
BUILDINGS IN A HOT CLIMATE WITH VARIABLE VENTILATION AT NIGHT 

by 

Mohammad-Reza Hafezi 

Submitted in accordance with the requirements 
for the degree of 

doctor of philosophy 

Department of Civil Engineering 
University of Leeds 

March 1989 



II 

ABSTRACT 

During the summer, buildings in hot dry climates have the 
inevitable problem of cooling. These climates are characterized by 
hot summer days with cold nights, a high degree of solar radiation, 
low humidity and with a nearly fixed seasonal and daily pattern of 
wind. These natural phenomena could be exploited by nocturnal 
ventilation to cool the building fabric, thus saving energy during 
the day and providing comfort at night. 

The procedures to evaluate thermal performance of buildings with 
special reference to nocturnal ventilation are studied. Various 
approaches to building thermal response are first reviewed. Dynamic 
thermal simulation computer models are developed to predict hourly 
'internal temperatures'. These are used to study the various 
constituents of models. They are based on: 

-the Admittance Method (as suggested by the CIBSE Guide); 
-a similar procedure but with higher harmonics; 
-the Response Factor Method (suggested by ASHRAE); 
-and the Finite Difference Method. 

A room surrounded by similar rooms in a multi-storey building, 
having only one external'wall, was simulated in the laboratory. It 

. was subjected to typical variations of a hot climate. Predictions of 
the computer simulations are compared with laboratory results and it 
is shown that: 

-the closest agreement was obtained with the Response Factor and 
Finite Difference methods which are equally good; 

-for higher rates of ventilation, representation of a room by a 
simple three nodes model thermal network will give sufficiently 

, 'accurate results; while for lower rates of ventilation a more 
detailed model gives more accurate results; 

-the standard Admittance Method gives adequate results, 
especially with higher rates of ventilation. It could also be used 
for hourly temperature-, calculations and variable ventilation without 
loosing significant accuracy; 

-a fuller treatment in the Admittance Method of time-lag and 
time-lead, associated with the dynamic thermal factors, will not 
greatly improve the results. An increase in the number of harmonics 
in the procedure did not also result in significant improvements, 
especially with a high rate of ventilation. 

Natural ventilation into rooms through open windows in these 
climates is theoretically investigated. It is shown that the rate of 
natural air flow obtained may be sufficient to meet the requirements 
of passive cooling by nocturnal ventilation. 

A computer program is developed to calculate the rate of air 
flow in multi-zone buildings, and a new relationship is suggested, 
which will reduce the complexity of natural air flow calculations in 
multi-zone buildings subjected to cross ventilation. 
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NOMENCLATURE 

This nomenclature is used throughout this thesis, unless 

indicated locally. 

Symbol Unit 

A area m2 

C ventilation conductance W/K 
V 

C discharge coefficient d 
cp specific heat capacity J/kg K 
d distance m 

F surface factor 

f decrement factor 

g Accelaration due to gravity m/s2 
Gr Grashof number 
h radiation conductance W/m2K 

r 
h heat transfer coefficient for convection W/m2K 

c 
I tots so ar intensity W/m2 

1 thickness m 

N number of air changes per hour h-i 

Nu Nusselt number 
P pressure Pa 

Pr Prandtl number 
Q rate of heat flow W 
R thermal, resistance m2K/W 
R inside surface resistance m2K/W 

st 
R- outside surface resistance m2K/W so 
T temperature °C 

T dry resultant temperature °C 
c 

T environmental temperature °C 
el 

T mean surface temperature °C 
r 

t time s 
U thermal transmittance W/m2K 
Vol volume m3 



Ix 

V air velocity m/s 

v ventilation rate m3/s 

x distance m 

Y admittance W/m2K 

Greek 

a thermal! diffusivity 

glass reflectance 

e Surface emmisivity 
A thermal conductivity' 

w time lead for admittance 

0 time lag for decrement factor 

kb time lag for surface factor 

p density 

z glass absorptance 

or Stefan Boltzman constant 5.67x10-8 

Subscripts 

al, inside air 

ao outside air 

$ surface 

Si internal surface 

ri mean-'surface temperature of a roomy 

si internal surface 

so external surface 

Superscripts- 

daily mean of a value 

swing about the mean of a-value 

M/S 

W/mK 

h 

h 

h 

kg/m3 

W/m2K4 
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CHAPTER ONE 

INTRODUCTION 

1.1 General 

The most basic function of a building is to control the 

internal environment, in order to make it suitable for healthy and 

comfortable living. Buildings in hot climates like those in parts of 

Iran have the inevitable problem of cooling during the hot summer 

days. 

In the past people who lived In these areas have learned to 

cope, and make use of the outside environment, to create and control 

comfort in their buildings. This was mainly achieved by experience 

through generations and many years of trial and error. With the 

modern change in life style, construction techniques and architecture 

generally, the old solutions tend to be neglected. 
If energy is freely spent, with present knowledge and equipment 

the internal environment of a building can be comfortable regardless 

of how uncomfortable the outside environment is. But the customary 

energy source will not last Indefinitely and also the techniques and 

equipment are not universally available, especially In developing 

countries, and they are also expensive to build and use. 

In a mild climate, like that of the U. K., 'cooling a dwelling on 

a warm summer day could be achieved by natural ventilation through 

open-windows, but in the-hot climate of Iran, the outside air is so 

hot during the day that it cannot be allowed in for cooling purposes. 

From late afternoon until early morning the outside air drops to a 

lower temperature, suitable for cooling the body as well as the 

structure. Night ventilation is consequently the dominant method of 

cooling buildings for many months of the hot season. A well designed 

building could be kept comfortable by natural ventilation, without 

air conditioning. Even with air conditioning, night ventilation 

reduces the internal temperatures, * (air and surfaces) and 

consequently energy will be saved. - 
In recent years attention has been given to passive cooling, but 
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most studies are qualitative descriptions of past experience. 
It is desirable early in the design stages to predict the 

thermal response of buildings and evaluate comfort attainable by 

night ventilation. A suitable procedure would be a compromise between 

accuracy, reliability, simplicity and ease of use. The purpose of 

this study is to examine existing techniques and to develop such a 

procedure with reference especially to night ventilation in hot arid 

climates. In this study special attention is paid to hot arid 

climates of Iran and similar climatological data is used where 

required. 

1.2 Hot and dry climate of Iran: 

Iran is a large country, between latitudes 25° and 390 North and 

longitude of 25° to 45° East. In world climatology Iran is classified 

as a tropical and subtropical'region. (Tavassoli 1976) Nevertheless 

because of its special geographical location it contains other 

climates, such as those around the Caspian sea in the north (mild and 

wet); the Persian Gulf and Oman Sea in the south (hot and humid); and 

mountainous areas of the west and north (cold and dry). 

The hot and dry climatic regions of Iran have special 

characteristics, which include high solar intensity, hot days and 

cold nights, very high energy loss to the sky during the night, low 

relative humidity, very low rainfall, and a dominant pattern of 

prevailing wind. 

The low relative humidity, the clear sky and low cloud cover 

cause a quick rise in air temperature during the day. At night 
because of the low thermal capacity of the dry air, its energy will 

be lost quickly and its temperature will fall. This variation of 

temperature between day and night becomes as much as 20 K in some 

summer months. The high angle of Incidence will also cause a high 

energy gain by building surfaces during the day, while absence of 

cloud permits easy release of stored heat, by long wave radiation to 

the sky. These climates have a fixed pattern of wind, and usually a 
desirable wind blows at a fixed direction at a lower temperature than 

that of the ambient air. In some `directions the wind might be warm 

and carry sand. Temperature 'diversion is also a significant 
phenomenon. 

Table 1-1 summarizes some climatological data for cities during 
the summer. 
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Table 1-1 Weather data for some cities in Iran 

Air temperature 0c Relative 

Latitute daily mean absolute humidity(%) 

N mean max. min. max. min. min. max. 

Tehran 340 41, 32.3 39.3 25.7 43.0 21.0 11 24 

Kerman 300 15 25.7 35.7 15.8 38.0 11.0 12 27 

Kashan 330 59 35.6 44.0 27.3 47.0 24.0 16 30 

Yazd 310 54, 32.2 40. 3.8 43.0 21.0 9 15 

Isfahan 320 37 29.7 37. 

! 

0 

E22. 

39.0 19.0 17 32 

1.3 Night ventilation requirements 

In a theoretical examination of cooling buildings in Yazd in the 

hot arid parts of Iran, Golneshan and Yaghoubi(1984) has shown that 

comfort could be achieved during hot summer days by ventilation at 

night and suitable design. A ventilation rate of 12 to 30 air changes 

per hour during the cold period of the night is suggested and 

infiltration during the, day is discouraged. In another investigation 

for Aswan in Egypt, Al-Awa (1981) has suggested the same range of 

ventilation rate during the night. He has. shown that 40 air changes 

per hour will result in reasonable room air temperature, If the house 

is suitably designed.. 

Such rates of ventilation could be achieved by cross 

ventilation, using the dominant wind direction and an appropriate 

configuration of_ openings. In rooms with, all windows only on one 

wall; (single sided ventilation) the rate of air flow may not be 

sufficient for cooling purposes. The air flow rate could be enhanced 

by certain devices. One such device, is the wind tower traditionally 

used in passive cooling in Iranian architecture, described below. The 

air flow rate could be increased by, adding baffle walls besides 

windows. With an oblique wind the average air speed in a room with 

single sided ventilation, may be, increased in this way from 8% to 35% 

of that of the wind outside. (Givoni 1981) 

1.4 The architecture of the hot and dry climate of Iran 

The people in the hot arid regions of Iran have adapted their 

way of living and their dwellings to the conditions imposed by the 
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outside environment with methods such as: 

-reduction of the exposed surfaces of buildings by attaching 

them to each other; 

-use of thick heavy brick and adobe walls to exploit the high 

daily fluctuation in outside air temperature; 

-reduction of -the area of glass to decrease the rate of solar 

gain; ' 

-by. living and sleeping outside during the night and opening 

doors and windows to exploit long wave radiation loss to the sky. 

They also avoided the high solar radiation by constructing 

court-yards and earth-sheltered dwellings. This also allowed them to 

move around the house according to the season; using south facing 

parts during the winter and north facing parts in the summer. They 

built ponds and planted trees and shrubs in' the court-yard to 

increase the relative humidity of the air. 

Such methods and: innovations have resulted in an especial 

architecture of the hot and dry regions of Iran. Tavassoli(1975) has 

outlined their main architectural elements as: court-yard houses; 

large terraces in front of buildings (eivans); domed roofs and wind 

towers ( Baud Geers); of which the last two are used for cooling; by 

heat transfer by convection and increasing the rate of air movement. 

Domes and vaults are the essential elements of Iranian 

architecture, used for both public buildings and dwellings. Apart 

from their structural advantages (being lighter and cheaper than flat 

roofs where timber is scarce), they are also of great use in passive 

cooling for example a domed roof provides more air flow In the room 

below. A hole at its apex will Increase the rate of natural air flow 

in the room. Haghighat and Bahadori (1983) have studied the rate of 

natural ventilation in buildings-employing domed roofs, with openings 

at the crown. - When compared with flat roofs the domed roofs always 

Increase- the air"flow -rate through the buildings. This increase 

becomes significant In buildings with all windows and doors on one 

side (single sided ventilation), or when the building envelope cannot 

provide enough pressure difference across openings. This increase In 

air flow rate could be as high as 250%: 1 Cavity domes (or double 

layered domes) are also widely used in larger buildings. By providing 

openings on the outer dome and on the apex of both layers, the air 

would circulate between the layers and-through the building below. It 

will decrease the 
. 
temperature of the surfaces. This large air flow 

rate in buildings may be utilized to store night air coolness in the 
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structure more effectively and keep the temperature of the interior 

surfaces low, thus decreasing the mean radiant temperature for better 

summer comfort. 

One of the finest examples of the use of natural ventilation in 

buildings are wind towers which are widely used in the hot arid 

regions of Iran. (Bahadori 1978) 

Wind towers are masonry structures designed to provide natural 

circulation of air through the building. They collect cooler air at 

higher level and lead it into the building. There is always a 

circulation of air through wind towers. (Bahadori 1979) Their 

function differs between day and night. At night, when there is no 

wind they act as a chimney to-maintain a circulation of air through 

the attached building, and, when there is wind, the air moves in the 

opposite direction. The cooling of its structure is accomplished both 

by long wave radiation loss to the sky and by convection with cool 

night air. During the day when there Is no wind, the tower works as a 

reverse chimney. The hot outside air will enter and pass through the 

tower, and during its journey loses energy to the structure of the 

tower, cooled during the previous night, and enters the room. When 

there is wind, the air enters the, room at a highem rate. There are 
different types of wind tower shapes, various tower heights and 

openings, cross section and structure. Some of them are connected to 

an underground room (sardab), to circulate air through It, in order 

to increase humidity and use the coldness of the underground air. 

They were. also connected to cisterns to cool the space for storing 

ice during hot summer days. (Bahadori ) Figurel. lshows an example of a 

dwelling with a wind tower In Iranian architecture. 

1.5 Thermal comfort in hot arid climates, 
The human body's thermal comfort depends on the combined effect 

of the mean radiant temperature, the ambient air temperature, the 

relative humidity and the air velocity. besides the type of clothing 

and the level" of activity. Various thermal indices have been 

developed to give a basis for comfort evaluation, which differ in 

their approach to the problem, assigning different importance to the 

factors, their range of applicability, the precision and data 

required etc. (Eleven such indices are reviewed by Sodha et al. 1986) 

In the U. K., "resultant temperature" (or dry resultant 
temperature) is accepted as an index for thermal comfort evaluation. 
This temperature may be measured by a globe thermometer at the centre 
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Figure 1.1: One example of a court-yard, earth sheltered dwelling employing 
wind tower and underground room (sardab). (Tavassoli 1975) 



7 

of a room. (CIBSE Guide part Al 1986) It is also shown to be a 

suitable index for comfort in hot arid climates. (Nicol 1975) This 

temperature correlates the effect of mean radiant temperature, 

ambient air temperature and air velocity and is given by: 

T +T (l0v) 0' S 
T=r at °C (1.1) 

C 1+(10v)0.5 

where 

Tc = dry resultant temperature °C 

Tai= air temperature °C 

T =, mean radiant temperature °C 
rv 

= air. velocity m/s 

The effect of humidity on comfort can be ignored if the 

resultant temperature is not much greater than the preferred values 

and if the relative humidity lies between 40% to 70%. As a change of 

X1.5 K on the preferred comfort temperature will not significantly 

affect comfort under normal conditions. With the air velocity about 

0.1. m/s, the above equation could be simplified to 

0 
Tc='(Tai+Tr)/2 C (1.2) 

The preferred indoor temperature is also related to the outdoor 

air temperature. When the building is not air conditioned -a "free 

running building"- this relation is linear, such that one degree 

increase in outdoor air temperature would be compensated by half a 

degree increase in comfort temperature. 

Nicol (1975) has studied observations related to comfort In two 

hot arid cities during June and July: in Roorkee in India and Baghdad 

in Iraq. His investigation has shown that none of the several thermal 

comfort=indices which were tested, correlated significantly better 

than the globe temperature. He also found that the people in these 

climates were comfortable in much warmer conditions than people in 

temperate climates. 

By comparing the results with observations of comfort among 
English workers at similar conditions, he has shown that while 
Fnglish subjects are comfortable at a globe temperature of 20 to 25 

°C, ih a hot arid climate little thermal discomfort was shown at 
temperature up to 32 °C provided the air velocity exceeded 0.25 m/s. 
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It was also found that the discomfort vote did not exceed 20% until 

the globe temperature rose above 36 °C. 

Nicol has also shown that while the effect of relative humidity 

was insignificant, the air velocity had a constant and statistically 

significant effect on thermal comfort. Air movement reduced 

discomfort from heat at temperatures above 31 °C, and below this 

temperature there was little discomforts. At temperatures above 40 °C 

discomfort was experienced at any air velocity. More detailed 

discussion about the effect of air movement on thermal comfort is 

given in chapter four. 

1.6 Thermal simulation techniques 

The importance of a building as a modifier of outdoor conditions 

has necessitated the development of dynamic thermal simulation 

techniques. These models are required as a tool to predict the 

thermal response of buildings and to evaluate the relative 

significance of variables at the design stage. Such models should be 

a compromise of accuracy, reliability, flexibility and ease of use. 

A dynamic thermal model depends on how the physical laws of heat 

transfer are used-and how a room is presented as a thermal network. 
The accuracy , flexibility and simplicity of a thermal model is 

affected by its treatment of 

- unsteady heat transfer by conduction 

- energy input to the room 

- radiation between surfaces 

- convection between surfaces and air 

ventilation 

- presentation of the elements of the thermal system 

1.6.1 Existing thermal techniques,, 

Mathematical techniques currently, used to estimate the indoor 

"temperature" and the cooling or heating load of a building can be 

devided into three groups: (Gupta et al. 1976) 

a: the harmonic, 'method 

b: the response-factor method - 
c: numerical methods 

The fundamental assumption-made by, the harmonic method is that 
the . climatological. information can be approximated by a series of 
periodic, cycles, which is usually the case for design studies. This 
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is also the basic assumption of the Admittance Method used in the 

U. K. and given by the CIBSE Guide and practiced since 1970. 

The response factor method is devised to handle both periodic, 

non-periodic and intermittent inputs, where the harmonic method is no 

longer applicable. This could also be used when energy demands are 

required to be calculated over a fairly long time. The method is 

recommended by the American Society of Heating, Refrigerating and Air 

Conditioning Engineers (ASHRAE) for heat transfer calculations in 

buildings. 

Numerical methods are used when the solution to the unsteady 

heat conduction equation under varied boundary conditions of interest 

is not possible by the analytical approach. 

1.7 The objects and scope of this work 

The object of this study is the evaluation and improvement of 

design procedures for hot arid climates with special reference to 

natural nocturnal ventilation. 

Emphasis is given to different established techniques currently 

in practice in order to predict the thermal response of buildings. 

Several unsteady mathematical models are developed varying: 

-the number of nodes in the thermal circuit 

-the treatment of unsteady heat transfer 

-the treatment of convective and radiative heat transfer 

in a room 

-the treatment of ventilation 

To evaluate the models and the relative significance of each 

parameter, the results of mathematical analysis had to be compared 

with measurements. A special test room was built and was subjected to 

variations of "outside air temperature" similar to those of hot 

climates. It was ventilated during the night. The precision of the 

results obtained from models is evaluated in comparison with the data 

obtained from observations. 

In chapter two different mechanisms of heat transfer between 

building elements are described. Chapter three is concerned with a 

review of different techniques of thermal modelling in buildings in 

the literature. In chapter four natural ventilation flow calculations 

In a room with different opening configuration were performed using a 

mathematical model developed to simulate typical rooms. The 

experimental procedure and the results 'are described in chapter five 
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and the effects of timing and the rate of ventilation are discussed. 

In chapter six the detailed procedures of the mathematical models 

developed in this study are given. Chapter seven deals in detail with 

the comparison between calculations and observations, describing the 

effect of each parameter and indicating the precision of each 

technique. In chapter eight concluding remarks are made and 

suggestions for further work are given. 
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CHAPTER TWO 

HEAT TRANSFER MECHANISMS IN BUILDINGS 

2.1 General 

One of the main purposes of buildings is to provide a healthy 

environment for living. The degree and level of its control becomes 

more important when artificial air conditioning is not possible. 

The desired environment is usually different from that outside. 

This difference in the two environments consists of a substantial 

"temperature" difference between indoors and outdoors. The thermal 

response of a building is a function of a number of parameters which 

in physical terms may be grouped into three broad classes 

climatic, occupancy and enclosure factors. (GUPTA 1970) 

-Climatic factors include the air temperature, relative humidity 

of the air, direct and diffuse solar radiation, wind speed and 

direction. 

-Occupancy factors include the number of occupants, and how they 

live and the conditions they want including ventilation and humidity, 

and the heat emitted by their activities. 

-Enclosure factors include the geographical location and type 

of neighbourhood (urban or rural) geometrical factors such as: 

dimensions, orientation, lay out, insulation and its distribution, 

the size and position of windows, solar control and shading devices 

and the, physical properties of the building materials. 

On account of the variations of climatic factors the thermal 

response of a building is unsteady, so, that a building behaves as a 

complicated thermal system which is subjected to unsteady thermal 

excitation. The internal environment, will be provided by the 

interaction of these parameters through different heat transfer 

processes. The mechanism of heating or cooling imply basically the 

transfer of heat by virtue of existing temperature difference among 
two or more objects and can take place in three different ways: by 

conduction, -convection and radiation. These heat transfer modes are 
interdependent and the calculation of any one of them' requires the 

t 
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simultaneous consideration of the other heat transfer modes. A brief 

review of these mechanisms and the way they are usually applied in 

building application and also as used in the present study follows. 

2.2 Convective heat transfer : 

The rate of heat transfer in W/m2between a surface and a fluid, 

air, may be calculated from: 

Q/A =h (T -T) W/m2 (2.1) 
ca 

where 

Ta= air temperature °C 

Ts = surface temperature °C 

h'= convective heat transfer coefficient W/m2K 
C 

Here the convective heat transfer coefficient h is some 
c 

surface-averaged value. The value of h depends upon the geometry of 
c 

the system, the velocity and mode of the fluid flow (laminar or 

turbulent), and upon the temperature difference between the air and 

the surface (T -T ). 
as 

Heat transfer by convection, is either "natural" or "forced". 

Natural convection is caused by the buoyancy forces arising from 

density variations of the air as the result of changes in 

temperature, and forced convection will occur if the fluid motion is 

caused by "external" forces independent of the temperature difference 

in the fluid . 
` Many empirical formulations may be found in the literature which 

give the convective coefficient and could be used in buildings. e. g. 
ASHRAE 1985 , WONG 1977, O'CALLAGHAN 1980. These are usually a 
function of surface and air temperature difference, characteristics 

and dimensions of the surface and direction of flow under given 

conditions, and whether the flow is laminar or turbulent 
The convective heat transfer coefficient for surfaces of 

naturally ventilated buildings in case of buoyancy-driven convection 
(natural convection) which could be applied to the full range of 
laminar, transitional, and turbulent air flow is given by 

ALAMDARI & HAMMOND (1983). For vertical surfaces 
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h= 
{[1. 

s[_i]025]6+[1.23033]6}h/6 (2.2) 
c 

for horizontal surfaces with heat flow upwards: 

[.. 

_iJ 
rl. o. 2s1s+ (1.63 [dT)°33] s1 its (2.3) 

hý _ 

and for horizontal surfaces with heat flow downwards: 

ýd210.2 

C 
0.6 -J h= 

1 
where: 

(2.4) 

dt is the temperature difference between air and surface 
1 is th hydraulic diameter 4A/P 

A is the area m2 
P is the perimeter m 

4 12 
This formula is valid over the range of 10. <Gr. Pr< 10 which 

covers the conditions in buildings. For forced convection the 

coefficient can be found from,: (McADAMS 1954). 

he = 5.71a+bIV/0.311 I (2.5) 

where 

V is the speed of air m/s 

a, b, n are empirical constants. 

When the air velocity is less than 4.8 m/s , for smooth surfaces 

a, b, and n are 0.99,0.22 and 1, and, 1.09 0.23 and 1 for rough surfaces 
respectively. 

Natural convection is believed to be the main mechanism of heat 

transfer by convection in a naturally ventilated room, but in cases 

when natural and forced convection taking place at the -same time, 
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McADAMS (1954) recommends that both values be calculated and the 
larger used. 

According to the above formulation h might change over a wide 
c 

range , For example h is equal to 0.8 W/m2K for natural convection 

and a temperature difference of 0.1 K between air and the surface or 

it could be as high as 10.5 W/m2K for forced convection and an air 

speed of 1 m/s. 

It is not always possible to use a time dependent coefficient, 

and a mean value might be required. The CIBSE Guide suggests values 

of 4.5,3.0,1.5 W/m2K for floors, ceiling and walls 

respectively. (CIBSE 1986) 

2.3 Radiative heat transfer 

The heat exchange by radiation between two surfaces in "visual" 

communication can be calculated from: 

44 

W QR = E12Al I T2 -T 1) 
where 

T Is the surface temperature °K 

A Is the area of the surface m2 

(2.6) 

-8 
o- is the Stefan Boltzman constant (= 5,67x10 W/m2 K4) 

E 
12 

is the configuration factor with a value up to 1.0 depending 

upon the emissivity of the surfaces and. relative view factor, F12, 

between them. If one side has an emissivity ci and other c2 , it can 
be shown that for radiant heat exchange between two "non black" 

surfaces at different temperature 

1 
f-+A1 

1-c2 1-1 
E12 

c1 F12 A2 c 
(2.7) 

The relative view factor can be obtained from many texts on heat 
transfer. Clarke (1985) shows how to calculate the view factors for 
rectangular building components. Appendix A. gives the view factor 
for the special case between the room surfaces and room windows for 
both cases of adjacent and parallel positions. 

The use of a constant value for radiation conductance is studied 
by Buchberg (1971). He has developed a finite difference model to 
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compare the response of different types of buildings and different 

regimes of energy input, with a fixed and variable radiation 

conductance. To linearize the radiation in a thermal network of a 

room, the radiation resistance is given by: 

R=1 
12 AE a (T2+T2)(T2+T1) 

(2.8) 

The value of R12 is computed at each time step using the new 

values of surface temperatures, T1, T 
2. 

The comparison is made 

between the time dependent and fixed radiation conductance. The 

maximum deviation. 
-In mean air and surface temperature is less than 

10%. 

In building application T1 and T2 in equation 2.7 usually differ 

by about 10 K and each is order of 300 °K 
. The heat flux is nearly 

proportional to the difference of temperature and equation 2.6 could 

be approximated by, 

where 

Qe= E12Ai4o_T3 (T2 Ti) (2.9) 

is the mean surface temperature (T1+ T2)/2. °C 

By defining the radiant heat transfer coefficient as 

h= 4o-T3EI2. W/m2 K 
(2.10) 

From equation 2.10 a mean value of h =5.7xE W/m °C is usually 
r 12 

used for building application. The final equation for heat transfer 

by radiation is given by: 

QR = Ahr(TZ-T1) (2.11) 

2.4.1 Conductive heat transfer 

The general equation representing the unsteady-state, one 
dimensional heat flow within a solid by conduction is found. from 
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a2T_1 aT 
ax2 " at 

where 

a is the thermal diffusivity m/s 

t is the time s 

x is the distance m 

(2.12) 

Different methods exist to deal the underlying heat transfer 

problem, some reviewed by Muncey (1979). These different techniques 

give their names to the approaches to the thermal simulations of 

buildings. They are based upon the assumptions and the conditions 

imposed on the environmental system and the characteristics of the 

building materials. These are the Harmonic Method, the Response 

Factor method and the Finite Differences Method. 

2.4.1 Harmonic Method 

In the case of building design It is a reasonable assumption to 

consider that the climatic conditions are cyclic over a given time. 

If this condition be imposed on equation 2.12, the variation of 

temperature is sinusoidal and the solution of this equation Is given 
by MUNCEY (1979) and PIPES (1957) as: 

T AB T 
x Qo DA Q 

1 

where for a sinusoidal input 

Tn is the temperature of surface n °C 

Qn is the heat flux at surface n W/m2 
A= cosh (1+1) 

B=R sinh(1+i) / (1+1) 

D= (1+1) 0 sinh(1+i) 0/R 
0= (w 12/ 2a )0'S 

a is the thermal diffusivity m/s 
R Is the thermal resistance of the slab m2K/W 

(2.13) 

1 is the slab thickness m 

w is the angular frequency s-1 
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= 2x7i frequency of heat input s-1 

and in case of a high diffusivity, and with a total thermal 

resistance the matrix becomes: 

ABI=I1RI 

DA01 
(2.14) 

The exchange between two environmental points, inside and 

outside-through a multi layer slab may be written as 

T1REF1RT 
o_ so xx st x1 (2.15) 

1Qo 01GH01Q, 

where 

EF Al B1 A2 B2 An Bn 
= 

lx 
x.... x (2.16) 

GH D1 Al D2 A2 Dn An 

where At, Bi and Di are the coefficients calculated from equation 
2.12 for each layer. 

Some simplifications are made in building application which are 
the basis of the Admittance Method which is the standard procedure of 
heat, and energy analysis in buildings in the U. K. suggested by CIBSE. 

From the above solution three factors may be obtained each dependant 

on the thermal properties of the material as well as the frequency of 
the sinusoidal excitation. These factors are: (MILBANK 1974) 

The Admittance which is the amount of energy (Qi) entering the 

surface for each degree of temperature difference at the 

environmental point 

Y= Qi (2.17) 
Ti 

which might be used to calculate the equivalent swing in temperature 

above some mean value due to cyclic load on an enclosure. 
The Decrement factor f is the ratio of the cyclic transmittance 
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to the steady state U value. 

f QO (2.18) 

tu 

The Surface factor F is the equivalent cyclic energy at the 

environmental point due to a cyclic energy Input at the surface. It 

is the proportion of the heat gain at. the surface which Is readmitted 

to the environmental point when the temperatures are held constant. 

F= Qi (2.19) 
Q 

These factors are expressed as complex numbers so that each has 

a time lag associated with it. The detailed procedure for computation 

of each factor is given by Milbank (1974). 

As mentioned above, this method of solution of the underlying 

heat transfer problem is applied when the energy input is considered 

to be periodic cycles over a period of time, so that the external 

climatic data should be analyzed into a steady term accompanied by a 

series of sine terms with decreasing amplitude and increasing 

frequency. Each harmonic will be treated with the thermal factors 

appropriate to its frequency. The final result will be obtained by 

summing the results from each harmonic. Figure 2.2 shows an analysis 

of actual solair temperature for different harmonics. 

The division of a real climatic time series into components of 

sinusoidal variations about some mean value can be readily achieved 

by Fourier series representation, through which a given function can 

be approximated to a series of sine and cosine functions, or sine or 

cosine only, such that for some continuous function f(x), for example 

a 24 hour values of temperature may be represented as: (CHATFIELD 

1975) 

00 00 

Tt = ao+ZaI cos[224 
t, 

+Zbi sin[224 
t, (2.20) 

where 
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- time 

N 

b: Effect of Surface Factor and time lag 

Figure 2.1: Definition of Surface - Factor and Decrement Factor. 

a: Effect of Decrement Factor and time lag 
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24 
1 

ao = 24 
ZTn 

n=1 

24 
2 

cos[ 
nj n) 

aj 24 = 
ZTn 

l 24 J 

n=1 
24 

2 ZT 2 it jn 
bj = 24 n 

sin 24 

n=1 

j= number of frequency 

Tn= temperature at time n 

In recent years Milbank and Harrington-Lynn at the Building 

Research Station have developed the mean and swing technique 

introduced by Danter (1960) which is commonly referred to as the 

Admittance Method and is given in CIBSE Guide (1985) This method 

employs the factors for the first harmonic (24 hours frequency) which 

is applied to the actual climatic data, and Is believed to be 

sufficiently accurate for application to buildings, with the 

advantage of not requiring the use of computers. Sodha et al. (1986) 

have compared the_ idea of the Admittance Method with the Fourier 

method for hourly calculation of heat flow through a wall. They 

concluded that the Admittance Method could be employed for hourly 

calculation without losing much accuracy with a maximum deviation of 

10% in air temperature(in °C). In this research programme a computer 

model based on the Admittance Method is developed and the results are 

compared with those of the other calculation methods. This will be 

discussed in more detail below. (Chapter three) 

2.4.2 The Response Factor Method 

When the energy requirement over a fairly long time is to be 

assessed, or the climatic conditions are believed to be non-periodic, 
the harmonic method is no longer applicable. The response factor 

method was developed to handle both periodic and non periodic 

situations, and perhaps this is the main reason why it is more 

applied in the field of energy calculation of buildings and is 

suggested by ASHRAE. The method is developed based on some previous 

work by Stephenson and Mitalas (1967 a, b) 

The main feature of the method is based upon the use of of the 

"time series" and "response function". 
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- Actual temperature cycle 

- First six harmonica 

Tot. l of the ftr. t six h. rsonio. 

-- Mean and the first harmonic 

Figure 2.2 a Example of a solalr temperature cycle similar to hot 

climate analyzed into first six hormonlcs 
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Time series are defined as an array of number of quantities 

representing the value of a function at successive equal interval of 

time. For example a series of numbers representing the air 

temperature or solar intensity at every hour is a time series of 

outside temperature with the time Interval of one hour. Each term in 

a time series can be considered as the magnitude of a triangular 

pulse centered at the time in question with a base twice the interval 

between successive terms , and the sum of such triangles is the 

continuous function, as indicated in figure 2.3. The accuracy of such 

representation is dependent on the size of the time intervals. 

The linear invariable system is a system in which the magnitude 

of its response is linearly related to the excitation , and with the 

equal excitation equal responses result. The response of such a 

system to a unit time series excitation , such as a series of 

triangular pules is called the response function and the time series 

representation of the function is called the response factor. For 

example the cooling load resulting from a unit time series i. e. a unit 

single pulse of solar radiation received at a surface such as floor 

is shown in figure 2.4. ri is the response factor of the cooling load 

resulting from this radiation input, I. is in time series form. 

Q= RxI (2.21) 

where 

Q is the cooling load w 
R Is the response function m2 
I is the solar intensity W/m2 

and the general form of the cooling load time series is: 

co 

qn = 
ýr, 

I 
n-i 

(2.22) 

J=O 

This idea is used in the development of response factor method 
for calculating transient heat flow. 

If two surfaces of a wall are assigned A and B the heat flux Q 

can be expressed in terms of surface temperature and response factors 
by: (see figure 2.5) 

QA= TA. X-TB. Y (2.23) 
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Unit pulse of a 
ýlar radiation Cooling load unit response function 

ctsvonse factors 

rl F2 

time 

Figure 2.4: A unit excitation and unit response function. 

Unit temperature pulse at a surface 

Heat Flux out of surface A due to 

,a unit temperature pulse at surface B 

Heat flux out of surface A due to 
n unit temperature pulse at surface A 

Figure 2.5: Heat flux at surface A due to Unit temperature pulse at surface A and B. 
(Stephenson and Mitalas 1967) 

time 
Figure 2.3: Time series representation of a function. 
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where 

Q- and QB-are the time series of heat flow into surface A 

and out of surface B 

TAand TBare the time series for temperature at surface A 

and B 

X and Y are the time series for the heat flux at surface A 

and B respectively, due to a unit time-series of 

temperature at surface A (TA=1,0,0,.., Ts=0,0,. ) 

Y and Z are the. time series for the flux at surface A and B 

respectively, due to a unit time-series of temperature at 

surface B (TB=1,0,0,.., TA=0,0,.. ) 

The conduction heat flux at wall surfaces in the form of a time 

series , at some time, t is the product of the surface temperature 

time series and the appropriate response factors: 

Qt -ZTI. (t-p). xp +ZJ, (t_P) yp (2.24) 

p=0 p=0 

where the subscript j indicates the other surface of the wall. The 

number of terms involved for the calculation, of heat flux through the 

slabs is a function of the slab's structure. Heavy structures require 

larger values for response factors and past history surface 

temperature. The' number of terms seldom exceeds 20 for most 

conventional building structures as the response factors tend to 

zero. (KUSUDA 1976). 

The procedure for calculating the response factors for 

homogeneous slabs and multilayer structures are given in Appendix B 

2.4.3 The Finite Difference Method 

Boundary conditions of thermal systems are not always simple. 
There are cases when transient heat conduction within multilayer 

slabs are non linear, or thermal properties are considered to be 

temperature dependant and consequently time dependant. 

The finite difference method employs the numerical approximation 

of the first and second order derivative of the heat conductance 

equation. If (T -T ) is the temperature gradient at 
. 

one 
x, t+dt x, t . interface x, at the time interval t, between time t and t+dt, as a 
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consequence of the temperature variation at the interfaces x+dx .x 

. x-dx, the second derivative of the partial differential equation 

of heat conductance . equation 2.11 could be replaced by: 

a2TT -2T +T 
- x+dx, t x, t x-dx, t (2.25) 

ox 2 dx2 

and similarly the time derivative approximated by: 

8T T -T x, t+dt x, t (2.26) 
at - dt 

Thus the overall equation could be written as: 

Tx+dx, 
t-2Tx, t+Tx-dx, t_ 

1Tx, 
t+dt-Tx, t (2.27) 

dx a dt 

and may be solved to give the temperature at time t+dt and interface 

x provided all temperature at the time t are known. 

A dt 2A dt 1a dt Adt T=-T+ --- JT +- +Q (2.28) 
x, tfat 

pcp dx2 x-dx, t 
pcp dx2 x't pcp dx2 x+dx. t tpCp 

The above solution is the explicit method of solution. The 
coefficient 

A dt 

pcp dx2 
(2.29) 

is the Fourier number. To avoid negative coefficients in the above 

equation, in order to get a stable numerical solution, the values for 

dt and dx should be chosen to result in the coefficients to be 

greater than zero, so that 
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1_ 2a dt 
0 (2.30) 

pcp dx2 
and 

2A dt2 
z 1/2 (2.31) 

pcp dx 

Using the explicit numerical technique to solve one dimensional 

heat conduction problems through any slab and writing the heat 

balance equation for any node (i. e. at different surfaces and 
interface points and air point) at time t+dt, a set of independent 

equation will be obtained equal to the number of unknown temperatures 

which, by introducing initial values for dx, and dt permits the 

equations to be solved for consecutive time Intervals. 

If equation 2.25 be rewritten for time interval t+dt (instead of 
t), we obtain 

1T-T 
T -2. T +T x, t+dt x, t (2.32) 

x+dx, t+dt x, t+dt x-dx, t+dt a dt 

Rearrangement of the above equation for Tx, t+dt gives 

l 

11+. 2A dt 
T 

cpdx2Jxºt+dt 
=- Tx. 

t+ 
dt2Tx+dxºt+dt+ dt2Tx-dxºt+dt (2.33) 

P pcpdx pcpdx 

This method is the implicit solution and it is unconditionally 
stable for all distances and time increments, although the accuracy 
depends on their values. 

Writing a heat balance equation for each node in a thermal 

system , will result in a set of equations each simultaneously 
dependent on the temperature of other nodes at the same time, These 

could be solved simultaneously to give the temperatures at 
each interface and time interval which is essentially a computer 
task. A weighted average of equations 2.33 and 2.26 may be used to 

establish a generalized formula, which is discussed in detail for 

example by MUNCEY (1979), and CLARKE (1985) 
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CHAPTER THREE 

LITERATURE REVIEW OF THERMAL MODELING TECHNIQUES 

3.1 Introduction 

Buildings are subjected to different forms of energy transfer. 

Heat is conducted to the inside, of external walls either by the 

temperature difference between the internal and the external 

environment or by the absorbed insolation. Heat will be exchanged 

between room surfaces'by long wave radiation and between the room air 

and surfaces by convection. Solar radiation may also enter the room 

by striking the glass, where some is reflected and absorbed and most 

entering the room as short wave radiation, which may raise the 

internal surface temperatures. Ventilation replaces inside air with 

outside air which eventually exchanges energy with internal 

surfaces by convection. 

Full evaluation of this complicated system of heat exchange 

among building elements requires a set of complicated heat transfer 

equations. If each surface of a room be assigned a mean temperature, 

27 flow paths of heat exchange by different mechanisms result. 

Consideration of the unsteady behaviour will add to this 

complication. 

3.2 Thermal models'in buildings-, 
Various methods exist- for the evaluation of building response 

to energy input. They vary from simple to complicated . The proper 

model is the multi- exchange model, in which any element in a space, 
is shown as a single node, and heat exchanges among nodes are 

expressed by separate equations. This level of complication is not 

always appropriate. With some approximations a model could be 

greatly simplified. This could-be achieved by introducing an index 

point in a room at which radiation exchange could take place, (DAVIES 

1983); or the Index point could be used for both radiation and 

convection exchange, like in the environmental temperature model. 
Some models divide different element of a thermal network and lump 
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them into smaller nodes. (MATHEWS 1986, CRABB et al. 1987) 

A short review of some of the existing models relevant to this 

study follows. Presenting a thorough review of all of them is beyond 

the scope of this study. Some are reviewed by Hanna(1974). Special 

attention is paid to the development of the environmental temperature 

model used in the 'Admittance Procedure of the CIBSE Guide. 

3.3 The traditional method 

Air temperature is the basis of the traditional heat loss 

calculations. Three quantities are taken into account, Heat loss 

between air and surfaces: 

QCV= Ahc(Tal-Tw) 

the radiative heat exhange 

Qýd= AEhr(Týý-Tao) 

(3.1) 

(3.2) 

which means the remainder of room surfaces are at the same temperature 

as the air . The ventilation loss 

Qcv cppvol(Tai-Tao) (3.3) 

and the fabric loss: 

Qf= AU(Tdl-Tao) (3.4) 

where '- I 
(R 

St 
+ R1 + R2 + .... + Rso) . 

Rs1= Inside surface resistance 

R= Outside surface resistance, so 
Rj= Thermal resistance of the slabs 

According to the above procedure , the energy input to the room 

with all be at the air point. This could only be true if the energy 

source is convective and not radiative, as solar radiation. 
Furthermore It is an oversimplification to consider the surface 
temperatures the same as air temperature. Evaluation of comfort also 

requires consideration of both radiant and air temperatures. The 

traditional method does not consider the radiant temperature. Inside 

air temperature is a poor Index for the heat loss calculation. Loudon 
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(1970) has shown errors of up to 40% percent, if heat losses are 

calculated in terms of air temperature only. 

3.4 Environmental temperature model 

The deficiency of the traditional method might be avoided by 

using a model with a central index temperature. This central index 

temperature is a weighted value between air and mean radiant 

temperature, known as the environmental temperature, leading to a 

model developed by Danter and other workers at the U. K. Building 

Research Station. Danter (1974) has shown that with such an 

assumption the errors will decrease to about 5%. The model is the 

basis of the Admittance Method, which is the accepted standard 

procedure for temperature prediction, heating, cooling requirement 

and energy calculation in the U. K. It was first published in the IHVE 

(now CIBSE) Guide (1970). The method is based on two assumptions: the 

representation of heat exchange in a room via a central index 

temperature, the environmental temperature; and the solution to the 

problem of unsteady heat conductance/capacitance of the building 

structure, by using the harmonic method with the dynamic thermal 

factors from the first harmonic only. (see chapter two) As suggested 
by the Guide(CIBSE Chapter 5) it is most suitable for calculations 

where the temperature swings and/or the energy during the day are 

changing steadily . It is less suitable for step inputs, especially 
if transient temperature calculations are needed at the time of 

change. (CIBSE AS 1986 ) 

3.4.1 The basis of the model 

The general application of the method was first published by 

Loudon (1968) and was used to investigate overheating problems in 
buildings during the summer. (LOUDON 1970) 

The fundamental theory of the model was given by Danter. (1974) 
If a room is considered with all internal. walls at the same 
temperature, T 

i, 
the rate of heat flow between the inside surface of 

the external wall and its enclosing space is 

Q8= AgEhr(Tri-Tsl')+Ashc(Tai-Tsi) (3.5) 

Using relation 3.5 the surface heat transfer Qs is: 
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(Tri-Ts. 
1)(A) Qs As 

[Ehr CA 

-A' 
(3.6 ) 

or 
Q iA = h'(T -T )+h (T -T ) (3.7) 

ssr ri Si c at st 
where 

Try-Tsi = (Tri-Tsl) 
A(A)A 

K (3.8) 

hr =E hr 
fA). 

A 
W/m2K (3.9) 

Eh = Coefficient for heat transfer by'radlation W/m2K 
r 

Trt = Mean surface temperature of room °C 

A= Area of the external wall m2 
Z(A) 

= Total area of the room m2 

The factor hr depends on the ratio A(AÄ . which depends on 

s 
the shape of the room. For a room of approximate ratio 1: 4: 4 the 

values of the ratio are 1.09 and 1.50. For a cubical room (1 :1: 1) 

the ratio is 1.2 . This is a reasonable approximation for many room 

configurations, and will be discussed below. 

To obtain a conventional form of equation 3.5 with regard to an 

index temperature 

where 

Q/A = (h'+h ) (T -T) (3.10) 
srcxs 

h*T +h T 
T=r rl c at (3.11) 

xh+ h' 
cr 

The value of hcý differs in a range depending on the type of 

surface and heat flux. With typical values for E=0.9 and hr=5.7 a 

mean value hß=3.0 and the shape configuration ratio as hr=6/5, will 
c 

result 

6/5(0.9x5.7)Trl+3 Tai 
(3.12) Tx 3+6/5(0.9x5.7) 

or nearly = 2/3 +1/ 3T Tai 

This is a weighted mean temperature between air and mean radiant 

temperature in a room, biased towards the latter, as the heat 



31 

transfer coefficient for radiation is almost twice that for 

convection under conditions normal in a room. It is also a central 

point for energy input. The ventilation conductance , which is 

actually an input to the air or the solar radiation which is a 

radiant input to the surfaces, now could be input to the 

environmental point after appropriate scaling. The heat interchange 

in a room via the central point as discussed by Loudon is given in 

figure 3.1. (LOUDON 1970) 

3.4.2 Conductances between the elements of the model 

The detailed basis and background of the model is discussed by 

Davies (1978) in a later paper. Different conductances based on the 

Tel are derived-and discussed. (figure 3.2) The fabric heat loss is 

given by 

11 
Qf 

[fA(hc 
+ 6/SEhr)-1+ (A. U1)-1J (Tat-Tdo) (3.13) 

where 
d11 

Ui= 1+2+... 
+h J 120 

h is the outer surface transmittance W/m2K 
0 

and the heat loss by ventilation through the environmental point is 

given by: 

where 

=Qv = Cv(Tei-Tao) 

C is the ventilation conductance 

_[ {6A(hý+6/5Ehr )6 
5Eh 

}-1+(cp. p. V 
r 

(3.14) 

and the conductance between the environmental point and the air is 

given by: 

h 
C =6A(h +6/5Eh 

acr 6/sEh 
r 

(3.16) 

The above conductances are considered to be in a cubic room. As 

there may be considerable variations in the values of h and Ehr, 
c 

accuracy is not sacrificed by ignoring the 6/5 coefficient in the eq. 
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d: equivalent thermal network index mode with 
resistances and capacitances in a central index 
model. 

Figure 3.1: Heat interchanges within a room. (Loudon 1970) 1 

C: Thermal network of a 
room with central point. 
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3.12 to 3.15 . The numerical values of the above conductances are 
given by: 

RA= (hc+Ehr)_1 (3.16) 

Cý (4.81 
A+ cppV 

)-i (3.17) 

h 
C= E(A)(h +Eh )c (3.18) 

acr Eh 
r 

_ E(A). 4.8 

It is also shown that the energy input to the room, either to 

the air or at surfaces, should be scaled before being input at the 

environmental point. One of the applications of the scaling procedure 
is for solar gain in the room. From the solar radiation which falls 

on the glazing, some is transmitted through the glass and absorbed by 

the internal surfaces ((x) and a little is absorbed by the glass (z) 

and some is reflected by the glass (ß). If the scaling procedure is 

applied to put this energy gain to the environmental point, the total 

solar gain at Tel! is given by: 

h +6/5Eh 
Q(3.19) 

e Ui+hc 6/5Ehr a Q1nc+s 
Inc 

hc +6/5Eh h +6/5Eh 
rcr Qe =U 

+h 6/5Eh aQInc+ Y +h 6/5Eh TQInc (3.20) 
Icrscr 

or 
EQe = SQ1nc (3.21) 

EQe = SAnc (3.22) 

where 

Qinc is the incident solar energy W/m2 
Y is the total admittance of the structures (ýÄY) m2 /W S 
U1 is the transmittance of the glass m2 K/W 

Equations 3.21 and 3.22 give the definitions of mean and 
alternating solar gain factors S and S. The solar gain factors 

a depend upon the absorbance and transmittance of the glass, which 
depend on the position, of the sun. The mean solar gain factor is not 
affected by the type of the room construction, but the alternating 
solar 'gain factor depends on the room's construction. (e. g. heavy or 
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lightweight ). The mean numerical values given in the CIBSE Guide are 

correct for the U. K. and should be corrected according to the 

altitude. and climate for use otherwise. 

Cornell (1976) has demonstrated the use of environmental 

temperature to analyze the variations of comfort in a space. The 

temperature of the internal surface of�the external wall Is given by: 

(figure 3.2) 

Q (3.23) Tsi= Tel 
A 6/SEh +h 

rc 

The above equation could be used for both opaque and window 

surfaces separately. Local comfort could be evaluated by using the 

mean radiant temperature of internal walls . external walls and the 

air temperature. To evaluate comfort at any point the effect of the 

radiant temperature of each surface is considered according to the 

view factor between the point and the surface. ., 

3.4.3 Development and the application of the model 
The environmental temperature described above, was considered to 

be an index temperature in a cubic room, and the numerical values 

given by the CRIBS Guide are also based on this assumption. The 

factors of 6/5 and 6 in equation 3.12 to 3.23 have a general form of 

hr and EA where 

ý E(A) (3.24) 

Baxter (1975) has compared the environmental temperature model 

with h' for a cubic room as 6/5, and a weighted correction factor for 

any type of building shape using a detailed mathematical model, which 

considers convection and radiative heat transfer separately for each 

surface of the room, in the steady state. He concluded that the index 

temperature must be an area weighted temperature. Errors of up to 20% 

are reported for some kind of energy input and room shapes. This is 

also reported by Davies (1986) as one of the defects in the 

standard environmental temperature model.. 

The environmental temperature also=depends on the convective 

heat transfer coefficient, h, buts the error from the variations of 

he, Is shown normally to be very small., It. is, also. difficult to deal 

with this problem in the model, because of the lack of knowledge of 
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C1= Radiative conductance Ts= Surface of internal walls 
C2= Conductive conductance Tr= Internal surface of external walls 
C3= Convective conductance Tai= Inside air 
C4= Convective conductance Tao= Outside air 
C5= Ventilation conductance C6= Storage 

Figure 3.3: The 6 element model of a thermal enclosure including storage 
(Davies 1974) 

Figure 3.2: Presentation of heat exchange in the environmental 
temperature model with heat loss through five internal 
walls and the conductance between elements. 

(Davies 1978) 
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individual surface temperatures. 

As the index temperature for assessment of human comfort is 

approximately the average of the air and of the mean radiant 

temperatures, the environmental temperature has a slight bias. 

Humphrey (1974) has shown the bias is proportional to the difference 

between the air temperature and the mean radiant temperature and 

could be removed by appropriate adjustments suggested in table form. 

3.4.4 Admittance procedure 

When the environmental temperature is used to calculate the 

radiation and convection interchange in a space, the unsteady 

response of the internal environmental temperature, to a steady 

cyclic energy input, can be determined by the factors obtained from 

the harmonic solution to conductive/storage of the structure. (Chapter 

two 2.4.1) This will make the energy input into a constant term with 

a number of pure sine wave harmonics, with, in general, decreasing 

amplitude at increasing frequency. The overall result will be 

obtained by the sum of the response to each harmonic. The Admittance 

Method only uses the steady state term and the first harmonic for the 

swing about the mean, but applied to the actual energy input. The 

technique of mean and swing was developed by Danter (1960), to 

calculate the heat flux across slabs. He has shown that the 

approximation of mean and swing will in commonly used materials 

result in negligible errors in heat flux calculation, compared with 

the exact analysis with separate consideration of the harmonics. 

3.4.5 Basic form of the Procedure 

The use of 24 hours frequency values. of the 3- factors for a 

practical manual solution in_, the calculation of the internal 

environmental temperature in buildings was demonstrated by 

Milbank(1974). By comparison with the first six harmonics, he showed 
that the use of higher frequencies will, not result in a greater 

accuracy, and a difference of 10% Is reported in room air temperature 

swing resulting from solar radiation falling onto the floor of a 

room. In a similar comparison Sodha et al. (1986) have compared the 

results from the ordinary. Admittance Method and the Fourier method. 
Good agreement is found. even for the hourly total heat flux entering 

a room, caused by solar radiation and outside air temperature changes. 
The basic equations used in Admittance Method are (chapter8 of 

CIBSE Guide 1987) 
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where 

Qt= E(A. U)(Te1-Teo)+(EA9U9+Cv)(iel-Tao) (3.25) 

Qt= (E(A. Y)+CV)Tei 

11+1 
C __ 6.33NVoi 4.8E A 

v 

Qtis the mean total heat gain w 

=QC+Q$ 

Qtis the swing in total heat gain W 

=Q +Q + 
C 

+Qs 
fQa 

(3.26) 

(3.27) 

Q= Casual heat gain W 
C 

Q= Solar heat gain W 

Qf Swing in effective heat input due to structural gain 

QII Swing in effective heat input due to outside air 

3.4.6 Development of the Admittance Procedure 

In this way the above solution is only applied with constant 

ventilation during the day and without plant operation. (or constant 

plant operation). In real situations, this is seldom practiced. 

Ventilation varies by opening windows or by intermittent use of 

ventilation plant, like what is practiced in hot climates. The 

extension of the model to intermittent plant operation and variable 

ventilation was first described by Harrington=Lynn (1974 a&b). The 

procedure uses the environmental point as the index temperature of 

the space and assumes that heat input occures at this point. Waters 

(1981) removed this restriction to allow the "dry resultant 

temperature" which is the average of'air and mean surface temperature, 

to be considered as the index temperature by appropriate adaptation. 

His method also enables the radiative and convective component of 

heat input to the air and environmental point to be treated 

separately. It further suggests a , general relation to calculate the 

dry resultant temperature directly. 

Danter (1983) in further work, suggests a general solution for 

intermittent plant operation and variable ventilation. The 

instantaneous heat balance equation is used to calculate the hourly 

air and environmental temperature, for hourly values of ventilation 

rate and plant operation. In the case of variable ventilation and in 

a free running' building the environmental temperature is given by 
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24 
Qg 

,t 
Ysý (Q9 

,t 
ýYt ) 

TC'ti Tao+ + 
24 

(3.28) 

Yt YtE (Ut/YL) 

where 

-.. Qe. 
t= 

FY Qaq, 
t-(FY-FV)Qeg+FVQam, t+Fv, tCPPVt 

w 

Qm is the energy gain at air point from other sources W 
am 't 

eg 
is the energy gain at environmental point w 

V- is the ventilation rate at time t m3/s 
t 

Yt =FYE (AY)+FV't cPPVt W/m2K 

Ut =FUE (AU)+FV't cppVt W/m2K 

h 
ac 

E(A) 
FY hac E(A)+E(AU) 

hacE(A) 
Fu hA+ AU 

ec 
hacE(A) 

Fv 
he A +cppVt 

As shown above the energy input to the system could be divided 

into convective and radiative parts as input to the air and surfaces 

but here combined to the environmental point. 

3.4.7 Multi-zone buildings 

The method in its standard form considers a single room with no 

heat transfer to or from other rooms, through internal walls. This is 

only suitable and correct when the room in question Is surrounded by 

similar rooms or the effect of heat transfer through internal walls 

be neglected. Dow (1985) has extended the model for the multi-zone 

buildings. The temperature in each room is first calculated with no 

internal heat. A new temperature is calculated for one of the rooms, 

with interzone heat' transfer, using the gold temperature. The new 

temperature is used to calculate the new temperature in other rooms. 

The process is repeated for all the rooms in turn for a number of 

iterations. The iteration process continues until the overall change 
in temperature between successive iterations falls below a chosen 

value and the "steady state" is reached. 
The fundamental theory of the Admittance Procedure-is such that 

it is fairly successful at estimating mean and peak temperatures. If 

the hourly values are required the harmonics of periods 12,6 hours 
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etc. are'needed but this is not featured in the model. (DAVIES 1985) 

Nevertheless the approximation is believed to be acceptable in 

building application. Any further application of the model needs to 

be justified. A method is suggested by Ulaah et al. (1977) to take 

into account effectively the influence of multiple harmonics in 

equivalent decrement factors and time lags. Comparison is made 

between the surface temperatures obtained from the proposed 

technique, and both analytical method (12 harmonics) and the first 

harmonic. In the case of light structures no difference is found, but 

for heavy structures results from different models do not agree with 

each other. 

3.4.8 Validation of the model 

The empirical validation and evaluation of the method is 

restricted to its early stages of development. Milbank et al. have 

published results comparing measured temperatures with the 

predictions of an electrical analogue. They also showed that 

predictions by the Admittance Method agreed with the results of the 

electric analogue. On this basis they claim this proved the method's 

validity. (MILBANK et al. 1970 reported by WATERS 1977). Loudon 

(1970) published the results of a comparison between measurement and 

calculations performed by the Admittance Method in a free running 

building during summer. The agreement was thought to be satisfactory. 

Attempts have been, made to modify the BRE admittance procedure, 

so that it may be used in hot climates. A suggested modification by 

Harris Bass (1981 a&b). includes the external temperature profile, 

solar, data, sky clarity, ground reflectance, external surface 
resistance, long wave radiation and heat loss due to ventilation. By 

comparison with observations, using specially designed test cells, 
the prediction is claimed to be good and the method useful. No detail 
is given. 

Some comparisons between the analytical methods and Admittance 
Method are also reported for a few isolated examples. (SODHA 1986, 
MILBANK 1974). Although the environmental temperature model was first 
introduced to investigate the thermal response of buildings for 

simple cases, such as overheating problem in buildings during the 

summer, the literature shows that it is capable of tackling different 
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aspects of thermal investigation of buildings. 

'Davies In -recent work has criticized the model and argued 

against' its "logical' shortcomings ". (DAVIES 1987) and that " the 

procedure .. has not proved easy to understand. The model is based on 

three erroneous ideas: It--reduces the 21 conductances network .. just 

to a single conductance, and so failed to distinguish between 

emissivity and geometrical aspects of radiant exchange, the argument 

appeared to suggest- wrongly -that the temperature Tei , so arrived at 

was a meaningful enclosure parameter, it assumed wrongly that the 

heat could be input at Tel". 

The main point raised Is the way the radiation is treated, and 

as an example Davies argues that the mean surface temperature Tai as 

used in '- -' ' 

hr= 4o-T3 (3.29) 
mm 

Is irrelevant. The radiation between surfaces depends on the 

temperature difference and not their mean. Or If E=0 (say for 

polished aluminum ) TIs independent of all surface 

temperature. (equation 3.11) This means that comfort does not depend 

on surface temperatures. Nevertheless it is admitted "the model is 

crude, but simple to use and probably adequate for many 

applications...... and in convective heat exchanges presents no 

problem ". 

The conceptual difficulties in the environmental temperature 

model has lead to the introduction of another model. This model also 
uses a new point as the index point of heat transfer, but it is used 

as a central point only for radiative exchange. Whether in practice 
its use leads to significantly better results, with regard to the 

inherent inaccuracies of much of the data (eg. casual gains 
infiltration, convective heat transfer treatment) is doubtful. 
(BILLINGTON 1987) 

3.5 Other models 

Davies (1974) has suggested a model of an enclosure having one 
external wall and five internal walls at the same temperature, 

surrounded by similar rooms, through which on average no heat flows. 
All internal walls are assumed to be at a uniform temperature (T '). 
The model when storage is included, has six elements and is called 
a "six element model". Figure 3.3 shows such a thermal' network and 
the conductances between its elements. To solve the unsteady 
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behaviour, the admittance of the walls is used. In fact the 

environmental temperature model may be considered as a simplified 

form of the six element model. Hanna (1977) has extended the six 

elements model to eleven elements, by assuming different nodes for 

the glazed and opaque parts of the external wall, (figure 3.4) The 

unsteady behaviour of the model is solved by a finite differences 

technique. By this comparison it is concluded that no significant 

improvement is achieved by increasing the number of the nodes from 

six to eleven. 
To overcome the shortcomings of the environmental temperature 

model as discussed by Davies, the radiative and convective exchange 

in a room may be separated in a further corrections to the model. 
(DAVIES 1987 a& b) First the network of the surface to surface 

system of radiant exchange may be reduced to a surface-to-star point 

Tr exchange by a least square fit. (DAVIES 1984) Then the radiant 

output from any source is taken acting at Tr. In this way the 

surface nodes are not linked to one another directly. It is normally 

assumed that convective gains can be treated at the space average air 

point. In certain well defined conditions these two points, Tr and 
Tai, may be replaced by a single star point, to a composite " air 
index node". This model is similar to the environmental temperature 

model. The complete network of the model and conductances between 

the nodes are given in Figure 3.5. The heat balance equations at each 

node in the model are 

at T 
ai 

at Tr 

Qa= (Tal-TAO )V+E(Tal-T8j )Ajhcj (3.30) 

Qr= (Tr-Tdo)W"+E(Tr-Ti)A'Eýhr (3.31) 

and at each surface node . 
Qj= (TS'-Tai)AjhCj+(T8t-Tr)AýE; hr+(T8, -Tao)A'Uý (3.32) 

leading the matrix: 

EA h +V 
j cJ 

EA 
jE 

hr+W -A1Ehr 

-A h -A E#h Ah +A U +A Eh 1 cl 11r1 c2 1111r 

A2 _A2E2hr 

T 
a 

s 
-AEh T 

22rr 

xT 
i 

A2hc2+AIU1+A2E2hr T2 
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T: 

Figure 3.4: The 11 element model of a thermal enclosure 
(with an outer wall partly glazed and partly opaque) 

(Hanna 1979) 

T. 

Figure 3.5 Thermal network of a room with a central point for radiation exchange 
. 

(Davies 1987) 
Al EE hr = Aj ei hr/(1-cj+ßej) 

Bi =1-fj-3,53(fj2-1/2fj)+5.04(fß-0.25fj) 

fj _ Aa(A) 
W=Direct path by long wace radiation throguh open windows 
Tc = (Tü+Tr)/2 
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_Q +T V 
a ao 

Q +T V 
r ao (3.33) 

Q1+TaoA U 

Q+T AU 
2 ao 22 

where 

AlEýhr Alc hr (1 -c j+ ßjC ) 

r 
1/U = 1/U - 1/(Elhr + hc) 

ci is the emmissivity of surface j 

The elements'of the square matrix consist of conductances, which 

are assumed to be known. The model although physically unattractive, 

provides separate treatment for convection and radiation and is 

believed to be a better design procedure. The model has lost the 

great advantage of the Admittance Method, which was originally 

designed for use without a computer. 

One of the early studies of unsteady heat conduction in 

buildings was performed by Muncey (1953), known as the matrix method, 

based on a harmonic solution to the unsteady heat transfer through 

the slabs. The results from calculations are compared with 

measurements in an unconditioned small scale test cell, subjected 

only to varying outside air temperature. Radiation exchange between 

surfaces is ignored. Gupta (1964) overcame this shortcoming by 

including the internal heat exchange between room surfaces into the 

thermal circuit. Gupta's calculation is performed for a single 

unconditioned and unventilated room with all surfaces exposed. The 

results are compared with observations obtained from a especially 

made test room, and significant improvement is reported. 

A simplified method is developed by Mathews (1986) in which an 

electrical analogy is used to represent a room's thermal network. The 

main feature of the method is that empirical constants in some 

equations account for the typical rate of natural ventilation in 

conventional buildings. A single temperature is used instead of the 

sol-air and the outside air temperature. The final unsteady 
temperature is found for the first harmonic approximation of the 

indoor air temperature. The method is not -suitable for a wide range 

of applications. On the one hand, empirical constants are used in 
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its development, and, on the other, the air temperature is the only 

temperature to be calculated. 

3.5.1 Multi-exchange models 

The most appropriate way to present a space in a mathematical 

model is to consider separate, Independent nodes for each component 

of the enclosure ( air node and surfaces). The final mathematical 

model would be made by the establishment of relations between these 

nodes. The solution to the system of equations obtained from the heat 

balance at each node enables the prediction of each node temperature. 

Stephenson et al. (1968 a& b) have developed a thermal network for a 

room. Each surface of the room is given a node. In their model even 

the furniture in the room Is presented by separate nodes. The air 

temperature is kept constant and known. The radiation exchange 

between surfaces is treated correctly but the convection coefficient 

is kept constant for the whole day. The response factor method is 

used to solve the. unsteady heat conduction through the walls. The 

heat balance equations are written for every hour of the day in 

matrix form. The final result is obtained by matrix algebra. The main 

advantage of the response factor method over finite difference 

technique is claimed to be that it uses less computer time. The only 
lengthy calculation is to find the response factors for a room. 

Buchberg and Naruishi (1967) and Buchberg (1969, and 1971) 

developed a perfect multi- exchange model to represent a single test 

enclosure"exposed on all" surfaces, with windows on two parallel 

walls. To study the effect of various external walls, different 

mathematical models are used to represent the wall. Figure 3.6 shows 

one of the models. The unsteady state heat conduction was achieved by 

application of the explicit forward finite difference method in space 

and time. The model is also used to study the sensitivities to 

outdoor wind speed and solar and longwave radiation inputs to the 

room, and opaque or transparent walls, for different types of 
building construction (1969). It Is also developed to study the 

influence of radiation coupling between inside surfaces, and to 

investigate the use of constant inside surface coefficients for 

combined convection and radiation. (1971) 

To study the effect of walls on Indoor temperature, Hassan and 
Hanna (1972) developed a multi exchange model. The model is assumed 
to be isolated from all effects, except those of the variable 
outside air temperature and solar radiation on one of the external 
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walls. A finite difference technique is used to solve the unsteady 

heat conduction equation. The main feature of their study is that 

they include forms of dimensionless groups which represent different 

variables in the model 

3.6 Summary and discussion: 

A number 'of methods representing heat exchange in a room are 

discussed. These vary from simple operating techniques, originally 

designed for hand calculations, (Admittance Method), to complicated 

multi-exchange models with finite difference technique using the 

computer. 
It is the designer, at the early stages of design, who will 

decide what temperature is to be established In an enclosure. If 

comfort Is to be evaluated, either the dry resultant temperature 

directly,. or separate mean radiant and the air temperature, are 

required. This could be found by the Admittance Procedure. The 

multi-exchange models - could provide the individual surface 

temperature. The finite difference technique enables the prediction 

of temperature profile across a slab. It is the required degree of 

precision which determines the suitability of a model. 
Simple models and techniques, in order to simplify heat exchange 

among the elements, usually reduce the thermal network to simple 
index points. . Among =these the Admittance Procedure is the most 
important. 

Each technique has certain assumptions and limitations, outlined 
below. 

3.6.1 Admittance procedure 
The procedure has assumptions and limitations. The main interest 

in the present study is the validity of the method in the special 
case of variable ventilation and its use in conditions and climates 
different from those for which the technique was developed. 

The concept of a combined-coefficient for both radiation and 
convection is used which leads to the 'environmental *temperature'. 
This is a fictitious temperature at which all, heat transfer and 
energy input' is assumed-to take place. As was said above, this has 
been investigated (Danter 1974) and for most circumstances errors 
less than 57. of temperature. are reported, -but Danter's investigation 
does not cover variable ventilation and is confined to the steady 
state. 
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The idea of the 'environmental temperature point', in its 

standard form, is developed for a cubic room. This might lead to 

errors in some cases. (BAXTER 1975) This affects the internal surface 

resistance, the conductance between the environmental and other 

points in the model and also on-the scaling procedure of energy input 

to the index point. The dynamic factors in the Admittance Method i. e. 

admittance, decrement and surface factor, and also their associated 

time lags, are also affected by the internal surface resistance. The 

overall effect of the variation caused by changes in Rsi might result 

in serious error 
The internal surface resistance is also a function of the 

radiative and convective heat transfer coefficients. The variation in 

the radiative part is negligible, but the convective part will change 

over a wide range, 3.0 to7.0 W/m2K. (CHANDRA 1984) The standard value 

recommended by the CIBSE Guide is 3.0 (W/m2K) In case of sudden 

change to the rate of ventilation this will change. In these cases a 

fixed value for he and R81 is not appropriate. 

The environmental temperature model is based on the assumption 

of a unique temperature for the external wall, which is usually 

partly glazed and partly opaque. As shown above, this will not lead 

to great error in building application. (HANNA 1977) 

The heat flux through the structure is considered to be one 
dimensional, so that the effect of corners is also neglected. It is 

also assumed that the physical properties of the building materials 

are constant during the day . These two are the common assumptions in 

most of the models and are not expected to cause problems. 
In the standard form of the method, as suggested by the CIBSE 

Guide, all the dynamic characteristics of the structure are 

calculated for - pure sinusoidal energy input for a, 24-hours period. 

The external temperature are also assumed-to vary sinusoidally. It is 

believed that this assumption will be accurate enough in normal 

cases, but it needs further examination. 

In the method and its adaptation for wider use, (DANTER 1985, 
WATERS 1981, HARRINGTON LYNN 1974, CIBSE Guide A-5 1986) the time lag 

associated with the dynamic factors is not considered. The method is 

simplified either to ignore the time lag or to use a fixed value. A 

more correct solution could be obtained by the simultaneous heat 
balance equation at the air and environmental point, for each time 

step. Although this will diminish the- great advantage of the 

procedure as a "manual method", in this research it is inevitable. 
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The thermal model as used in the procedure, considers the room 

as a single zone, and assumes the surrounding building at the same 

temperature. A method is suggested by Dow (1985) to extend the model 

for multi-zone cases. But there are some doubts about whether his 

procedure results In accurate answers. The original background of the 

model assumes no radiation exchange among surfaces of internal walls. 

The method does not take this into account. It is possible to use it 

only if the temperature difference between surfaces are small. 

3.6.2 Other models 

Multi-exchange models and finite difference technique are the 

most flexible methods for calculating the heat loss and thermal 

response in a building. Two approaches are normally used. 

Implicit methods have the great advantage of being stable for 

all time intervals and distances between nodes in a slab, but the 

computations are more complicated. 

In the explicit methods the stability criterion causes many 

restrictions in choosing steps in time and distance, but the 

computation is much easier. 
Like the finite difference technique, the response factor method 

becomes practical only when a computer is used to carry out the many 

calculations required . In the response factor method, the procedure 

is simple, provided the conductance matrix is kept constant. This is 

only so if parameters such as convection coefficient or the 

ventilation rate are kept constant. In this case it is only the 

excitation matrix which needs to be calculated at each time interval. 

But if some parameters are also subjected to change the elements of 

the conductance matrix, the square matrix, are also subject to 

change. This will make the whole process more complicated and for 

such cases the finite difference technique is preferable. 

The model developed by Davies(1987,1988), to overcome the 

shortcomings of the environmental temperature model, allow the 
temperature of individual surfaces of interest to be calculated, 
without going to the process of considering long wave radiation heat 

exchange between different nodes-separately. This will for example, 
allow the surface temperature of an external window to be treated 

separately and enable the calculation of heat loss by long wave 
radiation through open windows. 
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CHAPTER FOUR 

NATURAL VENTILATION IN BUILDINGS 

4.1 Introduction 

Natural ventilation in buildings in hot and dry climates may 

serve several functions, which can be summarized into three main 

groups: 

-health 

-thermal comfort 

-cooling the structure 

4.1.1 Health 

This is determined by a minimum rate of fresh air for diluting 

odours and contaminants and removal of excessive moisture generated 

in building. The rate- of fresh air required to satisfy health 

conditions is low, compared with the rate of ventilation necessary to 

cool the body and structure and is achieved easily by infiltration 

and by ventilation through small openings. 

4.1.2 Ventilation for thermal comfort 

The removal of excess heat; and air motion past the body must be 

sufficient to provide adequate cooling and rapid sweat evaporation. 
In hot dry climates, because of high outside air temperatures during 

the day, air cannot then be used for cooling, except in the evening 

and at night. At high air temperature, convective heat loss from the 

body Is-low, even when the air speed is high. On the other hand, the 

low humidity in dry climates allows adequate sweat evaporation rate 
from the body, even in still air, and thus air motion need not be 

great to prevent discomfort (GIVONI 1981), but in the evening and at 

night, air motion helps to increase comfort. The air speed required 
for comfort depends on the air temperature and relative humidity. 

The relation between air speed and thermal comfort is studied by 

Fanger(1970). He has shown that an increase from a very low air 

velocity of less than 0.1 m/s to 1.5 m/s can be compensated by a 
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temperature decrease of 2.5 to 6 K, depending on the type of 

clothing, relative humidity and level of activity. He has shown that 

the effect of air velocity is more important at lower speeds. An 

increase in air velocity from 0.1 m/s to 0.3 m/s is compensated by 

1.5 K. 

Nicole(1974) in an investigation of comfort in hot dry climates, 

has shown that the control of air movement has a significant role in 

achieving thermal comfort. He has also shown that the major effect on 

comfort was when air speed exceeded 0.25 m/s , and when it exceeded 1 

m/s there was little difference in discomfort. 

Through the studies of Nicole and Fanger, one may conclude that 

an air speed in the range 0.25 to 1 m/s is desirable and provide 

comfort in these climates. Air speeds of up to 2 m/s is generally 

considered to be desirable and above this level may be disturbing. 

Air speed more than 4 m/s is generally considered to be 

uncomfortable at any temperature. (BOWEN and LOMAS 1981) 

4.1.3 Cooling the structure which surrounds the body. 

In an unventilated room, In hot and dry climates, the maximum 

internal temperatures; (air and average of surfaces), occurs with some 

time lag after the maximum temperature of the air outside. This 

difference in time depends on whether the structure is heavy or 

light. When the internal-air approaches its maximum temperature, the 

outside air will drop to a lower temperature, cooler than that of the 

air inside. Ventilation of a room with the cool outside evening air 

will help to provide comfort and also store 'coolth' for the 

following day, when the building is left unventilated. Both night 

ventilation and thermal capacity are required. 

The effect- of night ventilation on the "coolth" stored in the 

structure depends on the ventilation rate, the heat transfer between 

the building surfaces and the air, the surface area and the thermal 

capacity of the building material. Givoni(1981) has made series of 

observations on the performance of buildings cooled by night 

ventilation. Based on the results he has suggested that the 

effectiveness of, -the thermal capacity for storage of "coolness" in 

the summer increases with: 

-the surface area of the mass at the interface with the 
indoor spaces. 

-the thermal. conductivity and thermal capacity of the 

structure. 
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-the heat transfer among the surfaces including the 

mass and the air. 

It is possible to direct the air flow within buildings in such 

way that flow is greatest to the surface of the building , where 

thermal capacity is concentrated. Increase of the heat transfer 

coefficient for convection(h, ) will also increase the rate of heat 
C 

exchange at surfaces. This could be achieved by a higher rate of 

ventilation, and by means of higher air velocity near the surfaces. 

In a windless condition-this could be achieved by use of a ceiling 

fan. From full scale measurements in a naturally ventilated room, 

Chandra et al. (1984) have shown he will increase from 4 to 8 W/m2K 

when the local air speed changes from 0.2 to 1 m/s. Through field 

measurements they have also reported an increase in he from 3.0 W/m2 

K, when the building is only naturally ventilated, (up to 30 air 

changes per hour), to 6.7 W/m2K with a ceiling fan for the same 

building. A ceiling fan will also increase the rate of ventilation. 

In one experiment in a passive cooling laboratory with no external 

wind, the rate of ventilation through open windows reached 4 air 

changes per hour. With the ceiling fan, the ventilation rate 
increased to 20 air changes per hour. (CHANDRA 1986). 

It is generally believed that the rate of natural ventilation 
through windows will in general be adequate for cooling the 

structure. In hot climates , however 
, the openings must be designed 

to do two tasks: they must decrease the infiltration rate and heat 

gain during the day, and provide as much ventilation as possible at 

night. 

The appropriate use of architectural elements and the right 

choice of the size and configuration of openings, orientation and 
location of buildings with regard to climate, facilitates the control 
of the rate and level of ventilation to a great extent. 

Quantification of natural ventilation flow rate for typical 

rooms, with various types of openings etc. is needed for realistic 
evaluation of the functioning of design facilities and understanding 
of passive cooling with natural ventilation. 

4.2 Modelling room ventilation 
The natural ventilation of a room depends on two sets of 

factors: 

-environmental factors : 
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-local wind speed and its direction 

-shelter from surrounding buildings 

-temperature difference between inside and outside air 

-built form 

-the shape of the building (length to width ratio etc. ) 

-dimensions, configuration and location of openings 

-design of the windows( air tightness, type etc. ). 

Methods used to predict the ventilation rate into buildings 

divide them into two classes: those with single sided ventilation and 

those with cross ventilation. 

4.2.1 Single sided ventilation 
By single-sided ventilation is meant natural ventilation of 

buildings with all openings on one wall only, or that the internal 

partitions provide a barrier to ventilation air so that the effect of 

cross air flow becomes unimportant. Single sided ventilation is 

provided either by stack effect (due to temperature difference 

between inside and outside air) or by pressure difference due to 

wind. 

To predict wind-induced ventilation, most of the existing models 

take two factors into account: area of openings and wind 

velocity. (WARREN 1986 SWAMI and CHANDRA 1987, CIBSE 1986, BRE 1978, 

PHAFF et al. 1980) 

Changes in the angle of incident wind will change the 

ventilation rate. To incorporate the effect of wind angle is too 

complicated and has not yet been considered In the existing models. 

In the model proposed by ASHRAE the Incident wind is divided into 

"perpendicular" and "oblique". Perpendicular wind will produce twice 

as much air flow as oblique wind. (ASHRAE 1985). Cockroft (1976) has 

suggested that wind velocity be resolved into. perpendicular wind 

using the angle of Incidence, for the wind angles up to 60 degrees 

from normal to the surface. Cormellin et al. (1988) have shown that 

the air flow rate will be halved If, the Incident wind changes from 

being perpendicular to the opening facade to being perpendicular to 

the leeward side of the building. Narasaki (1987) has shown the air 
flow rate Is proportional to mean air velocity , the opening area and 
the "turbulence intensity", and becomes greater at an Incident angle 

of 75 degrees. This agrees with results obtained by Warren. (1986) 

In this study, the model suggested by CIBSE Guide and British 
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Standard 5925 (1980) is used. This is found to be sufficient to 

evaluate the effect of some alternatives in design such as 

orientation, area of the openings, inlet/outlet ratio etc. The air 

flow generated by the wind could be estimated by 

Q=0.025A9 m3/s (4.1) 
wr 

and by stack effect with openings all at the same height from 

A (AT dh gl 
0.5 

m3/s (4-2) 
S a3 LT+273J 

and in cases with two openings at a height difference ha (figure4.1) 

from 

2o. sC 3 Q= C (A+A) m/s (4-3) 
gd12 (1+e) (1+c2)0 .5 

where 

Q= stack induced air flow m3/s 
S 

Q= wind induced air flow m3/s 
2 A1, A2= area of the openings at different height m 

EA /A 
12 

Cd = discharge coefficient 
V= air velocity at the reference height ms 

r 
dh = height of the window or the distance between 

windows (figure 4.1a, 4.1b) m 

4.2.2 Cross ventilation model 
Cross ventilation is defined as the ventilation provided by 

circulation of air from one side of a room to the other. The air flow 

through an opening is a function of pressure difference across the 

opening. The'most common representation for the air flow are a power 

law or a quadratic . The power law was found to be the most suitable 

technique according to Liddament(1987). This approach as suggested by 

AIVC (Air Infiltration and Ventilation Centre) Guide Is used In the 

present study. (Liddament 1986). 

The flow through an opening Is given by 

Q =K(AP)r' m3/S (4.4) 
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where 

Q= flow rate m3is 

Ap = pressure difference across opening Pa 

K= flow coefficient m3is 

n= flow index 

In the case of natural ventilation the pressure difference 

across an opening is caused by wind and the temperature difference 

between inside and outside air (stack effect). The total pressure 

caused by stack and wind is given by 

p=p +p (4.5) 
sx 

where 
Pw = wind induced pressure difference Pa 

P8 = stack induced pressure difference Pa 

The presure caused by wind is proportional to the velocity 

pressure 

M P= cp(pV%2) (4.6) 

where 

p= air density - kg/m3 

cp = pressure coefficient 

V= mean air velocity at the reference height rn/s 
and pressure caused by temperature difference is given by 

PS -pog273 (T1 - T1)(h2 hi) (4-7) 
ao at 

where 

p°, = air density at 273°K (1.294 kg/m3 for dry air) 
g= acceleration due to gravity m/s2 
h2 & hi = height of the opening of the facade m 
Tao &T 

at 
= outside and inside absolute temperature 

respectively °K- 

The effect of water vapour content of the air Is here ignored, 

anuncertainty of little significance when the air is dry. 
In a room with a number of flow paths ,a mass flow balance 

equation is applied 
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E pLQI= 0 (4.8) 

Using the power law of equation 4.4 the mass balance equation 

becomes 

P -P 
K! (P! -Plnt)''1l pi-pint) =0 (4.9) lI 

! nt 
J 

Note that in equation 4.8 the variations of pi between Inside 

and outside is negligible In comparison with the magnitude of the 

overall density of air and could be ignored. It should also be 

mentioned that the third term In equation 4.9 is to keep the sign of 

flow and its- directiön. `' - 

In the case of a multizone model each zone having different 

flow paths, the mass balance equation may be presented as 

is P-P 
K, (PI-P)ni. 

r 
Pi-Pý 

1. 
=. p. (4-10) l 

1J 

The procedure for correcting the wind velocity due to the 

surroundings i. e urban. city centres etc., the values of flow 

coefficient and flow exponents are used according to the AIVC Guide. 

The values of cp used are as given by the same guide. 

The above models are used below to predict the ventilation rate 
in the following cases 

-Single sided-ventilation with all openings at the same 
height. Figure 4.1 

-single sided-ventilation with two, openings at different 

height. Figure 4.1 

-cross-ventilation in a single-zone building. Figure 4.1 

-cross ventilation in a two-zone building. Figure 4.2 

-cross ventilation in three-zone buildings. Figure 4.1 

As the rate of air flow is linearly proportional to the area of 
the opening, and in order to give a general form of representation 
and better understanding of the design parameters affecting the 

ventilation rate, a standard height of 3 meters for rooms (which is 

common in the architecture of hot dry climates) is assumed. The area 
of openings are represented per metre length of the facade. 
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. 
In the case of cross ventilation three types of building shapes 

are considered: 

- square 

- oblong with a width/length ratio of 1/2 having the 

longer wall exposed 

- oblong plan with a width/length ratio of 1/2 having the 

shorter wall exposed 

The temperature difference between inside and outside is assumed 

to be constant during the night, when ventilation occurs. This is a 

fair assumption, usually practiced as with open windows. The 

difference between inside and outside temperature is small and fairly 

constant, and in the presence of a moderate wind the main factor 

causing air flow would be pressure difference caused by the wind, and 

the stack effect would be negligible. 

4.3 Results 

4.3.1 Single sided ventilation, 
Figure 4.3a and figure 4.3b show for different types of openings 

the air flow rates of single sided ventilation with different wind 

speeds and with 3K temperature difference between inside and outside 

air. The sum of open areas is the same for both. It is shown that for 

a wind speed of 1 m/s the dominant mechanism of air flow is stack 

effect For a single opening a ventilation rate about 30% higher Is 

obtained with a 2.55 m high window than with a 1.2 m high window. In 

case of two openings, when the distance between the openings is kept 

constant, and the area of openings are equal, the air flow is about 

20% more than with unequal windows. With the same type of openings a 

higher ventilation rate Is achieved when there is a greater 

difference in their height. Figure. 4.3a and 4.3b show that with the 

same area of opening an improvement of up to 50% in ventilation flow 

rate could be achieved by appropriate adjustment of openings. 

4.3.2 Cross ventilation 
Figure 4.4 shows the air flow rate for different areas of 

openings and wind speed, in a room with a square plan, and with 

windows located on either, parallel walls or on adjacent walls. The 

building is assumed to be in a sheltered area i. e. surrounded by 

buildings of the same height. Figures 4.5 and 4.6-show results for a 

semi-sheltered area, (i. e. surrounded by buildings or obstructions of 
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half the height of the building). As with single sided ventilation 

when the wind speed is less than 1 m/s. stack effect prevails. When 

the building is in a sheltered area the wind pressure on the leeward 

of the building is likely to be equal to that on the side walls. As a 

consequence, air flow through windows on two parallel walls or 

adjacent walls will be equal. In semi-exposed areas, the wind 

pressure on the side walls is higher than on the leeward side. In the 

case, the ventilatio rate is slighly higher, but with regard to the 

uncertainties of input data it is insignificant. 

For a building of square plan, because of the symmetry, a 

diagonal wind will produce equal positive pressures on both striking 

facades. Windows on these walls consequently will not provide any air 

flow. There will be only ventilation by stack effect. The same will 

happen with parallel windows, if the angle of incidence of wind is 90 

degrees. 

When the inlet and outlet areas are not equal, the ventilation 

rate is not significantly affected by the increase in outlet area. 

With an inlet area--10% of the facade, an increase of outlet from 30% 

to 50% does not grea tly increase air flow . The rate of ventilation 

depends on the size of inlet and outlet, whether the inlet or outlet 

be smaller makes little difference. For an equal sum of inlet and 

outlet areas the maximum flow is obtained when the two are equal. 

Figure 4.7 and 4.8 show the effect of building shape on the rate 

of ventilation in sheltered and semi sheltered areas. Two wind 

directions are considered and inlet and outlet areas are equal. It is 

shown that In sheltered areas with perpendicular wind, the 

ventilation rate is highest for a square building, but with diagonal 

wind, the oblong building will achieve about 20% more ventilation. 

For all wind directions, in semi sheltered areas, the best 

result is obtained by oblong buildings, and the lowest rate is 

obtained by square buildings. 

4.3.3 Cross ventilation in multizone buildings 

Achievement of unimpeded cross ventilation, as in buildings 

without internal divisions, is not easy and usually not feasible. To 

get complete cross ventilation, a room should either be exposed on 

more than one wall , or openings in internal partitions should be 

arranged so that they offer minimum resistance to air flow. For a 

more realistic view of natural ventilation, a multizone computer 

model based on the procedure described in (4.2.2) was developed. The 
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model predicts the rate of cross-ventilation in buildings, with two 

zones and with three zones. 

The solution of the set of nonlinear equation with the power 

law, with the exponent less than 1 is practicable only by computer. 

When the number of equations increases and the exponent tends to 0.5, 

as with fully turbulent flow, typical of natural ventilation through 

large open areas, the solution does not always proceed well and 

creates problems. (Herrlin 1988). At first the routines from the NAG 

Library were tested ( routines CONBF). They succeeded for two zone 

buildings, but failed as the number of zones increased. Subroutine 

PATH developed at CNLS (Centre of Nonlinear Studies, Department of 

Applied Mathematics University of Leeds) was used. This routine was 

very powerful in handling such systems of equations very quickly. (2 

seconds CPU) (The detail of the method is beyond the scope of this 

work and is given by C. Kaas-Peterson 1987,1988) 

The computer model is used to explore cross ventilation with the 

following variables: 

-the building's plan (square or oblong) 

-inlet`and outlet window areas 

-the ratio of the area of the opening on the middle 

partitions to the area of the inlet opening 

-configuration of openings 

It is assumed in all cases that the Inlet and outlet areas are 

equal. The same applies for the openings on internal partitions. 
Figures 4.9 shows the ventilation flow rate in a building with 

one internal partition with various openings on it. Figure 4.10 shows 

the same results for different areas of openings for the case of two 

internal partitions. A sample of results is also presented in table 

4.1. In order to introduce a general procedure to evaluate the rate 

of cross ventilation In a multizone building, rooms are assumed to 

have equal inlets and outlets, and one internal partition between 

them. The cross ventilation coefficient is defined by : 

EQ Qf 
0 

where 

(4.11) 

Qý= cross ventilation with a partitions in the middle m3s 
Qý cross ventilation for the same building but with no 

internal partition mh 
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and the area coefficient is defined as 

(4-12) EII 
Al 

In figure 4.11 the values of Ea are plotted against Eq. 

It is shown that when the area of the intermediate opening is 

1.5 times the Inlet area , up to 90% of complete cross ventilation Is 

achieved. With an intermediate opening area of 50% of the inlet area, 

50% of cross ventilation is obtained. Figure 4.12 shows the same kind 

of results but with two partitions in the middle with equal open 
areas. 

Figure 4.11 and 4.12 suggest a regular relationship between Ea 

and Eq. In the case of one internal partition a relationship between 

these two is found to be 

E=0.98 (1-e-1.7sEa) (4.13) 
Q 

and for the cases of two internal partition is 

EQ 0.98(1-e-1.25Ea) (4.14) 

The prediction of cross ventilation in a single-zone building is 

very simple and a few methods exist which were originally designed 
for hand calculation and pocket calculators. The calculation of the 

rate of natural cross ventilation In a multizone building could be 

simplified to great extent. If the value of Eq is known the total 

value of air flow could be found from 

Qf = QýxEQ (4.15) 

the values of Ea could be found either from figure 4.11 and 4.12 
directly or from equation 4.13 and 4.14. 

4.4 Summary and conclusion 

Computer models were developed to predict the rate of natural 
ventilation through openings in buildings. 

These models were used to quantify and identify the significance 
of design variables in achieving satisfactory ventilation in 



70 

0 

T 
31 

4b 

aao. 

49 

xººV 

9- 

O 

-2 -Z ý1 

C a o. 

Ca 
ýa ry ý 
to Ln 

} 

o 

d 4. 
wo -W IWI Np 

.=dddddddddd 
b3 



71 

-- 

i 

r 

.ý. 
ýý 

t 

-ý-- --- 

,q 
-' 

C 

O 

72 in 
g 
i 

ä3 0 

C). c> cx 

ri 111 u, <<< « 3 x ob º V C 
V -` 

J t j. 

O 
" 

t M 

4 

ao 

Ci 

O 

P 

a '^ v 

11° 
! 

N 
^r 

"ýl0 
ý 

d 

a cs ädddddd 
b] 



72 

buildings in hot climates. 

Theoretical examination shows that for single-sided ventilation, 

the rate of air flow could be increased by up to 50%, by appropriate 

design. 

For cross-ventilation the effect of wind direction, building 

shape, configuration of openings, and shelter provided by the 

neighbouring objects was studied. 

It is shown that room ventilation is more sensitive to the 

shelter provided by surrounding area than to changes in prevailing 

wind direction. As in most hot climates, a prevailing wind direction 

exists, (see Introduction), the change in wind direction from normal 

to the facade containing the opening to oblique will not cause a 

significant change in air-flow rate. In some wind directions there 

would be no wind-induced air flow, which depends on the configuration 

of openings. It could be provided by provision of even a small 

opening on more than two walls. 

It is shown that in sheltered areas the windows on adjacent 

walls and parallel walls provide equal air flow, while in semi 

sheltered and open areas, windows on adjacent walls provide more 

ventilation. 
The rate of cross ventilation shows different characteristics 

in buildings with different plans. It depends on wind direction and 

shelter provided by neighbouring buildings. 

A relationship was found between the ratio of the area of 

opening in an internal wall to the area of the inlet, and the 

ventilation to full cross ventilation. This will greatly simplify the 

prediction of natural cross ventilation with large openings. It also 

shows the importance of the provision of openings In internal 

partitions. For instance, an opening on an internal wall of 50% of 

the inlet area will provide more than 50% of complete cross 

ventilation. If the opening in the middle wall is less than 1/5 of 

the inlet area, the room will behave as if it had single sided 

ventilation, and the effect of cross ventilation would be negligible. 

Table 4.1 shows a sample of the results compared. 
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CHAPTER FIVE 

MATHEMATICAL MODELS AND COMPUTER PROGRAMS 

5.1 Introduction: 

A thermal model is made up of constituents. First the physical 

model of a building is presented as a thermal network, where some 

approximations have to be made. The heat transfer between the 

elements of the thermal network is then expressed by mathematical 

equations, where some other assumptions and approximations are also 

made. 

5.2 Thermal models- 
In order to evaluate the effect of the approximations made in 

each model and also to find the importance of each constituent of a 

thermal model, several thermal models of a room are developed. The 

results obtained from observations are then compared with those from 

different models. The effect and importance of each parameter is 

evaluated. 
The models considered in the present study are different in 

- the number of nodes in the thermal circuit 

- the treatment of unsteady heat conduction 

- the treatment of convective heat transfer 

- the treatment of ventilation 

- the treatment of heat loss through open windows 

5.2.1 Number of nodes 

The number of surfaces in a model influences the accuracy of the 
longwave radiation exchange calculation among internal surfaces and 

also determines the number of heat flow paths in the thermal model. 
In the most detailed model each surface should be presented by a 

single independent node. In a model representing a room similar to 

the one used in the observation, with two. openings, and six surfaces, 
this will lead to a model of eight convective heat flow paths from 
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the surface to the air point, and 26 radiative paths among the 

surfaces, along with eight conductance/capacitances , related to each 

node. This model will be referred to as the 'nine node model'. The 

thermal circuit representing such a model is shown in figure 5.1. 

Simplification can be introduced by reducing the number of 

surfaces. If - the {°surface of each opening-is combined with the wall 

containing it as a single node,,. -the number of surfaces will reduce to 

six. This will simplify. -the - internal .. heat flow paths and reduce the 

number of heat flow equations. The physical properties of the common 

node will be represented by area averaged properties of the two 

parts. This model will be referred as the 'seven node model' , and 

the thermal circuit is shown-in figure 5.2. 

In a further simplification all surfaces of the internal walls, 
the floor and the ceiling, are assumed to be at the same temperature 

and are represented as a single node. The internal surface of the 

external wall is shown by another node. These two nodes with the air 

point will comprise a'"three node model'. The thermal network will 

be simplified greatly. Figure 5.3 shows the corresponding thermal 

circuit. If the -internal surfaces of the external wall are shown by 

subscript j and all other surfaces by i the shape factor between 

these two nodes could be calculated from the general relationship : 

F1j. Al=Fj1. A' (5-1) 

where 
A= area m2 

-- , 
F1 =shape factor between surface 

,t 
and j 

The shape factor between the internal surface and its 

surrounding surfaces Is unity so that : 

A 
F1i ý (5.2) 

The overall heat transfer coefficient for long wave radiation 



76 

S2 

Figure 5.1: EIcctrial analogue of the test room, nine nodes model. 

Qr = heat flux leaving the surface by radiation 

Rc; = 1/hci 
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TýA 

r2 

Figure 5.2: Electrial analogue of the test room, seven nodes model. 

Qr = heat flux leaving the surface by radiation 

Rci a I/hci - 
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. 1-Si 

Tao 

Figure 5.1: Elcctrial analogue of the test room, three nodes model. 

Rci - 1/hci 

Rrij = l/E; jhr 
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between two nodes representing the surfaces could be found from 

h- 
T3 

1-Ci 1A 1-c 

ri 

[e+`Ac (5-3) 

I 
Fj 

12 

The physical property of each node in the circuit is the area 

average of the surfaces combined into the node. 

These models are used to investigate the effect of the number of 

surfaces in a model and treatment of radiation between surfaces. 

Another model used is the 'environmental temperature model', 

which is a simplification of the three nodes model. The environmental 

temperature model is used in the Admittance Method, of which the 

detail is given in Chapter Three. The way the method is used in this 

study, is_given below when the Harmonic Method is discussed(see 5.5). 

5.2.2 Unsteady heat conduction: 

One of the major constituents of a model is the treatment of 

unsteady, heat conduction. Three different techniques are used ; the 

Harmonic Method, the Response Factor Method and Finite Difference 

Method. ( see chapter 2). The Harmonic Methods is only used in the 

Admittance Method with the environmental temperature model. Finite 

Difference technique and the Response Factor method are used in the 

multi-exchange model. The detail of each model is given below. 

5.2.3 Air ventilation : 

When fresh air enters a 'room, three extremes of mixing may occur 

as shown In figure5.4 perfect mixing, displacement flow and short 

circuiting. (LIDDAMENT 1987b). 

Perfect mixing takes place if the incoming air continuously and 

uniformly mixes with all the air present. In this way the room air 
temperature is considered to be the same throughout the room and the 

air leaving the room is considered to be at the temperature of the 

air in the room. The heat loss by ventilation is given by: 

Qv= cppVol (T 
ao 

T 
al) 

W (5-4) 

and the ventilation conductance is given by: 

Cv= cppVol W/K (5.5) 
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Displacement flow occurs when fresh air entering the room 

displaces the room air without mixing with it. In this way the air 

temperature is considered to increase along its journey through the 

room. In this case it is, a reasonable assumption to consider the room 

air temperature to be between that of the air entering the room and 

that of the air leaving the room. The heat loss by ventilation is 

then: 

Qv = cppVoi(Toat-TIn) W (5-6) 

where 

Tin = alr temperature of'the air''entering+the room=Tao °C 

T°ut= air temperature of the air leaving the room °C 

Td, = (Tao+. Tout)/2 0C 

from equation 5.6 

Qv = cppVolx2(Tai. - äo) W (5-7) 

and the ventilation conductance as 

Cv= 2pcpVoi W/K (5-8) 

Short-circuiting is the poorest ventilation condition. Part of 
the room is ventilated by displacement and part is not ventilated at 
all. This will often happen with mechanical ventilation. 

In practice a combination of these different modes of 

ventilation may apply, also conditions will, be changed by the 

occupants. In the present study only the first two mechanisms are 
considered. 

5.2.4 Convective heat transfer coefficient: 

As discussed in chapter 2, heat transfer between a surface and 
air depends on the temperature difference between the air and the 

surfaces, the air velocity and the convection characteristics. Values 

are given by equations (2.2) to (2.5). In practical analysis, the 

coefficient might have to be given by a fixed value. In order to 
investigate its sensitivity and importance, two approaches are used. 
In the first it is calculated for each time interval as the 

calculation proceeds, and in the second,. fixed values are used as 
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Tao - 
Tin 

(Tai. 
Tout 

T 
a: Perfect mixing 

Tout 
j 

Tat -ý. __ "" 
-ý" 

Tout 

b: Displacement flow 

J- 
' Tao 

--------- V. 
Tout 

Tai 

c: Short circuiting 

Figure 5.4: Types of ventilation air mixing in a room 

`ýI 
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suggested by the CIBSE Guide, which gives 3.0,1.5 and 4.5 W/m2 K for 

vertical surfaces, and for horizontal surfaces with the heat flow 

downward and upward respectively. 

5.2.5 Longwave radiation through open windows: 

During ventilation, some energy will be lost by longwave 

radiation through open windows. In order to account for this 

mechanism of heat transfer, long wave radiation heat transfer is 

assumed to take place between each surface of the room and the window 

surface, considered to be at the temperature of the outside air. This 

is achieved by individual calculations of shape factors between the 

room surfaces and the opening. This is only possible in the nine node 

model. 

Several models have been developed, combining the variations 

described, with different methods of solution of the unsteady heat 

conduction problem. The nomenclature used is that designated at the 

beginning of each model shows the method of unsteady heat conduction 

solution, and the number following. shows the assumptions . made. For 

example FINIT 9-1 shows the Finit Difference technique and nine node 

model with the assumptions of group 1. Table 5.1 summarizes these 

different assumptions. 

These assumptions in the multi-exchange model are used in the 

finite difference and response factor methods. The harmonic methods 

are applied only to the environmental temperature model. In this 

case, two different approaches are used. First, the standard 

admittance procedure as given by CIBSE Guide A-5 is used, and is 

available in the BRE Package. (BLOOMFIELD 1983) The second method was 
the same, but the first six harmonics are considered. The following is 

the description of each technique. 



83 

Table 5.1: Different assumptions of multi-exchange model 

9 nodes 7 nodes 3 nodes 

Fixed 0 1 0 0 
Convective 
coefficient Variable 0 1 01 0 01 0 0 0 0 

Mixed 0 0 0 0 0 0 0 0 
V til ti en a on 

Not mixed 0 0 0 

Radiation Closed 0 01 01 ' 0 0 0 0 0 0 0 
th h roug 
window Open 0 

Air None 0 0 0 0 
l th erma 

capacity Yes 0 0 0 0 0 0 0 
- N 

CS 
n 
O, 

et 
ON, 

I'll 
l- 

N 
lý 

r 
[ý 

'! 
h 

'"1 M 
N 
!7 

to 
!7 

Models ý z z 

w w w w cL ý w 

5.3 Finite Difference Model: 

In building applications the heat flow into slabs can be 

described by a simple one dimensional heat conduction equation. The 

general equation of heat flow into a slab is the Fourier equation 

which, for one directional flow, states that the rate of increase of 

temperature with time is proportional to the rate of change of the 

temperature gradient with distance which leads to 

BT a. aT2 
(5.9) 

at pcp 8x2 

Temperature"T Is a function of time t and distance x from 

the free space shown as 

T= TX, 
t' , 

(5.10) 

The solution of equation 5.9 is by numerical approximation As 

stated above (2-4) either the explicit or the implicit method may be 

used. In the present study the implicit method is used-which has the 

great advantage of being unconditionally stable, for all time 

increments and distances. The accuracy of the results is a function of 
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increments. and distances. The accuracy of the results is a function 

of the time intervals and space increments. 

The number of nodes in any homogeneous layer of a slab using a 

finite difference approximation was studied by Clarke(1978). He has 

suggested that for the purpose of transient conduction modelling with 

multilayer composites ,a spatial discretisation scheme equal to 

three nodes for homogeneous elements will give acceptable accuracy in 

buildings. He has compared the temperature and heat flux variations 

at the internal and the external boundary surfaces of two similar 

slabs, one divided into three, and the other into fifteen nodes. The 

difference was found to be negligible. 

For the present models, three nodes are allocated for each 
homogenous layer in the slab, one to each boundary and one in the 

middle .A thermal network similar to figure 5.1 is used for the heat 

balance equation for each surface. 

In general, any node at the boundary between different 

homogeneous elements will represent mixed thermal property regions. 

Nodes at the extreme surfaces undergoing convective , radiative and 

conductive heat exchange will have associated with them thermal 

capacity equal to some fraction of the capacity of the "next to the 

surface node". 

5.3.1 Heat balance equation for different nodes in the model: 
The first boundary condition will be obtained from the heat 

balance at the outer face of the external wall. The energy input at 
this point is partly conducted deeper into the wall and partly lost 

to the outside by convection and longwave radiation , therefore the 

heat balance for the external surface (shown by subscript so) would 
be 

Q= AH (T -T , 
)-AA 8T 

(5.11) 
0W0 so t ao, t WW CI X x=0 

where 

A= Area of the wall m2 w 
A= Thermal conductivity W/m K 

W 
T 

ao 
= Outside air temperature °C 

and Q0 is the energy input at the outside surface of the external 
wall. If solar energy Is absorbed by. the external surface it is equal 
to 
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Q=AIa (5.12) 
0ss 

a8 the solar absorptivity of the external wall 

18= total solar intensity W/m2 

Ho is the total coefficient for convective and radiative heat 

transfer of the outside wall and is based on the assumption that the 

heat flow by both radiation and convection is proportional to the 

temperature difference of outside air and the surface. It is valid 

only for the radiative contribution if the relevant temperature 

difference be small. (MITALAS 1965) 

H= ch +h (5.13) 
0r Co 

where 

c= emissivity of the external wall 
h= radiative conductance coefficient W/m2K- 

r 

In the case of window glass, the above equation will be used the 

same way but the absorptivity of glass is very low (T = 0.05) 
The finite difference approximation of the above equation, using 

the unknown temperatures in the future time row, will result in: ' 

(T -T )A 
CpPdx 

+A 
Tso, 

t+dt-Tsll, t+dt 
+ 

so, t+dt so, tw 2dt w dx 
A 

N 

Tso, 
t+dt- 

Tsis, 
t+dt _ Aw dx - Qo, 

t+dt 
A 

W 

Tsai is the temperature in the middle of the external wall 
Assuming the temperature at= time t known, and arranging the 

equation gives 

i 

T t(1 
2Adt 

+H 
2dt )+T -2Adt 

so. t+at 
cppdx2 °cppdx2 sii. t+at 

cppdx2 

2dt 
- Tao, 

t+at 
(H0*cppdx)+Tso. 

t+ 
Q0, 

t+at 
(5.15) 

The heat balance equation for the internal node at the middle of 
the external wall in the same way will be: 
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cppdx 
(T511. 

t+dt-T8ii. t) 
dt 

T -T 
+ sll, t+dt so, t+dt 

+ 
dx 

w 

TSll, 
t+dt-Tsi, t+dt 

dx 

w (5.16) 

and the same way rearrangement of equation 5.16 gives 

T (-Adt )+T (1+2aPPdt +T (-_dt )=T 
so' , t+dt 

cPPdx2 sll, t+dt 
c dx sl, t+dt 

cPPdx2 
811, t 

(5,17) 

The second boundary condition is obtained from the heat balance 

at the internal surfaces of the enclosure. The algebraic sum of the 

energy input and the heat transfer component resulting from the three 

heat transfer mechanisms, (conduction, convection and radiation is 

zero. This is the basis of the heat transfer equation and boundary 

condition for all internal surfaces. Therefore the heat conducted and 

heat input to the surface is balanced by the heat lost by convection 

to the inside air, and by longwave radiation between the room's 

surfaces each presented by single separate nodes the resulting 

equation is 

J 

AIhcl(Tat-Ti) + A, 
Zhril(TJ-TI) 

-AXT_ Qi (5-18) 

'_1 
aX x=l 

where 

hr11 = Configuration factor between surface t and j 

Q1 = energy input to the surface iW 

hc1 = conective heat transfer coefficient W/m2K 

This is the general equation for the heat balance at the 

internal surfaces. j shows the number of surfaces in the room and 
depends on the number of nodes representing the room surfaces. The 

implicit finite difference representation of equation 8.18 for 

surfaces at time-t+dt shown as Tsi, 
t+dt 

is 
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cppdx 
(Tsi, 

t+dt-TsI, t)AI 2dt + A1hcI(Tai, 
t+dtý 

+ýihrii(Tsj, 
t+dt-Tsi, t+dtý 

T -T 
+A si, t+dt st-dx, t+dt 

_ dx 
Qi, 

t+dt 
(5-19) 

As 

and rearrangement In' the same way for the external surface will 

result 

J 

T -2Adt +T ý1+ 2Adt 
+ 

2dt h+ 2dt h)+ 
si -dx, t+dt cppdx2 si, t+dt cppdx2 cppdx ci cppdx L rid 

J=1 
J ., 

f41CPpdx (-2dt hrIJTsJ, 
t+dt) + Tai, 

t+dt(-hc2dt 
)= T- 

i, +dt 
(5'20) 

cppdx 

The next boundary condition'Is obtained from the heat balance at 
the air point., The heat loads at the air point are: the cooling or 
heating of the ventilating air, and the heat loss or gain by 

convection to the inside surfaces . The heat balance of the inside 

air is: 

8T 1, 

ä 
at i=B (Qc+QY+Qa 

i) 
(5.21) 

where 

Qc = the rate of heat gain or loss by room air from the 

room envelope by convection 

_ icj(TJ- 
Tat W 

J=1 

Qai= the energy input directly to the air eg. by the plant 
Qv the heat input component to the air by entilatlon 

=C (T -'-T ) W, v ao at 
C= NpacpaVol ,. _ W/K 
Cp =a specific heat capacity of air -`J/kgK 
pa. = density of air kg/m3=' 
Vol = Volume of the room m3 
N= number of'-air changes h1 
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B= heat storage capacity of the room air J/K 

The above equation could be approximated by 

Takt+dt-Tait 
__ (A h (T -T dt cp FVot sjcj sj, t+dt ai, t+dt 

+CT -T ) +Q (5.22) 
v ao, t+dt ai, t+dt t, t+dt 

rearrangement of equation 5.14 gives 

JJ 
-dt z 

(P 
paVolAjhc7Tsjgt+dt) 

+ Tal, 
t+dt(i+ 

LAshcj 
+ 

cp pa Vo1ý 
J=1 asJa =1 

_ 
Cv dtT 

+T +Q (5.23) 
Cp p Vol ao, t+dt al, t i, t+dt 

aa 

It is reasonable to ignore the thermal capacity of the air 

inside the room. This will simplify equation 5.23 to 

JJ 
LAjhc'(Tsj, 

t+dt) 
+ Tal, 

t+dt(ZAJhcJ+Cv, t+dt) - 1, t+dt 
(5-24) 

J=i J=s 

Using the heat balance equation for the nodes in question , 
(similar to eq"5.14,5.17,5.20), and for the air will result in a set 

of simultaneous equations. The solution of this system of equations 

could"be'achieved by different methods, of which details can be found 

in the literature. In the present study the simultaneous equations 

are solved by matrix algebra of the form - 

ITI"-IBI°IQI (5.25) 

where ITI represents the temperature at the time in question for the 

different nodes. This could be achieved by multiplication of JBI-1 by 
IQI assuming. the temperature at,. time t as known. 

To avoid repetition the "seven node model only is -presented. The 

matrix representation of the set of heat balance-equation for the 

experimental room . the thermal network shown in figure 5.1) Is 

given in table 5.2. where 
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Fo = 
2dtX (5.26) 

, cppdx2 

C= 
c2dt 

(5.27) 

Ca = 
dt 

(5.28) 

CpapaVolalr 
. 

5.3.3 Finite difference computer program 
A Fortran 77 computer, program is written which calculates the 

temperature xdistribution at -, different nodes. The program FINIT 

consists of a source program and several subroutines. 

The first subroutine INTERP reads the climatic data usually as 
hourly values, and creates new, values by Interpolation according to 

the chosen time interval. The Interpolation of data is done by 

nonlinear interpolation employing two routines from the NAG library. 

The second subroutine "SHAPE" calculates the configuration 

factors Eij, between the surfaces of a room The general algorithm 

for any configuration of a rectangular surface In a room is given by 

Clarke (1983). Appendix A 'gives a general computer based procedure 
for view factor calculations, for windows and walls in parallel and 

perpendicular. The detailed procedure Is discussed In chapter two 

(2-3) 

The third subroutine, calculates the coefficient of heat transfer 
by convection ; It uses the ventilation rate, assuming a uniform 
distribution of air over the cross section of the room and 
temperature of the room air and surface, calculates he for different 

cases of convection, (forced, natural or mixed ). The formulae are 
discussed in chapter two(2-3). 

The fourth subroutine HH Inverts the matrix [B] and by 

multiplication, with [Q] creates the row dimension [T]which consists 
of the temperature of different surfaces and air of the room . The 
(FO1AAF) routine of the NAG library is used to Invert the matrix and 
(FOICKF) routine Is used for multiplication of matrices. 

The program starts by assuming the time interval, according to 

which Interpolation Is being done. An initial value for all 
temperatures is assumed and based on these values he is calculated . 
Matrix (B) with (Q) are-set based on the calculated values'of he and 
the present ventilation rate. The new temperatures are calculated by 
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Start 

Read climatic data 7 and energy input 

ead physical properties 
of building structure 

SUB. INTHRP 
Call cubroutine INfERP .... Interpolate for climatic 

dint- 

Sub. SHAPE 
Call subroutine SHAPE """. Calculaatetshape factor 

among room surfaces 

Do for the number 

of days 

Initialisze Temperatures 

for the number of 
ime steps for one da ' 

Call CV H ll H SUB. CVH 
Calculate convective heat 

(use the a sture transfer coefficient 

Calculate Matrix [B] & [Q] 

subroutine HH . I-Il I SUB. 
Invert and multiply Matrice 

Calculate [T] 

N 

U a. 

of temperature 

End 

Figure 5.5: Flowchart of Finite Difference program 
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multiplication of matrices. The procedure is repeated until the end 

of' the day. The whole procedure is repeated until a steady cyclic 

condition is reached. This could be done by checking that the 

temperature at the beginning, and the end of a cycle are nearly 

within a chosen allowable limit. Figure 5.5 shows the flowchart of 

the FINIT program. 

The FINIT program is used to investigate the assumptions of 

different models as discussed in (5.1.2). Three- thermal models are 

used, nine, seven; and three nodes network. The physical properties 

of nodes representing more than one surface are the area weighted 

values of its constituents. 

6.4 Response factor program : 

The response factor method is essentially a numerical method, 

butýits application is restricted to both linear and invariable 

systems , while the finite difference technique can deal with both 

linear and non-linear systems. The restriction does not usually limit 

the use of the method in building applications. The only significant 

difference compared with the finite difference method is the way the 

transient heat conduction, through a slab is dealt with. It can deal 

with periodic and non periodic situations, and for this reason has 

wider application than the harmonic method. It is essentially a 

computer based method , although the computation time and the 

programming is less than for the finite difference method. 

The basic strategy is to establish the response of a system to 

some unit excitation applied under boundary conditions similar to 

the actual excitation. The overall response of a system could be 

obtained by the sum of the responses to a train of excitations. To 

achieve such response, the excitation function should be represented 
by simple individual component elements. This Is done by dividing the 

excitation function into triangular pulses. (MILBANK & STEPHENSON 

1967) The response of the system to these individual excitation 
functions should be added to. get the overall response . This is done 

by the appropriate pre-calculated response factors . Response factors 

are independent of climatic factors, and need to be calculated only 

once for any given structural system. This is the main attraction of 
the method compared with the finite differences method where for each 
time step the calculation have to be repeated. The detail. and 
definitions related to conductive heat transfer calculations using 
the response factor method are given in'chapter two. 
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6.4. iRoom thermal response factor: 

A room could be considered as an integrated system, and a unit 

response function under any excitation may be determined . This is 

achieved by the energy balance equations for each surface and the air 

in an enclosure. The subsequent simultaneous solutions of this set of 

equations under any applied unit excitation gives the corresponding 

unit response function. Repetition of this procedure for each 

separate unit excitation gives all the unit response function from 

which the total response of the system, to actual temperature and 

energy, can be found. 

6.4.2 Heat balance equation : 

The heat balance for any enclosure surface at any time t is 

given by :. -I 

Qcv, 
t+ 

Qrd, 
t+ cd t+ 

Qi, 
t 

0 (5.29) 

where 

Qcv, 
t 

is the heat gain by convection at time t 

Qrd, 
t 

is the heat gain by long wave radiation at time t 

Qcd, 
t 

is the heat flux-by`conduction towards the surface 

Qi, 
t 

is the energy input to the surface (eg. solar 

energy falling on the surface) 
and 

QCV, 
t= 

hc A (Tai 
t- 

Tsi't) (5.30) 

J 
Qrdrt_ V EI, 

jAIhr(Tsj, t- 
Taf 

t) 
(5.31) 

(5.32) Qcd, 
t 

Tsi, 
tX 

+ Tsk, 
tY 

X, Y= response factors for the slab 
(subscript sk indicates the other surface of the wall. ) 

Using the above equation for the heat flux by conduction, the 
heat conduction through a wall surface for unit area at time t is 

given by 
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cd, t 
ZT81, 

(t-P) *xp + 
ZTsk, 

(t-P)* 'p (5.33) 

P=0 pp="0 

substitution for Q 
cd, t , and and Q 

rd, t gives 

JJ 

-TSi, t l+ 
ZE1 

jhr 
+ Xol + Tsk, 

t. y0 + 
ZE1j 

hr TS''t 
111 

J=j 
JJ 

=1 
03 

_ -QLýt - Tt, 
t+ 

zTst, 
(t-p)'Xp 

VTsk, 
(n-p)yp 

(5.34) 

P =j p=1 

Using the heat balance equation for the outside surface and air 

will result in a set of equations for an unknown point. 
The heat balance at the outside surface is simplified by using a 

combined heat transfer coefficient for radiation and convection : 

oo co 

HI(Tao, 
t-Tsoot 

) -ZTso. ct-P)'XP + 
ZTsi, 

(t-P) 'yp + QI, 
t -0 (5.35) 

P=o. P=o 

or 

Tso, t(-Ho-xo) Tsi, 
t(Hi+yo) = 

ZT 
(t-p) 'xo 

Tst 
, (t-p)yp- Qý, t 

P=1 P=1 

(5.36) 

The heat balance for the room air is given by the sum of the 

energy input to the air by convection from all surfaces , 
by 

ventilation between inside air and outside air and any energy input 

directly to the air . This yields 

J 
(Tal, t-dt-Tai, t LA 

jh cj 
(Tsi, 

t-T al, t 
+Cv, 

t 
(T 

ao, t-T al, t 
)+Q 

al, t B/dt 
J=1 

(5.37) 
where 

B= heat storage capacity of the air 
dt = selected calculation time interval 

whence: 
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JJ 
ZA 

hT+ (C -) Ah +PcpVo1)T = -C T+ pcPVo1T 
j cJ sJ v, t LLL... j, cJ dt ai, t v, t ao, t dt ai, t-dt 

J=1 J=1 
(5.38) 

The heat balance equation for each unknown node and the air in 

the thermal circuit can -beýderived from equations 5.34 and 5.36 and 

5.38. The complete set is represented by 

ITIxIMI° IQI 
where 

(5.39) 

ITI=-column matrix containing the values of the unknown 

temperatures at time t 

IMI= matrix of temperature oefficients as given by the 

. 
heat. balance equations 

IQI= column matrix includes values from equations(5-34) 

. __, 
(5-36) and (5-38), which depend on the excitation 

component at time t and the complete history from 

time zero to t-dt 
The solution of equation 5.39 is given by 

ITI= IMI_ix1QI 

The Inverted matrix IMI is unchanged . If the ventilation 

changes-during the day,. IMI should be calculated for each value of 

the ventilation rate, and the inversion should be repeated for each 

matrix. As the ventilation is usually one rate during the day and 

another at night . this will not cause a serious problem. The value 

of the convection heat transfer coefficient he Is considered to be 

constant-during the' day. The method is capable of allowing he to be 

variable but only at the cost of analytical rigour. This could be 

done by calculating he based on the. previous temperature difference 

between air and-surface and consequently recalculating IMI for each 

time interval. 

5.4.2 Response factor computer program; 

The thermal response factors for a homogeneous slab can be 

expressed in terms of its thermal properties and thickness and the 

time interval. 

Fortran program RESFAC Is designed to calculate the temperatures 
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of surfaces and the air in a room. The program starts by calculating 

the thermal response factors for the outside wall, the inside 

partitions, 'the floor and the ceiling. The values of IMI and column 

matrix -IQJ are based- on previously calculated thermal response 

factors . The calculation must start of course, at time t=1 for which 

the, internal temperatures-at t=0 are assumed to be known. Using IQI 

at time t=0 the-temperatures for t=1 are calculated by multiplication 

of IMI by JQJ. The calculations are repeated for successive values of 

t until the complete daily cycle of 24 hours is completed. The time 

step chosen for calculation is assumed to be one hour. 

The RESFAC Fortran program consists of a source program and 

subroutines. The subroutine SHAPE which calculates the configuration 
factor among surfaces and"HH1 for inversion and multiplication is the 

same as used in the finite difference program. 
Subroutine RESFAC calculates the response factors for each 

structural element. The number of factors is dependent on the 

structure and the thermal properties of the slab as the factors tend 

to zero after a while. The subroutine HFLUX calculates the energy 
input to any surface by conduction using the response factors 

obtained from RSFAC. 

5.5 Harmonic Method: 

The harmonic method of solution of the problem of heat transfer 

has a widespread use in buildings. Different researchers have used 
the method in buildings with different complexities and applications. 
A short review is given above. (chapter3 3-3). 

In this comparative study, the method is used in its specific 
form as applied . ýto the environmental temperature model; the 

Admittance Method (CIBSE 1985) (chapter three 3-4-4). The following 

is the algorithm used in the present study, based on a thermal 

network as shown in figure 5.6. 

5.5.1 The Admittance Method : 
As stated above the Admittance Method uses factors obtained from 

the harmonic method of solution to the unsteady heat conduction 
equation, namely the admittance, the decrement, and the surface 
factor and their associated time lags. 

To estimate the total energy transfer and the total temperature 

response under steady cyclic or periodic conditions where the energy 
and temperature variations are repeated over a period of time, first 
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the temperature cycles are approximated by a Fourier series of sine 

and cosine wave harmonics about a constant term, the mean value. Then 

associated dynamic thermal factors are calculated for each harmonic. 

The response of each energy and temperature cycle is calculated, 

using the precalculated factors and associated time lags for its 

harmonics. The final temperature or energy load prediction as 

obtained by summing the contributions from each of the harmonics and 

expressing this result with respect to the contribution made by the 

steady state term.. 

If the environmental temperature model shown in figure 5.6 is 

considered, the daily means of the internal air and the environmental 

temperatures are found from the daily mean heat Input to the 

enclosure. The mean, steady state balance at air point is given by ; 

Qa 
24L 

Cv, 
tCTai, t-Tao, t) - haE (A). (Tai-Tai) (5.41) 

and at the environmental point: 

Qe= E (AU)(? -Tao) + haE (A)(Tel-Tal) (5.42) 

The contribution of each cycle of energy and temperature to the 

swing (i. e. fluctuation about the mean at some time) in internal 

temperature value could be obtained by the heat balance equation for 

cyclic energy inputs and factors appropriate to their frequencies. at 
the air and environmental points: 

at the air point: 

Q., 
t= 

CV't(Tat't-Tei't) - haE (A) (Tart-Tait) (5.43) 

and at the environmental point: 

(A. Y)Tai, 
t+ 

ha(Tei, 
t-Tait) 5.44) 

+cj 

where Tautand are are the swing of internal environmental and air 
temperature at some time t. and Q and Qe 

tare 
the total load at: a, t 
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Figure 5.6: The heat transfer triangle in the Admittance Method 

Qa, t 
Qe, t 
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sum of a daily mean value and the sum of the cyclic component for 

different periods 24.12.6..... hours. 

Equations 5.41 and 5.43 . and, 5.42 and 5.44 could be added 

together to find'the instantaneous temperature at the air and the 

environmental point due to each cycle and appropriate harmonics 

Q 
a, t 

=C 
cv, t 

(T 
al 9jT ao, 

)-h 
aE 

(A)-h 
a 

(Tei't-T 
ai, t) 

(5.45) 

and 

Qeýt= E (A. U)(TQiýt-Taoýt) + haE (A)(Týi-t-TAtýt) +E (A Y)Tei, 
t. w 

(5.46) 

These-equations cöuld be used to calculate the overall response 

of the 'building to some energy input at some time t and due to any 

number of harmonics . It is convenient to give the swing temperature 

at time (t) in the term Tel, t+w as { the difference between the mean 

and-the temperature at time t 

el, t+w 
Tei, 

t+W 
Tei (5.47) 

Rearrangement of equations 5.45,5.46 and 5.47, will result in: 

T (h'E (A)+C )+T (-h E (A)) =Q+CT (5.48) 
ai, t a v, t ei, t a a, t v, t ao, t 

Taft(-haE (A)) + Tei, 
t+w(haE 

(A) + E(A. Y)) + Tel(E (A. U)-E (A. Y)) 

= Qe, 
t+ 

TaOE (A. U) (5.49) 

Equations 5.48 and (5.49) are the fundamental equations of the 

heat transfer triangle shown in figure 5.6. 

The total. energy input at the environmental point, at any time t 
is divided into two parts ; the mean, and the fluctuation due to the 

contribution by each harmonic to the swing in internal environmental 
temperature about the mean value 

Qe, 
t= 

Qe + Qeýt (5.50) 

Qe = Qf+ 
Be+ Ce+ 

(5.51) 
Pe 

+' Q (5.52) Qe, 
t_ 

Qfs, 
t se, t+ ce, t+ 

Qfc, 
t+ pe, t 
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where 

QC. = solar gain through opaque surfaces 

Q 
se 

= solar gain through transparent surfaces 

Qc= casual gain released at environmental point 

Qpe = energy input from the plant to the environmental 

point 

Qcc, 
t energy gain through the opaque surfaces due to 

fluctuation of external conditions 

These energy inputs are given as follows . 
The calculation of solar gain through the transparent surfaces 

is lengthy and time consuming. The use of the solar gain factor as 

proposed by Loudon (1968) is given in the CIBSE Guide. The detailed 

discussion is given in (3-4-2). 

The swing and mean solar gain through a transparent area is 

given by 

ASIw (5.53) 
Be ges 

QBe, 
t= 

A Se 18tw (5.54) 

where 

S= solar gain factor 
e 

Se= alternating solar gain factor 

I= total solar intensity W/m2 

The alternating solar gain factor includes the effect of the 

surface factor. For higher harmonics, this may be corrected by the 

use of an appropriate surface factor. (CLARKE 1983) Solar gain 
through each opaque surface is given by: 

Qfs = AURso(aI9-eI0) W (5.55) 

Qrs, 
t= 

AURsoft 
s(t-o) 

W (5.55) 

where 

f decrement factor corresponding to the frequency 

= time lag associated with the decrement factor h 

a= solar absorptivity 
I= radiation loss to the outside 0 

The fluctuating energy gain through each external 'wall by 
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conduction due to any particular harmonic and energy input is given 

by : 

Q= AUfT w (5.57) 
fc, t ao, (t-fl 

The total energy input at the air point includes the convective 

input from any plant or casual energy source to the air and the part 

of solar radiation input to the room ' which is released at the air 

point by convection in the presence of internal blinds 

Q = Q +Q W +Q (5.58) 
ai't pa, t Cd't Baot 

where 

Q heat input = from the plant to the air point W 
paßt 

Q = convective part of casual energy input W 
ca't 

Q = convective part of solar input W 
sa't , 

The solar gain at the air point could be calculated by means of 

the solar gain factors at the air point Say , 
Say in the same way as 

the energy input to the environmental point. 
Eliminating Tat in equations 5.48 and 5.49 will enable the set 

of equations to be solved for hourly calculation of the environmental 
temperature. The resulting equation after some manipulation is 

Tei't(-Fv, 
t) +, Tei, 

t+w(haE 
(A)+E (A. Y)) + Tel(; (A. U)-E( A. Y)) = 

=Q} e, t +T 
ao 

E (A. U) +Q 
a, t 

F 
vt +T 

ao, t 
C 

v, t" F 
v, t 

(5.59) 

where 

hE (A) 

t 
FV, 

t ha (A) +c 
(5.60) 

T Tei- 
4eý, t 

The solution to this set of equations could be achieved by: 

lTIxIAI=IBI (5.61) 
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Ti 
T2 
T3 

T24 

X 

at, l a1,2 al, 3 .... a1,24 

a2,1 'a2,2 a2,3 .... a2,24 

a3,1 a3,2 a3,3 .... a3,24 

bi 
b2 

- 
b3 (5.62) 

b24 

where 

a24,1 a24,2 1124,3 a24,24 

T environmental temperature at time t 

A1'1= -FV, t+1/24E 
(A. U) -E (A. Y) 

Airs when` i*j"= 1/24(E'(A. U) -E (A. Y)) 

Ai, 
i+w 

haE(A) +E (A. Y) + 1/24(E (A. U) -E (A. Y)) 

Bi= Q +; Q +, T E., (A U)+ Qa+QF 
e, t' e, t ao a v, t a, t v, t 

+ Tao. Cv, t. Fv, t 

5.5.2 Harmonic method computer' program: 

The solution to the equation 5.62 starts with analysing of 

temperature and energy cycles-into a mean and the different 

harmonics, with periods of (24,12,6, h) and column matrix [B] is 

calculated. The square matrix [A] is calculated using the values of 

dynamic thermal factors (Y f and s and their associated time 

lag)based on the corresponding harmonics. First the response of the 

system to the sum of mean and the first harmonic, and then the 

response to the next harmonics is calculated. The final result is 

obtained by the summation of the response to the different harmonics 

and the mean and the first one. It is worth noting that the mean 

value on the right ' of''equation 5.59 will be zero for all harmonics 

other than the first... -` 

A Fortran computer program ADMHAR is designed to calculate the 

internal temperature in, a room using ., 
the above procedure. Figure 5.1 

shows the flow chart of the computer program. 
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Figure 5.7.: Flowchart of harmonic program 
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CHAPTER SIX 

OBSERVATIONS 

6.1 Introduction - 
To determine whether the thermal simulation programs are capable 

of predicting the passive behaviour of buildings under particular 

conditions, Including variable ventilation, with satisfactory 

accuracy, comparison of predictions with measured data is necessary. 

Data, obtained from the observations are also used to evaluate the 

importance of the parameters involved in different models, discussed 

In this study. At first attempts were made to provide the required 

data from published work but no data with controlled variable 

ventilation were found. 

6.2 Background 

Experimental evidence on real buildings for comparison with 

predictions is sparse. The empirical validations of models varies; 

ranging from measurements on a small test box In the laboratory to 

real field measurements. Neither laboratory nor field tests covered 
the case of buildings with variable ventilation. 

In-one of the early studies of dynamic thermal models, Muncey 
(1953) made observations under laboratory conditions, using a scaled 

model. The results were used to evaluate the thermal simulation 
technique. The method - is based on the harmonic solution to the 

unsteady heat conduction equation and is known as the matrix method. 
Good agreement Is reported. 

Gupta (1964) made-observations in a test room specially 
constructed in an open space. The test room had no windows and no 
ventilation, and was only subjected to the variations of outside air 
temperature and insolation. Muncey's method was extended to include 
the effect-of Internal heat exchange by long wave radiation between 

surfaces. Improvements were shown. - 
Milbank and , Harr Ington-Lynn-(1970) published results on two 

offices. Comparison is made with the predictions of'an electrical 
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analogue. The results of the'Admittance Method are also compared with 

the electrical analogue. Because of good agreement, it was thought to 

validate theýAdmittance Method. 

Loudon (1968) has published results comparing the Admittance 

Method and measurement'In an unoccupied and unventilated room, over a 

period, of 'three days. No descriptions of any kind are given. The 

agreement between measurements and calculations is not particularly 

good and discrepancies of up to 5 degrees at certain times of the day 

are reported. 

Detailed measurements to test the validity of the Response 

Factor method have been carried out by Peavy et al. (1974). The 

measurements were carried out on an experimental building (6 by 6 by 

3 m. ) under laboratory conditions, constructed in a large 

environmental chamber. Outside air temperature changes were simulated 

on a 24 -hours cycle, ranging from 4 to 38 °C. The rate of 

infiltration was also measured. Good agreement is reported between 

the -measurements and the- calculations performed by the Response 

Factor method. 

6.3 Physical description and measurement technique 

In the present study two options were considered : to use an 

existing room or to, build a scaled model room and conduct the 

measurement under laboratory conditions. Because the rate of 

ventilation plays an Important : role in the thermal performance of 

buildings and is the'main'subject of this study, the first option was 

rejected , as an accurate measurement of the ventilation rate in an 

existing room is very difficult and not practicable with the 

available equipment .- It was decided to make measurements on a 

small-scale'model under laboratory conditions. 

One' of the main points of concern, in using a scale model is 

heat transfer by convection. - The convective heat transfer 

coefficient is a function of the size, of the, surfaces and the 

temperature difference'and air velocity. Using the procedure above, 
(chapter two 2-2), it was found that the difference between the 

coefficient of a -full 'scale- model and a 2/3 scaled model is 

negligible for the purposes of the present study. A comparison was 

made between a , cubic room of 3 metre- length'and of 2. metre length. 

The variations in the heat transfer coefficient for convection with a 

range' of temperatures difference similar to those used In the 

observations, - between air and surfaces was found to be very small, 



107 

I. e. less than 5% for a temperature difference greater than 2 K. 

Higher temperature difference would result In smaller deviations 

while the uncertainty in the convective heat transfer coefficient 

used in buildings Is far greater than that. Alamdari et al. (1986) 

have compared different-values calculated with simulation methods and 

reported greater differences between them and the standard values 

given by CIBSE. 

6.3.1 Test room 

The room designed to represent a room surrounded by similar 

rooms experiencing the same thermal circumstances, all with one 

external wall and window. The outside dimensions of the room were 2.2 

by 2.2 m and 1.9 m. high. 

The floor was made of five 0.21 m wide reinforced concrete 

slabs, 50 mm thick. The roof was of insulation board commercially 

available as "Purldeck", of 6.5 mm exterior grade plywood facing 

downward into the test room and 55 mm expanded polyurethane with 

aluminum foil laminated facing upward. This was chosen because of 

technical 'difficulties with using concrete for the roof, and it was 

found not to be far from the reality, where there is a false ceiling 

exist. The walls were 0.1 m thick and made of concrete blocks 0.1 by 

0.2 by 0.4 m. , joined with fully bedded mortar joints. The concrete 
blocks were of a nominal density 2100 kg/m3. 

Two openings 0.6 by 0.6 m were in the middle of the walls , one 

on the external wall and one on the opposite wall in parallel in 

order to allow cross ventilation. The frames of the openings were 

made of wood . Each opening had a sliding removable shutter of 

plywood. The cracks around the wooden frame were first filled with 

expanded foam and later taped with aluminium tape to reduce 
infiltration. A fan was fixed 0.7 m. from and parallel to the 

external wall of the room to create ventilation. The air flow rate 

was controlled by a speed controller connected to the fan. 

The floor was about 0.3 m. above ground level and open from two 

side walls , to let the air around the room move below the floor. It 

was covered with insulation board with polished aluminium facing the 

ground, to reduce the radiation exchange between the ground and the 
floor. Figure 6.1 and 6.2 shows the plan and section of the test 

room. 

: A11 surfaces of the room were covered with commercially 
available "Celtex double-R2"insulation on the outside. This consists 
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Figure 6.1: Plan of the test room and thermocouple locations. 

1: Environmental chamber f; Surfäce temperature thermocouple 

2: Test room EX) -` Air temperature thermocouple 

3: Hot air furnace 

4: Fan on the front wall - 
-. 

5: Air collector cone 

6: Open space around the roon 

7: Orifice plate device 

8: Access to the chamber 
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Figure 6.2: Sections of the test room. 
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of 25, mm rigid polyisocyanutrate foam reinforced throughout with long 

strand glass fibres. It was covered on one sides with a white 

embossed aluminium foil, and with highly reflective polished 

aluminium foil on the other side. 

The test room was designed to represent a room In a facade of 

similar rooms. To achieve this, the test room was enclosed in a 

larger space 1.2 m. from each side. The air temperature around the 

room, between the test room's surfaces and the outer envelope, shown 

in figure 6.1 was kept the same as the air temperature in the middle 

of the test room. This was done by a differential temperature 

controller connected to a fan heater to heat the space around the 

room to the same temperature as the room. When the temperature around 

the room'-was higher than- than that of the room a fan on the 

laboratory wall was turned on to lead the cooler air to the space 

around the room. This rarely happened during the measurements. 

Although the space around the room was kept at the same air 

temperature as the Inside air . it was impracticable to achieve a 

100% success in keeping-the two temperatures equal, and some heat 

might be transferred by conduction through the internal walls. 
Internal walls, were considered so-, that there would be no heat flow 

across them. The insulation on. all surfaces would increase the 

overall thermal resistance-of the surfaces , and decrease the heat 

transfer across them. A thermocouple was fixed on each side of the 

insulation-board, one between the outside surface of the wall and 
insulation board, and another on the'outside face of the insulation. 

As, the thermal capacity of the insulation was negligible and 
temperature differences across it were also not large, this would 

allow the calculation of any, heat flux through internal walls. The 

aluminum face of the Insulation would also reduce any radiation 

exchange between the envelope and the walls. As a result of these 

precautions, the heat flux, was found to be small. 

6.3.2 Environmental Chamber - 

- To simulate the outside environmental temperature a space of 1.4 

m. -wide was enclosed outside the-external wall side of the test room, 
as an "environmental chamber". - 

The air temperature in the environmental chamber was controlled 
by a cam controller ; series QG of West Instrument Co. A complete 
revolution of the appropriately shaped cam during twenty four hours 

ofrthe day-represented the sol-air temperature In the hot dry climate 
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during the day . It was first decided to warm the air in the 

environmental chamber by 'commercially available fan heaters, but 

after a`few days they caught-fire and failed. A appropriate system of 

air heaters was designed and built. It consisted of six, 1 kW rod 

heaters, It was connected to the chamber's wall. The heaters of the 

air heater system were connected to the cam controller so that when 

the temperature in the chamber fell below the required temperature of 

the cam , the heaters would switch on. A fan was fixed at the opening 

of the heater to circulate the air into the chamber through the 

heater as well as circulating the' air in the chamber to avoid a 

temperature build up near the top of the wall. 

6.3.3 Temperature measurement 

All temperatures were measured using welded copper constantan 

type 'k', thermocouples to British Standardil041 (1966) with plastic 

insulation. The junctions were first twisted and then welded 

together. For surface temperatures, the junctions were first fixed 

on the surface of the concrete wall , and then covered with a thin 

layer of cement paste to make them subject to same radiation regime 

as the wall itself. For air temperature measurement all thermocouples 

were suspended in a polished aluminium shield to minimize the effect 

of radiation on the thermocouple 

Each surface of the room was divided into equal areas and the 

overall surface temperature was averaged over the surface. The air 
temperature was also measured at three different heights and three 

locations -within -the, room. - Figures 6.1, -and 6.2 show the location of 
the thermocouples. 

-- All thermocouples were connected to a CD284 Christie Data Logger 

with-, 64 channels. A cassette recorder module was coupled directly to 

the data logger. The data logger registered; all temperatures in 

degree C with a cold junction reference compensation, by means of a 
P. R. T. sensor - utilizing input to channel 1. The P. R. T. sensor was 
first installed on the inside surface of the panel at the rear of the 

data logger . This was found to result - in, random errors up to 3 
degrees . due to the temperature difference between the ambient in 

the laboratory, and the inside surface of the-data logger's panel, 

where the thermocouples are connected. to the logger. The data logger 

was sent to the manufacturer and this discrepancy. was corrected by 

fixing ' the P. R. T. sensor on the. outside surface of the panel. All 

observations were then repeated. 
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6.3.4 Air flow measurement 

At first it was decided to use a low velocity heated thermistor 

anemometer to monitor air flow ' but this was rejected as the 

accuracy obtained from the available instrument was not sufficient 

The orifice plate technique to B. S. 1042 (1982) was finally used for 

the measurement of air flow. 

A rectangular base pyramid was fixed to the back opening to 

collect the ventilated air from the room. It was connected by a 

plastic flexible pipe to a long pipe with the orifice plate in the 

middle of the pipe. The orifice plate , the upstream and downstream 

length of the pipe were designed to comply with British Standard 

BS 1042 part 1. (1982) Pressure tappings were positioned close to the 

surfaces of the orifice plate and pressure difference was measured 

with a Furnace micro manometer , capable of reading a maximum of 100 

Pa. The flow rate is computed according to BS 1042 section 1.4 part 

two(1982). The details of the orifice plate technique used are 

described by Lee. (1979) 

The measurements were conducted in a range from three air 

changes per hour to 30 air changes per hour (55 to 3.7 litres/second) 

In order to achieve such a wide range it was necessary to use pipes 

of 100 mm. and 150 mm. diameter with appropriate orifice plates. 

6.4 Measurement procedure 

Figure6.3 represents the outside air temperature wave-form and 

resulting outside surface temperature imposed on the experimental 

room for each 24-hour period. The air temperature cycle of figure 6.3 

was derived from the solair temperature pattern appropriate to a hot 

climate. 

The temperature variations as shown were maintained for a period 

of about three weeks before observations were made and the system 

reached steady cyclic conditions, i. e. the temperature cycle 

repeating itself over the 24 hour period. Two sets of measurements 

were made: one with 10 hours of ventilation, and the other with 4 
hours of ventilation each with different rates of air flow. 

In the cases with 10 hours of ventilation the shutters over the 

windows were removed at 2000 hours and were replaced at 0600 hours. 
In the cases of 4 hours of ventilation, the windows were open between 

2000 hours and 2400 hours. . Each observation was repeated on two 

consecutive'days and the results of the second day were used for the 
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analysis, although the result of the first and second day were found 

to be very similar. 
After each measurement the system was left for at least 24 

hours without ventilation before the next measurements were made. 

A complete set of data for each test consisted of the recorded 

temperatures and the digital output from the micromanometer for every 

15 minutes. The hourly values of the temperatures were averages based 

on 15 minute measurements. 

The physical properties of the materials used in the building 

and used in the computer program and analysis are given in table 6.1. 

Thermal conductivity and specific heat capacity of the material used 

in the observations are obtained from the CIBSE Guide chapter A-3 and 

from the relevant literature. The thermal conductivity of the 

concrete used in the experiment was corrected according to the 

moisture content of the material obtained from oven dried samples and 

determined according to Stuckes et al. (1986). 

Table 6.1 Physical specifications of the test room 

A 1 P cP 
W/m K m kg/m3 J/kg K 

Outside wall 
concrete 1.35 0.10 2100 1000 

Ceiling 
plywood 0.14 0.0065 530 1200 
foam 0.022 0.055 32 1400 

Floor 
concrete 1.35- 0.05- 2100 1000 

Inside Wall 
concrete 1.35 0.10 2100 1000 

Insulation 
"Celotex" 0.020 0.03 35 1400 

6.5 Measurements accuracy and uncertainty 

The uncertainty and errors associated with the measurements are 
the followings : 

accuracy of the thermocouples and temperature measurements 

, accuracy of air flow measurements 

uncertainty in the physical properties 
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A number of thermocouples were selected from each reel of wires 

used in the work. The thermocouples were connected to the data logger 

and the junctions were put in a bath of well stirred iced distilled 

water . The water was warmed , and a range of readings between ice 

point and boiling water was compared with a mercury thermometer with 

0.1 K resolution. The data logger could be linearized with a typical 

resolution of 0.25 K for copper constantan thermocouples. The 

uncertainty in the temperature measurement was found to be about 
±0.50 K. 

` Different parameters influence the uncertainty of air flow 

measurement. British Standard 1042 (1982) suggests a formula for 

practical calculation of the uncertainty of the flow measurement. As 

in the design of the orifice plate, the upstream and downstream 

length. of the pipe'was fully in accordance with the B. S., it was not 

necessary to consider additional uncertainty. 
Air density varies with temperature. - Using different air 

densities according to temperature was not practicable. A fixed value 

from the appropriate charts at 30 C was used. This was found not to 

cause a'great error as-air density changes less than 6% with 20 K 

difference in temperature. The accuracy of the pressure difference 

measurement was assumed to be 10 %. Using the B. S. procedure to 

calculate the overall accuracy of air flow . it was found that the 

maximum error in the flow, in the range used In the measurements, was 
less than 5%. 

The physical properties of the building material can be a 
significant problem. The specific heat capacity and thermal 

conductivity-of the concrete blocks are taken from the CIBSE Guide, 

and the insulation board and the ceiling board from the 

manufacturer's specification. The uncertainty of the conductivity 

of the material is considered to be 5% after the appropriate 
correction for the moisture content. 

The dynamic physical factors of the structures used in the 

admittance ! method, the admittance, decrement factor and surface 
factor, are related to the outside surface resistance, Rso. The 

standard values are not applicable, because the conditions are 
totally different. The overall value is calculated by a surface 
energy balance at the outside surface and with the finite difference 

approximation for transient one dimensional heat conduction. A daily 
2 

mean value of Rso=0.15 Km /W was chosen. 
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6.6 Results and discussion 

The measurements were performed primarily for the evaluation, 

and comparison of the models under consideration in this study, but 

through the analysis of the data obtained from the measurements, some 

useful points may be noticed. In addition the analysis of the 

response of the test room to night-ventilation determines the 

importance of the factors influencing the development of the 

mathematical models. The observations also show trends in which the 

buildings behave under different regimes of ventilation. It should be 

mentioned that because the measurements were not Identical, and 

slight uncontrollable variation in the observation, were unavoidable 

direct comparison of the results is not possible. Instead the 

relation between them is discussed. 

Figure 6.4 shows the difference between the daily mean of 

internal air and the average surface temperature from daily mean of 

the outside air, for ten and four hours of ventilation. When the room 

is not ventilated and no energy is put into the room, the daily mean 

temperature of inside air and outside air would be expected to be the 

same. The inside air'and average surface temperature are then also 

expected to be equal. The graph shows some differences. This might be 

accounted for by two sources: heat loss through the internal 

surfaces, and infiltration into the room. The room internal surfaces 

were covered with insulation board. Because the overall thermal 

capacity of the insulation board is negligible, this makes It 

possible to calculate the heat loss through them, and Is accounted 

for in the calculations as discussed above (6.3.1), but for the 

present comparison it is not possible to take it into consideration. 

The infiltration rate is also not measured. Air moves between the 

environmental chamber and the test room, through the cracks around 

the front opening and even the plywood shutter. It also moves to the 

space around the test room, although precautions were taken to keep 

its temperature the same as that of the test room. For the 

calculations a fixed value for the infiltration is allowed for in all 

observations. These are a source of systematic errors and will not 

affect the comparison of different observations. 

Figure '6.4' shows that, the duration of ventilation is more 
important than its rate. For example, when the room is ventilated by 

30 air changes per hour for four hours, total'of 120 air changes, the 

difference, between 
. 
the mean inside air and mean of " outside air will 

not significantly change, But with 3 ac/h for ten hours, at a total 
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of 30 air changes, the mean internal air temperature will decrease by 

about 2 K. Figure 6.5a to 6.5e show the difference of temperature 

from the daily mean of outside air measured hourly. To avoid 

repetition, only cases of the lowest and highest rates, and the 

longest and shortest durations of ventilation are presented and 

compared with the case of no ventilation. 

To show the magnitude of the fluctuation of temperature, 

deviation of hourly values of average surface and air temperature 

from their daily mean are plotted in figure 6.6a to 6.6e and 

repetition is again similarly avoided. In the absence of night 

ventilation, the average surface temperature fluctuates with the same 

magnitude , maximum to minimum, as the air. This is increased by the 

increase in ventilation rate and its duration. In figure 6.6b 6.6c 

for four hours of ventilation, although the ventilation rate has 

changed significantly, the deviation is not affected. But as the 

duration of ventilation changes from four hours. to ten hours, the 

deviation of both average surface and air temperature is also 

increased. In fact, with longer periods of ventilation, the building 

behaves more like a light structure. The effect of duration and rate 

of ventilation, on the deviation of temperature from their daily 

mean, are shown in figure 6.7 and 6.8. The results are compared with 
the case of no ventilation. It Is shown that the air temperature is 

fluctuating more than the surface temperature. In the case of night 

ventilation, the time of maximum and minimum temperature changes 

according to the ventilation regime, while with the case of no 

ventilation the time of peak air and surfaces temperature are the 

same. 

Figure 6.9 shows the deviation of individual surface 
temperatures, from the daily mean of average surface temperature. 
Comparing the cases of no ventilation with night ventilation, the 
temperature of different surfaces are considerably dampened, and as 
the ventilation rate increases the fluctuation of individual surface 
temperatures also increases. This is happening more at the internal 

surface of the external wall. This Is because the surface is less 
cooled with night ventilation, than other surfaces. The temperature 
difference between surfaces is also affected by the change in the 
ventilation rate. In - comparison of figure(6.9a) and (6.9e), ( no 
ventilation and 30 ac/h for 10 hours), the temperature difference 
between the internal face of the. external wall and other surfaces 
increased by: about 2K The temperature of the ceiling is also 
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responding more quickly to the ventilation rate. This is believed to 

be caused by the fact that the ceiling was made of light-weight 

material. The rest of the surfaces follow the same pattern of 

variations. 

One must conclude that the indoor convection pattern is 

continuously changing and is also affected by the rate of 

ventilation. This is more important for the ceiling and the front 

wall. The time of minimum and maximum of individual surface 

temperatures (e. g. external wall and ceiling) is also changed by the 

ventilation regime. 

To show the temperature difference between individual surfaces, 

in figure 6.10 the individual surface temperatures from instantaneous 

average surface temperature are plotted against time. Positive 

deviation signify that the temperature of the surface was higher than 

the average surface temperature at the time. Although most of the 

surfaces are in equilibrium, the plot suggests that the radiation 

exchange between the surfaces is slightly affected by the ventilation 

regime. 

Figure 6.11 shows the variations of temperature at different 

points on the internal face of the external wall along a vertical 

axis. The figure shows that the pattern of temperature gradient over 
the wall is the same for different regimes of ventilation. This 

suggests'that the assumption of one dimensional heat flow across the 

external wall is not affected by the variations in the ventilation 

regime. 

Similarly figure 6.12 shows the temperature variations for 
different thermocouple positions on the side wall, along a vertical 
and horizontal axis. As for the external wall, the temperatures were 
not greatly affected by the variation in the ventilation rate and Its 
duration. 

In figure 6.13 the deviations of inside air temperature from 
instantaneous average air temperature at different thermocouple 
locations for different rates and duration of ventilation are plotted 
against time. The graph suggests that the temperature difference 
between thermocouple locations is affected by the changes in the 
ventilation regime. This is believed to be caused by the way the new 
air entering the room mixes with the room air. 

Experimental data Indicate a few points to be considered in the 
development and evaluations of thermal models, which may be 

summarized thus: 
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The variation of time of maximum and minimum temperature in 

treatment of time lag in some models, 

convection and radiation treatment in the room, 
the temperature fluctuation due to variations in ventilation 

regime 

and the way the air mixes in the room. 
The way these points are investigated are discussed in more 

detail in Chapter 5 in development of the models. 



129 

s. No vent I Let tan 

a 

4 

U. 

_ _ 

o. 30 so/h for %on hours 

6 

4 

2 

0 

be 3 so/h for four hour. 

wo 

-a 

do 3 sc/h for ton hour. 

4 

., 0 

Ttw Qwr) Ttw Ow r) 

p Stdo w. lL r---o Book weLl t --. * cot ling 

"- - Floor ý--n I ntorne L fawn of . xtwns l welt 

Figure 6.10. Devtatton of surface temperatures from instantaneous average 
surface temperature for different rate and time of venttlatton 

Tim thaw) Tim Qiar) 



130 

'S No v. nttt ttan 

fi 

41 

Z 

w0 

1ý 

0 os30 Wo/h for ton hhooir. 

a 

10114'16-il' 

Tim emir) 

--ýº 5 os. above the f Loor 
ý--ý 5 oi. b. Low the o. t Ling 

b. 3 . o/h for few hour. 

g 

0 

H 

o 
d. 3 scA for %on hours 

a 

4 

s 

In the "tddl 

Figure 6.11. Deviation of temperature at different points on internal 
face of external well from instantaneous average 

Tim Qwur) Tim tar) 

Tim O ou") 



131 

at No vein ? L. t Ian 

4 

o"30 sa/h for ton hour* 

6 

4 

2 j- 

Q1 Ile 
" 

f--- p5 0s. blow the os 1ltn 
a-- -s 5 cm. above ehe floor 

. ---0 near ih. book welt 

b. 3 so/h for four hays 

a 

4 "- 

d. 3 so/h for ton hour. 

6 ý" 

1 

i0 

-6 

-I 

r----q At the m? dd.. 
ý_ý Near the front well 

Figure 6.12. Deviation of temperature at different points on the side 
well from instantaneous average 

Ttr, Oar) Ti.. twu') 

Ti.. Omr) Tt. Omer) 



132 

4 ". NO wnt ton 

2 

-2 .+ 

4 0.30 . o/h for ten hour. 

-3 

ý--ýr 5 on. b. Lov the ow ilin 
p-- 5 o5. ebov. the floor 

S" Near Ow front v. ll 

b. 3 so/h for far hour. 

ýi 

0 
I- 

A 

d. 3 so/h for ton hors 

4 

P-------v At the ti t dd l 

*--- Near the book veil 

Figure 6.13. Deviation of air temperature at different points in the room 
from instantaneous average 

Tim Qmu") TI» Qmm) 

TtM Qwir) Tim Qhoir) 



133 

CHAPTER SEVEN 

COMPARISON BETWEEN MEASUREMENTS AND CALCULATIONS 

7.1 Introduction 

Several dynamic thermal calculation models have been used to 

predict the thermal response of a room with varying rate and duration 

of ventilation. The experimental results are used to find and compare 

the correctness and accuracy of each model. 

The methodology of evaluation and verification of thermal 

calculation techniques is the subject of recent research(BOWEN & 

LOMAS 1981 BLOOMFIELD 1985 IRVING 1988). Three major steps are 

proposed: analytical verification, inter model comparison, and 

experimental verification. Empirical verification of a model is the 

most powerful technique as"It provides a direct comparison with 

reality. In the present study two methods are used. The results of 

different models are compared, and the measured data are used as an 

indication of their accuracy . Throughout the inter-model and 

experimental comparison a compromise between precision and 

simplification is sought. 

7.2 Errors and uncertainties 
In order to give better understanding and evaluation of the real 

meaning of a comparison between observed and theoretical results, an 

analysis of the uncertainties is necessary. A detailed analysis of 

uncertainties will also allow the evaluation of the importance and 

sensitivity of each parameter in the simulation model. 

The measured parameters of the observations are used as input to 

the models. They include the outside air temperature and the 

ventilation flow rate. The error of the temperature measurement is 

±0.5 K, and of the air flow rate, 5%. (See Ch. 6) The parameters used 

in the models are: 

- dimensions of the room 

- thermal properties of the room components 

- ventilation rate based on measurement 



134 

- Infiltration rate based on estimation and 

- measured outside air temperature. 

There are some internal parameters in each simulation technique, 

which will affect the final results. The most important is the 

convection heat transfer coefficient. In the finite difference and 

response factor models it is used directly to calculate the 

convective heat transfer between the surfaces and the air. In the 

harmonic models it will appear as a part of the inside surface 

resistance, Rsi. Each variable in the model has an error associated 

with it. In table 7.1 the uncertainties associated with each 

parameter are shown. 

Table 7.1: The uncertainty of parameters in the models 

Parameter Uncertainty 

Thermal conductivity x - 5% 

Specific heat cp `- 5% 
Density p- `- 5% 

Thickness 1 `- 1% 
Volume vol = 2% 

Ventilation rate V = 5% 

Infiltration rate- V 0.5 ac/h im, 
Convective heat transfer coefficient h 1.5 W/m2K 

Outside air temperature T 
C 

0.5 ° C 
ao 

Outside surface resistance R = 0.06 m2K/W so 
Inside surface resistance R1 0.06 m K/W 

7.2.1 Methods of uncertainty analysis 

If q is defined as: 

q=-f(u. x......., z) (7.1) 

and each variable is measured with uncertainties du , dx ,..., dz 
then the uncertainty in q is given by 
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dq = 
[(äü 

du)2 + (ax dx)2+ + (äq dz)Zl0.5 (7.2) 

provided the uncertainties in u, x...... z are random and independent. 

(TAYLOR 1982). 

As in the case of the prediction of the thermal response of 

buildings, the final answer results from the solution of a system of 

complicated equations. The analytical solution using equation 7.2 to 

find the uncertainties is complicated. To simplify it, the derivative 

of the functions are calculated numerically. The following 

approximation is used to represent the derivative: 

8q qx+ho Qx 

8x ho 
(7.3) 

Where ho has to be small enough to give reasonably accurate 

results. 
The models will produce hourly temperatures for different nodes; 

air and surfaces. It is difficult- to present and evaluate the 

uncertainty in hour by hour sequences. To give a sound basis two 

different sets of data are evaluated : the mean air and surface 
temperature , and the temperature difference between calculation and 

observation. In order to give a'single value for temperature 

difference'for a whole day a function 0 is defined as 

Otai- 
[1/24E(T_T)2]°6 

(7-4) 

where 
TC is the calculated temperature °C 

T Is the Observed temperature °C 
0 

To find the best values for the derivatives a computer program 
is loaded for each different parameter several times. For each run 
the parameter is slightly changed. This small change is decreased at 
each step. The corresponding value of the derivative is found in the 

regions where the results are 
of 
not changing significantly . It is 

believed: that in further steps decreasing the increments, the error 
of calculation will become great and will affect the final results. 
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The uncertainties of each parameter should, to satisfy the 

limitations of equation 7.2, be independent and random. A large 

uncertainty in some of the parameters will affect these restrictions. 

For instance, if the density is increased the thermal conductivity and 

specific heat capacity also change and so the independence condition 

will not be fulfilled. With large numerical uncertainties in some 

parameters the error may not be normally distributed. In such a case if 

q is a function of xi x2... x;. xn the uncertainty in q is found from 

nnn 05 

d4 - 
[dx)2+ 8x 

öxýax, xii iAi 
t=1 1=1j=1 

Where dxixl is the co-variance between parameters. This equation is 

valid whether the parameters are, Independent or the variations are 

normally distributed. 

If the response of a building to the degree of variations of each 

parameter is not linear, dq may not be calculated by equation 7.2. The 

derivative obtained for each point is a local value and should be used 

with caution. It should only be used where the response of the building 

to the changes of the derivative is assumed to be linear. To investigate 

the effect of larger uncertainties, within each parameter, an analysis 

of the sensitivity of the overall response of the building is required. 
The analysis of the distribution of the derivatives using such 

variations will show the-importance of the magnitudes of uncertainties 

associated with each parameter. 

Buildings subjected to variable ventilation will respond 
differently accordingly to the time, of the-day. The effect of the 

uncertainties of each parameter might also be different at different 
times of the day. An hourly investigation is appropriate. Such thorough 

sensitivity analysisto: the changes-of a thermal model's constituents is 
beyond the scope of this study. In this research a general investigation 
into the effect of uncertainties-of the parameters of a thermal model 
seemed to be enough forýthe purpose of the comparisons among different 

models. In table 7.1 modest values of error are chosen to satisfy the 
above conditions. 

It should be noted that the models are only as robust as the 

accuracy of the input data. 
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7.2.2 Results of error analysis 

Table 7.2 to 7.4 show the results of the analysis and the 

derivatives of the air and average surface temperatures, and the 

temperature difference cause by the errors in the parameters of the 

models. 

It is shown from the analysis that from the sort of errors 

expected, some parameters such as specific heat capacity , density 

and thickness of the slabs etc., do not significantly affect the 

overall uncertainty. 

In the Finite Difference model the effect of the error caused by 

the uncertainty in he is greater for higher rates of ventilation. 

With lower rates of ventilation the uncertainty in ventilation rate 

is more significant than with higher ventilation rates. 

It was expected that R81 would play an Important role In the 

final results, because the the convection coefficient Is subjected to 

constant change. It is shown with the range of errors expected in Rsi 

that the final result is not affected to a significant extent by the 

errors in R81. The effect of Rso Is more important. 

With lower rates of ventilation, the uncertainty in the 

ventilation rate has a more Important role In the. final result. 
In general, the uncertainty associated with the prediction of 

air and average surface temperatures is mostly affected by the errors 

in outside air temperature and infiltration rate. Outside surface 

resistance, R, ventilation rate and inside surface resistance also 
so 

affect the overall results, but to a lesser extent. The average 

general uncertainty caused by the errors in the parameters of the 

Harmonic models, under applied conditions, is±1.0 K, with a maximum 

of `-2.5 K and in the Finite Difference Method are ±1.1 K with 

maximum of ! 2.5-K. 

7.3 Results and comparison of the models 

The Response Factor method and Finite Difference method are both 

numerical solutions and give accurate and similar results. The 

results from these two were generally in good agreement with each 
other. To avoid repetition, the results from the response factor 

method only are shown for model 7.1 . and the evaluation of different 

parameters, appearing in different models, is only presented for the 
finite difference technique. 

Using the multi exchange model enables the temperature of 
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Table 7.2: Error, analysis of the daily mean of air and average surfaces temperature 
calculated by the Finite Difference Method 

Parameter 

30 ac/h for ten hours 

Tai Ts 

3 ac/h for four hours 

Tai Ts 

aTai 
ax 

aTai 
ax 

dx 
aTs 

ax 

aTs 
ax dx 

aTai 

X. 

aTai 

ax 
dx 

aTs 

ax 

aTs 

ax 
dx 

Conductivity 0.6 0.04 0.4 0.02 0.33 0.02 0.3 0.2 

Specific heat 0.001 0.05 0.001 0.05 0.001 0.05 0.001 0.05 

Density 0.001 0.01 0.001 0.01 0.001 0.01 0.001 0.01 

Thickness 

Surface resistance (outside) 

21.0 

9.4 

0.21 

0.6 

18.0 

7.5 

0.18 

0.45 

26.2 

5.6 

0.26 

0.3 

24.0 

5.1 

0.24 

0.3 

Ventilation rate 0.07 0.11 0.1 0.15 0.45 0.05 0.5 0.05 

Infiltration rate 0.8 0.4 1.0 0.5 0.8 0.4 1.0 0.5 

Outside air temperature 0.8 0.4 0.9 0.45 0.8 0.4 0.75 037 

Conv. heat transfer coefficie 0.45 0.7 0.2 0.3 0.1 0.15 0.1 0.15 

Volume 0.2 0.02 0.18 0.02 0.15 0.015 '0.18 0.02 

Standard error OC ; 1.1 T0.9 T0.7 T0.8 

Maximum error OC ; 2.5 42.1 T1.6 T1.5 
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Table 7.3: Error analysis of the daily mean of temperature difference between 
measurements and calculations by the Finite Difference Method 

Parameter 

30 ac/h for ten hours 

Tai Ts 

3 ac/h for four hours 

Tai Ts 

aTai 
ax 

)Tai 
ax 

dX 
aTs 

ax 

aTs 

ax 
dx 

DTai 
ax 

OTai 
ax 

dx 
aTs 

ax 

aTs 

ax 
dx 

Conductivity 0.5 0.04 0.5 0.04 0.3 0.02 0.3 0.02 

Specific heat 0.001 0.05 0.001 0.05 0.001 0.05 0.001 0.05 

Density 0.001 0.01 0.001 0.01 0.001 0.01 0.001 0.01 

Thickness 25.0 0.25 25.0 0.25 22.2 0.22 27.0 0.27 

Surface resistance (outside) 8.5 0.5 9.2 0.55 4.8 0.28 6.0 0.35 

Ventilation rate 0.1 0.15 0.1 0.15 0.55 0.06 0.4 0.04 

Infiltration rate 1.0 0.4 1.0 0.5 0.95 0.45 0.8 0.4 

Outside air temperature 0.8 0.4 0.8 0.4 0.75 0.37 0.75 0.37 

Conv. heat transfer coefficie 0.4 0.6 0.4 0.6 0.11 0.16 0.1 0.16 

Volume 0.1 0.01 0.15 0.01 0.19 0.02 0.14 0.01 

Standard error °C ±1.1 ±1.1 ±0.7 ±0.7 

Maximum error 0C ±2.5 ±3.0 ±1.4 t1.2 
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Table 7.4: Error analysis of the daily mean of air and average surfaces temperature 
calculated by the harmonic Method.. 

Parameter 

30 ac/h for ten hours 

Tai Ts 

3 ac/h for four hours 

Tai Ts 

aTai 

ax 

aTai 

ax 
ýX 

aTs 

ax 

aTs 

ax 
dx 

aTai 

ax 
aTai 

ax 
dX 

aTs 

ax 

aTs 

ax 
dX 

Conductivity 0.4 0.03 0.5 0.03 0.3 0.02 0.28 0.02 

Specific heat 0.001 0.05 0.001 0.05 0.001 0.05 0.001 0.05 

Density 0.001 0.01 0.001 0.01 0.001 0.01 0.001 0.01 

Thickness 16.0 0.1 18.0 0.2 7.5 0.07 8.0 0.08 

Surface resistance (outside) 7.9 0.5 9.7 0.6 5.0 0.3 5.2 0.3 

Ventilation rate 0.1 0.15 0.1 0.15 0.7 0.1 0.6 0.09 

Infiltration rate 1.1 0.66 1.0 0.5 1.3 0.65 1.2 1.2 

Outside air temperature 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 

Surface resistance (inside) 2.8 0.18 4.6 0.28 3.7 0.22 3.9 0.23 

Volume 0.2 0.02 0.18 0.02 0.25 0.02 0.22 0.02 

Standard error °C ±1.0 ±1.0 ±0.75 ±0.9 

Maximum error °C t2.2 ±2.3 +1.9 ±2.1 
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different surfaces of the room to be predicted individually . Figures 

7.1 7.3 7.5 and 7.7 show the surface temperatures predicted by these 

two methods against similar data obtained from measurements. In 

figures 7.2 7.4 7.6 and 7.8 the average surface temperatures and air 

temperatures are shown. As assessment of comfort is one of the major 

points of Interest , dry resultant temperatures ( the mean of air and 

average surface temperature) are also shown. 

The general agreement between the response factor and the finite 

difference method with the measurements is good. There is some 

disagreement between observations and predictions for Inner and outer 

surface temperatures of, the external wall. This Is thought to be 

caused by the use in the calculation of a fixed value for the 

external surface resistance, for a whole day. The external surface 

resistance includes both radiation and convection. The rate of heat 

transfer by convection on the outside surface of a wall is a function 

of temperature difference between the surface and the outside air. 

Each Is subjected to continuous change during the course of the day. 

So the surface resistance variation caused only by changes in the 

convection part may well be between (0.07 to 0.2 m2K/W ). A fixed 

value may cause, at least for parts of the day , an overestimation of 
the surface temperature and consequently will affect the internal 

surface temperatures., 
., 

It is shown in figures 7.1 and 7.3 that the ceiling temperature 

responds quickly to the rate of ventilation. The ceiling was made of 
light material, and as the cooler air enters the room, the exchange 
of heat by convection results In a rapid drop of surface temperature. 

This drop is a function of the ventilation rate and will continue 
during ventilation. As soon as ventilation stops, the temperature 

will recover. Neither of the models is able to follow this variation 
accurately. The reason might be the inaccurate estimation of the 

convection coefficient at the time of change. 
The results of the finite difference and response factor methods 

are in good agreement . The difference between these two is only in 
the way the unsteady heat conduction through the slab is dealt with. 
In the response factor method a time step of one hour is used while 
in finite difference method, a five minute time interval Is chosen. 
This is not found to be advantageous. 

The air temperature. is the most difficult 'to predict. The 
behaviour of air entering the room Is complicated and will change 
with-the rate of ventilation and infiltration, the type, position and 
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size of the opening. As discussed above(see 5.2.3)this might happen 

in three ways. Two different unknowns have contributed to the 

difficulty in prediction of air temperature: the mechanism of air 

mixture and its efficiency in replacing the air in the room, and the 

rate of estimated infiltration. (CIBSE Guide chapter 8 suggests one 

air change per hour for cross ventilation). With regard to the 

evaluation of comfort, as one of the major purposes of investigation, 

use of the dry resultant temperature (mean of air and average surface 

temperature) as an index temperature, the general agreement of air 

temperature is within acceptable precision. 

7.3.1 Results from different models: 

The differences between measured and calculated air and average 

surface temperatures , in different models are presented in figures 

7.9 to 7.11. As was predicted above, it is the inside air temperature 

which is more sensitive than the average surface temperatures to 

different assumptions. (8 and 6 surface models). Different 

assumptions in the nine and seven nodes models have not resulted in 

any better agreement in the average surface temperatures. 

, 
Comparison of model "Finit 9.1", "Finit 7.1" and "Finit 9.2" and 

"Finit7.2" (i. e. time dependant he with fixed h) shows that using a 
C 

variable h- did not result in better agreement in the nine and seven 
C 

element model. In fact with a fixed h: slightly better agreement than 
c 

with predicted hC is obtained. he in model "Finit 9.1" and "Finit 

7.1" is calculated using a correlation suggested by Alamdari and 
Hammond (discussion is detailed in 2.2). As expected with the range 

of ventilation rate used in the observations; the natural convection 

was predominant inside the room. It seems that the predicted value 

underestimates hh. The calculated he at different times of the day 

for different surfaces of the room is given in table 7.5. During 

ventilation, for a higher rate of ventilation the predicted 
temperatures of model 9.1 and 7.1 were more accurate while for lower 

rates of ventilation the model with a calculated h of models 9.2 and 
C 

--7.2- is closer to the observed values. The procedure for the 

calculation of he is independent of the ventilation rate, and is 
based only on the temperature difference between the air and the 

surfaces. It Is clear that the air flow rate will affect the 

convection coefficient. This requires further investigation. 

Comparison of model "Finit 9.1" and "Finit7.1" with "Finit 9.3" 

and "Finit 7.3", which are different in treatment of air mixing, show 
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Table 7.5: Convective heat transfer coefficient, hc, for internal Surfaces calculated by 

correleations,! Suggested by Alamdari and Hammond 

time front wall side wall back wall ceiling floor 

20 2.25 0.96 0.82 0.50 1.27 

21 2.54 2.15 2.05 0.69 2.63 

22 2.54 2.34 2.25 0.72 2.85' 

23 2.48. 2.41 2.33 0.73 2.93 

24 2.42 2.45 2.38 0.73 2.97 

1 2.33 2.44 2.37 0.73 2.94 
2 2.28 2.44 2.38 0.73 2.93 

3 2.21 2.43 2.36 0.72 2.90 

4 2.13 2.39` 2.32 0.71 2.85 

5 2.05. 2.35 2.28 0.71 2.79 
6 1.46 1.47 1.23 0.36 1.26 

7 1.46 1.23 0.96 0.76 0.18 

8 1.43 0.99 1.25 1.49 0.51 

9 1.21 1.46 1.58 1.73 0.58 

10 1.73 1.73 1.81 1.86 0.63 
11 1.38 1.87 1.94 1.93 0.66 

12 1.75 1.93 2.00 1.97 0.66 

13 2.00 1.95 2.01 1.94 0.66 

14 2.18 1.91 1.97 1.82 0.65 
15 2.27 1.84 1.91 1.66- 0.62 
16 2.32 1.74 1.81 1.46. 0.59 
17 2.35 1.58 1.68 1.14 0.55 
18 2.32 1.40 1.55 0.69 0.51 

19 2.21 1.38 1.54 0.97 0.50 

,ý , r. 
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that for higher rates of ventilation the assumption of perfect air 

mixing during ventilation results in better agreement with 

observation. For lower rates of ventilation, the assumption of 

partial displacement flow is in better agreement. All cases of models 

9.1 and 7.1 have shown more accurate results when there is 

infiltration. 

Comparison of models "Finit 9.1" and "Finit 9.4" shows that the 

separate calculation of radiation heat loss through open windows does 

not contribute to better results for the prediction of air 
temperature during the night. The separate treatment of radiation is 

not worth the cumbersome calculations with regard to the 

uncertainties of the parameters used in the calculation such as the 

temperatures, convective coefficient etc. 

The difference between models "Finit 7.1" and "Finit 7.4" Is in 

the way the air thermal capacity is treated. It Is shown that the 

consideration of air thermal capacity has resulted in slightly higher 

internal air and surfaces temperatures. As the ventilation rate 
increases the difference becomes smaller for the time of ventilation. 

For higher rate of ventilation it is negligible. 

Comparison between the seven nodes model and the nine nodes 

model in general shows that, in similar models (9.1 and 7.1 . 9.2 and 
7.2 and 9.3 and 7.3) , the predicted temperatures for low rates of 

ventilation show better results in the nine nodes model, while for 

higher rate of ventilation, both nine and seven nodes models gave 

satisfactory results. For higher rates of ventilation, the nine nodes 

models give values closer to observations by about 1K during the 

day. 

Figures 7.13 to 7.14 show the difference between the 
temperatures calculated by the three nodes model and observations. 

As far as the treatment of the convection coefficient and air 
mixing are concerned, trends similar to the nine and seven nodes 
models are also found in the three nodes models. Figure 7.13a and 
7.14a show the results of the three nodes models for 30 air changes 
per hour for ten hours and for four hours of ventilation. The 
difference between predicted temperatures and observed values are 
little greater than those from seven nodes model. Figures 7.13b and 
9.14b show the same results "but for 3 air changes per hour. The 
temperature difference is higher by about 1 degree. As the 

ventilation rate decreases, the disagreement between the. calculated 
temperatures and experimental results increases. Temperatures 
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calculated by different models and the full range of observed values 

for 15,10,7,4 ac/h and for ten and four hours of ventilation are 

presented in Appendix C. 

7.3.2 Discussion and conclusion: 

The use of different assumptions in the nine seven and the 

three nodes models makes no significant change to the prediction of 

average surface temperature , but the air temperature is more 

sensitive. 

Comparison of the nine and seven nodes model, shows that the 

evaluation of the thermal response of buildings, ( for example for the 

evaluation of comfort) , is not significantly improved by increasing 

the number of nodes from seven to nine. 

Radiation loss through open windows during the night is 

negligible, and the cumbersome and laborious calculation is thus 

thought to be unnecessary. A fixed value of h. has given satisfactory 
c 

results. The correlation used in the present study cannot take Into 

account the effect of the ventilation rate, although from the 

observations it is clear that the convection coefficient will change 

with the rate of ventilation. The values obtained from the 

correlation (table 7.5) underestimate the convection coefficient. The 

fixed 
.hc 

(e. g. 3.0 W/m2K for vertical surfaces) Is greater than the 

mean h' obtained from the correlation 
C 

When a high rate of ventilation is introduced to a room the new 

air is believed to mix fully with the room air, but for low rates of 

ventilation the new air does not properly mix with the room air. This 

is shown by the comparison between the two different assumptions and 
the results of the observations. The results of different rates of 

ventilation on the observation show that as the ventilation rate 
decreases the way the ventilation is treated becomes Important. 

In the three nodes model with higher rates of ventilation, the 

agreement was satisfactory and there is no great advantage in 
increasing the number of nodes from three to seven or nine. For lower 

rates of ventilation, the air temperature is more sensitive to the 

way the room is presented. 
Generally with a high rate of ventilation, a simple model is 

capable'of predicting the. response of buildings and a complicated 
model will` not provide better results as far as the architect and 
building engineer are concerned. 
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7.4 Harmonic method 

Figures 7.15 to 7.18 compares values obtained from the two 

harmonic methods with observed values. As the environmental 

temperature model was used it is not possible to present the 

Individual surface temperatures directly from the calculations. As 

with the finite difference and response factor methods, the results 

of 30 and 3 ac/h for ten and four hours of ventilation are presented. 

The results of the observations between these two extremes 

are presented In Appendix C. 

Two different approaches are used. The first used the model 

developed by BRE based for the Admittance Method (which is the 

standard method suggested by the CIBSE Guide). In the BRE model, the 

actual outside air temperature is used. All thermal factors are 

obtained from the first harmonic solution to the heat conduction 

equation, here referred to as BRE model. The second approach uses the 

actual temperature analyzed into the first six harmonics with 

relevant frequencies (24,12,6 hours) and employed the factors 

related to each harmonic. This is referred to as the HARE model. (for 

a detailed discussion see chapter 5). 

Figure 7.15 shows the case of 30 air changes per hour for 10 

hours. The general agreement between both models and observation for 

both average surface and air temperatures is good. During the day the 

BRE model overestimates the air temperature. In the BRE model, the 

outside air temperature is presented to the model as a mean and 

"swing" above below the mean (mean to extreme) and the time the 

maximum temperature occurs. (The same procedure is used in chapter 8 

of the CIBSE Guide in the calculation of internal mean and swing 

temperatures). In hot climates the outside air and solair temperature 

is peaky stable during the', night and-rapidly increasing during the 

day. This approximation leads'to some significant errors. In the case 

of night ventilation, as shown in fig 7.15, it results in a large 

. 
error in air temperature compared with the first six harmonic 

approximation. As the ventilation rate decreases this error becomes 

less important. 

As the ventilation rate decreases the disagreement between HARE 

and the BRE model In predicting the night air temperature also 
decreases, but the general disagreement of both models with 
observation increases. 

With four hours of-ventilation, the disagreement between the BRE 

model and HARE Is significant. The prediction of the time of peak 
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temperature in the BRE model is different from both HAR6 and 

observation, and as the ventilation rate decreases, this difference 

becomes larger. This is because of the crude treatment of time lag in 

the BRE model. The BRE model does not consider the time lag 

associated with the admittance. (BLOOMFIELD 1985) In the case of heavy 

structures with poor insulation, (similar to the apparatus used in 

the observations), as the ventilation rate increases the response of 

the building is more like that of light structures. The effect of 

time lag therefore becomes less important. As the ventilation rate 

decreases the building responds more like a heavy structures, and 

the treatment of the time lag becomes significant. This is thought to 

be one of the sources of disagreement between the two methods. The 

dual behaviour of buildings subjected to variable ventilation, that 

is to say the difference of characteristics of a building during 

period of ventilation as light structures, and heavy without 

ventilation, is the source of serious error caused by the crude way 

of the BRE model. The error will be significant for lower rates of 

ventilation and heavy structures. 

For lower rates of ventilation both models over-estimate the 

internal temperatures of the air and the average temperature of the 

surfaces, although the general agreement shape of the results are 

more or less similar , and as the ventilation rate increases 

improvement is seen. This might be due to the fact that the 

environmental temperature model is used in the approach. The 

treatment of long wave radiation is crude. The temperature difference 

between the room surfaces could be as high as 12 K as suggested by 

figure 6.9 so that the long wave radiation exchange among different 

nodes in the model might play an important role In the overall result 

of temperatures in the room. 

In the cases of high -rate of ventilation, the main energy 

exchange will-occur between the room air and surfaces and the inside 

and the outside air, and consequently long wave radiation becomes 

less significant. 
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CHAPTER EIGHT 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

Various extant thermal simulation methods for the prediction of 

hourly indoor air and surfaces temperatures in,. -buildings in hot arid 

climates with natural nocturnal ventilation are experimentally 

verified. From the analysis of the data obtained, a deeper insight is 

gained of how buildings behave thermally under these circumstances. 

The models developed in this study are based on: 

the Harmonic Method used in the BRE and HARE model 
the Response Factor, Method 

the Finite Difference Method 

They differ in the treatment of: 

-unsteady heat conduction 

-radiative heat transfer 

-convective heat transfer 

-ventilation air 

-long wave radiation heat transfer through open windows 

Comparison of simulations and measurements show that: 

-the Response Factor and Finite Difference Method, which are 

mainly computer techniques, showed similar results and are closest to 

the observations. 

-in the case of a high rate of ventilation, a simple model of 
three nodes produced data that agreed reasonably with observations. 
As the ventilation rate decreased the disagreement between 

calculations and observations increased. 

-in the case of a high rate of ventilation the BRE model 
underestimated the air temperature. This is thought to be caused by 
the way the outside air is presented. The BRE model simulates the 

outside air temperature as a pure sine wave, using the mean and the 
'swing value. This is the cause of error in'the prediction of the air 
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temperature. It could be corrected by the use of hourly values of air 

-temperature. 

-the use of the first six harmonics in iiAR6 model and the proper 

treatment of time lead and time lag associated with dynamic thermal 

factors improved the predictions. The improvement does not Justify 

the complications, and the great advantage of the BRE model of being 

a manual method would be lost. 

-the-similarity of the results obtained from the three nodes 

model employing the Finite Difference technique and the BRE model 

suggests that the main shortcoming of the BRE method Is in the way 

the internal -heat exchange between the elements is tackled. 

Nevertheless in the case of a high rate of ventilation a simple model 
is capable of predicting the air and surface temperatures with 

sufficient accuracy. 

-the seven-nodes models produced data that were In good 

agreement with the observations. The nine nodes models improved the 

accuracy. Considering the uncertainties associated with the input 

data the increase of accuracy was not enough to justify the 

complexity of the nine nodes model. The improvements were mainly in 

the prediction of air temperature, only one of the temperature 

relevant to comfort. 

-by using existing correlations it was found that natural 

convection is the dominant regime of convection in all ranges of air 

flow used in this study. The correlation used to predict the 

convective heat transfer coefficient (hC) resulted In its being 

underestimated. ' Where the value of h. was assumed to be fixed at a 
C 

higher value, the agreement with the observations improved. 

-in the case of high rate of ventilation during the night, the 

data obtained from models which assumed a perfect mixing of incoming 

air with the room air, showed better agreement with observations than 

models assuming a partial mixture of air. While with a low rate of 
ventilation the air temperature predicted by models assuming a 
partial mixture of air were closer to observations. 

-the calculation of radiation through open windows was performed 
in the nine-nodes models. In the cases studied this did not result in 

significant improvement. Its precise evaluation requires direct field 
measurements. 

A computer model was developed to analyze the error* resulting 
from uncertainties in input data. 'The results are used to investigate 
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the sensitivity of internal air temperature and average surface 

temperature due to variations of each parameter. It Is found that: 

- the uncertainties in the rate of infiltration, outside air and 

outside surface resistance, were the most important sources of error 

In, the prediction of temperature in all models. 

-in Finite Difference Method, with high rates of ventilation the 

uncertainty -in he was more significant than case of low rate of 

ventilation. Difference technique. 

-with low rates; of ventilation the Internal air and average 

surface temperatures showed sensitivity to the variations of Internal 

surface resistance. 

-the uncertainties associated with the physical properties of 
the structure (i. e. thermal conductivity, thermal capacity and 
density) had the least significant effect on the predictions of 
Internal temperatures. 

Natural ventilation through open windows is also investigated. 

From, the results theoretically obtained of natural cross flow in 

multi-zone buildings, a nonlinear relation is found which relates the 

ratio of external/internal. opening area to the rate of flow. A 

procedure using this relationship is suggested, which could greatly 

simplify the calculations of cross air flow in multi-zone buildings. 

The experimental observations show that the duration of 
ventilation is more effective in cooling the structure that its rate. 

A better understanding of the thermal behaviour of a building 

with night ventilation is gained. This is achieved by the inter-model 

comparison and empirical validation. Computer models developed in 

this study and by BRE are experimentally validated and evaluated. The 

effect of shortwave radiation and very high rates of ventilation are 

not investigated due to difficulties of laboratory simulations. Their 

inclusion requires field measurements. 
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SUGGESTIONS FOR FURTHER WORK 

Solar radiation plays an important role in the overheating problems 

of buildings in hot climates during the summer period. The boundary 

conditions of the external surface of buildings in these regions are 

also complicated. They include the radiation loss to the sky during the 

night'(which might be 20 K below the outside air temperature), and the 

absorbed solar radiation during the day. Their simulation is very 

difficult under laboratory conditions. Some field data are required to 

test the models. This should include radiation loss to the sky and 

absorbed solar radiation. 

The effect of high rates of ventilation on the thermal response of 

the buildings also needs further investigation. When a building is 

subjected to a high rate of ventilation, say above 200 ac/h, it is 

expected that the convective heat transfer coefficient will change 

considerably, consequently the cooling effect of night ventilation will 

increase. This increase in the convective heat transfer coefficient and 

the cooling effect is expected to be nonlinear. Further investigation 

could reveal its-effect and also evaluate the optimum rate of 

ventilation. This will affect the design'of a building for the optimum 

rate of natural ventilation. The investigation might be performed with 
the same method of experimentation as used in this study. 

The internal surfaces of a room might lose some energy through open 

windows to the outside. The rate of this source of passive cooling 
depends on the configuration between the surfaces and the outside and 
temperature difference' between them. Because of the low water vapour 

pressure in the atmosphere and its clarity, the sky temperature in hot 

climates drops greatly during the night. With regard to the fact that 
the coefficient for heat transfer by long-wave radiation is larger than 
for convection, its rate of heat loss by this source might be 
significant. It depends on the geometry of the building surfaces and 
area of openings. More theoretical and empirical investigation are 
needed. This could be achieved by the development of a dynamic model 
similar to the nine-node model used in the present study and Including 

real climatic data. The experiment could be done by comparing the 
thermal performance of similar buildings with and without open windows 
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during the night, either in an existing building or in specially built 

test rooms. 

Equations 4.13 and 4.14 suggest' correlations which will simplify 

the calculation of cross air-flow in multi-zone buildings. These are 

totally based on theoretical examination. An empirical verification of 

the above equations is required. This might be performed by a wind 

tunnel study of cross-ventilation in a multi-zone building with 

different configurations of internal partitions and different ratios of 

external openings. 

The present knowledge of pressure coefficients for the calculation 

of wind induced pressures on buildings is limited. The same c values P 

are used irrespective of whether the infiltration is through a normal 

crack or ventilation through a window sized openings. Further field and 

wind tunnel studies are required to examine the effect of large external 

open areas in buildings on the pressure coefficients. This might be done 

both on existing buildings and-wind tunnel studies in the laboratory 

. To achieve a high rate of ventilation some design facilities such 

as waffle walls, domed roofs and large areas of windows might be 

employed. By comparing the performance of different architectural 
facilities their suitability might be examined. 

Traditional passive cooling techniques such as, wind towers (Baud 

Geers), large terraces in front of buildings (Eivans), domed roofs etc., 
have served to help provide comfort for many years. The present 
knowledge of their performance is mostly restricted to descriptive 

studies. More quantitative and qualitative investigations into their 

performance would help to exploit their use with new types of 

construction. The study may include, direct field measurements as well as 
laboratory simulations to investigate the effect of design parameters in 

order to increase their efficiency., 

The combined effect of natural night ventilation and evaporation 

would increase the rate of cooling. They may be' studied by the same 
experimental technique as the present study, with appropriate adaptation 
to include the effect of evaporation. 
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APPENDIX A 

CALCULATION OF VIEW FACTOR IN A ROOM 

The followin is a general approach to calculate the view factor 

between surfaces of the room, most suitable for computer 

calculations. 

For two parrallel walls (DEWITT & INCROPERA 1985) 

/1 
i 

// ýýs2 

Y 
SI, -' ý., 

iß't, 

X, 

/(1+x2)(1+Y2)' 
2rx 

FII(X. Y. 2) = xLog 2+ 
( (l+y )arctanl 

1 

m (1+x2+y) l (1+y2)J 

where 

+ (1+x2)arctan ry1-x 
arctan(x) -y arctan(y) l 

(1+x2) 
J 

(A-1) 

FII(X, Y, Z) Is the view factor between surface 1 and 2 in 

X= L'Z 

y= Y/Z 

For two perpendicular walls (DEWITT & INCROPERA 1985) 
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FL(A, B, C) =1 
h1H 

arctän(1) +W arctan(1) - vAV+H2 arctan( 
1) 

nH HW 
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(A-2) 

where 

H=B/A 

W= C/A 

For a window or door Parrallel with a wall 
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For a window or door perpendicular to a wall 
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APPENDIX 8 

Derivation of thermal Response Factors 

(MITALAS & STEPHENSON 1967) 

The thermal response factors for a homogeneous slab can be 

expressed directly in terms of the thermal properties and thickness 

of the slab and the time interval. 

The temperature at any point in the slab is given by tha 

following equation 

22 
3 m-1 -m 1( T 

Td, 
T_ 

Ard -d + dT + 
3E 

(-1) e sin(mnd)] (B-1) L6 
it m3 J 

when 

T=0 
d, 0 

To, 
z= 0 

and 

Ti, Ar 

where 
d= 1/1; dimensionless time 

w 

z= at/12; dimensionless time 

a= thermal difusivity 

t= time 

A= rate of surface temperature rise 
Tl, Ar or T1 t= A a2 

'1 

The heat flux through any plane at the distance d is simply the 
product of temperature gradient at the plane d and thermal 
conductivity A i. e. 

X aT d, T 
Qd, i 1 öd (B-2) 
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Selection of A so that the surface temperature is one unit at 
2 

t=A, i. e. A= nd substituting t=nA and T=- . gives* 

co (-1)m 
(B-3) m _A 

1 [_l 
_anA+2 L Qo, 

nb aD6 12 It 
2M 

m2 

:] 

where 

co mn 
A11_ anA_ 2 7m 

Qt, 
nA aA[ 3' 12 n2 mL_1 m2 (B-4) 

= exp(-(m) 
2n2) (B-5) 

Thus the surface heat flux through the surfaces due to the 

triangle surface temperature variation i. e. thermal response factors 

for a homogeneous slab are: 
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(where nz: 2) 

(B-6) 

(B-7) 
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Multi-layer slab: 

If the surfaces of a two layer slab are designated as AB and C 

(figure C-1) 

TA TB c 

AB 

Figure B-1 

Q=TA XI- TBY1 

Q T Z T Y B B 2 A 1 

= TXTY 
A2C2 

Qc T Z T Y 
B Z C 2 

Thus 

TY+TY 
T X2 (B-12) AZ B + 12 

and 
Y2 rY Y1 

QA TA 
1-Z 

+X 1-T 
Z1. +X2 J} 

(B-13) 
12l12 

2 
Y .YY2 Qg TA{ Z1+X2 

}- 
Tc{ Z2 Z1+X2 

} (B-14) 

The sets in brackets are the response factors for the composite 

slab. This process can be repeated for as many the number of layers 

in the slab. 
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APPENDIX C 

COMPARISON OF MEASUREMENTS AND PREDICTIONS OF DIFFERENT MODELS 
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