
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/133517

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/43571587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/133517

CONTRIBUTED RESEARCH ARTICLES 123

RStorm: Developing and Testing
Streaming Algorithms in R
by Maurits Kaptein

Abstract Streaming data, consisting of indefinitely evolving sequences, are becoming ubiquitous in
many branches of science and in various applications. Computer scientists have developed streaming
applications such as Storm and the S4 distributed stream computing platform1 to deal with data
streams. However, in current production packages testing and evaluating streaming algorithms is
cumbersome. This paper presents RStorm for the development and evaluation of streaming algorithms
analogous to these production packages, but implemented fully in R. RStorm allows developers of
streaming algorithms to quickly test, iterate, and evaluate various implementations of streaming
algorithms. The paper provides both a canonical computer science example, the streaming word count,
and examples of several statistical applications of RStorm.

Introduction

Streaming data, consisting of indefinitely and possibly time-evolving sequences, are becoming ubiq-
uitous in many branches of science (Chu et al., 2007; Michalak et al., 2012). The omnipresence of
streaming data poses new challenges for statistics and machine learning. To enable user friendly
development and evaluation of algorithms dealing with data streams this paper introduces RStorm.

Streaming learning algorithms can informally be described as algorithms which never “look back”
to earlier data arriving at t < t′. Streaming algorithms provide a computationally efficient way to deal
with continuous data streams by summarizing all historic data into a limited set of parameters. With
the current growth of available data the development of reliable streaming algorithms whose behavior
is well understood is highly important (Michalak et al., 2012). For a more formal description of
streaming (or online) learning see Bottou (1998). Streaming analysis however provides both numerical
as well as estimation challenges. Already for simple estimators, such as sample means and variances,
multiple streaming algorithms can be deployed. For more complex statistical models, closed forms to
exactly minimize popular cost functions in a stream are often unavailable.

Computer scientists recently developed a series of software packages for the streaming processing
of data in production environments. Frameworks such as S4 by Yahoo! (Gopalakrishna et al., 2013),
and Twitter’s Storm (Storm User Group, 2013) provide an infrastructure for real-time streaming
computation of event-driven data (e.g., Babcock et al., 2002; Anagnostopoulos et al., 2012) which is
scalable and reliable.

Recently, efforts have been made to facilitate easy testing and development of streaming processes
within R for example with the stream. stream allows users of R to setup (or simulate) a data stream
and specify data stream tasks to analyze the stream (Hahsler et al., 2014). While stream allows for
the development and testing of streaming analysis in R, it does not have a strong link to current
production environments in which streams can be utilized. Implementations of data streams in
R analogous to production environments such as Twitter’s Storm are currently lacking. RStorm
models the topology structure introduced by Storm2, to enable development, testing, and graphical
representation of streaming algorithms. RStorm is intended as a research and development package
for those wishing to implement the analysis of data streams in frameworks outside of R, but who
want to utilize R’s extensive plotting and data generating abilities to test their implementations. By
providing an implementation of a data stream that is extremely comparable to the production code
used in Storm, algorithms tested in R can easily be implemented in production environments.

Package RStorm: Counting words

In this section RStorm is introduced using the canonical streaming example used often for the introduc-
tion of Storm: a streaming word count. For RStorm the basic terminology and concepts from Storm3

are adapted, which are briefly explained before discussing the implementation of a streaming word
count in RStorm. The aim of the streaming word count algorithm is to, given a stream of sentences –
such as posts to a web service like Twitter – count the frequency of occurrence of each word. In Storm,

1Not to be confused with the S4 object system used in R.
2This structure is very similar to the functioning of Yahoo!’s S4.
3The terms differ from those used by the S4 distributed stream computing platform, despite many similarities

in functionality.

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

http://CRAN.R-project.org/package=RStorm
http://CRAN.R-project.org/package=stream

CONTRIBUTED RESEARCH ARTICLES 124

Spout	
(sentences)	

Bolt	
(SplitSentence())	

Bolt	
(CountWords())	 Result	

Figure 1: Graphical representation of the word count topology. This topology describes the stream
that can be used to count words given an input of separate sentences.

Function Description

Bolt(FUNC,listen = 0,...) Used to create a new bolt. A bolt consists of an R func-
tion, and a specification of the bolt / spouts from which
it receives tuples. The listen argument is used to indi-
cate the order of bolts.

Emit(x,...) Used to emit tuples from inside a bolt.
RStorm(topology,...) Used to run a stream once a full topology has been

specified.
GetHash(name,...) Used to retrieve, inside a bolt, values from a hashmap.
SetHash(name,data) Used to store, inside a bolt, values in a hashmap.
Topology(spout,...) Used to create a topology by specifying the datasource

(a data.frame) as the first spout.
AddBolt(topology,bolt,...) Used to add a bolt to a stream. Once a bolt is added it

receives an ID, which can be used in subsequent speci-
fication of bolts (listen=ID) to determine the order of
the stream.

Tuple(x,...) A single row data.frame. Used as the primary data
format to be passed along the stream.

Table 1: Overview of the core functions and their primary parameters of RStorm.

a data stream consists of a spout – the data source – from which tuples are passed along a topology. The
topology is a description of the spout and a series of bolts, which themselves are functional blocks of
code. A bolt performs operations on tuples, the data objects that are passed between bolts in the stream.
Bolts can store the results of their operations in a local hashmap (or database) and emit results (again
tuples) to other bolts further down the topology. The topology, the bolts, the spout, the tuples, and the
hashmap(s) together compose the most important concepts to understand a stream implemented in
RStorm.

The topology is a description of the whole streaming process, and a solution to the word-count
problem is given by the simple topology that is graphically presented in Figure 1. This topology
describes that sentences (tuples) are emitted by the spout. These tuples – containing a full sentence
– are analyzed by the first processing bolt. This first bolt, SplitSentence(tuple), splits a sentence
up into individual words and emits these single words as tuples. Next, these individual words are
counted by the CountWords(tuple) bolt. The topology depicted in Figure 1 contains the core elements
needed to understand the functioning of RStorm for a general streaming process. A topology consists
of a description of the ordering of spouts and bolts in a stream. Tuples are the main data format to
pass information between bolts. A call to Emit(tuple,...) within a bolt will make the emitted tuple
available for other bolts. Table 1 summarizes the most important functions of the RStorm package to
facilitate a stream and briefly explains their functionality.

Word count in RStorm and Java & Python

In RStorm the emulation of a streaming word count can be setup as follows: First, one loads RStorm
and opens a datafile containing multiple sentences:

library(RStorm) # Include package RStorm
data(sentences)

The data, which is a data.frame, will function as the spout by emitting data from it row-by-row. After
defining the spout, the functional bolts need to be specified. Table 2 presents both the RStorm as well
as the Storm implementation of the first processing bolt. The Storm implementation is done partly
in Java and partly in Python. For the RStorm implementation the full functional code is provided,
while for the Storm implementation a number of details are omitted. However, it is easy to see how an

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 125

RStorm Java

R function that receives a tuple
(a sentence in this case)
and splits it into words:
SplitSentence <- function(tuple, ...)
{

Split the sentence into words
words <- unlist(
strsplit(as.character(
tuple$sentence), " "

))

For each word emit a tuple
for (word in words)
Emit(Tuple(

data.frame(word = word)),
...)

}

/**
* A Java function which makes
* a call from the topology
* to an external Python script: */
public SplitSentence()
{
super("Python",
"splitsentence.py")

}

/* The Python script (.py) */
import storm
class SplitSentenceBolt
(storm.BasicBolt):
def process(self, tuple)
words =
tuple.values[0].split(" ")

for word in words:
storm.emit([word])

Table 2: Description of the first functional bolt (SplitSentence()) of the word count stream in both
RStorm (left), and Java (right).

actual Storm implementation maps to implementations in RStorm.

In both cases the SplitSentence() function receives tuples, each of which contains a sentence.
Each sentence is split into words which are emitted further down the stream using the Emit() (or
storm.emit()) function4. The second bolt is the CountWords() bolt, for which the RStorm code and
the analogous Java code are presented in Table 3.

The CountWords() bolt receives tuples containing individual words. The RStorm implementation
first uses the GetHash() function to get the entries of a hashmap / local-store called "wordcount". In
production systems this often is a hashmap, or, if need be, some kind of database system. In RStorm
this functionality is implemented using GetHash and SetHash as methods to easily store and retrieve
objects. If the hashmap exists, the function subsequently checks whether the word is already in the
hashmap. If the word is not found, the new word is added to the hashmap with a count of 1, otherwise
the current count is incremented by 1.

After specifying the two bolts the topology needs to be specified. The topology determines the
processing order of the streaming process. Table 4 presents how this is implemented in RStorm and
Java5. Each time a bolt is added to a topology in RStorm the user is alerted to the position of that
bolt within in the stream, and the listen argument can be used to specify which emitted tuples a bolt
should receive. Once the topology is fully specified, the stream can be run using the following call:

Run the stream:
result <- RStorm(topology)
Obtain results stored in "wordcount"
counts <- GetHash("wordcount", result)

The function GetHash() is overloaded for when the stream has finished and the function is used
outside of a Bolt. It can be used to retrieve a hashmap once the result of a streaming process is passed
to it as a second argument. The returned counts object is a data.frame containing columns of words
and their associated counts and can be used to create a table of word counts.

The word count example shows the direct analogy between the implementation of a data stream
in RStorm and in Storm. However, by focusing on an implementation that is analogous to the Storm
implementation, a number of desirable R specific properties are lost. For example, the use of for

4Note that the . . . argument in the RStorm implementation is used to manage the stream and should thus
always be supplied to the processing bolt.

5The . . . arguments in the Java implementation provide additional arguments used for managing parallelism in
actual streaming applications.

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 126

RStorm Java

R word counting function:
CountWord <- function(tuple, ...) {

Get the hashmap "word count"
words <- GetHash("wordcount")
if (tuple$word %in% words$word) {
Increment the word count:
words[words$word == tuple$word,]
$count <-
words[words$word == tuple$word,]

$count + 1
} else { # If the word does not exist
Add the word with count 1
words <- rbind(words, data.frame(
word = tuple$word, count = 1))

}

Store the hashmap
SetHash("wordcount", words)

}

/**
* A Java function which stores
* the word count. */
public void
execute(Tuple tuple, ...)

{
/* collect word from the tuple */
String word = tuple.getString(0);

/* get counts from hashmap */
Integer count = counts.get(word);
if (count == null) count = 0;

/* increment counts */
count++;

/* store counts */
counts.put(word, count);

}

Table 3: Description of the second functional bolt (CountWord()) of the word count stream in both
RStorm (left), and Java (right).

RStorm Java

Setting up the R topology
Create topology:
topology <- Topology(sentences)

Add the bolts:
topology <- AddBolt(

topology, Bolt(
SplitSentence, listen = 0

)
)
topology <- AddBolt(

topology, Bolt(
CountWord, listen = 1

)
)

/**
* Java core topology implementation */
/* Create topology */
TopologyBuilder builder =

new TopologyBuilder();

/* Add the spout */
builder.setSpout("sentences", ...);
/* Add the bolts */
builder.setBolt("split",

new SplitSentence(), ... ,
.Grouping("sentences", ...)

builder.setBolt("count",
new WordCount(), ... ,
.Grouping("split"), ...)

Table 4: Specification of the topology using RStorm and Java. Note: The Java code is incomplete, but
used only to illustrate the similarities between the two implementations.

(word in words) {...} in the word count example defies the efficient vectorisation of R, and thus
is relatively slow. In R one would approach the word count problem (non streaming) differently:
e.g., table(unlist(strsplit(as.character(sentences$sentence)," "))). The latter is much faster
since it uses R properly, but the implementation in a data stream based on this code is not at all evident.
Further note that while RStorm is modeled specifically after Storm, many other emergent streaming
production packages – such as Yahoo!’s S4 – have a comparable structure. In all cases, the machinery
to setup the stream can be separated from a number of functional pieces of code that update a set of
parameters. These functional blocks of code are implemented in the RStorm bolts, and these can, after
development in R, easily be implemented in production environments.

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 127

Sum of Squares method Welford’s method

var.SS <- function(x, ...) {
Get values stored in hashmap
params <- GetHash("params1")
if (!is.data.frame(params)) {
If no hashmap exists initialise:
params <- list()
params$n <- params$sum <-
params$sum2 <- 0

}

Perform updates:
n <- params$n + 1
S <- params$sum + as.numeric(x[1])
SS <- params$sum2 +

as.numeric(x[1]^2)

Store the hashmap:
SetHash("params1",

data.frame(n = n, sum = S,
sum2 = SS))

Track the variance at time t:
var <- 1/(n * (n-1)) * (n * SS - S^2)
TrackRow("var.SS",

data.frame(var = var))
}

var.Welford <- function(x, ...) {
x <- as.numeric(x[1])
params <- GetHash("params2")
if (!is.data.frame(params)) {
params <- list()
params$M <- params$S <-
params$n <- 0

}
n <- params$n + 1
M <- params$M +
(x - params$M) / (n + 1)

S <- params$S +
(x - params$M) * (x - M)

SetHash("params2",
data.frame(n = n, M = M, S = S))

var <- ifelse(n > 1,
S / (n - 1), 0)

TrackRow("var.Welford",
data.frame(var = var))

}

Table 5: Comparison of two different bolts to compute a streaming variance.

RStorm examples

The following section shows a number of streaming examples and demonstrates some of RStorm’s
additional features.

Example 1: Comparisons of streaming variance algorithms

This first example compares two bolts for the streaming computation of a sample variance. It intro-
duces the TrackRow(data) functionality implemented in RStorm which can be used to monitor the
progress of parameters at each time point in the stream. Table 5 shows two bolts with competing
implementations of streaming variance algorithms. The first bolt uses the standard Sum of Squares
algorithm, while the second uses Welford’s method (Welford, 1962).

After specifying the functional bolts, the topology can be specified. Creating a topology object
starts with the specification of a data.frame. This dataframe will be iterated through row-by-row to
emulate a steam.

t <- 1000
x <- rnorm(t, 10^8, 1)
topology <- Topology(data.frame(x = x))

The spout defined in the object topology now contains a dataframe with a single column x, which
contains 1000 draws from a Gaussian distribution with a large mean, µ = 108, and a comparatively
small variance, σ2 = 1. Subsequently, the bolts are added to the topology:

topology <- AddBolt(topology, Bolt(var.SS, listen = 0))
topology <- AddBolt(topology, Bolt(var.Welford, listen = 0))
result <- RStorm(topology)

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 128

0 200 400 600 800 1000

-1
0

0
10

20
30

Time in stream

E
st

im
at

ed
 V

ar
ia

nc
e Sum of Squares method

Welfords Method

Figure 2: Comparison of two streaming variance algorithms. The sums of squares method (black) is
numerically unstable when µ� σ2.

Data!

SGD_1! Weights_1!

SGD_100! Weights_100!

…	 …	

Figure 3: The DoNB SGD topology.

The TrackRow() function called within both functional bolts allows for inspection of the two variances
at each point in time: using TrackRow() the values are stored for each time point. Using (e.g.,)
GetTrack("var.SS",result) on the result object after running the topology allows for the creation
of Figure 2.

Example 2: Online gradient descent

This example provides an implementation in RStorm of an logistic regression using stochastic gradient
descent (SGD; e.g., Zinkevich et al., 2010), together with a Double or Nothing (DoNB; Owen and
Eckles, 2012) bootstrap to estimate the uncertainty of the parameters. The functional bolt first performs
the sampling needed for the DoNB bootstrap and subsequently computes the update of the feature
vector ~wt:

StochasticGradientDescent <- function(tuple, learn = .5, boltID, ...) {
if (rbinom(1, 1, .5) == 1) { # Only add the observation half of the times
get the set up weights for this bolt
weights <- GetHash(paste("Weights_", boltID, sep = ""))
if (!is.data.frame(weights)) {
weights <- data.frame(beta = c(-1, 2))

}
w <- weights$beta # get weights-vector w
y <- as.double(tuple[1]) # get scalar y
X <- as.double(tuple[2:3]) # get feature-vector X
grad <- (1 / (1 + exp(-t(w) %*% X)) - as.double(tuple[1])) * X
SetHash(paste("Weights_", boltID, sep = ""),

data.frame(beta = w - learn * grad)) # save weights
} # otherwise ignore

}

The dataset for this example contains 1000 dichotomous outcomes using only a single predictor:

n <- 1000
X <- matrix(c(rep(1, n), rnorm(n, 0, 1)), ncol = 2)
beta <- c(1, 2)
y <- rbinom(n, 1, plogis(X %*% beta))

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 129

The DoNB is implemented by specifying within the functional bolt whether or not a datapoint in
the stream should contribute to the update of the weights. Using the boltID parameter the same
functional bolt can be used multiple times in the stream, each with its own local store. The topology is
specified as follows:

topology <- Topology(data.frame(data), .verbose = FALSE)
for (i in 1:100) {
topology <- AddBolt(topology, Bolt(StochasticGradientDescent,

listen = 0, boltID = i), .verbose = FALSE)
}

This topology is represented graphically in Figure 3. After running the topology, the GetHashList()
function can be used to retrieve all of the objects saved using SetHash() at once. This object is a list
containing all the dataframes that are stored during the stream. It can be used derive the estimates of
β and the 95% confidence interval: β0 = 1.33 [.50, 2.08] and β1 = 2.02 [1.34, 2.76] which are close to the
estimates obtained using glm: ~β = {1.25, 2.04}.

Example 3: The k-arm bandit

The last example presents a situation in which streaming data naturally arises: bandit problems (e.g.,
Whittle, 1980). In the canonical bandit problem, the two-armed Bernoulli bandit problem, the data stream
consists of rewards r1, . . . , rt which are observed after playing arm a ∈ {1, 2} at time t′. The goal is to
find a policy to decide between the two arms at t = t′ such that the cumulative rewardR = ∑t

i=1 ri is
as large as possible.

RStorm can be used to compare competing solutions to the k-armed Bernoulli bandit problem.
The data is composed of the reward r at time t for each of the actions a1, . . . ak. The function below
creates such a dataframe for usage in multiple simulation runs of different policies:

createCounterFactuals <- function(k = 2, t = 100, p.max = .5, epsilon = .1) {
p <- c(p.max, rep(p.max - epsilon, k - 1))
obs <- data.frame(matrix(rbinom(t * k, 1, p), ncol = k, byrow = TRUE))

}

This function creates a dataframe with k arms, where arm 1 has an expected payoff of p.max, and the
other k− 1 arms have an expected payoff of p.max-epsilon. Here we compare playing the best action
(optimal play – typically unknown) to a policy called Thompson sampling (Thompson, 1933; Scott,
2010). Each datapoint zt emitted by the spout is a vector with the possible outcome of playing arm
1, . . . , k at time t.

For optimal play, the first bolt emits the reward observed by playing arm 1, and the second bolt
uses a hashmap to compute the cumulative rewardRmax. The implementation of Thompson sampling,
or Randomized Probability Matching (RPM, see Scott, 2010) uses three bolts: the first bolt (selectRPM)
determines which arm to play given a set of estimates of the success for each arm and emits the
observed reward. The second bolt (updateRPM) updates the estimated success of the arm that was
played (using a simple beta-Bernoulli model), and the last bolt (countRPM) computes the cumulative
rewardRrpm. Both of the implementations are presented in Table 6.

The topology is graphically presented in Figure 4. The topology is initially specified using an
empty dataset to enable the setup of multiple simulations:

topology <- Topology(data.frame())
topology <- AddBolt(topology, Bolt(selectMax, listen = 0))
topology <- AddBolt(topology, Bolt(countMax, listen = 1))
topology <- AddBolt(topology, Bolt(selectRPM, listen = 0))
topology <- AddBolt(topology, Bolt(updateRPM, listen = 3))
topology <- AddBolt(topology, Bolt(countRPM, listen = 3))

After specifying the bolts, the ChangeSpout() function is used to run the same topology with a different
datasource. At each simulation run the spout is changed, and the regret,Rmax −Rrpm, stored:

sims <- 100
regret <- rep(NA, sims)
for (i in 1:sims) {
obs <- createCounterFactuals(k = 5, t = 10000, p.max = .5)
topology <- ChangeSpout(topology, obs)
result <- RStorm(topology)
regret[i] <- GetHash("maxSum", result)$sum - GetHash("rpmSum", result)$sum

}

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 130

Play optimal Play Thompson

bolt which always selects arm 1:
selectMax <- function(x, k.best = 1,

...) {
Always select the first arm
and emit:
tuple <-

Tuple(data.frame(
best = x[,k.best]))

Emit(tuple, ...)
}

bolt which counts the rewards:
countMax <- function(x, ...){

maxSum <- GetHash("maxSum")
if (!is.data.frame(maxSum)) {

maxSum <- data.frame(sum = 0)
}
sum <- maxSum$sum + x$best
SetHash("maxSum",

data.frame(sum = sum))
}

bolt to select the action
selectRPM <- function(x, ...) {
arms <- length(x)
rpmCoefs <- GetHash("coefs")

if no estimates set beta priors:
if (!is.data.frame(rpmCoefs)) {
rpmCoefs <- data.frame(
arm = 1:arms,
a = rep(1, arms),
b = rep(1, arms))

SetHash("coefs", rpmCoefs)
}
Get a random draw:
draw <- daply(rpmCoefs, .(arm),
.fun = function(x)
return(rbeta(1, xa, xb)))

Determine which arm to play:
rpm <- which.max(as.vector(draw))
tuple <- Tuple(data.frame(
arm = rpm, rpm = x[,rpm]))

Emit(tuple, ...)
}

bolt to update the estimates
updateRPM <- function(x, ...) {
rpmCoefs <- GetHash("coefs")
update posteriors:
rpmCoefs[x$arm,]$a <-
rpmCoefs[x$arm,]$a + x$rpm

rpmCoefs[x$arm,]$b <-
rpmCoefs[x$arm,]$b + (1 - x$rpm)

SetHash("coefs", rpmCoefs)
}

bolt to count the reward
countRPM <- function(x, ...) {
See "countMax()" for
implementation.
Values stored in hashmap "rpmSum"

}

Table 6: Comparison of optimal play and Thompson sampling for the k-armed Bernoulli bandit
problem.

After running 100 simulation runs with p.max = .5 for T = 10.000 the average regret of Thompson
sampling is 74.3, with an empirical 95% confidence interval of [43.9, 104.5].

Conclusions and limitations

Datasets in all areas of science are growing increasingly large, and they are often collected continuously.
There is a need for novel analysis methods which synchronize current methodological advances with
the emerging opportunities of streaming data. Streaming algorithms provide opportunities to deal
with extremely large and ever growing data sets in (near) real time. However, the development of

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 131

Spout!

SelectRPM!

rpmCoefs!

SelectMax! maxSum!

countRPM!

updateRPM!

rpmSum!

countMax!

Figure 4: The k-armed bandit topology.

streaming algorithms for complex models is often cumbersome: the software packages that facilitate
streaming processing in production environments do not provide statisticians with the simulation,
estimation, and plotting tools they are used to. RStorm implements a streaming architecture modeled
on Storm for easy development and testing of streaming algorithms in R.

In the future we intend to further develop the RStorm package to include a) default implementa-
tions of often occurring bolts (such as streaming means and variances of variables), and b) the ability
to use, one-to-one, the bolts developed in RStorm in Storm. Storm provides the ability to write bolts in
languages other than Java (for example Python, as demonstrated in the word count example). We hope
to further develop RStorm such that true data streams in Storm can use functional bolts developed in
R. RStorm is not designed as a scalable tool for production processing of data streams, and we do not
believe that this is R’s core strength. However, by providing the ability to test and develop functional
bolts in R, and use these bolts directly in production streaming processing applications, RStorm aims
to support users of R to quickly implement scalable and fault tolerant streaming applications.

Bibliography

C. Anagnostopoulos, D. K. Tasoulis, N. M. Adams, N. G. Pavlidis, and D. J. Hand. Online linear and
quadratic discriminant analysis with adaptive forgetting for streaming classification. Statistical
Analysis and Data Mining, 5(2):139–166, 2012. [p123]

B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data stream systems.
In Proceedings of the Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems – PODS’02, pages 1–16, New York, USA, 2002. ACM Press. [p123]

L. Bottou. Online algorithms and stochastic approximations. In D. Saad, editor, Online Learning and
Neural Networks. Cambridge University Press, Cambridge, UK, 1998. [p123]

C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and K. Olukotun. Map-reduce for machine
learning on multicore. Advances in Neural Information Processing Systems, 19(23):281–288, 2007. [p123]

K. Gopalakrishna, F. Junqueira, M. Morel, L. Neumeyer, B. Robbins, and D. G. Ferro. S4, 2013. URL
http://incubator.apache.org/s4/team/. [p123]

M. Hahsler, M. Bolanos, and J. Forrest. stream: Infrastructure for Data Stream Mining, 2014. URL
http://CRAN.R-project.org/package=stream. R package version 1.0-0. [p123]

S. Michalak, A. DuBois, D. DuBois, S. V. Wiel, and J. Hogden. Developing systems for real-time
streaming analysis. Journal of Computational and Graphical Statistics, 21(3):561–580, 2012. [p123]

A. B. Owen and D. Eckles. Bootstrapping data arrays of arbitrary order. The Annals of Applied Statistics,
6(3):895–927, 2012. [p128]

S. L. Scott. A modern Bayesian look at the multi-armed bandit. Applied Stochastic Models in Business
and Industry, 26(6):639–658, 2010. [p129]

Storm User Group. Storm. Distributed and fault-tolerant realtime ccomputations, 2013. URL http:
//storm-project.net. [p123]

W. R. Thompson. On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 25(3–4):285–294, 1933. [p129]

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

http://incubator.apache.org/s4/team/
http://CRAN.R-project.org/package=stream
http://storm-project.net
http://storm-project.net

CONTRIBUTED RESEARCH ARTICLES 132

B. P. Welford. Note on a method for calculating corrected sums of squares and products. Technometrics,
4(3):419–420, 1962. [p127]

P. Whittle. Multi-armed bandits and the Gittins index. Journal of the Royal Statistical Society B, 42(2):
143–149, 1980. [p129]

M. A. Zinkevich, A. Smola, and M. Weimer. Parallelized stochastic gradient descent. Advances in
Neural Information Processing Systems, 23(6):1–9, 2010. [p128]

Maurits Kaptein
Department of Methodology and Statistics
Tilburg University, Tilburg, the Netherlands
Archipelstraat 13
6524LK Nijmegen, the Netherlands
+31 6 21262211
maurits@mauritskaptein.com

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

mailto:maurits@mauritskaptein.com

