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ABSTRACT

Genetic algorithms are applied to numerous problems that
demonstrate different properties. To efficiently solve these
problems, during the years a significant number of variation
operators have been and still are created. It is a problem
by itself how to correctly choose between those operators,
i.e. how to find the most suitable operator (or a set) for a
given problem. In this paper we investigate the choice of the
suitable crossover operator on the basis of fitness landscape.
The fitness landscape can be described with a number of
properties, so a thorough analysis needs to be done to find
the most useful ones. To achieve that, we experiment with
24 noise-free problems and floating point encoding. The re-
sults indicate it is possible to either select a suitable operator
or at least to reduce the number of adequate operators with
fitness landscape properties.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—heuristic methods

General Terms

Algorithms, Experimentation

Keywords

Heuristic Methods, Fitness Landscape, Crossover Operator,
Genetic Programming, Automatic Classification

1. INTRODUCTION
Evolutionary algorithms play an important role in solving

many difficult problems. To be able to solve different prob-
lems, in the last decades numerous versions of algorithms
and operators have emerged that can be readily applied.
Naturally, different algorithms were necessary since the “No
Free Lunch” theorem states that there is no single best al-
gorithm for all the problems [29].

http://dx.doi.org/10.1145/2576768.2598320

However, this diversity of the algorithms, as much as it is
advantageous, is often also a pitfall. It is not an easy task
to choose the optimal algorithm and its parameters without
a combination of experience and extensive testing. There-
fore, it would be useful to have a method that can help in
the choice of the parameters. In this work, we concentrate
our attention to genetic algorithms with floating point en-
coding applied to continuous optimization. Furthermore, we
are interested only in the differences in the behavior of the
algorithm with respect to the choice of the crossover opera-
tor. We point out, even with this simplification, that there
is still a plethora of options; for instance, in [9] there are
descriptions of 89 floating point crossover operators.

To be able to give an insight about the choice of crossover
operators, we analyze fitness landscape properties. The most
common motivation for fitness landscape analysis is to get a
better understanding of algorithm performance on a certain
problem [19]. However, we approach the problem from the
opposite point fo view, where we investigate fitness land-
scape in order to reach conclusion about the choice of the
appropriate operator and, in consequence, the performance
of the algorithm as a whole.

Of course, there is a question of the relative importance
of crossover operator in genetic algorithms. Here, we re-
gard crossover operator as the vital part of GA and refer to
literature for a further discussion about the importance of
crossover operator [18].

1.1 Related Work
In existing literature the fitness landscape analysis is used

mainly for the determination of optimization problem hard-
ness for evolutionary algorithms and other optimization al-
gorithms, such as deterministic local search. Authors in [8]
formally define fitness landscapes, provide an in-depth look
at basic properties and give detailed explanations and ex-
amples of existing fitness landscape analysis techniques. A
survey of the literature on fitness landscape analysis for lo-
cal search is given in [26]. Fitness analysis of landscape for
the n-queens problem is conducted in [13]. The distribution
of local optima in this instance is uniformly random and
scattered over the search space. The landscape is rugged
and there is no significant correlation between fitness and
distance of solutions. Landscape analysis for benchmark fit-
ness functions: Sphere, Rastrigin, Rosenbrock and Ackley
functions is performed in [14]. To better understand the in-
fluence of genetic representations and associated variation
operators when solving a combinatorial optimization prob-
lem (the Optimal Golomb Ruler problem) various landscape
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analysis techniques are used in [24]. The fitness landscape
analysis for mutation reveals that indirect encodings have a
good fitness distance correlation and distance to the opti-
mum.
Herrera et al. apply a hybrid scheme in crossover, where

each reproduction produces offspring using different crossover
operators, and different parent and children selection mech-
anisms are used [11]. The operators are tested on 13 real-
valued functions with 8 crossover operators and their pairs;
performance was evaluated for individual problems, but the
overall efficiency was difficult to predict [11].

1.2 Our Contribution
There are two main contributions in this paper. First, we

correlate the choice of the crossover operator with the fitness
landscape properties. As far as we are aware, this is the
first application of fitness landscape analysis in such a way.
Although there is a significant body of work about fitness
landscape, usually its properties are investigated post-hoc to
get a better insight in the performance of the algorithm. The
second contribution is the usage of genetic programming for
automatic classification of crossover eligibility on the basis
of fitness landscape properties.
The rest of the paper is organized as follows: in Section 2

we give preliminary information on crossover operators and
benchmark functions we consider. Additionally, we present
fitness landscape properties used in this research. In Sec-
tion 3 we describe experimental results on the benchmark
functions. Also, we give preliminary analysis on the correla-
tion between fitness landscape properties and the choice of
operators. In Section 4 we present a genetic programming
approach to classify operators on a basis of fitness landscape
and a discussion about achieved results and possible avenues
for future work. Finally, in Section 5 we give a conclusion.

2. PRELIMINARIES
In this section we present the crossover operators used

in the experiments, the employed benchmark functions and
fitness landscape properties we consider in the experiments.

2.1 Crossover Operators
We consider only crossover operators for a two-parent

case. Naturally, there are many crossover operators and the
question is why we chose the following ones. When conduct-
ing the experiments we wanted to use as small as possible
representative set of operators. Therefore, we chose the op-
erators that are designed with various objectives in mind
and that are widely accepted.
If n denotes the dimensionality of the individual, for all

crossover operators presented here holds that parents
βf1 = βf1

1 , βf1
2 , ..., βf1

n and βf2 = βf2
1 , βf2

2 , ..., βf2
n

form a child βs = βs
1 , β

s
2 , ..., β

s
n, where f1 and f2 are the

parents’ fitness values and s child’s fitness value. In some
operators, a parameter α is used as a weighting factor whose
value is chosen at random over [0, 1], if not specified other-
wise.

2.1.1 Arithmetic Crossover

This is probably the most commonly used operator (also
called whole arithmetic crossover), which takes the weighted
sum of two parental alleles for each gene with the same α [5]:

βs = α · βf1 + (1− α) · βf2 . (1)

2.1.2 Arithmetic Simple Crossover

In this operator a recombination point k is chosen uni-
formly. Then the first k float values of a random chosen
parent are taken and copied into the child. The rest is the
arithmetic average of parents 1 and 2 [5]. The arithmetic
average is obtained via:

βs = α · βf1 + (1− α) · βf2 . (2)

2.1.3 Arithmetic Single Crossover

In arithmetic single crossover first a random allele k is
chosen. At that position the child assumes the arithmetic
average of two parents. All other points are copied from
a single randomly chosen parent. The expression for the
arithmetic average is the same as for the simple arithmetic
crossover [5].

2.1.4 Local Crossover

Local crossover is the same as arithmetic crossover, ex-
cept that the value α is randomly selected for each gene
location [4].

βs
i = αi · β

f1
i + (1− αi) · β

f2
i . (3)

2.1.5 Average Crossover

Average crossover is whole arithmetic crossover with α =
0.5. Two parents βf1 and βf2 generate offspring βs in the
following way [17]:

βs
i = (βf1

i + βf2
i )/2. (4)

2.1.6 BGA Crossover

In BGA crossover two parents βf1 and βf2 generate off-
spring βs. Let βf1 be the parent with better fitness. In that
case, the offspring has genes calculated in the following way:

βs
i = βf1

i ± rangi · γ · λi, (5)

where λ equals

λ =
βf2 − βf1

‖βf1 − βf2‖
. (6)

The sign “-” is selected with 0.9 probability and rangi =
0.5 · (βf1 − βf2). Parameter γ equals

γ =

15
∑

k=0

αk · 2−k, (7)

where αi ∈ 0, 1 is randomly generated with p(αi = 1) =
1
16

[16, 18,21].

2.1.7 BLX-α Crossover

Blend-α crossover combines two parents βf1 and βf2 to
generate offspring βs by sampling a new value in the range
[min−I ·α,max+I ·α]. Here, min and max equal minimum

and maximum values respectively for interval (βf1
i , βf2

i ). I
equals max−min [7, 12]. For the α we use value of 0.5.

2.1.8 BLX-α-β Crossover

Blend-α-β operator creates a new offspring by selecting a
random value from the interval between the two alleles of
the parent solutions βf1 and βf2 . The interval is increased
in direction of the solution with better fitness by the factor
α, and into the direction of the solution with worse fitness
by the factor β [6, 12]. The value for α is 0.75, and for β
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0.25. In the case that βf1
i ≤ βf2

i , random value is sampled
from the interval:

[βf1
i − I · α, βf2

i + I · β], (8)

otherwise is sampled from:

[βf2
i − I · β, βf1

i + I · α]. (9)

2.1.9 Discrete Crossover

In discrete crossover an offspring βs is created from par-
ents βf1 and βf2 , where the allele value for each gene i is
given by βs

i = βf1
i or βs

i = βf2
i with equal likelihood [25].

2.1.10 Flat Crossover

Flat crossover generates offspring whose genes are sampled
randomly from the intervalmin(βf1

i , βf2
i ),max(βf1

i , βf2
i ) [18,

20]. This crossover is the same as BLX-α crossover when α
= 0.

2.1.11 Heuristic Crossover

In heuristic crossover (Wright’s heuristic crossover), given
two parents βf1 and βf2 , assume that the first parent (βf1)
has a smaller value on current allele [12, 30]. Then the off-
spring βs is created as

βs
i = α · (βf2

i − βf1
i ) + βf1

i , (10)

where α is chosen uniformly at random from interval [0, 1].

2.1.12 One Point Crossover

In one point crossover the descendant is created in the
same way as in the one point crossover for a binary coded
GA. First, choose a random point k. Two parents βf1 and
βf2 generate offspring βs1 and βs2 . The first offspring copies
allele values from the first parent up to the point k, and
from the second parent from that point on. For the second
offspring the procedure is analogous [15].

2.1.13 Simulated Binary Crossover

Simulated binary crossover is devised to simulate the effect
of one point binary crossover [2, 18]. Two parents βf1 and
βf2 generate offspring βs1 and βs2 in the following way:

βs1
i =

1

2

[

(1 +Bk)β
f1
i + (1−Bk)β

f2
i

]

(11)

and

βs2
i =

1

2

[

(1−Bk)β
f1
i + (1 +Bk)β

f2
i

]

, (12)

where Bk ≥ 0 is obtained from the random number source
having density

Bk(u) =







(2 · u)
1

η+1 if u ≤ 1
2

(

1
2·(1−u)

) 1
η+1

if u > 1
2

. (13)

Distribution index η is any non-negative real number [3].

2.2 Benchmark Functions
The test problems originate from the COCO platform

(COmparing Continuous Optimisers) [10], which has been
extensively used in the last few years. Of the functions
available we use 24 noise-free real-parameter single-objective
problems. The dimensionality D of all the functions is set
to 30, which matches a medium-sized optimization problem.
The test functions are implemented so the global minimum

has the value of zero. The problems can be differentiated
on the basis of their modality, where functions 1, 2, 5, 6, 7,
10-14 are unimodal and 3, 4, 8, 9, 15-24 are multimodal.

2.3 Fitness Landscape Properties
Here we present only the properties we used in the corre-

lating fitness landscape and crossover operators. Naturally,
there are other properties we could have chosen and indeed
adding more properties will be a future goal. Due to the lack
of space we do not give discussion about fitness landscape
but rather refer to the literature. Likewise, for explanations
of the influence of some property to the landscape shape re-
fer to [19, 23]. Fitness landscape can be defined as a set of
two functions f and d that define the fitness value and the
distance between encoded solutions in the landscape [19].

The diameter of the population P is the maximum dis-
tance between the elements of the population [23]:

d(P ) = maxs,t∈P dist(s, t), (14)

where dist(s, t) represents L1 distance [28].
Average distance of the population P is defined as [23]

dmm(P ) =

∑

s∈P

∑

t∈P,t 6=s

dist(s, t)

|P | · (|P | − 1)
. (15)

Indicator δdmm represents the variation of the average dis-
tance of the initial population and population after local
search algorithm [23]:

δdmm =
(dmm(U)− dmm(O))

dmm(U)
, (16)

where U is the initial population, and O is population
after local search.

Amplitude Amp(P ) represents distribution of solutions in
objective space, i.e. the difference between the best and
worst solution [23]:

Amp(P ) =
|P | · (maxs∈P f(s)−mins∈P f(s))

∑

s∈P

f(s)
. (17)

Relative variation of the amplitude ∆Amp of initial and
final population [23] is defined as

∆Amp =
Amp(U)−Amp(O)

Amp(U)
. (18)

The average length of walk Lmm(P ) represents the aver-
age number of steps needed for the convergence of a solu-
tion [23]:

Lmm(P ) =

∑

p∈P

l(p)

|P |
. (19)

Autocorrelation function measures the correlation of the
solutions that have distance d [27]:

ρ(d) =

∑

s,t∈S×S,dist(s,t)=d

(f(s)− f̄)(f(t)− f̄)

n · σ2
f

. (20)

Here, n is the number of pairs with distance d. In our ex-
periments we use distance that equals 1.

Correlation length is defined in the following way [22]:

l =
1

ln(|ρ(1)|)
. (21)

817



Autocorrelation coefficient is a normalized measure of au-
tocorrelation function [1].

ξ =
1

1− ρ(1)
. (22)

There are many other properties one could choose and
indeed we experimented with other properties. The previous
properties were chosen on a basis of the variance of their
values for the benchmark functions; e.g. if a property gives
roughly the same value for every test function, then it is
not a good choice for further experiments. Nevertheless,
additional properties can be easily added to the analysis as
input variables in genetic programming (in Section 4).

3. CORRELATING CROSSOVER AND FIT-

NESS LANDSCAPE
In this section we first compare individual operators on the

set of all problems. Then we try to discern whether there are
statistically significant differences between the operators in
regards to the specific functions. Finally, we try to correlate
between individual crossover operator efficiency on a given
function and fitness landscape properties of that function.

3.1 Experimental Setup
In all the experiments with crossover operators, the same

selection method and parameter values are used for all the
operators. The evolutionary algorithm is a steady-state GA
with a tournament selection operator. In every iteration, k
individuals are randomly selected for tournament (k is set
to 3). The worst of k individuals is identified and replaced
with a new individual. The new individual is obtained by
crossing the two parents remaining from the tournament.
This selection scheme was applied in part because it avoids
the use of crossover probability, giving all the operators a
fair treatment. Additionally, it has produced the best over-
all results in different optimization domains in our previous
experience.
Mutation is also applied to the new individual with a given

mutation rate (0.3 in our experiments). The mutation oper-
ator is a simple random change of a random solution variable
within the given bounds. We are aware that the influence
of mutation may be even more pronounced than with the
selection mechanism and crossover. We believe that the dif-
ferences between crossover operators, if they are significant,
should hold even with other mutation operators. On the
other hand, conducting experiments without mutation is not
in accordance with realistic application conditions.
The population size was set to 100, and the termina-

tion criteria is defined as reaching 106 fitness evaluations
(some operators require an additional evaluation that was
accounted for). This number of evaluations allows the al-
gorithm a stable convergence for this problem size (30 vari-
ables), which should be a requirement for operator perfor-
mance comparison. Each combination of benchmark func-
tion and operator was tested in 50 runs, and the average
(mean) error of the 50 best solutions is recorded.

3.2 Crossover Operator Performance
The obtained results for each operator and each problem

are aggregated in Tables 5 and 6. The tables show nor-

malized error, where the worst performing operator has the
value of 1, and the optimal solution is denoted with zero.

Table 1: Average rankings of the operators (Fried-
man) and average normalized error

Algorithm Ranking ēN

Arithmetic 6.2917 0.42
Arithmetic Simple 7.0417 0.45
Arithmetic Single 8.3333 0.58
Average 6.875 0.42
BGA 5.625 0.44
BLX-α 8.3333 0.71
BLX-α-β 7.8333 0.69
Discrete 6.625 0.45
Flat 8.4583 0.71
Heuristic 7.625 0.68
Local 5.9167 0.40
One point 7.2917 0.53
SBX 4.75 0.39

From these results, we are interested in discovering signif-
icant differences between the operators, which are regarded
as different optimization algorithms. Since the resulting val-
ues are not normally distributed (the analysis is omitted),
we rely on nonparametric methods to reveal if there are sig-
nificant differences. This is achieved with the Friedman test,
which calculates the average rank of each algorithm and de-
termines the corresponding P-value. The Friedman results
are given in Table 1, and the P-value is equal to 0.016 which
means there are significant differences with level of signifi-
cance α = 0.05. The last column in the previous Table gives
the normalized average error (ēN ), which is defined as the
mean normalized error over all the problems.

3.3 Landscape Properties and Crossover Effi-
ciency

The described landscape properties of benchmark func-
tions are obtained with the following: a random population
of 1000 individuals is generated within the defined bound-
aries ([−50, 50] for each variable) and the same initial pop-
ulation is used on every function. A local search algorithm
was executed in parallel for every starting point in the popu-
lation; the algorithm used is based on Hooke-Jeeves directed
pattern search. The local search algorithm is run for every
starting point until convergence, which was determined with
precision of 10−6. After the convergence, the final popula-
tion is recorded and fitness landscape properties are calcu-
lated for each function. The obtained values are given in
Table 2.

Just by visually inspecting these values, it is not easy
to reach a conclusion whether one can choose the crossover
operator on a basis of those data. For instance, it seems
there is a correlation between data for functions 2, 6 and 19.
In functions 2 and 6 the properties have similar values and
BGA crossover performs good, while Flat, BLX-α and BLX-
α-β perform poorly. However, for function 19 BGA operator
performs poor and Flat, BLX-α and BLX-α-β perform good.
For the function 19 we see that fitness landscape properties
are consistently different than for functions 2 and 6. We
believe that inspecting the properties only visually it is hard
to see correlations if they are not obvious, and especially to
quantify the impact of those differences.
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Table 2: Fitness landscape properties
Problem d(P) dmm(P) ∆dmm Amp(p) ∆Amp Lmm(P) ρ(1) l ξ

1 0.000016 0.000003 1 1.618034 -0.034137 64.811 -0.001 0.144765 0.999001
2 0.000009 0.000002 1 2.169216 -0.386414 76.649 -0.001 0.144765 0.999001
3 232.181431 60.475268 0.878971 2.209141 -0.411932 57.769 0.5094 1.482532 2.03832
4 122.409501 32.98095 0.933995 2.608001 -0.666856 59.466 0.519048 1.524952 2.079211
5 650.35941 181.643388 0.636478 1 0.360868 32.475 0.999 999.499917 1000
6 140.178412 6.770292 0.986451 37.165919 -22.753912 2035.275 0.092841 0.420721 1.102342
7 713.30565 93.711719 0.812455 8.515323 -4.442412 160.959 0.313675 0.862516 1.457035
8 8.729045 0.568895 0.998861 8.275631 -4.289217 875.903 0.564717 1.749994 2.297356
9 295.068994 7.855163 0.984279 41.967988 -25.823066 1594.981 0.080365 0.39664 1.087388
10 22.557226 1.041349 0.997916 138.077539 -87.249712 3292.147 0.015926 0.241559 1.016184
11 20.28115 3.482909 0.99303 9.276794 -4.929092 5779.649 0.17005 0.564441 1.204892
12 520.334509 8.894347 0.9822 362.252363 -230.526916 2268.188 0.005114 0.189547 1.00514
13 27.766903 2.906121 0.994184 7.946438 -4.07882 162.833 0.478247 1.355699 1.916617
14 0.493758 0.113324 0.999773 2.49133 -0.592288 632.568 -0.001 0.144765 0.999001
15 391.415693 85.361853 0.829166 2.517099 -0.608758 144.773 0.572866 1.794999 2.341186
16 489.009861 141.624098 0.716568 3.020404 -0.930435 77.137 0.492803 1.413134 1.971619
17 1997.479698 337.798776 0.323965 748.42151 -477.339803 10952.256 0.001762 0.15769 1.001765
18 2175.891213 408.295428 0.18288 853.344799 -544.399588 12795.219 0.001371 0.151686 1.001372
19 877.58457 93.438758 0.813001 3.272264 -1.091407 140.494 0.415787 1.139494 1.711704
20 88.67771 22.475023 0.955021 1.434853 0.08294 218.525 0.000047 0.100428 1.000047
21 158.902852 48.15173 0.903634 2.952137 -0.886804 82.297 0.841152 5.780901 6.29531
22 132.732042 44.09263 0.911758 2.838727 -0.81432 80.208 0.715527 2.987425 3.515267
23 345.344015 90.238947 0.819405 3.86982 -1.473324 86.339 0.424284 1.16638 1.736966
24 159.542561 41.711814 0.916522 1.919647 -0.226907 94.761 0.54411 1.643105 2.193511

4. INFERRING PERFORMANCE WITH A

GP-BASED CLASSIFIER
In this section we try to address the following questions:

firstly, are the derived fitness landscape properties sufficient
to distinguish between suitable and inefficient crossover op-
erators for a specific function? Secondly, is it possible to
predict crossover performance based on landscape features
in a general case?

4.1 Crossover Operator Classes
To answer the first question, the crossover operators in

this work are manually classified into three classes for each
function: “good”, “average” and “bad” crossovers. The clas-
sification is entirely subjective and is based on average oper-
ator error (Tables 5 and 6). The main goal here is to discern
between the operators, rather than to give a formally justi-
fied classification.
The selection is made with the following guidelines: oper-

ators belong to different groups if their performances differ
by at least a factor of two; if there are no three discernible
groups, the “good” and “average” classes are populated first.
For instance, for the second function in the benchmark, the
division is made as follows: the BGA crossover is the only
one considered “good”, arithmetic, arithmetic simple, aver-
age, local and SBX are considered as “average”, while the
rest are classified as “bad”. On the other hand, for functions
5, 17 and 22 all operators are considered “good” because
there is no (significant) difference in their average error.

4.2 A Simple GP-based Classifier
Based on the described layout and available fitness land-

scape properties, we define a simple classifier based on sym-
bolic regression (more advanced techniques are being inves-
tigated). A classifier of the same form is constructed inde-
pendently for each crossover operator, so the final result is
a family of classifiers where each is trained and tested sep-

arately. The GP classifier uses all landscape properties as
terminals and the arithmetic operators (+, -, *, /) to build
a tree that produces a value for a given function. Addi-
tionally, random constants (ERCs) in [−1, 1] are added to
the terminal set. The absolute tree output value is used to
determine the operator class: value in [0, 1] corresponds to
“good”, [1, 10] to “average” and greater values to “bad”.

The classifier is trained to minimize the penalty (not en-
tirely equivalent to classification error), which is accumu-
lated for every function. If the operator is classified cor-
rectly, the penalty is zero; if the resulting class is different,
the penalty is 1 for adjacent classes (e.g. good operator
classified as “average”) and 3 for opposite classes (e.g. a
bad operator classified as “good”). The GP parameters are
of secondary importance, but we used a population of 2000
and a stopping criteria of 50 generations without improve-
ment.

4.3 Classification Results
When all the test cases (24 functions) are used as a learn-

ing set, the GP is able to produce classifiers for every op-
erator that succeed in obtaining a correct class for every
function (i.e. the total penalty is zero). This provides the
answer to the first question of whether the landscape prop-
erties are correlated with operator performance. A detailed
analysis of relevant properties for each operator was not con-
ducted at this stage, but it is to be expected that not every
property is equally important for every operator.

The answer to the second question remains a greater chal-
lenge. Since this is a preliminary investigation, no specific
measures are undertaken to increase the generalization abil-
ity of the employed classifier - both the learning model, ter-
mination condition and additional test cases are devoted to
future research. In this work a simple 4-fold cross-validation
is performed on the available set of functions, so that 18
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Table 3: Average rankings of the algorithms (Fried-
man)

Algorithm Ranking

Arithmetic 7.0208
Arithmetic Simple 7.875
Arithmetic Single 9.2083
Average 7.7708
BGA 6.1458
BLX-α 9.0208
BLX-α-β 8.6042
Discrete 7.375
Flat 9.3125
Heuristic 8.2917
Local 6.6458
One point 8.0417
SBX 5.2708
Learned crx 4.4167

Table 4: Post-hoc analysis (control operator:
learned crossover)

i algorithm unadjusted p pHochberg

1 Flat 0.00005 0.000654
2 Arithmetic Single 0.000073 0.00087
3 BLX-α 0.000138 0.001513
4 BLX-α-β 0.000525 0.005252
5 Heuristic 0.001333 0.011996
6 One point 0.002684 0.021472
7 Arithmetic Simple 0.004186 0.029304
8 Average 0.005478 0.032866
9 Discrete 0.014296 0.071481
10 Arithmetic 0.031048 0.124193
11 Local 0.064903 0.194709
12 BGA 0.152176 0.304353
13 SBX 0.479369 0.479369

uation in each fold.
For any number of test cases (functions), the maximum

penalty would equal to 3 times the number of functions,
which corresponds to a 100% normalized penalty. In the
cross-validation, penalties on the evaluation set on unseen
functions for every operator and every fold are recorded.
The average penalty of the evaluation set is 17%, which for
individual operators varies from 12% to 22%. The achieved
values are not spectacular, but we believe that a carefully
designed classification process can enhance the quality of
these initial results.

4.4 Constructing an Efficient Operator
To test the efficiency of the classifiers, we constructed an

artificial algorithm that uses the “recommended” operator
for each test function. This method may be considered a
hyperheuristic, where a machine learning technique is used
to construct the suitable optimization algorithm. For each
function, only the operators that classify to “good” are con-
sidered; out of these, the operator with the closest to true av-
erage rank is selected (the rank is previously available from
experimental results in Table 1). For instance, if three op-
erators are classified as “good” for a given function, the one
with the true rank closest to average among those three is
selected.
The efficiency of such learned crossover is compared with

individual crossover operators, and the results in terms of
average rank are shown in Table 3. The normalized average
error (ēN ) obtained for this operator amounts to 0.33, which
is the best among the individual crossover operators (Tables
5 and 6).

Based on the Friedman test results in Table 3, a post-hoc
statistical analysis is performed to determine where the sig-
nificant differences are. The analysis is performed by tak-
ing the operator with the best rank (which is the learned
crossover) as a control operator and comparing it with the
other operators. The Table 4 presents the results obtained
with the Hochberg test; for the level of significance α = 0.05,
we can conclude that the learned crossover operator is sig-
nificantly better than the first eight operators from the table
(with p-value less than α). For the remaining operators, a
statistically significant difference cannot be proven, but the
learned operator still provides the best normalized average
error.

5. CONCLUSIONS
This paper describes how fitness landscape properties can be

used to assess the crossover operator efficiency. The results show
that the differences between the operators can be correlated with
appropriate landscape properties. A preliminary investigation is
performed which shows the potential of fitness landscape proper-
ties for operator classification in optimization.

Several issues need to be further investigated in this context.
A more diverse set of classifiers (such as decision trees based on
information gain) will be employed to enhance the learning and
generalization. Also, additional test functions should be inves-
tigated, as well as their variations (e.g. rotations, translations,
different number of variables).

Various local search algorithms are available for fitness land-
scape determination that should be investigated. This is espe-
cially important in terms of their time complexity, since a very
large number of evaluations may be needed for convergence, which
can negate the performance gain in a suitable crossover choice.
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