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Abstract–Growing peak demand has necessitated the 

introduction of Time-of-Use (TOU) pricing to Demand Side 

Management (DSM) in order to cause some peak demand to be 

shifted from peak to off-peak periods. Therefore, in this work, a 

Daily Maximum Energy Scheduling (DMES) - DSM technique is 

proposed. The DMES-DSM device is proposed to be installed 

into consumers’ smart meters and schedule energy consumption 

for smart appliances. The DMES–DSM technique was verified 

with real household data and shown to be capable of optimizing 

households’ monthly energy expenditure below approved 

national energy expenditure threshold and also offer Peak 

Demand Reduction (PDR). It offered the household considered 

an average monthly financial savings of 22.44% and 36.73% in 

summer and winter respectively on electricity bills. Utility can 

also benefit from the PDR for grid stability and sustainability. 

Also, the optimized consumption pattern differs only slightly 

from initial consumption pattern for enhanced consumer 

satisfaction.  

Index Terms--Daily Maximum Energy Scheduling (DMES), 

Demand Side Management (DSM), Household income, Smart 

appliances, Time-of-Use (TOU). 

I. INTRODUCTION 

The transformation of the present grid to a smart grid has 

necessitated diverse energy management studies on the 

demand side for economic, environmental, infrastructural and 

social benefits. In the future grid, DSM technologies shall be 

consumer-driven, utility-driven and environment-driven. 

These technologies would apply energy efficiency and saving 

technologies, energy tariffs and pricing, distributed energy 

resources, incentives, energy storage, government policies 

and active consumer participations.  

Classifying DSM techniques based on modification of 

consumers’ load profiles offers six basic techniques [1], 

which include load shifting, peak clipping, conservation, load 

building, valley filling and flexible load. DSM techniques are 

often actualized through time-based or incentive-based DSM 

programs. Time-based DSM programs include Flat Rate 

Pricing (FRP), Time of Use (TOU), Real Time Pricing (RTP) 

and Critical Peak Pricing (CPP), while incentive-based DSM 

programs include Direct Load Control (DLC), 

Interruptible/Curtailable Services (ICS), Power Tariffs (PT) 

and Locational Marginal Price (LMP) [2]. TOU-based 

programs set electricity prices (tariffs) based on time of the 

day and season of the year that the energy is consumed. 

Hence, the higher a consumer’s peak demand, the higher its 

energy expenditure (or electricity bill) would be.   

There are many DSM optimization algorithms and 

techniques in literature for reduction in energy consumption 

cost [3]-[7], Peak Demand Reduction (PDR) [3]-[5] and also 

Peak-to-Average Ratio (PAR) [4]. In [3], [5], [6], the authors 

investigated selected household appliances, but the household 

energy expenditure is dependent on total consumption cost of 

all appliances in usage in the home. In [5], the authors 

proposed a framework that carries out a trade-off between 

minimizing household electricity payment and minimizing 

waiting time for the operation of appliances under RTP 

scheme, but appliance waiting time may not be a sufficient 

trade-off for household energy cost. Also, literature [7] used a 

repeated energy scheduling game to minimize energy 

consumption cost for self-interested and foresighted 

consumers. Then, the utility uses consumers’ consumption 

history to determine which consumer can use energy in the 

future during peak time at a lower price. However, it is not 

certain the benefit to the utility when there are many 

households to be compensated with low price at peak time. 

Despite the works that abound in literature on DSM, none had 

investigated optimizing household energy consumption cost 

below approved energy expenditure threshold for TOU 

consumers, as far as the authors are concerned. Hence, the 

proposed algorithm in this work would produce more energy-

rich households in the community and world at large. 

Household energy expenditure is one of the indicators of 

energy poverty globally and each nation sets its energy 

expenditure threshold. A nation’s energy expenditure 

threshold is chosen as from 10% to 15% of household income 

globally [8], [9]. Therefore, any household in a nation that 

spends above the approved nation’s energy expenditure 

threshold is considered to be energy-poor [8], [10]. In 

developed [9], [11], [12] and developing countries [10], [13], 

the population that usually spends above the nation’s energy 

expenditure threshold is mostly found among the low and 

middle income earners.  

For instance, in South Africa, the Department of Energy 

(DoE) had approved 10% of household income as energy 

expenditure threshold [10]. According to the DoE, low-

income, middle-income and high-income households in South 
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Africa spend an average of 27%, 13% and 6% of their income 

on energy expenditure respectively. Table I [10] presents 

information on income and energy expenditure by South 

Africa households.  

TABLE I.  HOUSEHOLD INCOME AND ENERGY EXPENDITURE 

In this work, a TOU-based and income-based Daily 

Maximum Energy Scheduling (DMES) technique is proposed for 

residential consumers. Therefore, a DMES-DSM problem is 

formulated using Mixed Integer Linear Programming (MILP) 

[14]. MILP has been used in [15], [16] to demonstrate 

different DSM algorithms. A low-income South African real 

household data was used to validate the algorithm. This study 

has shown that the DMES-DSM algorithm can offer Peak 

Demand Reduction (PDR), PAR reduction reduced energy 

expenditure below the nation’s energy expenditure threshold, 

financial and network planning for utilities, enhanced 

financial savings and  planning for consumers.  

The rest of this work is organized as follows. Energy 

demand and TOU tariff system in South Africa is presented 

in Section II. The proposed DMES-DSM device for 

optimized energy expenditure for TOU consumers is 

presented in Section III. Section IV contains the simulation 

results and discussions while and Section V has the 

conclusion.  

II. RESIDENTIAL ENERGY DEMAND AND TIME-OF-

USE TARIFF SYSTEM IN SOUTH AFRICA 

Residential demand is characterized by two daily peak 

periods – the morning peak and evening peak. If peak 

demand growth becomes unbearable to utilities, load 

shedding, blackouts and/or acquiring of higher peaker plants 

may result. Therefore, utilities introduce TOU tariff to force 

some of consumers’ peak demand to be shifted from peak to 

off-peak periods. In TOU tariff system, peak period tariffs are 

higher than non-peak period tariffs and winter tariffs are 

higher than summer tariffs for each period. Approved TOU 

tariffs are usually communicated to customers in advance.    

The TOU tariff structure in South Africa as defined by 

the national utility provider, divides the year into two major 

seasons – winter (June to August) and summer (September to 

May) [17], although this is different from the weather 

classification in South Africa where there is autumn, winter, 

spring and summer [18].  

In the newly approved TOU structural adjustment by the 

National Energy Regulator of South Africa (NERSA), TOU 

periods are changing from 07:00 - 10:00 hrs to 06:00 – 09:00 

hrs for morning peak, and from 18:00 – 20:00 hrs to 17:00 – 

19:00 hrs for evening peak during winter months effective 

from March 2015 [19]. However, summer TOU periods 

remain 07:00 - 10:00 hrs and 18:00 – 20:00 hrs for morning 

and evening peak periods respectively. This change may lead 

to some inconveniences for consumers since the average 

wake-up time in South Africa is 06:24 hrs [20]. However, the 

proposed DMES-DSM solution ensures affordable energy 

expenditure for households throughout the year. 

III. DMES-DSM FOR ENHANCED DEMAND SIDE 

MANAGEMENT IN SMART HOMES  

Household energy expenditure is the cumulative cost of 

energy consumed by all appliances in the household within a 

period of time. The monthly household energy expenditure 

shall be optimized in this work by optimizing from the 

hourly and daily energy expenditure levels. The energy 

consumption by smart home appliances connected in a smart 

home to a smart meter is studied to ensure that household 

energy expenditure is less than the approved energy 

expenditure threshold according to the household income 

irrespective of the season and TOU tariff implemented.  

A. Smart Home DMES-DSM System Description 

The DMES-DSM technique shall require a smart home 

with smart appliances connected to the smart meter as is 

envisaged in a smart grid. The DMES-DSM device is 

proposed to be installed into the smart meter and the 

proposed DMES-DSM system model is shown in Fig. 1.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.  The DMES-DSM System Model 

The smart appliances in the home are classified into class 

A and class B categories. Class A smart appliances are the 

smart appliances whose energy consumption takes priority in 

the smart home and are most essential for the comfort of the 

consumer according to the consumer’s preferences e.g. 

lighting bulbs, electric stove, phone charger etc. On the other 

hand, class B smart appliances are those smart appliances 

whose consumption in the smart home can be shifted to later 

times in the day or switched off in order for the household not 

to exceed certain hourly and daily energy consumption limit 

e.g. room heater, water heater etc. However, some appliances 

Quintiles Income 

% Average 

energy 

expenditure 

% of population 

spending more 

than 10% of 

income on energy 

expenditure 

Upper 

quintile 
R57,000 and above 6% 13% 

4th quintile R21,003 – R57,099 11% 38% 

3rd quintile R9,887 – R21,002 14% 51% 

2nd quintile R4,544 - R9,886 17% 65% 

Lower 
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can possess dynamic classification between class A and B 

based on consumer’s preferences or priorities. A list of smart 

appliances considered are shown in Table II.  

TABLE II. LIST OF HOUSEHOLD SMART APPLIANCES 

Smart Appliance Class Appliance ID Power rating, P (kW) 

Radio  A A1 0.015 

TV A A2 0.040 

Electric Stove  A A3 2.000 

Inside Bulbs  A A4 0.040 

Outside bulbs A A5 0.040 

Electric Kettle A A6 1.000 

Fan * A A7 0.080 

Microwave A A8 1.000 

Phone charger A A9 0.010 

Toaster A A10 1.000 

Refrigerator  A A11 0.250 

Electric Iron  B B1 1.000 

Room heater* B B2 2.000 

Water heater B B3 2.500 

DVD player B B4 0.025 

                                                                                      *Seasonal appliance 

B. Smart Appliances Energy Scheduling Formulation  

A smart appliance can be denoted by �� for � = 1, 2,
. . . , �	 or 
� for � = 1, 2, . . . , �  for every �� and 
� 

belonging to � = {��, ��, … , ��	} and � = {
�, 
�, … , 
� }, 

where � and � are the sets of class A and class B smart 

appliances in a household respectively.  

The aggregate class hourly energy consumed by all class 

A and B appliances is given by (1) and (2) respectively:  

       ��,� = ���,� +  ���,�+  . . . + ��� ,� = ∑ ��� ,���∈� ,       (1) 

       ��,� = ���,� + ���,�+ . . . +�� 			,� = ∑ �� ,�� ∈� ,       (2) 

where ���,� is the energy consumed by a class A appliance 

and �� ,� is the energy consumed by a class B appliance at a 

time h for ℎ ∈ ℍ, and ℍ = [1, 2, .., 24]. Therefore, a 

household’s total instantaneous hourly energy, ��
#  at every 

time h by all the smart appliances is expressed as (3):  

       ��
# = ��,� + ��,� = ∑ ��� ,���∈� +  ∑ �� ,�� ∈� .       (3) 

The total daily scheduled energy consumed in the 

household is given by (4): 

                �� = ∑ ��
#�$�%

�$� = �� + �� .                    (4) 

For �� =  ∑ ∑ ���,���∈��∈ℍ  and �� =  ∑ ∑ �� ,�� ∈��∈ℍ . 

However, energy consumption for each class appliance is 

&��,� =  '��(��,� , and &� ,� =  '� (� ,� , )ℎ*+* ( ≠
ℎ -�. ( ∈ ℝ, P is the power rating of each appliance as 

shown in Table II and t is duration of use. The switching state 

of each smart appliance can be represented by a binary 

integer vector 0 since the smart appliances were assumed to 

take on either 0 or 1 switching states per time: 

0 = [2�, 2�, 23, … , 2�%] 5 ,    2 ∈ {0,1}�%7�.               (5) 

However, consideration for appliances with multi-level states 

of power consumption is in future work. The hourly 

scheduled energy consumption is found using ���,� = 8��,�0  
and �� ,� = 8� ,�0  for each class appliance, where 8��,� 

and 8� ,� are 24-element row matrices with only one non-

zero entry &�� ,� and &� ,� respectively at column positions 

j=h for every entry &9:.   

C. Optimized Household Energy Expenditure Formulation  

This work aims at optimizing household monthly energy 

expenditure from a daily optimization approach. Therefore, 

the optimized household energy expenditure ϒ;< is expressed 

as a function of certain variables in (6): 

ϒ;< = =>?, ��,� , ��,�, @, .A,                    (6) 

where ? is the household income, @ is the tariff and d is the 

number of days in the month. For FRP consumers, the 

maximum daily allowable energy consumption ��B7C  can be 

generally expressed as follows: 

��B7C ∝ E

5F
 :           ��B7C =  GE

5F
,               (7) 

where H is a nation’s energy expenditure threshold, which 

varies from 10% to 15% of household income [8], [10]. In the 

South African scenario used as a case study in this work, 

H = 0.1 (i.e. 10%) [10]. Therefore, (7) can be re-written for 

FRP South African DMES customers as (8): 

   ��B7C =  I.�E

5F
.                      (8) 

The DMES device was first proposed by the authors for 

FRP customers in [21]. However for TOU consumers, (7) 

would not hold since @ is not same within 24 hours, but 

depends on the time of use of energy in the day and season. 

Monthly maximum expected energy expenditure ϒ�B7
�  for 

each household is proposed to be less than or equal to kI (i.e. 

ϒ�B7
� ≤ H?), and the daily maximum expected energy 

expenditure ϒ�B7
F  is obtained using (9): 

   ϒ�B7
F = ϒ KL

 

F
.                       (9) 

This is done so that the consumer does not reach ϒ�B7
�  before 

month ends. Then, ϒ�B7
F  was initially divided equally among 

24 hours for mathematical simplicity and the maximum 

expected hourly energy expenditure ϒ�B7
�  is given by (10): 

           ϒ�B7
� =  ϒ KL

C

�%
.        (10) 



 

 

The maximum allowable energy consumption per hour ��B7M  

is therefore expressed in (11) using @� as the hourly TOU 

tariff:  

��B7M = =>ϒ�B7
� , @�A = ϒ KL

M

5M
 .       (11) 

 To enhance the comfort of the customers and avoid 

energy wastage, the DMES-DSM device is programmed such 

that the hourly energy saved �NM
# =  ��B7M − ��

#   is added to 

the ��B7M  of the next hour. However, if the consumer is 

moving to a different tariff period (e.g. from non-peak period 

to peak period or vice versa), then the energy saved from the 

previous hour �NPM
#  is added to the current hour’s ��B7M  at the 

rate of the TOU tariff of the current hour h using 
QRPM

S 5PM

5M
 , 

where @T� is the previous hour TOU tariff and @� is the 

current hour TOU tariff. The monthly optimized energy 

expenditure ϒ;<
�  is expressed as the summation of the daily 

optimized energy expenditure ϒ;<
F  from the first day .� to the 

last day .U of the month in (12): 

                 ϒ;<
� = ϒ;<

F� + ϒ;<
F� + ⋯ + ϒ;<

FW =  ∑ ϒ;<
FFW

F�
.       (12) 

However, ϒ;<
F  is found in terms of the hourly optimized 

energy expenditure ϒ;<
�  in (13) and ϒ;<

�  now by (14): 

 ϒ;<
F =  ϒ;<

� + ϒ;<
� + . . . + ϒ;<

�% =  ∑ ϒ;<
��%

�$�  .     (13) 

                         ϒ;<
� =  ∑ ∑ ϒ;<

��%
�$�

FW
F�

.                    (14) 

However, ϒ;<
� ≤ ϒ�B7

� , ϒ;<
� ≤ ϒ�B7

� , ��
# ≤ ��B7M  and 

�� ≤ ��B7C . Therefore, the optimized hourly energy 

expenditure ϒ;<
�  is given by (15): 

ϒ;<
� =  ��

# @�  ,                          (15) 

An hourly TOU tariff system is considered in this work 

since the utility uses hourly TOU pricing and is therefore, 

represented by the tariff vector matrix T where T = [T1, T2, 

T3,..., T24]
T
  ∀@� ∈ Y. Therefore, the optimized daily energy 

expenditure is given as (16): 

ϒ;<
F =  ∑ ϒ;<

� =  ��
#@� + ��

# @� + ⋯ + ��%
# @�%

�$�%
�$� .     (16) 

The TOU tariff for single-phase domestic customers in 

Johannesburg, South Africa was applied in this work as 

shown in Table III [22] and the TOU durations for peak, 

standard and off-peak periods are presented in Table IV [17].  

TABLE III. TOU TARIFF FOR SINGLE-PHASE DOMESTIC 

CUSTOMERS 

Period Summer (c/kWh) Winter (c/kWh) 

Peak 109.89 262.09 

Standard 86.93 104.65 

Off-peak 68.39 73.38 

TABLE IV. DURATION OF TOU PERIODS 

Days of the 

week 

TOU Periods 

Peak (hrs) Standard (hrs) Off-peak (hrs) 

Weekdays 
07:00 - 10:00 

18:00 - 20:00 

06:00 - 07:00 

10:00 - 18:00 

20:00 - 22:00 

00:00 - 06:00 

22:00 - 24:00 

Saturdays None  
07:00 - 12:00 

18:00 - 20:00 

00:00 - 07:00 

12:00 - 18:00 

20:00 - 00:00 

Sundays None  None  All day 

A threshold notification is introduced so that the 

customer is aware of near ��B7M  consumption per hour. The 

hourly threshold, �5ZM
# = 0.9��B7M . At time, ℎQ\]M

S , the 

DMES-DSM device begins cutting off power supply to class 

B appliances in order of decreasing energy consumption 

within the hour, but will restore the supply at the beginning of 

the next hour.  

The 90% consumption threshold was arbitrarily chosen 

so that the optimized consumption pattern does not vary too 

much from the initial consumption pattern of the consumer so 

as enhance consumer satisfaction. However, any other 

threshold can be chosen and the effect of such tested on the 

algorithm. 

D. DMES-DSM Optimization Problem and Algorithm 

The DMES-DSM optimization problem can be 

formulated as a MILP problem in (17) using the branch and 

bound method [14] implemented in CPLEX [23]: 

          min         ϒ;<
�  

s.t.    ϒ;<
� ≤ H? ,  0.1 ≤ H ≤ 0.15, 

        ϒ;<
� = ∑ ∑ ϒ;<

��%
�$�

FW
F�

,  ∀ℎ ∈ ℍ,  

        ϒ;<
� = ��

# @�  , ∀ℎ ∈ ℍ, @� ∈ Y,  

        ��� ,� = 8�� ,�0, �� ∈ � , ℎ ∈ ℍ, 

        �� ,� = 8� ,�0, 
� ∈ �, ℎ ∈ ℍ, 

0 = [2�, 2�, 23, … , 2�%] 5 ,  2 ∈ {0,1}�%7�,  ∀2,    

 ��
# = ∑ ��� ,�

�	
�$�,��∈� +  ∑ �� ,�

�
�$�,� ∈� ,  

 �� = ∑ ��
#�$�%

�$� = �� + �� , 

       ∑ �� ,�� ∈� ← 0 -( ℎQ\]M
S ∈ ℍ, �5ZM

# = 0.9��B7M , 

       ϒ;<
� ≤ ϒ�B7

� , ϒ;<
F ≤ ϒ�B7

F ,  ϒ;<
� ≤ ϒ�B7

� , 

       ��
# ≤ ��B7M ,  ���,� ≥ 0, �� ,� ≥ 0,   

        ��� ,�  ≥ 0, �� ,�  ≥ 0, ∀�� ∈ �, ∀
� ∈ �.              (17) 

The DMES-DSM algorithm is shown below. 

 

 



 

 

DMES-DSM Algorithm 

input: 8��,�, 8� ,�, 0, ?, ��B7M
, �5ZM

, Y,   
output: ��

# , ��,ϒ;<
� ,ϒ;<

F ,ϒ;<
�

.  

repeat 

     if time ℎ ∈ ℍ then 

Solve (18) 

print ��
#  and ϒ;<

�
 

Update �� and ϒ;<
F

 according to the solution.  

    if ��
# ≤ ��B7M

 then 

    Compute �NM
# =  ��B7M

− ��
#  

        if current hour has same tariff with previous hour then 

             Current hour ��B7M
=  current hour ��B7M

+ �NPM
#  

             Current hour ��B7M
 and �5ZM

#  are updated accordingly 

        else Current hour ��B7M
= current hour ��B7M

+
QRPM

S 5PM

5M
 

                Current hour ��B7M
 and �5ZM

#  are updated accordingly   

                end if 

           else current hour ��B7M
 and �5ZM

#  remains as given  

           end if 

until  ℎ = 24: 00ℎ+2   

print �� , ϒ;<
F

. 

Timer resets and repeats same process next day until month ends and 

ϒ;<
�

 is generated. 

IV. RESULT AND DISCUSSION OF DMES-DSM 

SIMULATIONS 

Numerical results of the simulated DMES-DSM 

algorithm are presented in this section to validate the 

theoretical analyses carried out. In order to test the DMES-

DSM algorithm, the survey of a low-income household was 

conducted. The survey obtained from the household 

information about appliance possession, times and duration of 

usage both daily and seasonally, household income and 

electricity bills for a year.  The consumption data generated 

from the survey were checked with the electricity bills 

obtained and validated. From the survey, the household 

informed that it earns an average monthly income of R4,000 

and is comprised of two adults who leave home for work 

often by 07:30 hrs and return home by 17:00 hrs on Monday - 

Saturday.  

The comparison between hourly energy consumption and 

hourly consumption cost under initial and DMES-DSM 

scenarios are shown in Figs. 2 and 3 respectively. The initial 

results are from the household data obtained from the survey. 

It can be seen from Figs. 2 and 3 that the DMES-DSM device 

reduced energy consumption, consumption cost and 

consequently kept the household energy expenditure below 

10% of householder’s income. Furthermore, it also yielded 

average 21% and 30% PDR during the morning and evening 

peak periods respectively. Consequently, PAR was also 

reduced. The aggregate of the PDR and PAR reduction over 

many households or consumers would offer the grid 

increased stability.  

The summary of the result of the DMES-DSM algorithm 

on the households’ monthly energy expenditure is presented 

in Table V showing the initial monthly energy expenditure 

ϒ9�9m9BU
�  without DMES-DSM device and optimized monthly 

energy expenditure ϒ;<
�  with the DMES-DSM device in 

summer and winter. The proposed DMES-DSM algorithm 

showed that it could help the household to spend below 10% 

of income on energy expenditure. The average monthly 

financial savings observed for the low-income household 

under consideration were R92.88 (22.44%) and R213.01 

(36.73%) in summer and winter respectively, where R stands 

for Rand (South African currency). 

Figure 2.  Average household hourly energy consumption during winter 

 

Figure 3.  Average household hourly consumption cost during summer 

TABLE V. COMPARISON OF HOUSEHOLD’S INITIAL AND DMES-

DSM OPTIMIZED ENERGY EXPENDITURE 

Income ϒnop
n

 

Average Summer 

monthly energy 

expenditure 

Average Winter 

monthly energy 

expenditure 

ϒqrqsqot
n

 ϒuv
n

 ϒqrqsqot
n

 ϒuv
n

 

R4,000 R400 R413.91 R321.03 R579.90 R366.89 

  R – Rand (South African currency) 
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DMES-DSM Consumption
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Even if the constant meter charge (R12.03 for this 

consumer) is added to the optimized bill  

ϒ;<
� , the total monthly energy expenditure will still be ≤ H?. 

Although, the DMES-DSM algorithm had helped the 

household to reduce consumption cost and peak demand, it is 

however, essential to determine the level to which the 

optimized consumption affected household initial 

consumption pattern. The daily average result of this 

variation (optimized consumption - initial consumption) was 

approximately 12%, which shows that the DMES-DSM 

technique gave the consumer about 88% energy satisfactions. 

The percentage satisfaction is expected to increase month 

after month as the consumer gets used to the device. Also, if 

this household would apply proposed Electricity Usage Plan 

(EUP) in [3] for the some class B appliances, it would be able 

to meet more of its energy needs within the expected budget 

for energy expenditure. Also, the algorithm can be extended 

to more appliances and households to prove its scalability and 

reliability. 

Future work could include a dynamic energy pricing 

scenario, where the DMES-DSM algorithm can be modified 

to read tariff based on the day-head information received 

from the utility. The consumer’s satisfaction with the DMES-

DSM algorithm under various tolerance levels are presented 

in future work due to page constraints.  Also, apart from 

residential consumers, commercial and industrial consumers 

can also subscribe to this device to optimize their 

consumption and energy expenditure within a budget. 

V. CONCLUSION 

The DMES-DSM algorithm has been used to show how 

household monthly energy expenditure of TOU customers 

can be kept below the energy expenditure threshold of their 

nation by scheduling hourly and daily energy consumption of 

smart appliances used in smart homes. This would offer 

benefits to all stakeholders in the energy industry including 

consumers, utility providers and the government. Consumers 

would benefit through financial savings, energy savings and 

enhanced financial planning for the household. The utilities’ 

benefits could include better network planning (generation, 

transmission and distribution networks), reduced investment 

cost on peaker plants and grid stability and sustainability. The 

government would also benefit as more households in the 

nation would be spending below the energy expenditure 

threshold on electricity bills. Hence, there will be more 

energy-rich households in the nation. Therefore, this work is 

novel to using DSM technique for households to spend on 

electricity bill below approved energy expenditure threshold. 
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