
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/132755

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

http://hdl.handle.net/2066/132755

EPTCS ??, 20??, pp. 1–17, doi:10.4204/EPTCS.??.??

A type system for Continuation Calculus

Herman Geuvers
Radboud University Nijmegen, Technical University Eindhoven, the Netherlands

Wouter Geraedts
Radboud University Nijmegen, the Netherlands

Bram Geron
School of Computer Science, University of Birmingham, UK

Judith van Stegeren
Radboud University Nijmegen, the Netherlands

Continuation Calculus (CC), introduced by Geron and Geuvers [2], is a simple foundational model
for functional computation. It is closely related to lambda calculus and term rewriting, but it has
no variable binding and no pattern matching. It is Turing complete and evaluation is deterministic.
Notions like “call-by-value” and “call-by-name” computation are available by choosing appropriate
function definitions: e.g. there is a call-by-value and a call-by-name addition function.

In the present paper we extend CC with types, to be able to define data types in a canonical way,
and functions over these data types, defined by iteration. Data type definitions follow the so-called
“Scott encoding” of data, as opposed to the more familiar “Church encoding”.

The iteration scheme comes in two flavors: a call-by-value and a call-by-name iteration scheme.
The call-by-value variant is a double negation variant of call-by-name iteration. The double negation
translation allows to move between call-by-name and call-by-value.

1 Introduction

Continuation calculus (or CC) [2] is a crossover between term rewriting systems and λ -calculus. Rather
than focusing on expressions, continuation calculus treats continuations as its fundamental object. This is
realized by restricting evaluation to strictly top-level, discarding the need for evaluation inside contexts.
This also fixes an evaluation order, so the representation of a program in CC depends on whether call-
by-value or call-by-name is desired. Furthermore, CC “separates code from data” by placing the former
in a static program, which is sourced for reductions on a term. Variables are absent from terms, and no
substitution happens inside terms.

Despite the obvious differences between CC and λ -calculus with continuations (or λC), there seems to be
a strong correspondence. For instance, it has been suggested [3] that programs in either can be simulated
in the other up to parametrized (non)termination, in an untyped setting. If the correspondence turns out
to be sufficiently strong, continuation calculus could become an alternative characterization of λC, and
theorems in one system could apply without much effort to the other.

The purpose of this paper is to strengthen the correspondence between CC and λ -calculus, by introducing
a type system for CC and by showing how data types and functions over data can be defined in CC. The
type system rejects some undesired terms and the types emphasize the difference between call-by-name
and call-by-value. Also, the types pave the way for proving properties of the programs. The types
themselves do not enforce termination, because the system is ‘open’: one can add whatever program one

http://dx.doi.org/10.4204/EPTCS.??.??

2 A type system for Continuation Calculus

wants. However, if the programs on data types are defined using only iteration and non-circular program
rules, all programs are terminating. This we show in a separate paper.

1.1 Informal definition of CC

Terms in CC are of the shape n.t1.t2.tk, where n is a name and ti is again a term. The ‘dot’ denotes
binary application, which is left-associative. In CC, terms can be evaluated by applying program rules
which are of the shape

n.x1.x2.xp −→ u,(∗)

where u is a term over variables x1 . . .xp. However, this rule can only be applied on the ‘top level’:

• reduction is not a congruence;

• rule (*) can only be applied to the term n.t1.t2.tk in case k = p,

• then this term evaluates to u[t1/x1, . . . , tp/xp].

CC has no pattern matching or variable binding, but it is Turing complete and a faithful translation to
and from the untyped λ -calculus can be defined, see [3].

In continuation calculus, the natural numbers are represented by the names Zero and Succ and the
following two program-rules:

Zero.c1.c2 −→ c1
Succ.x.c1.c2 −→ c2.x

So Zero represents 0, Succ.Zero represents 1, Succ.(Succ.Zero) represents 2 etcetera. This representa-
tion of data follows the so-called Scott encoding, which is known from the untyped lambda calculus by
defining Zero := λxy.x, Succ := λn.λxy.yn (e.g. see [1,5]). The Scott numerals have “case-distinction”
built in (distinguishing between 0 and n+ 1), which can be used to mimic pattern matching. The more
familiar Church numerals have iteration built in. For Scott numerals, iteration has to be added, or it can
be obtained from the fixed-point combinator in the case of untyped lambda calculus. For CC the situation
is similar: we have to add iteration ourselves.

As an example, we define addition in two ways: in call-by-value (CBV) and in call-by-name (CBN) style
([2]).

Example 1.1
AddCBV.n.m.c −→ n.(c.m).(AddCBV′.m.c)
AddCBV′.m.c.n′ −→ AddCBV.n′.(Succ.m).c

AddCBN.n.m.c1.c2 −→ n.(m.c1.c2).(AddCBN′.m.c2)
AddCBN′.m.c2.n′ −→ c2.(AddCBN.n′.m)

For AddCBV we find that AddCBV.(Succn.Zero).(Succm.Zero).c evaluates to c.(Succn+m.Zero): the
result of the addition function is computed completely and passed as argument to the continuation c.
For AddCBN, only a first step in the computation is carried out and then the result is passed to the
appropriate continuation c1 or c2.

H. Geuvers, W. Geraedts, B. Geron, J. van Stegeren 3

Continuation calculus as it occurs in [2] is untyped. In the present work we present a typing system for
continuation calculus. The typing system gives the user some guarantee about the meaning and well-
formedness of well-typed terms. We also develop a general procedure for defining algebraic data-types
as types in CC and for transforming functions defined over these data types into valid typed terms in CC.
In a separate paper we prove termination of all well-formed iterative CC programs [4].

2 Formal definition of CC

For the detailed formal definition, we refer to [2]. Here we give a short recap of CC. The Terms are
generated by the following grammar:

U ::= N | (U .U) ,

where N is any infinite set of names. So, the terms do not contain variables. (One could add them, but
it’s not necessary.) Names act as labels for functions and constructors in CC. Names in CC start with
an uppercase letter and are printed in bold. The dot is left-associative, so we write (((n.t1).t2).tk) as
n.t1.tk.

The head of a term is its ‘leftmost’ name: head(n.t1.t2.tk) = n. The length of a term is the number of
dots towards the head: length(n.t1.t2.tk) = k.

To define programs we assume any infinite set V of variables. A program is a set of rules, each of the
following shape

n.x1.x2.xk −→ u

where the xi are distinct variables and u is a term over the variables x1, . . . ,xk, so u is a term that may
use, apart from names, also the variables x1, . . . ,xk. We say that the rule defines the name n. Within
a program, a name may occur at most once as the head of a rule. If P is a program, the domain of P,
dom(P) is the set of names that is defined in P.

Let a program P be given. A term can be evaluated in P by applying one of the rules of P to the whole
term as follows. Suppose P contains the rule n.x1.x2.xk −→ u. Then

n.t1.t2.tk −→P u [t1/x1, . . . , tk/xk]

where the latter denotes the substitution of t1, . . . , tk for x1, . . . ,xk. We usually omit the subscript P and
just write −→, as P will be clear from the context.

It should be noted that one does not evaluate ‘under the application’. To make this explicit we introduce
some more terminology. A name n has arity k in P if P contains a rule of the form

n.x1.x2.xk −→ u

Similarly, a term t has an arity in P if arity(head(t))≤ length(t) and we define

arity(t) := arity(head(t))− length(t)

A term t is defined in P if head(t) ∈ dom(P). Otherwise t is undefined in P. A defined term is either
complete, if arity(t) = 0, or incomplete if arity(t)> 0, or invalid if it has no arity.

4 A type system for Continuation Calculus

We write A −→ B for “B is a reduct of A” and A −� B for “A reduces in zero or more steps to B”.
Because every name is defined at most once in the set of program rules, every program is a deterministic
rewriting system.

A term M is said to be terminating (or strongly normalizing) in P if there exists a reduct N such that N
can no longer be rewritten using the rules from P. We write

M ↓P if M can not be rewritten using the rules of P
M

�

P if ∃N(M −� N∧N ↓P)

Note that M −�↓P implies M −� N ↓P, as M −� N can mean that M rewrites to N in zero steps.

The simplest notion of equality between terms in CC is the transitive, symmetric, reflexive closure of
−→, which we denote by =P. SoM1 =P M2 in case there is an N such that M1 −�P N and M2 −�P N.
This is an interesting equivalence relation, however, it is much too fine, as we show in the following
example. (See also [2].)

Example 2.1 For the call-by-name addition of Example1.1, we find that

AddCBN.(Succ.Zero).Zero.c1.c2 −� AddCBN′.Zero.c2.Zero−� c2.(AddCBN.Zero.Zero)

If we also compute Succ.Zero.c1.c2, we obtain c2.Zero, which is not the same term, so we don’t have
AddCBN.(Succ.Zero).Zero.c1.c2 =P Succ.Zero.c1.c2.
If we also allow computing ‘under the function c2’, the terms are still not equal: AddCBN.Zero.Zero
does not reduce to Zero. However, when supplied with two continuations, d1 and d2, they are equal:
AddCBN.Zero.Zero.d1.d2 −� d1 and Zero.d1.d2 −� d1.

In the example we see two terms M and N which are ‘equal for all practical purposes’, but we don’t
have M =P N. We say that two terms M and N are observationally equivalent under program P, notation
M ≈P N, if for all extension programs P′ ⊇ P and all terms X

X .M

�

P′ ⇐⇒ X .N

�

P′

We recall some properties about ≈P from [2]. Proofs can be found in [2].

Lemma 2.2 The relation≈P is a congruence, that is, if M1 ≈P M2 and N1 ≈P N2 , then M1.N1 ≈P M2.N2.

Lemma 2.3 Let M,N be terms of arity k. If M.c1.ck =P N.c1.ck for fresh names c1, . . . ,ck, then
M ≈P N.

Corollary 2.4 If M =P N and arity(M) = arity(N) = 0. Then M ≈P N.

It is not in general the case that M =P N implies M ≈P N. The reason is that reduction of a term need not
respect the arity, giving rise to undesired situations, as can be seen in the following example (also taken
from [2]). Our typing system will prevent these situations to occur.

Example 2.5 Consider the following program rules

Id.x −→ x

Omega.x −→ x.x

Then Id.Omega−→Omega, which is an incomplete term. If we appending another term to Id.Omega,
it becomes invalid: Id.Omega.M has no arity. On the other hand, Omega.Omega−→Omega.Omega,
so this term is non-terminating. Hence, Id.Omega−→Omega, but Id.Omega 6≈P Omega.

H. Geuvers, W. Geraedts, B. Geron, J. van Stegeren 5

The type system will prevent situations as in Example 2.5, by making the program rule for Omega not
‘well-typed’ (and thereby not allowed). Also note that Id.Omega 6≈P Omega is only possible because
arity(Id.Omega) 6= arity(Omega). The type system will make sure that, if M −→ N, then N also has
arity 0.

3 Types for Continuation Calculus

Definition 3.1 We define types of CC as follows.

Type :=⊥ | Var | (Type→ Type) | µVar.Type.

where, in µX .Φ, we require Φ to be of the shape

σ
1→ . . .→ σ

n→⊥ (with n≥ 0),

with each σ i of the shape
τ

i
1→ . . .→ τ

i
ai
→⊥ (with ai ≥ 0),

where each τ i
j is either X or does not contain X.

As usual, we leave out the parentheses around functions types, so A→ B→C always means A→ (B→
C).

As a consequence of the above definition, if we have a type µX .Φ(X), then X occurs positively in Φ.
We could have been more liberal, by allowing all types µX .Φ(X) where X occurs positively in Φ(X),
but we don’t need that to interpret first order data-types. We could also have been more restrictive by
only allowing arrow-types that end with⊥, so replacing the clause Type→ Type by Type, . . . ,Type→⊥,
where the left-hand side denotes a finite sequence of types and σ1, . . . ,σn →⊥ is to be understood as
σ1→ . . .→ σn→⊥. This however complicates the syntax in an inessential way.

The intention of the recursive type µX .Φ(X) is that it denotes the type σ for which σ = Φ(σ). To give
the µ-types their semantics, we introduce type equalities.

Definition 3.2 We define equality between types, σ = τ , as the least equivalence relation that can be
derived using the following rules.

(µ-conv)
µX .τ = τ [µX .τ/X]

σ = τ υ = ρ
(f -conv)

σ → υ = τ → ρ

For a program rule n.x1.xn −→ u with x1 : τ1, . . . ,xk : τk, we will define n to have the following type:
n : τ1→ . . .→ τk→⊥. So ⊥ will be used as the type of complete CC-terms. This is very much in line
with the approach taken by Miquel [7].

CC-types will be printed in bold. For example, the type representing natural numbers N will be printed
as Nat. Abstract types (i.e. for any σ ∈ Type) are printed as σ , τ , A, B, etc.

Example 3.3 The types in CC of some well-known algebraic data-types

Bool := ⊥→⊥→⊥
Nat := µT.⊥→ (T →⊥)→⊥
ListA := µT.⊥→ (A→ T →⊥)→⊥
BinTreeA := µT.⊥→ (A→ T → T →⊥)→⊥

6 A type system for Continuation Calculus

Convention 3.4 We make use of the convention in logic to define ¬A as A→⊥ to introduce ¬σ as an
abbreviation for the type σ →⊥. Similarly, ¬¬σ denotes (σ →⊥)→⊥.

Definition 3.5 A program signature Σ is a finite set N ×Type

Σ = n1 : σ1, . . . ,np : σp (with all ni distinct)

A typing context Γ is a finite set V ×Type:

Γ = x1 : σ1, . . . ,xn : σn (with all xi distinct)

The signature gives the types of the names; it is constructed specifically for a program P. The context is
just a “temporary” set of variables; contexts will be used to define program rules.

We are interested in two kinds of judgment:

1. Σ`P, a program judgment, to express that, given a program signature Σ, P is a well-typed program.
So P will consist of program rules.

2. Γ `Σ M : A, a typing judgment, to express that M – a term with free variables in Γ – has type A,
given program signature Σ and typing context Γ.

Definition 3.6 The derivation rules to derive typing judgments are the following

(Var)
x : σ ∈ Γ

Γ `Σ x : σ
(Name)

n : σ ∈ Σ

Γ `Σ n : σ

(Appl) Γ `Σ M : σ → τ Γ `Σ N : σ

Γ `Σ M.N : τ

(=-conv) Γ `Σ M : σ σ = τ

Γ `Σ M : τ

Definition 3.7 The derivation rules to derive program judgments are the following

(Nil)
Σ ` /0

(Cons)
Σ ` P x1 : A1, . . . ,xk : Ak `Σ q :⊥ n : A1→ . . .→ Ak→⊥ ∈ Σ

if n not defined in P
Σ ` P∪{n.x1.xk −→ q}

We say that program P is well-typed in Σ in case Σ ` P. Usually, Σ will be clear and we just say
that P is well-typed. Similarly, we say that the program rule n.x1.xk −→ q is well-typed P in case
P∪{n.x1.xk −→ q} is well-typed.

The second and third premise in the (Cons) rule say that the types of n.x1.xk and q should be both ⊥.
This guarantees that we can only rewrite terms of type ⊥.

Example 3.8 1. Recall the term Zero with rule Zero.c1.c2 −→ c1 and . We easily verify that this
rule is well-typed if we let Zero :⊥→ (Nat→⊥)→⊥, i.e. Zero : Nat.

2. Similarly, recall the rule for Succ: Succ.x.c1.c2 −→ c2.x. It is well-typed if we let Succ : Nat→
⊥→ (Nat→⊥)→⊥, i.e. Succ : Nat→ Nat.

H. Geuvers, W. Geraedts, B. Geron, J. van Stegeren 7

3. Recalling the definition of AddCBV in Example 1.1, we see that AddCBV takes arguments of
type Nat, Nat and Nat→ ⊥ to produce a term of type ⊥. So the rule is well-typed if we take
AddCBV : Nat→ Nat→¬¬Nat. (NB. AddCBV′ : Nat→ (¬Nat)→ Nat→⊥.)

4. For the definition of AddCBN in Example 2.1, we see that AddCBN : Nat→ Nat→ Nat.

5. To type the rule for Omega in Example 2.5, we need Omega : σ →⊥ with σ = σ →⊥. But there
is no type σ for which σ = σ →⊥, so the rule for Omega is not well-typed.

We have the following properties.

Lemma 3.9 1. [Substitution] If n : τ ∈ Σ, `Σ t : σ and `Σ q : τ , then `Σ t[q/n] : σ .

2. [Subject reduction] If `Σ t : σ , and t −→ p, then σ =⊥ and `Σ p :⊥.

Proof 1. By induction on the derivation of `Σ t : σ .

2. Using the first property. If t −→ p by the rule n.x1.xk −→ q, then t = n.t1.tk and p =
q[t1/x1, . . . , tk/xk].

We have x1 : A1, . . . ,xk : Ak `Σ q : ⊥ and x1 : A1, . . . ,xk : Ak `Σ n.x1.xk : ⊥, so by substitution
(where we now substitute terms for variables, but the argument is the same) we have t : ⊥ and
p :⊥. �

We have the following Corollary of the above and of Corollary 2.4.

Corollary 3.10 If M and N are well-typed terms of type ⊥ and M =P N, then M ≈P N.

3.1 Data types in CC

We have seen the definitions of the types of booleans, natural numbers and lists in Example 3.3. Here we
give a general way of defining constructors and first order algebraic data types in CC. (That is, for now
we don’t allow higher order types in the constructor types.)

Definition 3.11 A first order data type will be written as

data− type D with constructors
CD

1 : D1
1→ . . .→ D1

a1
→ D

. . .
CD

n : Dn
1→ . . .→ Dn

an
→ D

where each of the Di
j is either D or a type expression that does not contain D. If D is clear from the

context, we will omit it as a superscript and write Ci in stead of CD
i .

This defines an algebraic data-type D with n constructors with names C1, . . . ,Cn. Each constructor Ci

has arity ai, which can also be 0, and then the constructor is a constant.

Convention 3.12 To simplify notation later, we abbreviate the list of argument types of a constructor,
writing T 1 for D1

1 . . .D
1
a1

etc. As a matter of fact, this is a kind of uncurrying, replacing C1 : D1
1→ . . .→

D1
a1
→ D by C1 : D1

1× . . .×D1
a1
→ D, and then we abbreviate D1

1× . . .×D1
a1

to T 1.

8 A type system for Continuation Calculus

For every constructor we will introduce a name in CC and a rule that defines it. This program rule acts
as a destructor of D. If a term of type D has constructor ConsD

i as its head, all the arguments of that
constructor t i

1, . . . , t
i
ai

will be returned to the corresponding continuation ci.

Example 3.13 Consider the algebraic data type of lists over a type A, ListA: In Example 3.3, we have
defined this data-type in CC µT.⊥→ (A→ T →⊥)→⊥. The constructors for lists are added to CC by
introducing the following program rules to our program, where Nil :⊥ and Cons : A→ ListA→⊥.

Nil.c1.c2 −→ c1
Cons.x1.x2.c1.c2 −→ c2.x1.x2

We now give the general definition of first order data-type in CC.

Definition 3.14 Given a first order data type D as in Definition 3.11 with n constructors, where, for
1≤ i≤ n, Ci : Di

1→ . . .Di
ai
→ D, we define the following type D in CC.

D := µX .(T 1[X/D]→⊥)→ . . .→ (T n[X/D]→⊥)→⊥.

For i ∈ [1 . . .n], we add the following constructor ConsD
i to the signature Σ.

ConsD
i : T i→ D.

Finally, we add for each i (1≤ i≤ n) the following program rule that acts as a destructor for D.

ConsD
i .x

i
1.x

i
ai
.c1.cn −→ ci.xi

1.x
i
ai

So, in CC we always have arity(ConsD
i) = ai + n. Example 3.13 conforms with this definition. The

constructors are well-typed in CC because we have the equation

D = (T 1→⊥)→ . . .→ (T n→⊥)→⊥.

Notation 3.15 Let D be a data type and D its representation as a type in Continuation Calculus. If d : D
(so d is a data type element of D), we denote by 〈d〉 : D the encoding of d as a term in CC. (So 〈d〉 is
defined in the canonical way using the constructors of Definition 3.14.)

Convention 3.16 Unless otherwise specified, Di
j is the type of the jth argument of the ith constructor of

data type D. In the case of ListA: D2
1 = A, D2

2 = ListA.

We often give the typing of terms via a derivation rule.

x1 : Di
1 . . . xai : Di

ai
c1 : T 1→⊥ . . . cn : T n→⊥

ConsD
i .x1.xai .c1.cn :⊥

3.2 Iteration schemes

In this section we give iteration schemes for continuation calculus that provides general mechanisms
for defining functions by recursion. An iteration scheme defines recursive functions in a general way,

H. Geuvers, W. Geraedts, B. Geron, J. van Stegeren 9

ensuring well-definedness and termination for these functions. In CC we have a call-by-name and a
call-by-value variant of the iteration scheme.

The simplest and most well-know form of iteration is over N: Given b : B, f : B→ B, the function
It(b, f) : N→ B defined by iteration from b and f , is given by

It(b, f)(n) =
{

b if n = 0
f (It(b, f)(m)) if n = m+1

An iterator ItD for a general data-type D (following the general scheme for first order data-types in
Definition 3.11) to some type B has the following type:

f1 : T 1[B/D]→ B . . . fn : T n[B/D]→ B

ItD f1 . . . fn : D→ B

with
ItD f1 . . . fn(Ci v1 . . .vai) = fiV1 . . .Vai ,

where Vj = ItD f1 . . . fn v j if v j : D and Vj = v j otherwise.

This is not yet the correct type for an iteration scheme in CC. We do not yet have any continuations as
parameters. We will provide separate CBN and CBV iteration schemes below.

3.3 Call-by-name iterators

For a call-by-name iterator for a data-type D, we also have to consider the return data-type B. CBV
calculates the entire return value, but for CBN it is enough to return the proper continuations with the
proper parameters after calculating only one step in the recursion. So the CBN-iterator also passes around
the continuations to the resulting values. If result type B has m constructors, then the iterator ItCBND→B

also needs m continuations as arguments. This differs from a call-by-value iterator, where we only have
one continuation.

Let in the following, D be a data-type with n constructors and B a data-type with m constructors.

Definition 3.17 We define the call-by-name iterator for type D to type B as follows. We first give the
types of the new names. We abbreviate f1 . . . fn to ~f , c1 . . .cm to~c and x1 . . .xai to~x.

f1 : T 1[B/D]→ B . . . fn : T n[B/D]→ B c1 : B1 . . .cm : Bm x : D

ItCBND→B.~f .x.~c :⊥

f1 : T 1[B/D]→ B . . . fn : T n[B/D]→ B c1 : B1 . . .cm : Bm x1 : Di
1 . . .x

i
ai

: Di
ai

ItCBNi
D→B.~f .~c.x1 . . .xai :⊥

The program rules are

ItCBND→B.~f .x.~c−→ x.(ItCBN1
D→B.~f .~c).(ItCBNn

D→B.~f .~c),

and for i ∈ [1 . . .n]:
ItCBNi

D→B.~f .~c.~x−→ fi.b(x1).b(xai).~c

10 A type system for Continuation Calculus

with b(x) =
{

ItCBND→B.~f .x if x : D
x otherwise

In Section 4, we give in Example 4.1 the call-by-name iterator for ListA to Nat. The following can easily
be checked. (See Definition 3.7 for the formal definition of well-typed rules.)

Lemma 3.18 The rules given in Definition 3.17 are well-typed.

3.4 Call-by-value iterators

Call-by-value iterators differ from their call-by-name cousins in the sense that the result of the computa-
tion is ‘normalized’ or fully evaluated at the end of the computation.

Definition 3.19 We define the call-by-value iterator for a type D to B as follows. (We abbreviate f1 . . . fn

to ~f .)
f1 : T 1[B/D]→¬¬B . . . fn : T n[B/D]→¬¬B c : ¬B d : D

ItCBVD→B ~f cd :⊥

and for i ∈ [1,n] and j ∈ [1,ai], under the same typing hypotheses for ~f and c:

x j : Di
j . . .xai : Di

ai
r1 : Di

1[B/D] . . .r j−1 : Di
j1 [B/D]

ItCBVi, j
D→B.

~f .c.x j . . .xai .r1 . . .r j−1 :⊥

The program rules are

ItCBVD→B.~f .c.x −→ x.(ItCBV1,1
D→B.

~f .c).(ItCBVn,1
D→B.

~f .c)

and for i ∈ [1,n] and j ∈ [1,ai]:

ItCBVi, j
D→B.

~f .c.x j . . .xai .r1 . . .r j−1 −→ LHS

LHS =

{
ItCBVD→B.~f .(ItCBVi, j+1

D→B.
~f .c.x j+1 . . .xai .r1 . . .r j−1).x j if x j : D

ItCBVi, j+1
D→B.

~f .c.x j+1 . . .xai .r1 . . .r j−1.x j otherwise

ItCBVi,ai+1
D→B .~f .c.r1 . . .rai −→ fi.r1 . . .rai .c

The technical subtlety in the call-by-value reduction rule lies in the fact that, in case data-type D has a
constructor with more than one recursive sub-term (e.g. in the case of binary trees, where we have ‘join’,
taking two sub-trees), we have to evaluate all recursive sub-terms. The reduction rule makes sure that we
do that and reduce to a complete value before calling the function. The following lemma helps in better
understanding the terms ItCBVi, j

D→B.
~f .c. in Definition 3.19.

Lemma 3.20 For j ∈ [1 . . .ai], given x j : Di
j . . .xai : Di

ai
and r1 : Di

1[B/D] . . .r j−1 : Di
j1 [B/D], the reduct

of ItCBVi, j
D→B.

~f .c.x j . . .xai .r1 . . .r j−1 is of type ⊥.

Proof For j = ai, the result is immediate, for other j, the result follows from the result for j+1, making
a case distinction between Di

j[B/D] = Di
j or Di

j[B/D] = B. �

H. Geuvers, W. Geraedts, B. Geron, J. van Stegeren 11

The following now easily follows.

Lemma 3.21 The rules given in Definition 3.19 are well-typed.

Example 3.22 For the iterator from Nat to Nat, this amounts to the following

ItCBVNat→Nat. f1. f2.c.x−→ x.(ItCBVZero,1
Nat→Nat. f1. f2.c).(ItCBVSucc,1

Nat→Nat. f1. f2.c)

ItCBVZero,1
Nat→Nat. f1. f2.c−→ f1.c

ItCBVSucc,1
Nat→Nat. f1. f2.c.x1 −→ ItCBVNat→Nat. f1. f2.(ItCBVSucc,2

Nat→Nat. f1. f2.c).x1

ItCBVSucc,2
Nat→Nat. f1. f2.c.r1 −→ f2.r1.c

This can be compressed a bit if we replace ItCBVZero,1
Nat→Nat. f1. f2.c by f1.c.

Another simplification that we can do is to replace some auxiliary names that are introduced in the itera-
tion scheme by a λ -term. For example we can replace ItCBVSucc,2

Nat→Nat by the new ‘name’ (λ f1, f2,c, r1 7→
f2.r1.c). The convention for such a name is that

(λ f1, f2,c, r1 7→ f2.r1.c). f1. f2.c.r1 −→ f2.r1.c.

So, the arity of the new name is the number of arguments of the λ and its program rule is given by the
body. Now the rules for ItCBVNat→Nat simplify to

ItCBVNat→Nat. f1. f2.c.x−→ x.(f1.c).(ItCBVSucc,1
Nat→Nat. f1. f2.c)

ItCBVSucc,1
Nat→Nat. f1. f2.c.x1 −→ ItCBVNat→Nat. f1. f2.((λ f1, f2,c, r1 7→ f2.r1.c). f1. f2.c).x1

In Section 4, we show more examples, notably in Example 4.2 we give the call-by-value iterator for ListA

and we show how to program the ‘length’ function with it.

3.5 Rules for programming with data types in CC

Starting from the constructors for first order data types and the call-by-name and call-by-value iterators
we can program new functions from existing ones. However, due to the fact that we are in CC and not
in λ -calculus, we need some additional ‘glue’ to make flexible use of the iteration scheme to define
functions.

Example 3.23 Given ItCBVNat→Nat we can define AddCBV as follows.

AddCBV.m.n.c := ItCBVNat→Nat.(F1.m).F2.c.n

where F1 and F2 are defined by

F1.x.c −→ c.x

F2.x.c −→ c.(Succ.x)

So, we need 2 auxiliary functions to define AddCBV in terms of ItCBVNat→Nat. In terms of Example
3.23, we need the names (λx,c 7→ c.x), which is F1 and (λx,c 7→ c.(Succ.x)), which is F2.

12 A type system for Continuation Calculus

The example shows that, to really profit from the expressivity of the iteration schemes, we must allow
the addition of ‘simple’ functions. These are functions that have a non-circular definition.

Definition 3.24 A non-circular program rule is a rule of the form

n.x1. . . .xk −→ q,

where the names occurring in q are restricted to the constructors (Definition 3.14) and the iterators
(CBN, Definition 3.17 and CBV, Definition 3.19).

We define P as the set of program rules that contains constructors for all data types (Definition 3.14),
iterators for all data types (CBN, Definition 3.17 and CBV, 3.19) and arbitrary many non-circular rules.

So, P is an “open set”: it contains constructors and iterators for all (infinitely many) data-types that we
can define, and it includes arbitrary many “non-circular rules” that can be added when desired. This is
needed to really define functions using the iteration schemes.

3.6 Translating between call-by-name and call-by-value

We can mediate between the call-by-name and the call-by-value representations of data by defining a
function StoreNat : Nat→¬¬Nat and a function UnstoreNat : ¬¬Nat→ Nat. The function StoreNat
act as a storage operator in the sense of Krivine ([6]) in the sense that for t : Nat with t ≈ 〈n〉 and
c : Nat→⊥,

StoreNat.t.c−� c.〈n〉 .

So, StoreNat first evaluates the argument t of type Nat completely before passing it on to the continuation
c. The term StoreNat.t.c can be defined as AddCBV.t.Zero.c, but we can also define it directly by

StoreNat.n.r −→ n.(r.Zero).(A.r)

A.r.m −→ StoreNat.m.(B.r)
B.r.m′ −→ r.(Succ.m′)

It is easy to verify that StoreNat : Nat→¬¬Nat. (Note that A,B : ¬Nat→¬Nat.)

In the reverse direction, we have UnstoreNat : ¬¬Nat→ Nat, defined by, given f : ¬¬Nat,

UnstoreNat. f .z.s −→ f .(UseNat.z.s)
UseNat.z.s.n −→ n.z.s

Then UnstoreNat : ¬¬Nat→ Nat. (Note that UseNat :⊥→¬Nat→¬Nat.)

Lemma 3.25 For all t : Nat and n ∈ N with t ≈ 〈n〉, StoreNat.t.c−� c.〈n〉.
For all n ∈ N, UnstoreNat.(StoreNat.〈n〉)≈ 〈n〉.

H. Geuvers, W. Geraedts, B. Geron, J. van Stegeren 13

Proof For the first, we note that, if t ≈ 〈n〉, then: (i) in case n = 0, t.z.s −� z; (ii) in case n = m+ 1,
t.z.s −� s.q for some q with q ≈ 〈m〉. Then we prove the following by induction on n (for all p):
StoreNat.〈n〉 .(Bp.r)−� r.(Succn+p.Zero).

For the second, we prove UnstoreNat.(StoreNat.〈n〉).z.s =P 〈n〉 .z.s, which is sufficient by Corollary
3.10. We compute:

UnstoreNat.(StoreNat.〈n〉).z.s −� StoreNat.〈n〉 .(UseNat.z.s)
−� UseNat.z.s.〈n〉
−� 〈n〉 .z.s

Thus, UnstoreNat.(StoreNat.〈n〉).z.s =P 〈n〉 .z.s which was what we had to prove. �

The map StoreNat can be seen as adding a double negation, whereas UnstoreNat can be seen as a
classical double negation law, UnstoreNat : ¬¬Nat→ Nat. Note that the fact that ¬¬Nat→ Nat is
inhabited is not a surprise, because Nat is a negative type (ending in→⊥. The precise connection with
classical logic remains to be studied.

The storage and ‘unstorage’ operators can most likely also be defined for other data types.

More interesting to study further is the fact that we can combine call-by-name and call-by-value func-
tions. We detail this for natural numbers.

Example 3.26 If we have f1 : Nat and f2 : Nat→ Nat, c1 :⊥, c2 : Nat→⊥ and n : Nat, then

ItCBNNat→Nat. f1. f2.n.c1.c2 :⊥

gives a call-by-name iteration. However, one can also first define f̂1 : ¬¬Nat, f̂2 : Nat→ ¬¬Nat and
(̂c1,c2) : Nat→⊥ by

f̂1.c −→ c. f1

f̂2.n.c −→ c.(f2.n)

(̂c1,c2).n −→ n.c1.c2

Then, for n : Nat, we have
ItCBVNat→Nat. f̂1. f̂2.(̂c1,c2).n :⊥

which gives call-by-value iteration. So, using this transformation (from f1 to f̂1 etc.) one can use the
call-by-name functions to compute call-by-value.

4 Examples of iterators and programs

Example 4.1 This is the call-by-name iterator for ListA to Nat:

ItCBNListA→Nat. f1. f2.x.c1.c2 −→
x.(ItCBNNil

ListA→Nat. f1. f2.c1.c2).(ItCBNCons
ListA→Nat. f1. f2.c1.c2)

ItCBNNil
ListA→Nat. f1. f2.c1.c2 −→ f1.c1.c2

ItCBNCons
ListA→Nat. f1. f2.c1.c2.x1.x2 −→ f2.x1.(ItCBNListA→Nat. f1. f2.x2).c1.c2

14 A type system for Continuation Calculus

Example 4.2 The scheme of Definition 3.19 yields the following call-by-value iterator for ListA to B:

ItCBVListA→B. f1. f2.c.x −→ x.(ItCBVNil,1
ListA→B. f1. f2.c).(ItCBVCons,1

ListA→B. f1. f2.c)

ItCBVNil,1
ListA→B. f1. f2.c −→ f1.c

ItCBVCons,1
ListA→B. f1. f2.c.x1.x2 −→ ItCBVCons,2

ListA→B. f1. f2.c.x2.x1

ItCBVCons,2
ListA→B. f1. f2.c.x2.r1 −→ ItCBVListA→B. f1. f2.(ItCBVCons,3

ListA→B. f1. f2.c.r1).x2

ItCBVCons,3
ListA→B. f1. f2.c.r1.r2 −→ f2.r1.r2.c

We note that the number of program rules we need is highly dependent on the arity of the constructors
Nil and Cons. Since Nil has no parameters, one rule is enough to define the operation on Nil. Cons on
the other hand has two parameters. Because of this we get three program rules: one for evaluating each
parameter of the constructor and one general rule that redirects every parameter to the corresponding
program rule.

We now show the use of the iterators by providing the implementation of the function Length. We use
the iterators for ListA from Example 4.1 and Example 4.2.

LengthCBN.x.c1.c2 −→ ItCBNListA→Nat.LengthCBN1.LengthCBN2.x.c1.c2

LengthCBN1.c1.c2 −→ Zero.c1.c2

LengthCBN2.x.n.c1.c2 −→ Succ.n.c1.c2

LengthCBV.x.c −→ ItCBVListA→Nat.LengthCBV1.LengthCBV2.c.x
LengthCBV1.c −→ c.Zero
LengthCBV2.x.n.c −→ c.(Succ.n)

We prove for N that the two iterator schemes (CBN and CBV) indeed compute the desired results. We
expect that this proof can easily be extended to prove the semantics of our iteration schemes for any
first-order algebraic data-type. We leave this for future work.

We assume D to be a data type which has a representation in Continuation Calculus, D, with a repre-
sentation such that 〈d〉 : D, for d : D. We now define what it means that a function over a data-type is
represented in CC.

Definition 4.3 We say that f1 :¬¬D CBV-represents d : D and f2 : D→¬¬D CBV-represents F : D→D,
if for all c : D→⊥ and n ∈ N we have

f1.c−� c.〈d〉 (1)

f2.〈n〉 .c−� c.〈F(n)〉 (2)

The following Theorem states the semantic correctness of ItCBVNat→D in CC. The proof can be found
in the Appendix section 6.

Theorem 4.4 If f1 CBV-represents d : D and f2 CBV-represents F : D→ D, then ItCBVNat→D. f1. f2
CBV-represents It(d,F), that is: for all c : D→⊥ and all n ∈ N we have

ItCBVNat→D. f1. f2.c.〈n〉 −� c.〈(It(d,F))(n)〉

H. Geuvers, W. Geraedts, B. Geron, J. van Stegeren 15

Definition 4.5 If D has m constructors, we say that f1 : D CBN-represents d : D and f2 : D→ D CBN-
represents F : D→ D, if for all ci : Di and n ∈ N we have (writing~c = c1 . . .cm):

f1.~c≈ 〈d〉 .~c (1)

f2.〈n〉 .~c≈ 〈F(n)〉 .~c (2)

The following Theorem states the semantic correctness of ItCBNNat→D in CC. The proof can be found
in the Appendix section 6.

Theorem 4.6 If D has m constructors, f1 CBN-represents d : D and f2 CBN-represents F : D→D, then
ItCBNNat→D. f1. f2 CBN-represents It(d,F). That is, for all ci : Di and all n ∈ N:

ItCBNNat→D. f1. f2.〈n〉 .~c ≈ 〈(It(d,F))(n)〉 .~c

5 Future Work and Conclusions

As future work, we want to understand better the relation with classical logic, which we have briefly
indicated in Section 4. Here we have also defined storage (and unstorage) operators, which we would
like to define in general for all data types. The possibility to combine call-by-value and call-by-name in
a flexible way, which is directed by the types, is an interesting feature, which needs further study. The
fact that computation is completely deterministic and that the function definition of f itself determines
whether f is cbv or cbn, makes the this combining of cbv and cbn very perspicuous.

The continuations in this paper are limited, and do not include delimited continuations. (More examples
using continuations van be found in [2].) It would be interesting to see if delimited continuations can be
added.

In a forthcoming paper [4] we prove the termination of all CC terms written using the program rules of
P. This is done by translating CC with these rules to a typed λ -calculus with (cbv and cbn) iterators. We
wish to further study the precise translations and connections between CC and (typed) λ -calculus.

References
[1] M. Abadi, L. Cardelli, and G. Plotkin. Types for the scott numerals. http://lucacardelli.name/Papers/

Notes/scott2.pdf, 1993.
[2] B. Geron and H. Geuvers. Continuation calculus. In Proceedings of COS 2013, volume 127 of EPTCS, pages

66–85, 2013.
[3] Bram Geron. Continuation calculus, master’s thesis. http://alexandria.tue.nl/extra1/afstversl/

wsk-i/geron2013.pdf, 2013.
[4] Herman Geuvers. A typed λ -calculus with cbn and cbv iterators. to appear, 2014.
[5] J.M. Jansen. Programming in the λ -calculus: From Church to Scott and back. In The Beauty of Functional

Code, volume 8106 of Lecture Notes in Computer Science, pages 168–180, 2013.
[6] Jean-Louis Krivine. Classical logic, storage operators and second-order lambda-calculus. Ann. Pure Appl.

Logic, 68(1):53–78, 1994.
[7] A. Miquel. Classical realizability with forcing and the axiom of countable choice. http://perso.

ens-lyon.fr/alexandre.miquel/habilitation/forcing.pdf, 2009.

http://lucacardelli.name/Papers/Notes/scott2.pdf
http://lucacardelli.name/Papers/Notes/scott2.pdf
 http://alexandria.tue.nl/extra1/afstversl/wsk-i/geron2013.pdf
 http://alexandria.tue.nl/extra1/afstversl/wsk-i/geron2013.pdf
http://perso.ens-lyon.fr/alexandre.miquel/habilitation/forcing.pdf
http://perso.ens-lyon.fr/alexandre.miquel/habilitation/forcing.pdf

16 A type system for Continuation Calculus

6 Appendix

Proof of Theorem4.4

Proof We recall the definition of ItCBVNat→BB:

ItCBVNat→B. f1. f2.c.x−→ x.(ItCBVZero,1
Nat→B. f1. f2.c).(ItCBVSucc,1

Nat→B. f1. f2.c) (3a)

ItCBVZero,1
Nat→B. f1. f2.c−→ f1.c (3b)

ItCBVSucc,1
Nat→B. f1. f2.c.x1 −→ ItCBVNat→B. f1. f2.(ItCBVSucc,2

Nat→B. f1. f2.c).x1 (3c)

ItCBVSucc,2
Nat→B. f1. f2.c.r1 −→ f2.r1.c (3d)

By induction on n we prove that for all n, P(n) holds, with

P(n) := ItCBVNat→B. f1. f2.c.〈n〉 −� c.〈(It(x,F))(n)〉

P(0) holds, because:

ItCBVNat→B. f1. f2.c.〈0〉
(3a)−−→ 〈0〉 .(ItCBVZero,1

Nat→B. f1. f2.c).(ItCBVSucc,1
Nat→B. f1. f2.c)

= Zero.(ItCBVZero,1
Nat→B. f1. f2.c).(ItCBVSucc,1

Nat→B. f1. f2.c)
Zero−−→ ItCBVZero,1

Nat→B. f1. f2.c
(3b)−−→ f1.c
(1)
−� c.〈x〉
= c.〈(It(x,F))(0)〉

Assume P(n) holds.

P(n+1) holds, because:

ItCBVNat→B. f1. f2.c.〈n+1〉 (3a)−−→ 〈n+1〉 .(ItCBVZero,1
Nat→B. f1. f2.c).(ItCBVSucc,1

Nat→B. f1. f2.c)
= Succ.〈n〉 .(ItCBVZero,1

Nat→B. f1. f2.c).(ItCBVSucc,1
Nat→B. f1. f2.c)

Succ−−→ ItCBVSucc,1
Nat→B. f1. f2.c.〈n〉

(3c)−−→ ItCBVNat→B. f1. f2.(ItCBVSucc,2
Nat→B. f1. f2.c).〈n〉

P(n)
−−� ItCBVSucc,2

Nat→B. f1. f2.c.〈(It(x,F))(n)〉
(3d)−−→ f2.〈(It(x,F))(n)〉 .c
(2)
−� c.〈F((It(x,F))(n))〉
= c.〈F(Fn(x))〉
= c.

〈
Fn+1(x)

〉
= c.〈(It(x,F))(n+1)〉

Proof of Theorem4.6

H. Geuvers, W. Geraedts, B. Geron, J. van Stegeren 17

Proof We recall the definition of ItCBNNat→B:

ItCBNNat→B. f1. f2.x.~c−→ x.(ItCBNZero
Nat→B. f1. f2.~c).(ItCBNSucc

Nat→B. f1. f2.~c) (3a)

ItCBNZero
Nat→B. f1. f2.c−→ f1.~c (3b)

ItCBNSucc
Nat→B. f1. f2.c.x1 −→ f2.(ItCBNNat→B. f1. f2.x1).~c (3c)

By induction on n we prove that for all n, P(n) holds, with

P(n) := ItCBNNat→B. f1. f2.〈n〉 .~c≈ 〈(It(x,F))(n)〉 .~c

P(0) holds, because:

ItCBNNat→B. f1. f2.〈0〉 .~c
(3a)−−→ 〈0〉 .(ItCBNZero

Nat→B. f1. f2.~c).(ItCBNSucc
Nat→B. f1. f2.~c)

= Zero.(ItCBNZero
Nat→B. f1. f2.~c).(ItCBNSucc

Nat→B. f1. f2.~c)
Zero−−→ ItCBNZero

Nat→B. f1. f2.~c
(3b)−−→ f1.~c
(1)
−� 〈x〉 .~c
= 〈(It(x,F))(0)〉 .~c

Assume P(n) holds.

P(n+1) holds, because:

ItCBNNat→B. f1. f2.〈n+1〉 .~c (3a)−−→ 〈n+1〉 .(ItCBNZero
Nat→B. f1. f2.~c).(ItCBNSucc

Nat→B. f1. f2.~c)
= Succ.〈n〉 .(ItCBNZero

Nat→B. f1. f2.~c).(ItCBNSucc
Nat→B. f1. f2.~c)

Succ−−→ ItCBNSucc
Nat→B. f1. f2.~c.〈n〉

(3c)−−→ f2.(ItCBNNat→B. f1. f2.〈n〉).~c
P(n),[2.3]
≈ f2.〈(It(x,F))(n)〉 .~c
(2)
≈ 〈F((It(x,F))(n))〉 .~c
= 〈F(Fn(x))〉 .~c
=

〈
Fn+1(x)

〉
.~c

= 〈(It(x,F))(n+1)〉 .~c

In the proof, we say that f2.(ItCBNNat→B. f1. f2.〈n〉).~c ≈ f2.〈(It(x,F))(n)〉 .~c. This may may not be
immediately obvious, as the sub-term ItCBNNat→B. f1. f2.〈n〉 is incomplete. However, it is an immediate
consequence of Lemma2.3: If M,N are terms of arity k, and M.t1.tk =p N.t1.tk for all~t, then
M ≈ N.

	Introduction
	Informal definition of CC

	Formal definition of CC
	Types for Continuation Calculus
	Data types in CC
	Iteration schemes
	Call-by-name iterators
	Call-by-value iterators
	Rules for programming with data types in CC
	Translating between call-by-name and call-by-value

	Examples of iterators and programs
	Future Work and Conclusions
	Appendix

