Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link. http://hdl.handle.net/2066/133118

Please be advised that this information was generated on 2017-12-05 and may be subject to change.

1 How to quantify uncertainty and variability in life cycle assessment: the case

2 of greenhouse gas emissions of gas power generation in the United States

3 M Hauck¹, Z J N Steinmann¹, I J Laurenzi², R Karuppiah², and M A J Huijbregts¹

4 1 Department of Environmental Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 5 AJ Nijmegen

6 2 ExxonMobil Research and Engineering, 1545 Route 22 East, Annandale, NJ 08801-3059

7 Supplementary Information

- 8 Supplementary text section S1: Simple cycle vs. combined cycle gas power plants
- 9 Supplementary text section S2: Modeling approach and equations
- 10 Supplementary text section S3: Uncertainty distributions
- 11 Supplementary text section S4: Contribution to variance
- 12 Supplementary text section S5: Additional Analysis with updated GWPs
- 13
- 14 Supplementary figures:
- 15 Figure S1. National Energy Modeling System (NEMS) oil and gas supply module regions from the EIA
- 16 (EIA, 2013). Production activity and emission factors are provided by EPA at this level as stated in EPA,
- **17** 2013.
- 18 Figure S2. Life cycle GHG emissions associated with natural gas power generation (CC 239 plants, SC
- 19 69 plants) for a 100 year time horizon with updated GWP for methane. Model results accounting for
- 20 uncertainty and variability are denoted by y, for variability only by E(y), those accounting only for
- 21 uncertainty (by way of the use of a national-level system boundary) are denoted by Y.
- 22 Figure S3. Variability and uncertainty in the life cycle of conventional natural gas for, a) CC power
- 23 generation 20 year time horizon, b) CC power generation 100 year time horizon, c) SC power generation
- 24 20 year time horizon, d) SC power generation 100 year time horizon with updated GWP for methane.
- 25
- 26 Supplementary tables:
- 27 Tables S1-S2: Calculation of upstream GHG emissions
- 28 Tables S3-S7: Characteristics of uncertainty distributions
- 29 Table S8: Life cycle and upstream GHG emissions for electricity from conventional natural gas,

- 30 estimated in this study and recent publications.
- 31 Table S9 Contribution to overall variance in life cycle GHG emissions by uncertain parameters that
- 32 contributed more than 1% for at least one of the three time horizons. Results are shown for national
- 33 weighted average life cycle GHG emissions from CC plants.
- 34 Table S10 Contribution to overall variance in life cycle GHG emissions by uncertain parameters that
- contributed more than 1% for at least one of the three time horizons. Results are shown for national
- 36 weighted average life cycle GHG emissions from SC plants.
- Table S11. Characteristics (mean, 95th percentile (95p) and standard deviation (sd)) of uncertainty
 distributions for Absolute Global Warming Potentials (AGWPs) (Myhre *et al.*, 2013)
- 39 Table S12. Contribution to overall variance in life cycle GHG emissions by uncertain parameters that
- 40 contributed more than 1% for at least one of the two time horizons from (Myhre et al., 2013). Results are
- 41 shown for national weighted average life cycle GHG emissions from CC plants.
- 42 Table S13. Contribution to overall variance in life cycle GHG emissions by uncertain parameters that
- 43 contributed more than 1% for at least one of the two time horizons from (Myhre et al., 2013). Results are
- shown for national weighted average life cycle GHG emissions from SC plants.

46 S1 Simple cycle vs. combined cycle gas power plants

47 Life cycle greenhouse gas (GHG) emission calculations of gas power require special consideration of distinct classes of gas power generation technologies, which constitute an extreme case of technological 48 49 variability. The first class uses a "simple cycle" to generate power: In this process, gas is burned to 50 directly generate high pressure steam from boiler feed water. This steam then flows through steam 51 turbines, dropping in pressure as power is generated. The second class of gas power generation 52 technology utilizes a "combined cycle": In this process, gas is combusted in a turbine to directly generate 53 power. The hot combustion products (mainly CO_2 , H_2O and air) are then utilized to generate high pressure steam as in the simple cycle. The combined cycle is more efficient than the simple cycle, 54 55 requiring less gas to generate an equivalent amount of electricity. Both technologies yield hot combustion products that may be used for heating, i.e. cogeneration. Therefore, there are two distinct scenarios 56 57 possible for gas power, via combined cycle and via simple cycle. We did not consider cases associated 58 with cogeneration, as the amount of heat produced was not always reported on a plant-specific level (EIA, 59 2011). In some cases, a facility may have both SC and CC plants. If the power output and heat input to 60 the SC and CC plants can be discerned (e.g. in the EIA 923 Data File), then the SC or CC plants were 61 included in their respective system boundaries. We report life cycle GHG emissions of CC power plants 62 (239 plants in 2009) and SC power plants (69 plants in 2009).

64 S2 Modeling approach and equations

Table S1. Losses and uses of gas in the production phase. Combustive emissions may be calculated by

66 multiplying the combustive methane use by $H_i \kappa_i$ (44/12) where H_i is the high heating value of the

- 67 produced gas (Btu HHV/scf NG), and κ_i is the carbon content (kg C/Btu, HHV basis). Activity factors
- 68 (A_{ji}) and Emission factors (E_{ji}) reported in the Appendices of the EPA GHGI already account for regional
- 69 composition. If regional composition is not explicitly accounted for in the emission factors, they should
- be divided by the average methane content of the gas from which they were estimated (e.g. 78.8%, for the
- emission factors from the EPA/GRI study of 1996) and multiplied by x_i , the methane content of the gas
- 72 (mol%). Similar accounting was employed for naturally-occurring CO_2 in the raw gas. Other variables
- reported: t: lifetime of well (years), ξ = combustion efficiency (flaring), ε : heat rate of gas engines or
- turbines (Btu/Hphr, HHV-basis), $\Xi_{Prod,i}$ correction factor to account for decreased methane emissions due
- to governmental regulations and incentives (dimensionless) that came into force after the development of
- the original EPA/GRI emission factors. $\Xi_{\text{Prod},i:} = 1 (R_{\text{STAR}} + R_{\text{NESHAP}})/E_{\text{excl}}$, where R_{STAR} is the methane
- emission reductions due to the EPA GAS STAR program in 2011, R_{NESHAP} is an additional reduction due
- to governmental regulation in 2011, and E_{excl} are the actual methane emissions in 2011 excluding
- reductions due to regulations and the GAS STAR program.

Region	Activity	Activity Data	Emission Factor	Methane Emission
				4 5
ı	Non-associated Gas Wells without Hydraulic Fracturing	$A_{1i} = A_{1i,EPA}$	E_{1i}	$m_{1i} = A_{1,i} E_{1i}$
i i	Heaters	$A_{2i} = A_{2i,EPA}$ $A_{2i} = A_{2i,EPA} = A_{1i}$	$E_{2i} = 0$ F_{2i}	$m_{2i} = A_{2,i} L_{2i}$ $m_{2i} = A_{2,i} E_{2i}$
i	Separators	$A_{3i} = A_{3i,EPA} \overline{A_{1i} + A_{2i}}$ $A_{1i} = A_{1i} \overline{A_{1i}}$	E_{3i}	$m_{3i} = A_{3,i} E_{3i}$ $m_{3i} = A_{3,i} E_{3i}$
i	Debudrators	$A_{4i} = A_{4i,EPA} \overline{A_{1i} + A_{2i}}$ $A_{2i} = A_{2i,EPA} \overline{A_{1i}}$	E_{4i}	$m_{4i} = A_{4,i} E_{4i}$ $m_{5i} = A_{5i} E_{5i}$
i	Meters / Dining	$A_{5i} = A_{5i,EPA} \frac{1}{A_{1i} + A_{2i}}$	L_{5i}	$m_{5i} = A_{5,i} E_{5i}$ $m_{-} = A_{-} E_{-}$
i	Small Designs acting Comparents	$A_{6i} = A_{6i,EPA} \frac{1}{A_{1i} + A_{2i}} \frac{1}{A_{1i}}$	E_{6i}	$m_{6i} = A_{6,i} E_{6i}$
1	Small Reciprocating Compressors	$A_{7i} = A_{7i,EPA} \frac{1}{A_{1i} + A_{2i}} \frac{1}{A_{1i}}$	E_{7i}	$m_{7i} = A_{7,i} E_{7i}$
<i>i</i>	Large Reciprocating Compressors	$A_{8i} = A_{8i,EPA} \frac{1}{A_{1i} + A_{2i}}$	E_{8i}	$m_{8i} = A_{8,i} E_{8i}$
<i>i</i>	Large Reciprocating Stations	$A_{9i} = A_{9i,EPA} \frac{A_{1i} + A_{2i}}{A_{1i} + A_{2i}}$	E_{9i}	$m_{9i} = A_{9,i} E_{9i}$
ı	Pipeline Leaks	$A_{10i} = A_{10i,EPA} \frac{A_{1i}}{A_{1i} + A_{2i}}$	E_{10i}	$m_{10i} = A_{10,i} E_{10i}$
i	Pneumatic Device Vents	$A_{11i} = A_{11i,EPA} \frac{A_{1i}}{A_{1i} + A_{2i}}$	E_{11i}	$m_{11i} = A_{11,i} E_{11i}$
i	Chemical Injection Pumps	$A_{12i} = A_{12i,EPA} \frac{A_{1i}}{A_{1i} + A_{2i}}$	E_{12i}	$m_{12i} = A_{12,i} E_{12i}$
i	Kimray Pumps	$A_{13i} = A_{13i,EPA} \frac{A_{1i}}{A_{1i} + A_{2i}}$	E_{13i}	$m_{13i} = A_{13,i} E_{13i}$
i	Dehydrator Vents	$A_{14i} = A_{14i,EPA} \frac{A_{1i}}{A_{1i} + A_{2i}}$	E_{14i}	$m_{14i} = A_{14,i} E_{14i}$
i	Condensate Tanks without Control Devices	$A_{15i} = A_{15i,EPA} \frac{A_{1i}}{A_{1i} + A_{2i}}$	E_{15i}	$m_{15i} = A_{15,i} E_{15i}$
i	Condensate Tanks with Control Devices	$A_{16i} = A_{16i,EPA} \frac{A_{1i}}{A_{1i} + A_{2i}}$	E_{16i}	$m_{16i} = A_{16,i} E_{16i}$
i	Gas Engines	$A_{17i} = A_{17i,EPA} \frac{A_{1i}}{A_{1i} + A_{2i}}$	E_{17i}	$m_{17i} = A_{17,i} E_{17i}$
i	Workovers without hydraulic fracturing	$A_{18i} = A_{18i,EPA} \frac{A_{1i}}{A_{1i} + A_{2i}}$	E_{18i}	$m_{18i} = A_{18,i} E_{18i}$
i	Liquids Unloading (with plunger lifts)	$A_{19i} = A_{19i,EPA} \frac{A_{1i}}{A_{1i} + A_{2i}}$	E_{19i}	$m_{19i} = A_{19,i} E_{19i}$
i	Liquids Unloading (without plunger lifts)	$A_{20i} = A_{20i,EPA} \frac{A_{1i}}{A_{1i} + A_{2i}}$	E_{20i}	$m_{20i} = A_{20,i} E_{20i}$
i	Vessel Blowdown	$A_{21i} = A_{21i,EPA} \frac{A_{1i}}{A_{1i} + A_{2i}}$	E_{21i}	$m_{21i} = A_{21,i} E_{21i}$
i	Pipeline Blowdown	$A_{22i} = A_{22i,EPA} \frac{A_{1i}}{A_{1i} + A_{2i}}$	E_{22i}	$m_{22i} = A_{22,i} E_{22i}$
i	Compressor Blowdown	$A_{23i} = A_{23i,EPA} \frac{A_{1i}}{A_{1i} + A_{2i}}$	E_{23i}	$m_{23i} = A_{23,i} E_{23i}$
i	Compressor Starts	$A_{24i} = A_{24i,EPA} \frac{A_{1i}}{A_{1i} + A_{2i}}$	E_{24i}	$m_{24i} = A_{24,i} E_{24i}$
i	Pressure Relief Valves	$A_{25i} = A_{25i,EPA} \frac{A_{1i}}{A_{1i} + A_{2i}}$	E_{25i}	$m_{25i} = A_{25,i} E_{25i}$
i	Mishaps	$A_{26i} = A_{26i,EPA} \frac{A_{1i}}{A_{1i} + A_{2i}}$	E_{26i}	$m_{26i} = A_{26,i} E_{26i}$
i	Produced Water from CBM	$A_{27i} = A_{27i,EPA} \frac{A_{1i}}{A_{1i} + A_{2i}}$	E_{27i}	$m_{27i} = A_{27,i} E_{27i}$
i	Shallow Water Gas Platforms	$A_{28i} = A_{28i,EPA} \frac{A_{1i}}{A_{1i}}$	E_{28i}	$m_{28i} = A_{28,i} E_{28i}$
i	Deepwater Gas Platforms	$A_{29i} = A_{29i,EPA} \frac{A_{1i}}{A_{1i}} \frac{A_{1i}}{A_{1i}} A_{2i}$	E_{29i}	$m_{29i} = A_{29,i} E_{29i}$
i	Well Drilling	$A_{30i} = A_{1i,EPA}$	$E_{30i} = E_{30i}/t$	$m_{30i} = A_{30,i} E_{30i}$
i	Gas Well Completions without Hydraulic Fracturing	$A_{31i} = A_{1i,EPA}$	$E_{31i} = E_{31i}/t$	$m_{31i} = A_{31,i} E_{31i}$
i	Regional Subtotal, noncombustive loss (scf/yr)	$m_{\mathrm{Prod},i} = \Xi_{\mathrm{Prod},i} \sum_j m_{ji}$		

 $f_{\mathsf{Production},i} = m_{31} \frac{\xi}{1-\xi} + A_{17} \frac{1}{H_i \epsilon}$

80

i

81

82 83 Table S2. Accounting of gas from well to power plant. Production, losses and transferred gas in scf/yr. The EPA GHG Inventory separates the U.S. into six regions (N=6): Northeast, Midcontinent, Rocky 84 85 Mountain, Southwest, West Coast and Gulf Coast. It does not account for processing and transmission plants by region, as it does for the Production facilities. Therefore, we lump all production facilities to 86 87 track methane – the primary constituent of natural gas, through the supply chain, and obtain an estimate of the total amount of methane delivered from the gas transmission system, $S_{trans} = \sum_{i=1}^{N} s_i - (f \text{Proc} + m \text{Proc} + f \text{Trans} + m \text{Trans})$. Noncombustive methane losses were summed to obtain the total 88 89 90 methane emission, and multiplied by the GWP of methane. Similar accounting was employed for noncombustive CO_2 emissions due to the presence of CO_2 in natural gas. Combustive upstream GHG 91 92 emissions were calculated from the amounts of gas consumed as fuel (f), and summed to get the total 93 combustive GHG emissions for processing and transmission. The combustive and non-combustive GHG 94 emissions were then summed to obtain the total upstream emission (kg CO_2eq). The upstream carbon footprint was then calculated by dividing the total upstream GHG emission by S_{trans} (kg CO₂eq/scf 95 96 delivered to power plant). 97

Regional Subtotal, combustive consumption (scf/yr)

Region	1	2	 Ν
Methane Production Rate Combustive Losses, Production Noncombustive Losses, Production	Q_1 $f_{Prod,1}$ $m_{Prod,1}$	$Q_2 \\ f_{Prod,2} \\ m_{Prod,2}$	 $Q_N \\ f_{Prod,N} \\ m_{Prod,N}$
Methane to Processing	$s_1 = Q_1 - f_{Prod,1} - m_{Prod,1}$	$s_2 = Q_2 - f_{Prod,2} - m_{Prod,2}$	 $s_N = Q_N - f_{Prod,N} - m_{Prod,N}$
Total Methane to Processing	$\sum_{i=1}^N s_i$		
Combustive Losses, Processing Noncombustive Losses, Processing	f_{Proc}		
Total Methane to Transmission	$\sum_{i=1}^{N} s_i - (f_{Proc} + m_{Proc})$		
Combustive Losses, Transmission Noncombustive Losses, Transmission	f_{Trans} m_{Trans}		

100 *Life Cycle Emissions*

101 The upstream GHG emissions in kg CO_2 /scf and kg CH_4 /scf, thus defined, can be combined with the 102 information on plant-specific fuel use and electricity generation reported in the EIA-923 Data File to yield 103 the life cycle GHG emissions for all systems terminating at unique power plants. EIA reports both the gas 104 input to each power plant as well as the net power output. Using this information, the life cycle GHG 105 emissions (kg CO_2eq/kWh) were calculated for each system π using the following formula

106
$$y_{\pi} = 3412 \left(C_{\text{upstream},\pi} \frac{1}{H_{\pi}\epsilon_{\pi}} + \frac{44\kappa_{\pi}^{*}}{12\epsilon_{\pi}} + E_{CH_{4}} \cdot \frac{G}{\epsilon_{\pi}} \right)$$
(S1)

here ε_{π} is the power plant efficiency (HHV basis), *H* is the heating value of the fuel content of the gas burned (Btu/scf NG, HHV basis), E_{CH4} is the emission factor for CH₄ emission during combustion (kg CH₄/Btu, HHV, G is the GWP of methane, the $\kappa_{\pi}*$ is the carbon content (kg C/Btu, HHV basis) corrected for the unburned fraction:

111
$$\kappa_{\pi}^* = \kappa_{\pi} - \frac{12}{16} E_{CH_4}$$
(S2)

112 Where κ_{π} is the carbon content (kg C/Btu, HHV basis), E_{CH4} is the emission factor for CH₄ emission 113 during combustion (kg CH₄/Btu, HHV).

114 The weighted average life cycle GHG emissions for the gas-fired power plants in the US (simple cycle 115 and combined cycle) were calculated from the individual power plant life cycle GHG emissions as 116 follows:

117
$$Y = \frac{\sum_{\pi} y_{\pi} P_{\pi}}{\sum_{\pi} P_{\pi}}$$
(S3)

118 Where y_{π} are the individual life cycle emissions, and p_{π} the net production of the individual power 119 plants.

- 120
- 121

122

- 123 Figure S1. National Energy Modeling System (NEMS) oil and gas supply module regions from the EIA
- 124 (EIA, 2013). Production activity and emission factors are provided by EPA at this level as stated in EPA,
- **125** 2013.

127	S3 Uncertainty distributions
128	Uncertainty in the model parameters was taken into account by means of Monte Carlo simulation. To
129	that purpose, probability distributions were defined as described below.
130	EPA does not report how it adjusts emission estimates, thus, uncertainty in the correction factor
131	Ξ_{v} (see Table S1) is unknown, and possibly unknowable – in contrast to physical measures. Hence, we do
132	not estimate uncertainty for this parameter.
133	
134	Uniform distribution for well lifetime estimation
135	Well life times were distributed uniformly between 25 and 40 years, following the approach of
136	Laurenzi and Jersey (2013).
137	
138	Lognormal distributions from the EPA/GRI studies
139	The EPA/GRI study reports 90% confidence limits for activity factors and emission factors as
140	"±100 δ %". EPA reports some activity factors and emission factors as having values of δ that exceed
141	unity, i.e. their distributions are extremely asymmetric. To account for this, and the impossibility of
142	negative activities or emissions, we modeled all activity factors and emission factors as lognormal
143	distributions with averages (\bar{x}) specified by the reported activity factors and emission factors and standard

144 errors of the mean (se). Standard errors were approximated from the reported mean and 95th percentile by
145 the following formula (EPA/GRI, 1996c):

146
$$se = \bar{x} \frac{\delta\%}{100\%} Z^{-1}$$
 (S4)

147 Where the Z-value is 1.645.

148

Data in the table below includes data from the EPA's 2013 GHG Inventory, which characterizesemissions in the 2011 calendar year.

152 Table S3. Characteristics of the lognormal distributions for activity factors and emission factors from the

153 EPA/GRI studies.

PRODUCTION ACTIVITY DATA	Unit	mean	95p	se
North East				
NE - Non-associated Gas Wells (less wells with hydraulic fracturing)	number of wells	1.1E+05	1.2E+05	3.5E+03
Field Separation Equipment				
Heaters	number of heaters	2.3E+02	6.8E+02	2.7E+02
Separators	number of separators	8.2E+04	1.0E+05	1.1E+04
Dehydrators	number of dehydrators	1.6E+04	1.9E+04	1.9E+03
Meters/Piping	number of meters	5.7E+03	1.1E+04	3.5E+03
Gathering Compressors				
Small Reciprocating Compressors	number of compressors	1.2E+02	1.5E+02	2.3E+01
Large Reciprocating Compressors	number of compressors	1.8E+01	3.6E+01	1.1E+01
Large Reciprocating Stations	number of stations	2.3E+00	4.5E+00	1.4E+00
Pipeline Leaks	miles	5.7E+04	6.3E+04	3.5E+03
Normal Operations				
Pneumatic Device Vents	number of controllers	5.6E+04	8.3E+04	1.6E+04
Chemical Injection Pumps	number of active pumps	5.8E+02	1.4E+03	5.0E+02
Kimray Pumps	MMscf/yr	4.7E+06	7.6E+06	1.8E+06
Dehydrator Vents	MMscf/yr	5.3E+06	8.5E+06	2.0E+06
Condensate Tank Vents				
Condensate Tanks without Control Devices	MMbbl/yr	3.8E-01	4.3E-01	3.4E-02
Condensate Tanks with Control Devices	MMbbl/yr	3.8E-01	4.3E-01	3.4E-02
Well Workovers				
Workovers without hydraulic fracturing	Workovers / yr	5.0E+03	1.8E+04	7.8E+03
Liquids Unloading				
Liquids Unloading (with plunger lifts)	Number of wells	6.6E+03	5.3E+03	1.5E+02
Liquids Unloading (without plunger lifts)	Number of wells	1.7E+04	1.4E+04	3.9E+02
Blowdowns				
Vessel Blowdown	number of vessels	9.8E+04	1.2E+05	1.5E+04
Pipeline Blowdown	miles (gathering)	5.7E+04	6.3E+04	3.5E+03

Compressor Blowdown	number of compressors	1.2E+02	1.8E+02	3.6E+01
Compressor Starts	number of compressors	1.2E+02	1.8E+02	3.6E+01
Upsets				
Pressure Relief Valves	number of pressure relief valves	2.7E+05	4.2E+05	8.8E+04
Mishaps	Miles	1.4E+04	1.6E+04	8.6E+02
Midcontinent				
MC - Non-associated Gas Wells (less wells with hydraulic fracturing)	number of wells	6.9E+04	7.2E+04	2.1E+03
Field Separation Equipment				
Heaters	number of heaters	2.8E+04	8.2E+04	3.3E+04
Separators	number of separators	3.0E+04	3.7E+04	4.2E+03
Dehydrators	number of dehydrators	9.6E+03	1.1E+04	1.2E+03
Meters/Piping	number of meters	9.0E+04	1.8E+05	5.5E+04
Gathering Compressors				
Small Reciprocating Compressors	number of compressors	7.8E+03	1.2E+04	2.5E+03
Large Reciprocating Compressors	number of compressors	1.2E+01	2.4E+01	7.4E+00
Large Reciprocating Stations	number of stations	1.5E+00	3.0E+00	9.2E-01
Pipeline Leaks	miles	5.3E+04	5.9E+04	3.2E+03
Normal Operations				
Pneumatic Device Vents	number of controllers	1.1E+05	1.6E+05	3.1E+04
Chemical Injection Pumps	number of active pumps	9.7E+03	2.4E+04	8.5E+03
Kimray Pumps	MMscf/yr	2.8E+06	4.5E+06	1.1E+06
Dehydrator Vents	MMscf/yr	3.1E+06	5.1E+06	1.2E+06
Condensate Tank Vents				
Condensate Tanks without Control Devices	MMbbl/yr	1.2E+01	1.4E+01	1.1E+00
Condensate Tanks with Control Devices	MMbbl/yr	1.2E+01	1.4E+01	1.1E+00
Compressor Exhaust Vented				
Gas Engines	MMHPhr/yr	1.3E+04	3.9E+04	1.6E+04
Well Workovers				
Workovers without Hydraulic	Workovers / yr	3.0E+03	1.1E+04	4.7E+03

Fracturing				
Liquids Unloading				
Liquids Unloading (with plunger lifts)	Number of wells	2.1E+03	1.7E+03	4.9E+01
Liquids Unloading (without plunger lifts)	Number of wells	3.7E+03	3.0E+03	8.6E+01
Blowdowns				
Vessel Blowdown	number of vessels	6.7E+04	8.5E+04	1.1E+04
Pipeline Blowdown	miles (gathering)	5.3E+04	5.9E+04	3.2E+03
Compressor Blowdown	number of compressors	7.8E+03	1.2E+04	2.5E+03
Compressor Starts	number of compressors	7.8E+03	1.2E+04	2.5E+03
Upsets				
Pressure Relief Valves	number of pressure relief valves	1.6E+05	2.5E+05	5.2E+04
Mishaps	Miles	1.3E+04	1.5E+04	8.1E+02
Rocky Mountain				
RM - Non-associated Gas Wells (less	number of wells	2 25+04	2 45+04	
wells with hydraulic fracturing)	number of wells	2.35+04	2.45+04	7.0E+02
Field Separation Equipment				
Heaters	number of heaters	1.0E+04	2.0E+04	6.1E+03
Senarators	number of	1 1F+0/	1.8E+04	/ 0F+03
Separators	separators	1.11.04		
Dehydrators	number of dehydrators	3.2E+03	3.8E+03	3.9E+02
Meters/Piping	meters	2.7E+04	5.4E+04	1.6E+04
Gathering Compressors				
Small Reciprocating Compressors	number of compressors	2.6E+03	3.9E+03	8.1E+02
Large Reciprocating Compressors	number of compressors	8.8E+00	1.8E+01	5.3E+00
Large Reciprocating Stations	number of stations	1.1E+00	2.2E+00	6.7E-01
Pipeline Leaks	Miles	3.0E+04	3.3E+04	1.8E+03
Normal Operations				
Pneumatic Device Vents	number of controllers	3.4E+04	5.0E+04	9.8E+03
Chemical Injection Pumps	number of active pumps	4.1E+03	9.9E+03	3.6E+03
Kimray Pumps	MMscf/yr	9.4E+05	1.5E+06	3.5E+05
Dehydrator Vents	MMscf/yr	1.1E+06	1.7E+06	4.0E+05

Condensate Tank Vents				
Condensate Tanks without Control		2 45.00	2.05.00	2 1 5 01
Devices	iviividdi/yr	3.4E+00	3.9E+00	3.1E-01
Condensate Tanks with Control Devices	MMbbl/yr	3.4E+00	3.9E+00	3.1E-01
Compressor Exhaust Vented				
Gas Engines	MMHPhr/yr	4.4E+03	1.3E+04	5.4E+03
Well Workovers				
Workovers without Hydraulic		1.05.02	2 (5.02	4 65.02
Fracturing	workovers / yr	1.0E+03	3.0E+03	1.66+03
Liquids Unloading				
Liquids Unloading (with plunger lifts)	Number of wells	1.1E+04	1.1E+04	3.3E+02
Liquids Unloading (without plunger	Number of walls	1 25,02	1 25.02	2.05.01
lifts)	Number of wells	1.3E+03	1.3E+03	3.9E+01
Blowdowns				
Vessel Blowdown	number of vessels	2.5E+04	3.2E+04	4.0E+03
Pipeline Blowdown	miles (gathering)	3.0E+04	3.3E+04	1.8E+03
	number of	2 (5, 02	2.05.02	0 1 5 . 0 2
Compressor Blowdown	compressors	2.6E+03	5.9E+05	0.16+02
Companya Storts	number of	2 65-02	2 05 102	9 1 5 . 0 2
compressor starts	compressors	2.0E+03	3.9E+03	8.1E+UZ
Upsets				
Procesure Bolief Valves	number of pressure	5 4 5 + 0 4	8 3E+04	1 85+04
Flessure Relief Valves	relief valves	J.4E+04	0.51104	1.00704
Mishaps	Miles	7.4E+03	8.2E+03	4.5E+02
South West				
SW - Non-associated Gas Wells (less	number of wells	2 25+04	2 25+04	6 65+02
wells with hydraulic fracturing)	number of wens	2.25704	2.36+04	0.02+02
Field Separation Equipment				
Heaters	number of heaters	5.9E+03	1.2E+04	3.4E+03
Separators	number of	1 25+04	1 0E±04	1 2ETUS
Separators	separators	1.21+04	1.9E+04	4.2E+03
Debydrators	number of	3 0E+03	3 7F±03	3 7F±02
Denyulators	dehydrators	3.0L+03	3.7E+03	3.7E+02
Meters/Piping	number of meters	2.6E+04	5.2E+04	1.6E+04
Gathering Compressors				
Small Reciprocating Compressors	number of	3 UE+U3	1 5E+03	9.4E+02
Sman Necipi ocating compressors	compressors	3.0L+03	4.5E+03	
Large Reciprocating Comproscore	number of	8 /E±00	1 7E±01	5 1E±00
	compressors	0.46+00	1./ [+01	5.16+00
Large Reciprocating Stations	number of stations	1.1E+00	2.1E+00	6.4E-01

Pipeline Leaks	Miles	3.2E+04	3.5E+04	1.9E+03
Normal Operations				
Pneumatic Device Vents	number of controllers	2.9E+04	4.3E+04	8.5E+03
Chemical Injection Pumps	number of active pumps	1.3E+03	3.2E+03	1.2E+03
Kimray Pumps	MMscf/yr	8.9E+05	1.4E+06	3.4E+05
Dehydrator Vents	MMscf/yr	1.0E+06	1.6E+06	3.8E+05
Condensate Tank Vents				
Condensate Tanks without Control Devices	MMbbl/yr	1.3E+01	1.5E+01	1.2E+00
Condensate Tanks with Control Devices	MMbbl/yr	1.3E+01	1.5E+01	1.2E+00
Compressor Exhaust Vented				
Gas Engines		4.2E+03	1.3E+04	5.1E+03
Well Workovers	MMHPhr/yr			
Workovers without Hydraulic Fracturing	Workovers / yr	9.5E+02	3.4E+03	1.5E+03
Liquids Unloading				
Liquids Unloading (with plunger lifts)	Number of wells	1.4E+03	1.4E+03	4.2E+01
Liquids Unloading (without plunger lifts)	Number of wells	8.1E+03	8.5E+03	2.5E+02
Blowdowns				
Vessel Blowdown	number of vessels	2.1E+04	2.7E+04	3.4E+03
Pipeline Blowdown	miles (gathering)	3.2E+04	3.5E+04	1.9E+03
Compressor Blowdown	number of compressors	3.0E+03	4.5E+03	9.4E+02
Compressor Starts	number of compressors	3.0E+03	4.5E+03	9.4E+02
Upsets				
Pressure Relief Valves	number of pressure relief valves	5.2E+04	7.9E+04	1.7E+04
Mishaps	Miles	8.0E+03	8.8E+03	4.9E+02
West Coast				
WC - Non-associated Gas Wells (less wells with hydraulic fracturing)	number of wells	2.1E+03	2.2E+03	6.4E+01
Field Separation Equipment				
Heaters	number of heaters	2.1E+03	4.1E+03	1.2E+03
Separators	number of separators	1.5E+03	2.4E+03	5.4E+02
Dehydrators	number of	3.0E+02	3.5E+02	3.6E+01

	dehydrators			
Meters/Piping	Number of meters	4.0E+03	8.0E+03	2.4E+03
Gathering Compressors				
Small Reciprocating Compressors	number of compressors	2.5E+03	3.7E+03	7.8E+02
Large Reciprocating Compressors	number of compressors	8.0E+00	1.6E+01	4.9E+00
Large Reciprocating Stations	number of stations	1.0E+00	2.0E+00	6.1E-01
Pipeline Leaks	Miles	1.7E+04	1.8E+04	1.0E+03
Normal Operations				
Pneumatic Device Vents	number of controllers	2.1E+03	3.1E+03	6.2E+02
Chemical Injection Pumps	number of active pumps	1.4E+03	3.5E+03	1.2E+03
Kimray Pumps	MMscf/yr	8.6E+04	1.4E+05	3.3E+04
Dehydrator Vents	MMscf/yr	9.7E+04	1.6E+05	3.6E+04
Compressor Exhaust Vented				
Gas Engines	MMHPhr/yr	4.1E+02	1.2E+03	4.9E+02
Well Workovers				
Workovers without Hydraulic Fracturing	Workovers / yr	9.2E+01	3.3E+02	1.4E+02
Liquids Unloading				
Liquids Unloading (with plunger lifts)	Number of wells	1.6E+02	1.7E+02	4.9E+00
Liquids Unloading (without plunger lifts)	Number of wells	1.4E+02	1.5E+02	4.4E+00
Blowdowns		0.0E+00		0.0E+00
Vessel Blowdown	number of vessels	4.0E+03	5.0E+03	6.3E+02
Pipeline Blowdown	miles (gathering)			
Compressor Blowdown	number of compressors	2.5E+03	3.7E+03	7.8E+02
Compressor Starts	number of compressors	2.5E+03	3.7E+03	7.8E+02
Upsets		0.0E+00		0.0E+00
Pressure Relief Valves	number of pressure relief valves	5.0E+03	7.7E+03	1.6E+03
Mishaps	Miles	4.2E+03	4.6E+03	2.5E+02
Gulf Coast				
GC - Non-associated Gas Wells (less wells with hydraulic fracturing)	number of wells	3.8E+04	3.9E+04	1.1E+03
Field Separation Equipment				

Heaters	number of heaters	8.4E+03	1.6E+04	4.9E+03
Separators	number of	2 55104	2 05 04	0 65,02
Separators	separators	2.36+04	5.92+04	0.0E+05
Debydrators	number of	5 2F+03	6 3F+03	6 //F+02
	dehydrators	5.22105	0.52+05	0.42102
Meters/Piping	number of meters	4.3E+04	8.7E+04	2.6E+04
Gathering Compressors				
Small Reciprocating Compressors	number of	3 0F+03	1 6F+03	9 6F+02
	compressors	5.02105	4.02.00	5.02102
Large Reciprocating Compressors	number of	1 6F±01	3 2F±01	9 6F±00
	compressors	1.02.01	5.22101	5.02100
Large Reciprocating Stations	number of stations	2.0E+00	3.9E+00	1.2E+00
Pipeline Leaks	Miles	4.9E+04	5.4E+04	3.0E+03
Normal Operations				
Proumatic Davica Vants	number of	2 65+04	2 05+04	7 65+02
Fileumatic Device Vents	controllers	2.00+04	3.9E+04	7.01+03
Chamical Injection Dumps	number of active	1 25,02	2 05 102	1 15,02
Chemical injection Pumps	pumps	1.2E+03	3.0E+03	1.1E+03
Kimray Pumps	MMscf/yr	1.5E+06	2.5E+06	5.8E+05
Dehydrator Vents	MMscf/yr	1.7E+06	2.8E+06	6.5E+05
Condensate Tank Vents				
Condensate Tanks without Control	MAAbblar	1 65,01		1 45,00
Devices	iviivibbi/yr	1.0E+01	1.8E+01	1.4E+00
Condensate Tanks with Control Devices	MMbbl/yr	1.6E+01	1.8E+01	1.4E+00
Compressor Exhaust Vented				
Gas Engines	MMHPhr/yr	7.2E+03	2.2E+04	8.8E+03
Well Workovers				
Workovers without Hydraulic Fracturing	Workovers / yr	1.6E+03	5.9E+03	2.6E+03
Liquids Unloading				
Liquids Unloading (with plunger lifts)	Number of wells	1.8E+03	1.9E+03	5.4E+01
Liquids Unloading (without plunger		E 45.00	E 75.00	4 65 02
lifts)	Number of wells	5.4E+03	5./E+03	1.6E+02
Blowdowns				
Vessel Blowdown	number of vessels	3.8E+04	4.8E+04	6.1E+03
Pipeline Blowdown	miles (gathering)	4.9E+04	5.4E+04	3.0E+03
	number of			0.05.00
Compressor Blowdown	compressors	3.0E+03	4.6E+03	9.6E+02
	number of			0.05.55
Compressor Starts	compressors	3.0E+03	4.6E+03	9.6E+02
Upsets				

Pressure Relief Valves	number of pressure relief valves	8.9E+04	1.4E+05	2.9E+04
Mishaps	Miles	1.2E+04	1.4E+04	7.5E+02
Offshore Platforms				
Shallow water Gas Platforms (GoM and	Number of	2.05.02	2.25.02	4.25.02
Pacific)	platforms	2.0E+03	2.2E+03	1.2E+02
Deepwater Gas Platforms (GoM and	Number of	4 1 5 . 01	4 55.01	
Pacific)	platforms	4.1E+01	4.5E+01	2.5E+00
PRODUCTION EMISSION FACTORS				
Gas Wells				
Non-associated conventional Gas Wells	sef/d/woll	7 15+00	0.05+00	1 25+00
NE, MC	sci/u/weii	7.12+00	9.0E+00	1.20+00
Non-associated conventional Gas Wells	scf/d/well	3 6F±01	/I 5E±01	5 3E+00
RM, SW, WC, GC	sci/u/weii	5.02101	4.501	5.52100
Field Separation Equipment				
Heaters NE, MC	scf/d/equipment	1.4E+01	2.0E+01	3.7E+00
Heaters RM, SW, WC, GC	scf/d/equipment	5.8E+01	8.1E+01	1.4E+01
Separators NE, MC	scf/d/equipment	9.0E-01	1.1E+00	1.5E-01
Separators RM, SW, WC, GC	scf/d/equipment	1.2E+02	1.6E+02	2.4E+01
Dehydrators NE	scf/d/equipment	2.2E+01	2.9E+01	4.6E+00
Dehydrators MC, RM, SW, WC, GC	scf/d/equipment	9.1E+01	1.1E+02	1.4E+01
Meters/Piping NE, MC	scf/d/equipment	9.0E+00	1.2E+01	1.6E+00
Meters/Piping RM, SW, Wc, GC	scf/d/equipment	5.3E+01	6.9E+01	9.6E+00
Gathering Compressors				
Small Reciprocating Compressors	scf/d/equipment	2.7E+02	4.5E+02	1.1E+02
Large Reciprocating Compressors	m3/equipment/d	1.5E+04	2.5E+04	1.1E+02
Large Reciprocating Stations	m3/equipment/d	8.2E+03	1.4E+04	3.3E+03
Pipeline Leaks	scf/d/mile	5.3E+01	1.1E+02	3.5E+01
Drilling and Well Completion				
Completion Flaring	scf/completion	7.3E+02	2.2E+03	8.9E+02
Well Drilling NE ^a	scf/well	2.7E+03	2.7E+03	2.7E+03
Well Drilling MC ^a	scf/well	2.7E+03	2.7E+03	2.7E+03
Well Drilling RM ^a	scf/well	2.5E+03	2.5E+03	2.5E+03
Well Drilling SW ^a	scf/well	2.6E+03	2.6E+03	2.6E+03
Well Drilling WC ^a	scf/well	3.0E+03	3.0E+03	3.0E+03
Well Drilling GC ^a	scf/well	2.9E+03	2.9E+03	2.9E+03
Normal Operations				
Pneumatic Device Vents	scf/d/device	3.5E+02	4.8E+02	8.4E+01
Chemical Injection Pumps	scf/d/pump	2.5E+02	4.5E+02	1.3E+02

Kimray Pumps	scf CH ₄ /MMscf	9.9E+02	1.8E+03	4.7E+02
Dehydrator Vents	scf/MMscf	2.8E+02	7.0E+02	2.6E+02
Condensate Tank Vents				
Condensate Tanks without Control	cof/bbl	2 25,01		
Devices NE, RM, WC, GC ^b	SCI/DDI	2.2E+01	4.4E+01	9.0E+00
Condensate Tanks without Control	a of /h.h.l	2.05.02	C 1E 02	1 25,02
Devices MC, SW ^b	SCI/DDI	3.0E+02	0.1E+02	1.2E+02
Compressor Exhaust Vented				
Gas Engines	scf/HPhr	2.4E-01	2.5E-01	7.3E-03
Well Workovers				
Workovers without hydraulic fracturing	scf/workover	2.5E+03	1.4E+04	6.8E+03
Liquids Unloading				
Liquids Unloading (with plunger lifts)	a of /h.h.l		1 45.00	
NE	SCI/DDI	2.5E+05	1.4E+00	5.0E+U5
Liquids Unloading (without plunger	cof/bbl	1 75,04		
lifts) NE	SCI/DDI	1.76+04	9.0E+04	3.8E+04
Liquids Unloading (with plunger lifts)	sef/bbl	1 25+06	6 65+06	1 25+01
MC	507001	1.20+00	0.02+00	1.36+01
Liquids Unloading (without plunger	scf/bbl	2.05+05	1 15+06	1 25+05
lifts) MC	SCI/DDI	2.0E+05	1.12+00	4.5E+05
Liquids Unloading (with plunger lifts)	scf/bbl	1 25+05	6 75+05	2 65+05
RM	507001	1.26+03	0.76+03	2.02+03
Liquids Unloading (without plunger	scf/bbl	2 0E+06	1 1F±07	1 /F+06
lifts) RM	307,001	2.01100	1.11.107	4.42100
Liquids Unloading (with plunger lifts)	scf/bbl	2 QE+03	1 6F±0/	6 3E+03
SW	307,001	2.51105	1.02104	0.52105
Liquids Unloading (without plunger	scf/bbl	7 8F±0∕I	1 /F+05	1 7F±05
lifts) SW	307,001	7.82104	4.40	1.72.05
Liquids Unloading (with plunger lifts)	scf/bbl	3 2F±05	1 8F±06	7 0F±05
wc	307,001	5.22105	1.00100	7.02105
Liquids Unloading (without plunger	scf/bbl	2 8F+05	1 6F+06	6 1F+05
lifts) WC	307,001	2.01103	1.00100	0.11105
Liquids Unloading (with plunger lifts)	scf/bbl	6 2E+04	3 5F±05	1 0F±01
GC	307,001	0.21104	5.52105	1.001
Liquids Unloading (without plunger	scf/bbl	2 7F±05	1 5E±06	5 QE+05
lifts) GC	301/001	2.72105	1.52+00	5.52105
Blowdowns				
Vessel BD	scf/yr/vessel	7.8E+01	2.9E+02	1.3E+02
Pipeline BD	scf/yr/mile	3.1E+02	4.1E+02	6.0E+01
Compressor BD	scf/yr/compressor	3.8E+03	9.3E+03	3.4E+03

Compressor Starts	scf/yr/compressor	8.4E+03	2.2E+04	8.1E+03
Upsets				
Pressure Relief Valves	scf/PRV	3.4E+01	1.2E+02	5.2E+01
Mishaps	scf/mile	6.7E+02	1.4E+04	7.9E+03
Offshore Platforms				
Gulf of Mexico Platform	scf/d/platform	2.9E+03	3.7E+03	4.8E+02
Pacific Platform	scf/d/platform	1.2E+03	1.6E+03	2.6E+02
PROCESSING ACTIVITY DATA				
gas plants	number of plants	5.9E+02	6.0E+02	7.1E+00
reciprocal compressors	number of comp	5.4E+03	7.9E+03	1.6E+03
centrifugal compressors (wet seals). ^c	number of comp	6.5E+02	1.2E+03	3.1E+02
centrifugal compressors (dry seals). ^c	number of comp	2.1E+02	3.7E+02	9.9E+01
Compressor exhaust				
gas engine	MMHPhr/yr	3.9E+04	9.0E+04	3.1E+04
gas turbine	MMHPhr/yr	4.6E+04	1.0E+05	3.4E+04
AGR vents	AGR units	3.0E+02	3.6E+02	3.6E+01
Kimray Pumps	MMscf/yr	1.4E+06	4.1E+06	1.6E+06
Dehydrator Vents	MMscf/yr	1.3E+07	1.5E+07	1.7E+06
PROCESSING EMISSION FACTORS				
gas plants	scf/d/plant	7.9E+03	1.2E+04	2.3E+03
reciprocal compressors	scf/d/compressor	1.1E+04	1.9E+04	5.0E+03
centrifugal compressors (wet seals)	scf/d/compressor	5.1E+04	7.1E+04	1.2E+04
centrifugal compressors (dry seals)	scf/d/compressor	2.5E+04	3.5E+04	6.0E+03
Compressor exhaust				
gas engine	scf CH ₄ /HPhr	2.4E-01	2.5E-01	7.3E-03
gas turbine. ^d	scf CH ₄ /HPhr	5.7E-03	7.4E-03	1.0E-03
AGR vents	scf/d/AGR	6.1E+03	1.2E+04	3.9E+03
Kimray Pumps	scf/MMscf	1.8E+02	2.8E+02	6.2E+01
Dehydrator Vents	scf/MMscf	1.2E+02	3.7E+02	1.5E+02
Pneumatic devices	scf/yr/plant	1.6E+05	3.8E+05	1.3E+05
Blowdowns/Venting	Mscf/yr/plant	4.1E+03	1.5E+04	6.5E+03
TRANSMISSION ACTIVITY DATA				
transmission pipeline	Miles	3.0E+05	3.2E+05	9.3E+03
Compressor Station Transmission				
station	number of stations	1.8E+03	2.0E+03	1.1E+02
reciprocal compressor	number of comp	7.3E+03	8.5E+03	7.5E+02
centrifugal compressor (wet seals)	number of comp	6.6E+02	8.4E+02	1.0E+02

centrifugal compressor (dry seals)	number of comp	6.6E+01	8.3E+01	1.0E+01	
Compressor Station Storage					
station	number of stations	3.9E+02	4.1E+02	1.2E+01	
reciprocal compressor	number of comp	1.1E+03	1.8E+03	4.0E+02	
centrifugal compressor (wet seals)	number of comp	8.3E+01	1.8E+02	6.0E+01	
centrifugal compressor (dry seals)	number of comp	2.9E+01	6.4E+01	2.1E+01	
wells (storage)	number of wells	1.8E+04	1.9E+04	5.5E+02	
M&R (Trans Co Interconnect)	number of stations	2.7E+03	2.4E+04	1.3E+04	
M&R (Farm Taps + Direct Sales)	number of stations	8.0E+04	7.1E+05	3.8E+05	
dehydrator vents (transmission)	MMscf/year	1.2E+06	2.8E+06	1.0E+06	
dehydrator vents (storage)	MMscf/year	2.0E+06	2.5E+06	3.1E+05	
Compressor exhaust					
transmission (engines)	MMHPhr/yr	4.9E+04	5.7E+04	5.0E+03	
transmission (turbines)	MMHPhr/yr	1.2E+04	1.5E+04	2.3E+03	
storage (engines)	MMHPhr/yr	5.0E+03	6.3E+03	8.1E+02	
storage (turbines)	MMHPhr/yr	1.7E+03	1.3E+04	6.6E+03	
generators (engines	MMHPhr/yr	2.4E+03	1.7E+04	9.0E+03	
generators (turbines	MMHPhr/yr	2.8E+01	4.0E+02	2.2E+02	
Pneumatic devices					
Pneumatic devices (transmission)	number of devices	7.1E+04	9.8E+04	1.6E+04	
Pneumatic devices (storage)	number of devices	1.5E+04	2.1E+04	3.5E+03	
Routine Maintenance and Upsets					
pipeline venting	Miles	3.0E+05	3.2E+05	9.3E+03	
Station venting					
station venting transmission	number of	1 8E±03	2 05+02	1 1E±02	
	compressor stations	1.01+05	2.01103	1.16+02	
station venting storage	number of	3 9F+02	4 1F+02	1 2F+01	
	compressor stations	5.52+02	4.12.02	1.22.01	
TRANSMISSION EMISSION FACTORS					
transmission pipeline	scf/d/mile	1.6E+00	2.9E+00	8.4E-01	
Compressor Station Transmission					
station	scf/d/station	8.8E+03	1.8E+04	5.4E+03	
reciprocal compressor	scf/d/compressor	1.5E+04	2.8E+04	7.9E+03	
centrifugal compressor (wet seals)	scf/d/compressor	5.0E+04	6.7E+04	1.0E+04	
centrifugal compressor (dry seals)	scf/d/compressor	3.2E+04	4.3E+04	6.7E+03	
Compressor Station Storage					
station	scf/d/station	2.2E+04	4.3E+04	1.3E+04	
reciprocal compressor	scf/d/compressor	2.1E+04	2.8E+04	4.4E+03	
centrifugal compressor (wet seals)	scf/d/compressor	4.5E+04	6.7E+04	1.3E+04	

centrifugal compressor (dry seals)	scf/d/compressor	3.2E+04	4.7E+04	9.3E+03
wells (storage)	scf/d/compressor	1.2E+02	2.0E+02	5.5E+01
M&R (Trans Co Interconnect)	scf/d/station	4.0E+03	7.2E+03	1.9E+03
M&R (Farm Taps + Direct Sales)	scf/d/station	3.1E+01	5.6E+01	1.5E+01
dehydrator vents (transmission)	scf/MMscf	9.4E+01	2.9E+02	1.2E+02
dehydrator vents (storage)	scf/MMscf	1.2E+02	3.3E+02	1.3E+02
Compressor exhaust				
transmission (engines)	scf/HPhr	2.4E-01	2.5E-01	7.3E-03
transmission (turbines). ^d	scf/HPhr	5.7E-03	7.4E-03	1.0E-03
storage (engines)	scf/HPhr	2.4E-01	2.5E-01	7.3E-03
storage (turbines). ^d	scf/HPhr	5.7E-03	7.4E-03	1.0E-03
generators (engines	scf/HPhr	2.4E-01	2.5E-01	7.3E-03
generators (turbines	scf/HPhr	5.7E-03	7.4E-03	1.0E-03
Pneumatic devices				
Pneumatic devices (transmission)	scf/yr/device	1.6E+05	2.3E+05	4.3E+04
Pneumatic devices (storage)	scf/yr/device	1.6E+05	2.3E+05	4.3E+04
Routine Maintenance and Upsets				
pipeline venting	Mscf/yr/mile	3.2E+01	1.1E+02	4.6E+01
Station venting				
station venting transmission	Mscf/yr/station	4.4E+03	1.7E+04	7.5E+03
station venting storage	Mscf/yr/station	4.4E+03	1.7E+04	7.5E+03

a: Uncertainty assumed based on other well completion values, EPA does not report a CI for these EFs.

b: EPA does not report a CI for these EFs. We use a CI of $\pm 101\%$ with respect to the mean based on (API, 2009).

157 c: No distinction in uncertainty between dry and wet seals in EPA/GRI (1996b).

d: Turbine emission factors are reported in the GHG Inventory Tables as 0.01, whereas the actual EF

159 from the GRI study is 0.0057.

160

161 *Beta-pert distribution*

162 For parameters that were defined by a most likely value, minimum and maximum, beta-pert

distributions were used. CH₄ emission factors from the IPCC (IPCC, 2006) for combustion in power

164 plants were described by these characteristics and modelled as beta-pert distributions. We modeled the

165 combustion efficiency for all upstream life cycle phases and regions by treating it as a "Beta Pert" random

variable ranging from 98% to 100%, with a median defined by the EPA assumption of 99.5% (API,

167 2009).

168

Table S4. Characteristics of uncertainty distributions modeled as beta-pert distributions

Parameter	unit	most likely	minimum	maximum	Source
heat content pipeline natural gas	Btu/scf	1,031	970	1,100	(EPA, 2013)
carbon content of pipeline natural gas	Tg Carbon/Qbtu	14.46	14.42	14.48	(EPA, 2013)
combustion efficiency flaring	-	0.995	0.980	1.000	(API, 2009; EPA, 2013)
Pipeline CO ₂ content CH ₄ emission factor	mol% (vol%)	2.0	1.0	3.0	(API, 2009)
combustion at power plant	kg TJ LHV	1.0	0.3	3.0	(IPCC, 2006)

171

172 Lognormal distribution for volume fractions in natural gas and absolute global warming potentials

IPCC (IPCC, 2007) reports 90% confidence limits for AGWPs as " $\pm \delta$ ". For CH₄ and CO₂ fraction, 173 174 uncertainty ranges were reported as percentages of the mean (EPA, 2013). We modelled these as lognormal distributions with non-transformed averages (\bar{x}) specified by the reported means and by non-175 transformed standard deviations (sd) derived from the reported uncertainty ranges. To derive the standard 176 deviations of the non-transformed values, the log-based standard deviations (σ , equation S5) and log-177

178 based means (µ, Equation S6) were derived (Burmaster and Hull, 1997; Strom and Stansbury, 2000):

179
$$\sigma = Z - \sqrt{Z^2 + 2\ln\frac{\bar{x}}{95p}}$$

where Z = 1.645 is the critical standard normal variable for a 90% confidence interval and Z = 1.96180 181 for a 95% confidence interval

$$\mu = \bar{x}e^{\sigma^2/2} \tag{S6}$$

183 From these, the non-transformed standard deviations for were calculated (Burmaster and Hull, 1997):

$$sd = e^{\mu} \sqrt{e^{\sigma^2} \left(e^{\sigma^2} - 1\right)} \tag{S7}$$

185

187

184

186	Table S5 Characteristics	$(\text{mean}, 95^{\text{th}})$	percentile (95p)	and standard	deviation (sd)) of uncertainty
-----	--------------------------	---------------------------------	------------------	--------------	----------------	------------------

distributions for Ab	distributions for Absolute Global Warming Potentials (AGWPs) from IPCC, 2007								
	Unit	Average	95 p	sd					
AGWP CH ₄ 100	W m^-2yr (kg CO ₂)^-1	2.2E-12	2.9E-12	4.3E-13					
AGWP CO ₂ 100	W m^-2yr (kg CO ₂)^-1	8.7E-14	1.0E-13	7.6E-15					
AGWP CH ₄ 20	W m^-2yr (kg CO ₂)^-1	1.8E-12	2.4E-12	3.5E-13					
AGWP CO ₂ 20	W m^-2yr (kg CO ₂)^-1	2.5E-14	2.8E-14	2.2E-15					

170

(S5)

AGWP CH ₄ 500	W m^-2yr (kg CO ₂)^-1	2.2E-12	2.9E-12	4.3E-13
AGWP CO ₂ 500	W m^-2yr (kg CO ₂)^-1	2.9E-13	3.3E-13	2.5E-14

- 189 Table S6 Characteristics (mean, 97.5th percentile (97.5p) and standard deviation (sd)) of uncertainty
- distributions for heat content, carbon content and volume fractions of CH_4 and CO_2 in natural gas in
- different life cycle stages from (API, 2009; EPA, 2013).

	Unit	Average	97.5p	sd
heat content produced natural gas	Btu/scf	1240.2	1302.2	43.9
carbon content produced natural gas	Tg Carbon/Qbtu	15.3	16.2	0.6
CH ₄ content in natural gas transmission	%	93.4	95.1	1.205
CH ₄ content in natural gas processed	%	86.8	92.5	4.001
CO ₂ content produced gas, NE	%	0.92	0.96	0.019
CO ₂ content produced gas, MC	%	0.79	0.82	0.016
CO ₂ content produced gas, RM	%	7.95	8.27	0.160
CO ₂ content produced gas, SW	%	3.81	3.96	0.077
CO ₂ content produced gas, WC	%	0.16	0.17	0.003
CO ₂ content produced gas, GC	%	2.17	2.26	0.044

192 NE = north east ; MC = mid continent; RM = rocky mountains; SW = south west; WC = west coast; GC =
 193 gulf coast

194

195 Lognormal distributions derived from data fitting

196 Heat rates of gas turbines and gas engines during processing and transmission were taken from measured

197 data for several types of turbines and engines. From these data, means and standard deviations were

198 calculated to characterize a lognormal distribution.

199 Table S7 Characteristics of uncertainty distributions for heat rates derived from data from (Caterpillar,

200 2013; SolarTurbines, 2013).

			Standard	
Heat rates	Unit	Average	deviation	
Gas turbine heat rate	Btu/HPhr, HHV	8772	798	
Gas engine production heat rate	Btu/HPhr, HHV	7410	303	
Gas engine processing & transmission heat rate	Btu/HPhr, HHV	6824	39	

201

202 Lognormal distributions from engineering judgement

203 Uncertainty in the expected ultimate recovery of wells was set as having a 5^{th} percentile value of 0.5

- 204 Bcf/well and a 95th percentile value of 5 Bcf/well.
- 205

206 Lognormal distributions for infrastrucuture

207 Ecoinvent (Frischknecht et al., 2007) reports geometric means and squared geometric standard deviations.

208 We employed these figures to make estimates of uncertainty in infrastructure, which were then employed

in MC simulations.

211 S4 Contribution to variance

- 212 The contribution of uncertainties in individual parameters to the range in impacts associated with the life
- 213 cycle GHG emissions of the comprehensive system (*Y*) was also assessed. This analysis consisted of a
- 214 Monte Carlo simulation in combination with a Rank correlation (expressed as percentage of total
- variance). Crystal Ball is equipped with a routine to calculate the Spearman rank correlation coefficients
- between the output and each of the input parameters. These rank correlation coefficients are valued
- between -1 and +1. We individually squared the correlation coefficient for each input variable. These
- squares of the correlation coefficients were summed, and the contribution of each input variable was
- 219 derived by dividing its individual coefficient by this total sum. Multiplying these individual contributions
- by 100 yielded percentages representing an approximation of the relative contributions of the input
- variables to the variance of the life cycle GHG emissions of the comprehensive system (Equation S8).
- 222 The contribution to variance is a combination of the model's sensitivity to a parameter and the uncertainty
- range of the parameter. The resulting statistics may then be interpreted as the percentage of variance that
- is explained by each uncertain input parameter.

$$V_a = \frac{rc_a^2}{\sum_a rc_a^2} \cdot 100 \tag{S8}$$

226 Where: $V_a =$ contribution of variable 'a' to output (life-cycle GHG emissions of comprehensive system), 227 $rc_a^2 =$ Spearman rank correlation coefficient between variable 'a' and output.

Table S8. Life cycle and upstream GHG emissions for electricity from conventional natural gas, estimated in this study and recent publications.

2	2	1
	-	
~	J	ж.

Reference	measured range	life cycle GHG emissions	range	upstream GHG emissions	range	upstream contribution	range	efficie ncy	range
		kg CO ₂ - eq/kWh		kg CO ₂ -eq/MJ (HHV)		%		MJ/MJ (HHV)	
our study CC	95% CI due to uncertainty	0.49 0.58 (GWP20) 0.46 (GWP500)	0.47-0.53 0.52-0.67 (GWP20) 0.44-0.49 (GWP500)	0.012 0.023 (GWP20) 0.008 (GWP500)	0.009-0.017 0.016-0.035 (GWP500) 0.006-0.011 (GWP500)	19% 31% (GWP20) 13% (GWP500)	15%-25% 24%-41% (GWP500) 11%-18% (GWP500)		
	95% CI due to variability		0.46-0.66 0.54-0.76 (GWP20) 0.43-0.61 (GWP500)					0.34- 0.49	
	95% CI due to total variance		0.45-0.66 0.51-0.79 (GWP20) 0.42-0.62 (GWP 500)						
our study SC	95% CI due to uncertainty	0.75 0.88 (GWP20) 0.70 (GWP500)	0.71-0.81 0.80-1.02 (GWP500) 0.68-0.74 (GWP500)	Equal to CC	Equal to CC	Equal to CC	Equal to CC		
	95% CI due to variability		0.66-0.89 0.78-1.05 (GWP20) 0.62-0.83 (GWP500)					0.25- 0.44	
	95% CI due to total variance		0.60-0.91 0.72-1.11 (GWP20) 0.56-0.84 (GWP500)						
Ecoinvent (Faist	Min-max of NERC regions	0.68	0.56 - 0.92	0.006				0.25- 0.35	

Emmenegger et al., 2007)									
Venkatesh et al. (2011)	90%CI	0.48 ^a		0.015		23%		0.5 (efficie nt CC plant)	0.2-0.48 (all plants) 0.25-0.49 (>500MW)
NETL (NETL, 2013)		0.5		0.007				50.2%	
Stephenson et al. (2011)	min-max		0.488- 0.490		0.0040- 0.0041	14%		0.43	
Burnham et al. (2011)	min-max (CC)	0.57						0.43	0.35-0.5 ^c
Jiang et al. (2011)		0.48 ^d						0.5 ^h	
Alvarez et al., (2012)		0.48 ^{.e}		0.016		24%. ^f		CC	
Weber &	95%CI			0.014	0.011-0.176		20%-22%		
Clavin (2012) ^g	min-max							0.33 - 0.5 [°]	

a: calculated with 50% efficiency as used by (Venkatesh et al., 2011) for comparison with coal

233 b: from (NETL, 2010)

234 c: LHV, HHV conversion by assuming 10% difference

235 d: calculated based on Jiang et al. (2011)

e: calculated based on GWP100 236

237 f: calculated based on data in Alvarez et al. (2012)

238 g: based on (Jiang et al., 2011), (Draucker et al., 2010), (Stephenson et al., 2011), (Burnham et al., 2011) amongst others

h: CC based on Venkatesh et al. (2011) 239

241 Table S9 Contribution to overall variance in life cycle GHG emissions by uncertain parameters that

- contributed more than 1% for at least one of the three time horizons. Results are shown for national
- 243 weighted average life cycle GHG emissions from CC plants.

	20 year time	100 year	500 year
	horizon	time horizon	time horizon
Absolute GWP CH ₄ (W m ⁻² yr/kg)	59%	41%	12%
Activity factor, Gas turbines, processing	50/	100/	4504
(MMHPhr/yr)	3%	19%	43%
Activity factor, Gas engine, processing	60/	1.4.0/	260/
(MMHPhr/yr)	0%	14%	20%
Absolute GWP CO ₂ (W m ⁻² yr /kg)	11%	8%	2%
Emission Factor, Reciprocating compressor for	60/	40/	10/
compressor station, transmission (scf/d/compressor)	0%	4%	1%
CO ₂ content in pipeline natural gas (%)	<1%	2%	4%
Emission Factor, Reciprocating compressors,	20/	10/	<10/
processing (scf/d/compressor)	2%	1%	<1%
Emission Factor, pipeline venting, transmission	< 1.0/	10/	<10/
(Mscf/yr/mile)	<1%	1%	<1%
Emission Factor, station venting, transmission,	10/	1.0/	<10/
(Mscf/yr/station)	1 %	1 70	<1 %
Gas turbine heat rate, processing and transmission	10/	10/	20/
(Btu/HPhr HHV)	1 %	1%	2%
Activity Factor, compressor engine exhaust,	10/	104	1.04
transmission (MMHPhr/yr)	1 70	1 70	1 70

244

245 Table S10 Contribution to overall variance in life cycle GHG emissions by uncertain parameters that

contributed more than 1% for at least one of the three time horizons. Results are shown for national

²⁴⁷ weighted average life cycle GHG emissions from SC plants.

havinan		-
norizon	horizon	horizon
58%	40%	11%
5%	20%	45%
6%	15%	27%
11%	8%	2%
6%	4%	1%
<1%	1%	4%
2%	1%	<1%
1%	1%	<1%
1%	1%	<1%
	Norizon 58% 5% 6% 11% 2% 1% 1%	nonizon nonizon 58% 40% 5% 20% 6% 15% 11% 8% 6% 4% <1%

(Mscf/yr/station)			
Gas turbine heat rate, processing and transmission			
(Btu/HPhr HHV)	<1%	1%	1%
Activity Factor, compressor engine exhaust,			
transmission (MMHPhr/yr)	<1%	1%	1%

250 S5 Additional Analysis with updated GWPs

251	Global Warming Potentials of methane, including uncertainty estimates, have been updated by the latest
252	Assessment Report of the IPCC for the 20 and 100 year time horizons (Myhre et al., 2013) and are
253	reported in Table S11. An additional analysis was performed replacing GWPs from Assessment Report
254	No. 4 with these updated values, the same way as described for AGWPs in section S3. This slightly
255	increased carbon footprints: to 0.50 kg CO ₂ -eq/kWh (100 year time horizon) and 0.60 kg CO ₂ -eq/kWh
256	(20 year time horizon) for CC plants, and to 0.76 kg CO_2 -eq/kWh (100 year time horizon) and 0.92 kg
257	CO2-eq/kWh (20 year time horizon) for SC plants. Uncertainty and variability factors did not change. The
258	variation in life cycle GHG emissions of CC and SC power plants are reported in Figure S2 and Figure
259	S3. Figure S2 gives an overview of ranges due to uncertainty and variability respectively. Figure S3
260	shows the variation due to uncertainty for individual power plants. Table S12 and S13 show the
261	contribution to variance for parameters that contributed more than 1% to overall variance when using the
262	updated GWP for methane for CC and SC plants.
263	
264	Table S11. Characteristics (mean, 95 th percentile (95p) and standard deviation (sd)) of uncertainty

distributions for Global Warming Potentials (GWPs) (Myhre *et al.*, 2013).

	Unit	mean	95 p	sd
GWP CH ₄ 100	kg CO ₂ eq/kg CH ₄	30	42	7
GWP CH ₄ 20	kg CO ₂ eq/kg CH ₄	85	111	14

Figure S2. Life cycle GHG emissions associated with natural gas power generation (CC 239 plants, SC
69 plants) for a 100 year time horizon with updated GWP for methane. Model results accounting for
uncertainty and variability are denoted by y, for variability only by E(y), those accounting only for
uncertainty (by way of the use of a national-level system boundary) are denoted by Y.

Figure S3. Variability and uncertainty in the life cycle of conventional natural gas for, a) CC power
generation 20 year time horizon, b) CC power generation 100 year time horizon, c) SC power generation
20 year time horizon, d) SC power generation 100 year time horizon with updated GWP for methane.

Table S12. Contribution to overall variance in life cycle GHG emissions by uncertain parameters that

contributed more than 1% for at least one of the two time horizons from (Myhre *et al.*, 2013). Results are
shown for national weighted average life cycle GHG emissions from CC plants.

	20 year time	100 year time	
	horizon	horizon	
GWP CH ₄ (AR5) (-)	61%	55%	
Activity factor, Gas turbines, processing (MMHPhr/yr)	6%	16%	
Activity factor, Gas engine, processing (MMHPhr/yr)	7%	12%	
Emission Factor, Reciprocating compressor for			
compressor station, transmission (scf/d/compressor)	9%	5%	
Emission Factor, Reciprocating compressors,			
processing (scf/d/compressor)	2%	1%	
CO_2 content in pipeline natural gas (%)	<1%	1%	
Emission Factor, station venting tranmsission,			
(Mscf/yr/station)	2%	1%	
Activity Factor, Reciprocating compressors, processing			
(number of compressors)	1%	1%	

Table S13. Contribution to overall variance in life cycle GHG emissions by uncertain parameters that

contributed more than 1% for at least one of the two time horizons from (Myhre *et al.*, 2013). Results are shown for notional weighted everges life evaluations from SC plants.

shown for national weighted average life cycle GHG emissions from S	C plants.	
---	-----------	--

		100 year time
	20 year time horizon	horizon
GWP CH4 (AR5) (-)	61%	55%
Activity factor, Gas turbines, processing (MMHPhr/yr)	6%	16%
Activity factor, Gas engine, processing (MMHPhr/yr)	7%	12%
Emission Factor, Reciprocating compressor for compressor station, transmission (scf/d/compressor)	9%	5%
Emission Factor, Reciprocating compressors, processing (scf/d/compressor)	2%	1%
CO_2 content in pipeline natural gas (%)	<1%	1%
Emission Factor, station venting transmission, (Mscf/yr/station)	2%	<1%
Activity Factor, Reciprocating compressors, processing (number of compressors)	1%	<1%
Emission Factor, pipeline venting transmission, (Mscf/yr/station)	2%	<1%

291 References

- Alvarez, R A, Pacala, S W, Winebrake, J J, Chameides, W L and Hamburg, S P, 2012 Greater Focus
 Needed on Methane Leakage from Natural Gas Infrastructure *Proceedings of the National Academy of Sciences of the United States of America* 109 6435-6440.
- API, 2009. Compendium of Greenhousegas Emissions Methodologies for the Oil and Gas Industry.
 American Petroleum Institute, p. 807.
- 297 NETL (2010). Cost and Performance Baseline for Fossil Energy Plants: Volume 1. Department of
 298 Energy, National Energy Technology Laboratory, Pittsburgh, Pennsylvania. Report Number
 299 DOE/NETL-2010/1397 Revision 2a (2013).
- Burmaster, D E and Hull, D A, 1997 Using Lognormal Distributions and Lognormal Probability Plots in
 Probabilistic Risk Assessments *Human and Ecological Risk Assessment* 3 235-255.
- Burnham, A, Han, J, Clark, C E, Wang, M, Dunn, J B and Palou-Rivera, I, 2011 Life-Cycle Greenhouse
 Gas Emissions of Shale Gas, Natural Gas, Coal, and Petroleum *Environmental Science & Technology*.
- 305 Caterpillar, 2013. Power for Gas Compression. Industries. Caterpillar.
- 306 EIA, 2011. Form Eia-923 Detailed Data. U.S. Department of Energy.
- EIA, 2012. EIA Natural Gas Annual 2012 (DOE/EIA-0131(10), Table 1),
 <u>http://www.eia.gov/naturalgas/annual/pdf/nga12.pdf</u>.
- 309 EIA, 2013. Oil and Gas Supply Module of the National Energy Modeling System: Model Documentation
- 310 2013. U.S. Energy Information Administration, Washington DC, 281p,
- 311 <u>http://www.eia.gov/forecasts/aeo/nems/documentation/ogsm/pdf/m063(2013).pdf</u>, visited 31st March
 312 2014
- 313 EPA, 2010. Technical Support Documents for the Proposed Rule for Greenhouse Gas Mandatory
- Reporting Rule. Subpart under Proposed 40 Cfr Part 98 W Oil and Natural Gas Systems. U.S.
 Environmental Protection Agency, Washington, USA, p. 144.
- 316 EPA, 2013. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990 2011. U.S. Environmental
- 317 Protection Agency, Washington, U.S.A., p. 550.
- EPA, 2011. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2009. U.S. Environmental
 Protection Agency, Washington.
- 320 EPA, 2012. Natural Gas Star Program. In: Agency, U.E.P. (Ed.).
- 321 EPA/GRI, 1996a. Methane Emissions from Natural Gas Industry. Volume 1: Executive Summary. p. 24.
- 322 EPA/GRI, 1996b. Methane Emissions from Natural Gas Industry. Volume 2: Technical Report., p. 152.
- 323 EPA/GRI, 1996c. Methane Emissions from Natural Gas Industry. Volume 4: Statistical Methodology., p.
 324 138.
- EPA/GRI, 1996d. Methane Emissions from Natural Gas Industry. Volume 6: Vented and Combustion
 Source Summary.
- Faist Emmenegger, M, Heck, T, Jungbluth, N and Tuchschmid, M, 2007. Erdgas. In: Dones, R.e.a. (Ed.).
 Sachbilanzen von Energiesystement: Grundlagen fuer den oekologischen Vergleich von
- 328 Sachohanzen von Energiesystement: Grundrägen führ den bekologischen Vergleich von
 329 Energiesystemen und den Einbezug von Energiesystemen in Oekobilanzen fuer die Schweiz. Final
- Report econvent No.6-V. Swiss Centre for Life Cycle Inventories, Dübendorf, CH.
- Frischknecht, R, et al., 2007. Overview and Methodology. Ecoinvent Report No.1. Swiss Centre for Life

332 Cycle Inventories, Duebendorf.

333 Ilk, D, Perego, A D, Rushing, J A and Blasingame, T A, 2008. Integrating Multiple Production Analysis

- 334Techniques to Assess Tight Gas Sand Reserves: Defining a New Paradigm for Industry Best
- Practices. . CIPC/SPE Gas Technology Symposium 2008 Joint Conference. June 16-19 2008,
 Calgary, Alberta, Canada
- 336Calgary, Alberta, Canada.
- IPCC, 2006. 2006 Ipcc Guidelines for National Greenhouse Gas Inventories. In: Simon Eggelston, L.B.,
 Kyoko Miwa, Todd Ngara, Kiyoto Tanabe (Ed.). Prepared by National Greenhouse Gas Inventories
 Programme, Hayama, Japan.
- IPCC, 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the
 Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin,
 M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (Eds.)]. IPCC,
- 343 Cambridge, New York.
- Jiang, M, Griffin, W M, Hendrickson, C, Jaramillo, P, VanBriesen, J and Venkatesh, A, 2011 Life Cycle
 Greenhouse Gas Emissions of Marcellus Shale Gas *Environmental Research Letters* 6.
- Laurenzi, I J and Jersey, G R, 2013 Life Cycle Greenhouse Gas Emissions and Freshwater Consumption
 of Marcellus Shale Gas *Environmental Science & Technology* 47 4896-4903.
- 348 Myhre, G, et al., 2013. Anthropogenic and Natural Radiative Forcing. In: [Stocker, T.F., D. Qin, G.-K.
- Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)].
- 350 (Ed.). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the
- Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, UnitedKingdom and New York, NY, USA.
- NETL 2013: Life-cycle analysis: Natural Gas Combined Cycle (NGCC) Power Plant. Department of
 Energy, National Energy Technology Laboratory, Pittsburgh, Pennsylvania. Report Number
 DOE/NETL-403-110509.
- SolarTurbines, 2013. Mechanical Drive Sets. Oil & Gas Industry. Solar Turbines Incorporated, A
 caterpillar company.
- Stephenson, T, Valle, J E and Riera-Palou, X, 2011 Modeling the Relative Ghg Emissions of
 Conventional and Shale Gas Production *Environmental Science & Technology* 45 10757-10764.
- Strom, D J and Stansbury, P S, 2000 Determining Parameters of Lognormal Distributions from Minimal
 Information *Aihaj* 61 877-880.
- Venkatesh, A, Jaramillo, P, Griffin, W M and Matthews, H S, 2011 Uncertainty in Life Cycle Greenhouse
 Gas Emissions from United States Natural Gas End-Uses and Its Effects on Policy *Environmental Science & Technology* 45 8182-8189.
- Weber, C L and Clavin, C, 2012 Life Cycle Carbon Footprint of Shale Gas: Review of Evidence and
 Implications *Environmental Science & Technology* 46 5688-5695.
- 367