross section for the four processes of pair production of squarks and
gluinos, including the theoretical error band for the NNLO approximation. The error band includes
the 68% C.L. pdf and ag errors, added quadratically, and the scale uncertainty varied in the range
May /2 < p < 2my,y, added linearly to the combined pdf and ay error. The energy is that of the LHC
at 8 TeV. The squark and gluino masses have been taken equal and the common renormalisation
and factorisation scale has been set equal to the average mass of the two particles produced. For
comparison, we also show the scale and total uncertainty of the NLO+NLL prediction.

Compared to the other processes, we observe for ¢G production a less rapid increase of
the cross section due to NNLL corrections. There are two effects playing a role. The first
effect is caused by the one-loop Coulomb corrections. The one-loop Coulomb correction
for the sextet colour structure is negative, leading to a reduction of the cross section,
whereas the opposite holds for the antitriplet colour structure. The importance of the
negative sextet contribution is enhanced due to the change in the relative size of the LO
contributions occurring with increasing mass, i.e. the sextet colour channel becoming the
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Figure 2. The NNLL matched cross section for the sum of the four processes of pair production
of squarks and gluinos, including the theoretical error band for the NNLO approximation. The
error band includes the 68% C.L. pdf and as errors, added quadratically, and the scale uncertainty
varied in the range ma.y,/2 < p < 2m,,, added linearly to the combined pdf and «y error. The
energy is that of the LHC at 8 TeV. The squark and gluino masses have been taken equal and the
common renormalisation and factorisation scale has been set equal to the average mass of the two
particles produced. For comparison, we also show the scale and total uncertainty of the NLO+NLL
prediction.

dominant one at high mass, as opposed to the antitriplet colour channel being dominant at
low mass. For comparison, in ¢g production the negative contribution due to the Coulomb
correction for the 15-plet colour channel is not as dominant when compared to contributions
from other colour channels. Additionally the overall contribution of the Coulomb terms
compared to the logarithic terms is smaller for ¢g than for Gq. The second effect is due
to the difference between the behaviour of the NNLO pdfs and the NLO pdfs for valence
quarks and gluons. The ratio of NNLO pdfs to NLO pdfs rises with an increasing value of
for gluons, whereas it decreases for quarks. For all processes with gluons in the initial state
this leads to an enhancement of the NNLL and NNLO corrections w.r.t. the NLO+NLL
results that grows with increasing final-state masses. Conversely, for the processes with
quarks in the initial state this leads to a suppression of these corrections at larger masses.
The production of g pairs is the only process that at LO takes place exclusively in the gq
channel.

In figure 4 we show the mass dependence of the K-factor for different ratios of the
squark and gluino masses. The differences in the corrections for various mass ratios can
be largely explained by the r-dependence of the matching coefficients CNNLE

ij—kl, 1>
of the hard matching coefficients [27] and the Coulomb corrections. Moreover, the two-

composed

loop Coulomb coefficients depend on r only for ¢g production, causing the additional
r-dependence of the Knnrr-factor for this production process.

In the next step we investigate the scale dependence for the different processes, see
figure 5. For this analysis, the squark and gluino mass are taken to be equal to 1.2 TeV. We
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Figure 3. The Kx-factor for the NNLL matched, NLO+NLL and NNLOpprox predictions for
different SUSY-QCD processes at the LHC with /S = 8 TeV. The squark and gluino masses have
been taken equal and the common renormalisation and factorisation scale has been set equal to the
average mass of the two particles produced.

vary the scale around the central value of o = mg = mg from p = p19/5 to p = 5pp. We
observe that the scale dependence decreases when including NNLL matched corrections for
all processes except gluino-pair production.

In order to understand the increased scale dependence of gluino-pair production, we
analyse, apart from the NLO+NLL results and NNLL matched results, also the effects of
incorporating specific terms of NNLL accuracy in the resummed cross sections. In addition
to NNLL matched results, figure 6a shows the “NLO+NLL with C()” predictions, where the
exponential in the resummed part is considered at NLL accuracy, but the formally NNLL
hard matching coefficients Cf}ikl’ ; are taken into account while all Coulomb corrections
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Figure 4. The Kx-factor for the NNLL matched and NLO+NLL predictions for different values
of r =mg/mg = 0.5,1,2 for the four pair-production processes of squarks and gluinos at the LHC
with v/§ = 8 TeV. The common renormalisation and factorisation scale has been set equal to the
average mass of the two particles produced.

are kept equal to zero. Furthermore, we present the “NLO+NLL with ¢ & ¢Coul(1)»
results, which additionally include the one-loop Coulomb corrections Cgo_l)l}cl(ll) ,
“NNLO approx. +NNLL(w /o C¢°":(1:2))” results, which include the NNLL exponential and

the hard matching coefficients. With the inclusion of one-loop Coulomb corrections at the

as well as the

NLL level, we notice a significant change in scale dependence. This implies that one-loop
Coulomb corrections are, at least partly, the cause for the different behaviour of the cross
section when varying the scale. The impact of the one-loop Coulomb corrections on the
scale dependence of the predictions appears to be smaller when considered together with the
NNLL exponential. Additionally, the contributions due to two-loop Coulomb corrections
present at NNLL largely balance the effect of terms involving one-loop Coulomb terms.
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Figure 5. Scale dependence of the LO, NLO, NLO+NLL and NNLL matched cross sections for the
four different SUSY-QCD processes at the LHC with v/S = 8 TeV. The squark and gluino masses
have been taken equal to 1.2 TeV.

An analysis that involved splitting up the cross sections into their colour channels
has revealed that the inclusion of one-loop Coulomb coefficients mainly affects the scale
behaviour of the fixed-order expansion of the resummed cross section, whereas it hardly
changes the scale behaviour of the purely resummed part. The interplay between the
opposite-sign Coulomb contributions for the attractive and repulsive colour channels in
the expanded part leads to a constant shift for higher scales, and a change in the slope of
the curve for smaller scales. The almost constant shift in all the colour channels of the
resummed part cannot compensate for this change in behaviour of the expanded part.

We notice another change when including logarithmic terms up to NNLL in the expo-
nentials. The growth in scale dependence of the resummed part at large scales is driven
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Figure 6. Scale dependence of different parts of the gluino pair production cross section: interme-
diate levels of accuracy (a), and a split-up of the cross section into resummed and expanded parts
for NNLL matched, compared to the full NNLL matched result as well as NNLOapprox. (b)-

by these logarithms. We note that in comparison to the other processes, the logarithmic
terms are more important for the production of gluinos due to the colour factors. The im-
portance of the higher-order logarithms can be seen even more clearly when comparing the
resummed part of the cross section to its expansion up to NNLO, cf. figure 6b. Whereas the
resummed part (NNLL) and its expansion (NNLL exp.) agree well for low scales, we notice
a difference at high scales, resulting from logarithms of formally higher order in ag that are
not included in the expansion. We have also verified that this difference is much smaller for
the G process, in agreement with the expected higher relevance of the logarithmic terms
for gluino-pair production due to more intense gluon radiation and, correspondingly, larger
values of the coefficients appearing in the exponentials. We also see in figure 6b that at
high scales the expanded part approaches the fixed order NNLOapprox., implying that, at
high scales, the dominant parts of the latter stem from the large logarithms. Thus, the full
NNLL matched cross section is mainly driven by NNLOapprox. at low scales, and by the
higher-order logarithms at large scales.

We have checked that the above observations do not change for higher masses. We also
note that the extremely small scale dependence observed at the “NLO-+NLL with C(1)”
level for mz = 1.2TeV (cf. figure 6a) seems to be accidental, as it is not preserved for
mg = 2.5TeV.

4 Conclusions and outlook

Using the Mellin-moment-space formalism, we have performed the NNLL resummation of
soft-gluon emissions for squark and gluino hadroproduction. The resummed results are
matched to the approximation of the NNLO results. The NNLO approx+NNLL predictions
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are then provided for LHC collisions at VS = 8TeV. The NNLL corrections lead to a
significant increase of the size of the cross sections for all four processes of squark and gluino
pair production, both with respect to the NNLOapprox and the NLO + NLL results. The
NNLO A pprox+NNLL corrections are particularly important for the G¢ production channel
where, in the mass range of up to 2.5 TeV, the enhancement over the NLO cross section can
reach up to approximately 80% at the average-mass scale of the two particles produced,
compared to up to about 20% increase over NLO due to NLL corrections. Apart from
the impact of NNLL logarithmic terms and one-loop hard matching coefficients, this effect
can be traced back to the inclusion of Coulomb corrections in the matching coefficients,
cf. [29, 32]. Among the four processes of squark and gluino production the highest overall
NNLL K-factor, i.e. the highest enhancement of the full matched NNLOapprox+NNLL
cross section over the NLO cross section, is observed for the gluino-pair production process.
In this case, however, the NNLL logarithmic terms of soft-gluon origin and the one-loop
hard-matching coefficient are more important than for the ¢ process, see also [27].

Including the NNLL contributions leads to a reduction of the scale dependence for
the squark and gluino production total cross sections, with the exception of gluino-pair
production. This unexpected effect for the §g production process can be traced back to the
impact of Coulomb corrections and, more importantly, to the scale-dependent terms present
in the resummed exponentials. These terms seem to spoil the compensation of the scale-
dependence between the resummed expression and the evolution of the parton distributions,
especially when multiplied by the matching coefficients. In this context, it is worth noting
that high-mass gluino-pair production in pp collisions at v/S = 8TeV can be seen as
an extreme case among the LHC processes for which the NNLL resummation has been
performed so far, given the size and the importance of the logarithmic terms of soft origin
that are characterized by large colour factors in the dominant gluon-gluon initial-state
channel. It is also possible that the observed effect is partially caused by the incompleteness
of the two-loop matching coefficient that we use here. The calculation of the complete
coefficient would require knowledge of the full NNLO result, which is not yet available.
Additionally, the conclusions can change upon implementing resummation of Coulomb
corrections in the Mellin-moment-space approach. The impact of the resummation of
Coulomb corrections is left for a future study.

While for squark-squark, squark-antisquark, and squark-gluino production our results
agree relatively well with the corresponding results presented in [49], for gluino-pair pro-
duction the NNLL K-factors differ by around 10%. It remains to be resolved in the future
if the difference originates from the different methods of performing resummation, i.e.
Mellin-moment-space approach versus effective-field-theory approach. Regarding the scale
dependence of the cross section, it is difficult to perform a comparison between the two
approaches as estimates of the scale uncertainty used in the effective-theory predictions
cannot be directly translated into the Mellin-moment-space approach.
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A One-loop Coulomb corrections in N-space

In this appendix we present the Mellin transforms of the LO cross sections and give the
corresponding integrals for the Coulomb corrections, which receive an additional factor 1/
compared to the LO cross section. We commence by listing the integrals that are needed
for calculating the Mellin transforms and subsequently give the full results for all squark
and gluino production processes.

For the calculation of the Mellin transforms we use the following notation. The number
of light quark flavours is denoted by n;. Furthermore we define:

2 ~9
= I and A, = I

Qs g =
A7 47’

where g5 is the QCD gauge coupling, while gs is the corresponding quark-squark-gluino
coupling in the MS scheme. The colour-decomposed LO cross sections are given for N,
colours and are labelled such that they correspond to the colour structures in ref. [27]. In
addition we use the shorthand notations

s+2m? — sB 9 9 9
b=tos (TG ) = mj .
s—2m? —sB 9 9
LZ_IOg(sZmQ_JrsB)’ my = mg+mg,
s+m? — ksf 4m?2
Ly =1 =4/1 - —*&
s Og(s—f—mz—}—/ﬁsﬁ)’ p s
L4:10g(s—mz_—/@35)7 K;:\/l_(mq—mgp’
s —m~ + ksf S
as well as
z:4m§\,:1_52’ r:m§’ A:r—l7 B:rz—17
5 mg r+1 re+1

with s the CM energy squared and m,, the average mass of the produced particles.
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A.1 Integrals

The solutions to the integrals are expressed in terms of the I'-function:

F(z):/ t#~ e tdt,
0

and the generalized hypergeometric function:

i I'(ai+n)---T(ap+n) T(br)---T(by) 2"
I'(a1)---T(ap) T(bi4n)---T(bg+n) n

qu(ala"' 7ap§b17"' abq;x) =

n=0

First we have the integrals that correspond to the linear terms in £ in the LO cross

section. When including the 1/ factor from the Coulomb correction, these terms become
constants. Such integrals occur in most processes and are given by:

! VaAL(N +1)
K(N) = dezNV1T—z=Y—" "/ Al
) /0 20 (N +3) (A1)
/1d ! (A.2)
2z .
0 TN+1
For the quark-initiated processes we also need:
1 N
1—2 1 VaT(N +1) 3 9 o
Ki(N)= [ d = F(1,>;N+>;B
1) /0 Zz(r2—1)2—|-47‘2 (r2 +1)>2 21‘(]\74—%) 2 1< "2’ +2’ ’
(A.3)
1 N
z 1
Mi(N)= [ d = Fi(1,1;N +2; B?). A4
1( ) A zz(T2—1)2+4’f‘2 (T2+1)2(N+1)2 1(7 ) + 2 ) ( )

For the qg — ¢g case we need integrals for the k3 terms:

N /11— _ A2 \F— TN +1) _1 . 5. 42
Ky(N) = / dzz" V1 —2v1— A2z 5 (N ) o F 2,N+1,N+2,A ,
(A5)

1
1
My(N) = [ dzzNy/1— A2z =
0 N +1
For the gluon-initiated processes, we need the additional integrals:

Ky(N) = /Oldzleog (HE) ___YrIV+ D) (A7)

1
o F) (—2,N+1;N+2;A2> . (A.6)

1+V1-z (N+ 1T (N+3)°
1 N 1—-V1I—2z —2 1 3
Ms(N)= | d 1 = F ,,,7N+21 A.8
3(V) /o Z\/l—zog<1+\/1—Z) N+132< > (4.8)

which can be calculated using the identity [47]:

() on (1a2)
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For the qq — G process, we also need two integrals containing L;. These can be obtained
by rewriting the logarithm:

log (LT 2P =Dz —vVI-= :1Og<1—\/m)+10g<m)
I+ 3 =Dz +VI—2 I+vT—2 1=BV1-2)"

which leads to the solution:

1 L+ir?-Dz—yv1i—2
KuN,r)= [ dzV1 2 A9
() /0 woe 14+ 3(r2—1)z+vV1-2 (4.9
=K3(N)+Bﬁ Ntl)zlﬁ( ,17N+5;32>,

(N+3) 2

1 N 1+ 3?2 = 1)z —V1—
My(N,r) = / dz—2—log +§(T )z © (A.10)

0 V1—2z I+35(r2=1)z+V1-=z

2B 1 3
:M3(N>+ 3F2<2a171727N+27B2>
The corresponding integrals for Lo, which are needed for the q¢ — ¢g process, can be
obtained by substituting » — 1/r, which corresponds to B — —B. For the q¢ — ¢4
process, we also need:

1 N 14102 12— /1=
Ks(N,r) = / dee— log +§(T )z : (A.11)
0 2+ (r2-1)z 1+5(02=1z+V1-2
_ T(N+1) & B —-B™1) T(n+k+3)
rPel L= nty  T(N+n+k+3)
D(N+1) & (1- BN (n+3) < 3 5 >
= - F 17 +7aN+ +7aB )
r2 41 HZ:% F(N—i—n—l—g) 2t "y "y
1 N 1412 1) — /1=
Ms(N,r) = / dz z log +§(r )2 ° (A.12)
0o Q2+@2-12)V1-2 L+5(02-1)z+V1-2
_ I(N+1) & B¥1-B"1) T(n+k+1)
IR U n+ 3 I(N+n+k+2)

o0

_ _F(N+ 1) Z I'(n+1)(1 — B2+

F(l,n+1;n+N+2;B).
241 (n+)Tm+N+2)° 1 )

n=0

Also in this case, the corresponding integrals for Ly, which are needed for the q¢g — g
process, can be obtained by substituting r — 1/7.
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For the gqg — ¢g process, we need the Mellin transforms of L3 and Ly:

" ! N 14+ Az — /(1 -2)(1 - A22)
Hs (N7r)_/() az lg(lj:Az—i-\/(l—z)(l—A?z)) (A.13)

= \/ﬂgN“) o Fy (1,N+1;N+3;A2>
I'(N+3)(N+1) 2 2

VaAT(N +1) 1 Y
iAWQFl <2aN+2,N+2,A2>,
4 ! 2V 1+ Az — /(1 —2)(1 - A22)
M; (N,r)—/O dz 1—zlog<1iAz+\/(1—z)(1—A2z)> (A.14)

_ _i L(n+1I(N +1)

1
F n+,N+1;n+N+2;A2>
(n+ 5T+ N+2)° 1< 2

n=>0
24 1 113 A?
+ Frol-,=-1,- N+2;:——— | .
/71—A2N+13 2(2727727 +’A2—1)

A.2 Mellin transforms for LO cross sections and Coulomb corrections
A.2.1 qG— 4q

For the qq — ¢q process, the Mellin transforms of the LO cross sections are:

2_(N2_1)2

~(0 aim(N;—1) 1

Jéqué,l = _W 2K(N)—4r*K1(N) + K4(N,r) +§(r2—1)K4(N—|—1,r) ,
(A.15)

2 (A2
- (0) 1 aim(N;—1)
Taq-ia2 T N2_17aaiil + 5f1f2nzW (K(N) - K(N+1)) (A.16)
an(N2-1)
+5f1f2 SSmgj\[g}

X [K(N)+;(r21)K(N+1)+§r2K4(N+1,r)+é(r21)2K4(N+2,r)} ,

while the Mellin transforms of the Coulomb corrections are given by:
~Coul,(1) 042772(]\7(:2_1)3

[ =2 2 My(N) — My(N, 7) ;(r21)M4(N+1,7~)] ,

9q—4q,1 32mZNE  [N+1
(A.17)
sCoul() _ 1 cou) afm? (N2 1) 1 (A.18)
q993—4q,2

(N2—1)2%aa—ag1 ~ NS 96mzNg  (N+1)(N+2)
o5 (Ne 1)

Il 3om2 NG
1 r?2—1

L o L o 2
—r"My(N+1 —(r*=1)"My(N+2
8 N+1+2(N+2)+2T AN+ ,r)—i—g(r JMy(N+2,7)
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A.2.2 gg— q4q

For the gg — GG process, the Mellin transforms of the LO cross sections are given by:

2
- (0) . Qg T 1

2
- (0) aimyN, |1 4 1 1
o =—a——— |-K(N)+ -K(N+1)+ =K3(N+1) + - K3(N+2 A2
T 9972 4m2~(N82—1) [6 (N) 3 ( ) 2 3 ) 4 3 )|, (A.20)

-0 _Lloye 20
T99—dd3 Q(NC 4) T49—d5,1° (A.21)

and the Coulomb corrections in N-space are:

32

sCoub(n) _ osmom |1 L mven) - tan(vao A.22

99—+Gq,1 16m§N3[N+1+N+2+ 3(N+1) 5 3(N+2)1, (A.22)
32

- Coul,(1) Qg TNy 1 4 1M N 1

= — 1 —Msz(N+2 A.23

2

_Coul,(1) _ 1NZ—=4 _cou,()

T99-3d3 2N2—1 g9—Ga,1 " (A.24)

A.2.3 qq — qq
The structure of the q¢ — ¢¢ process has much in common with the singlet channel of the
qq — GG process:
0 _ adm(NZ-1)(Ne+1)
T9q—G3,1 = 16m2N§
q

[ —2K(N) + 4r°K;(N) —K4(N, ) (A.25)

1
—E(Tz—l)K4(N+1, r) + 7‘25f1f2K5(N—|—1, 7‘)] ,

S0 _ agm(NE=1)(Ne—1)
99—4q,2 — 16m§N§’

[ —2K(N)+ 412K (N) —K4(N,r) (A.26)

1
—5(7‘2—1)K4(N—|—1, r) — 7‘25f1f2K5(N—|—1, 7‘)] ,

and the Mellin transforms of the Coulomb corrections are:
- Coul,(1) _ a3 (NZ=1)(Ne+1)* [ —2
99401 64m2 N2 N+1

+ 472 My (N) — My(N, ) (A.27)

1
—§(r2—1)M4(N+1,r) + r25f1f2M5(N+1,7")] ,

— 472 My (N) 4+ My(N,r) (A.28)

~Coul,~(~1) _ agﬂz(Ng_l)(NC_1)2 |: 2
99—49,2 64m2 N2 N+1

1
+§(T2—1)M4(N+1,7’) + 7’2(5f1f2M5(N+1,7’):| .
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A.2.4 qq— gg

The Mellin transforms of the LO cross sections of the ¢g — gg process are given by:

2 2 2
- (0) _aim(NZ—1) 5 r2_1 1
Pai931 T T gpNT 2K(N) = 4r"Ki(N) = 5 Ka ( N+1, (A.29)
1
+ K <N+1,>] :
"
2 2 2
_(0)  _ ogm(NZ—1)|3=r ) 4
Pu-902 = 162N, | 32 K(N+1) = 4r" Ky (N) + S K(N) (A.30)
2+1 1 2_1)2 1 1
T e (N ) s T e (v ) ks (v B
272 r 4rd r r
~(0) _ 1 ~(0)
%43—33.3 = Q(Nc —4) 043—55,1° (A.31)

and the Mellin-transformed Coulomb corrections are:

3.2 2 2
_Coul,(1) _ agm*(Nz—1) 2 9 re—1 1
foul,(1) _ — 4r®M;(N) — My (N+1,= A.32
44-99,1 16m2N2  |N+1 (V) = 5 My | VLT (A.32)
1
+ Ms (N—H,T) :
3.2 2 2
_ Coul,(1) agm (Nc—l) 3—r 1 9 4
foul (1) _ — 4 My(N) 4+ ———— A.33
99—99,2 G4m? 52 Ni2 A )+3(N—|—1) (A.33)

241 1 2_1)? 1 1
T (v Y - T (v ) S (v B |
272 r 4rd r r

_Coul,1) 1, 0o ~ Coul,(1)
Gagges = 3(Ne =4) 4551 - (A.34)

A.2.5 gg— gg

For the gg — gg process, the Mellin transforms of the LO cross sections are given by:

5O maemNE [ (N1 4 Ka(N) 4+ Ka(N+1) — L Ka(N42
Ugg—)@@,l_QmE(Ncg_l)Q ( )+ ( + )+ 3( )+ 3( + )_5 3( +) )
(A.35)
2 2
- (0) —aimN; 7 8 1
oo TN L N 4+ SE(N41) 4+ Ka(N) + Ks(N+1) + = Kq(N+2
099"9972 8m§(Ng_1) |:3 ( )+3 ( + )+ 3( )+ 3( + )+2 3( + ) )

(A.36)
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5. Lvz-1s© (A.37)

99333 ~ 4 T99—33,1
Goosin = Tyggzs =0 (A.38)
5 6 = (Nc+3)(Nc— )G a (A.39)
AN %(N ~3)(Net1) 55 351+ (A.40)

and the Mellin transforms of the Coulomb corrections are:

3. 203 T
i /S L M)+ My (N 1) — Say(N+2) |, (A4
Ugg—>§§,1 - 4m§(N02_1)2 _N+1 + N+2 + 3( )+ 3( + ) 2 3( + ) 1) ( . )

2773 r
5Coul.(1) —a3m2N; 7 8
My(N) + My(N+1 A.42
7990992 = 3om2(N2—1) BV T avag M)+ MV (A.42)

1
+ §M3(N—|—2) ,

GO = S(NZ-1)GG (A.43)
Nggojz’?%{zl - 55903375(917)5 =0, (A.44)
iy =~ (19
ooy — Ll gt (.46

A.2.6 qgg — qg

The Mellin transforms of the LO cross sections of the gg — ¢g process are given by:

Gaga1 = 4m0&€ —|(G+ - 3]12)K2(N> N g (v) (A47)
+ (; - 4;[3 —~ 74NE>AK2(N+1) - A“;A)QK;(NH) — AN?KF (N+1)
ez (v + A A g (v - ks (V41) + fv‘;mmz)} ,

s = | Ko V) ARl ) (A48
- GG (V) = LK (N) = GRF(V41) + T+ AL (V42)]

~(0) N.+2N.—1 (0)
Tq99—43,3 — N.4+1N.—2 Tq9—43,2

(A.49)
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and the Coulomb corrections in N-space are:

~ Coul,(1) agﬂ-2NC mgmg |:<1 1 3NC2)M2(N) _ Nig

ag=i01 = Tgmz (N2-1)\| m2, |\2 "INz T 4 2

Mg (N) (A.50)

2 2
+ <3 _ T >AM2(N+1) + A(l;rA)Mg“(NJrQ) — AN2M§ (N+1)

A(1—A)? A A?
—AQNfMg(N+2)+(2)MG(N+2)—N2M6(N+1)+NQM6(N+2)} :

N — M7 (N+2) — AM5(N 41 A 51
99—49,2 16m§v(Nc—1) mgw 4 6( +) 2( "‘) ( 5)

~Coul,(1) 043772(Nc—2) MgMmyg |:A(1+A2)

1

A
- S Mg (N+1) -

Mg (N) - gMgr(NH) + i(1+A2)M6+(N+2)] ,

~Coul,(1) _ Ne+2 Ne—1 ~ Coul,(1)
Tq99—+33,3 N.+1 Nc_gaqgﬁdgz‘

(A.52)

B Two-loop Coulomb corrections in N-space

In this appendix we give the expression for the Mellin transform of the near-threshold
approximation of the two-loop Coulomb correction. The second-order Coulomb corrections
for equal-mass final-state particles is taken from [39]. For the case of unequal masses for
the final-state particles, we have derived the expression by expanding the imaginary part
of the Green’s function in ref. [48] in terms of 5 with v &~ B1/May/ (2Mmyeq). Taking the
Mellin transform of the contribution of second order in oy results in:

a2ccoul,(2) a2 8 9 4 2Myred N [2mypeq
: 2 = (47:)2 3 (Kij—kt,r)” ™ N T + Kij—ki 1T TV e [_ 167 (log (V)

2
N2 2Myed
+7vE) — 4a1 + 327hg log (2) — 167bg log <m2 ) + 167bg log ()}

av m av

1 1
16820301 (Ca = 2yaa (1 i) (1~ o (2) = 5 108 (N) = 1)
+§ (Kijoki,r)m m;j} (B.1)

with bg = (11Cy4 — 2ny) /127, a1 = (31C4 — 10ny)/9, C4 = N, and n; being the number of
light quark flavours. Furthermore, vg stands for Fuler’s gamma constant. For two final-
state particles k and [ with masses my and my, the reduced and average masses are defined
as Myed = mrmy/(my + my) and ma, = (my, + my)/2, correspondingly. The k-coefficients
are given by k;jp,1 = (Co() — Ck, — Cp)/2 with Co(I) the quadratic Casimir invariant of
the representation I and C} the colour factor of particle k. Note that in our approach the
O(a?) non-Coulomb contribution including the relativistic kinetic-energy correction [39] is
also incorporated into C<®L(2). The values of Uspin are taken from [49].
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