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Abstract

We introduce a restricted hard dimer model on a random causal triangulation
that is exactly solvable and generalizes a model recently proposed by Atkin and
Zohren [16]. We show that the latter model exhibits unusual behaviour at its
multicritical point; in particular, its Hausdorff dimension equals 3 and not 3/2
as would be expected from general scaling arguments. When viewed as a special
case of the generalized model introduced here we show that this behaviour is not
generic and therefore is not likely to represent the true behaviour of the full dimer
model on a random causal triangulation.
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1 Introduction

The study of statistical theories of fluctuating geometries is important for a num-
ber of reasons. Regularized via appropriate lattices, so-called Dynamical Trian-
gulations (DT)1), they may serve as rigorous definitions of the path integral of
bosonic string theories [2], or quantum gravity [3]. The DT formalism has been
immensely successful in the study of two-dimensional quantum gravity coupled
to conformal field theories with central change c ≤ 1, also known as non-critical
string theory or Liouville quantum gravity, but it has been less successful serving
as a regularization of a putative higher dimensional quantum gravity theory [4].
In an attempt to improve the situation a modified lattice regularization, called
the Causal Dynamical Triangulation (CDT), was proposed in which a foliation
structure is imposed on the lattices representing space-time (which we here will
assume has Eucliean signature) [5, 6]). Such a foliation structure is also imposed
in the so-called Hořava-Lifshitz gravity theory [7]. Some interesting results re-
lated to higher dimensional quantum gravity have been obtained using the CDT
regularization (see [8] for a review). Here we will discuss the two-dimensional
CDT theory, which in principle should be simpler than the corresponding two-
dimensional DT theory. Indeed, the scaling limit of CDT not coupled to matter
is simple [5, 9], and it can be shown to correspond to two-dimensional Hořava-
Lifshitz quantum gravity [10]. However, in contrast to the case of two-dimensional
DT, it has been difficult to obtain solvable models of two-dimensional CDT cou-
pled to field theories. The only analytically solvable example of an explicit field
theory system coupled to gravity is provided by CDT coupled to gauge fields [11],
but two-dimensional gauge field theories are mainly topological, so the systems
obtained are very simple from a matter perspective.

Computer simulations indicate that for unitary conformal field theories with
central charge c ≤ 1 the coupling between matter and geometry is weak [12,
13] with the critical exponents of both the matter theories and the geometry
apparently unchanged. This is in sharp contrast to the DT situation, where both
matter and geometric exponents are shifted relative to the matter exponents
in flat spacetime and the geometric exponents in 2d Liouville gravity without
matter. According to the computer simulations the situation changes when the
central charge c of the matter fields coupled to CDT is larger than one indicating
that the coupling to geometry then becomes strong [14, 15].

Thus it was interesting and surprising when it was shown that restricted
dimer systems coupled to CDT could be solved analytically and seemingly led to a
change of the critical exponents of the geometry [16, 17]. It is well known that the
hard dimer model on a regular two-dimensional lattice exhibits critical behaviour

1There are other ways to provide lattice regularizations of bosonic string theory, e.g. using
hypercubic lattices [1].
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for a certain negative value of the fugacity, and that this critical system can
be associated with a (2,5) minimal non-unitary field theory having central charge
c = −22/5. In fact, it can be identified via the high temperature expansion of the
Ising model in an imaginary magnetic field with the Lee-Yang edge singularity.
In [22] it was shown that a similar identification of a critical hard dimer model
with the Lee-Yang edge singularity can be made in the DT case and the critical
exponents can be calculated. One finds again a non-trivial interaction between
geometry and matter, but it is weaker than the interaction between the unitary
models and geometry. This is in accordance with the expectation that when
c → −∞ matter and gravity decouple. Thus the change in critical geometric
properties found in [16, 17] when coupling the CDT model to some classes of
restricted dimers is puzzling: for unitary models with 0 < c ≤ 1 we have a
weak coupling and no change in critical geometric properties of the geometry, as
mentioned above. Naively we would expect the dimer systems at criticality to
correspond to non-unitary field theories with central charge c < 0 and thus an
even weaker coupling, by analogy to the DT systems. This has motivated us to
take a closer look at the model proposed in [16] (hereafter called the AZ model).
As we will report below the model is more subtle than anticipated in [16].

The rest of this article is organized as follows. In Sec. 2 we define a gen-
eralized AZ model and discuss its basic properties. In Sec. 3 we consider the
two-point function in the AZ model in a grand canonical setting and we use it
to calculate the global Hausdorff dimension dH . Sec. 4 addresses the calculation
of the so-called local Hausdorff dimension dh in a microcanonical setting. We
find somewhat surprisingly that dh = dH = 3. In Sec. 5 we show that this result
is very special and probably not representative for an unrestricted hard dimer
model coupled to CDT. We do this by analyzing in some detail the extended
AZ model which allows more general dimer configurations while remaining solv-
able. The AZ model corresponds to one particular point in the phase boundary
of this generalized model and we show that it is the only point at which the
Hausdorff dimensions assume the value 3, while the values at other points are
either dH = 3/2 and dh = 1 or dH = dh = 2. Sec. 6 contains a discussion of
the results and arguments in favour of viewing dH = 3/2 as correct also for the
unrestricted dimer model coupled to CDT, i.e. for a c = −22/5 conformal field
theory coupled to 2d Hořava-Lifshitz gravity. Finally, the Appendix discusses the
general conditions responsible for the special features of the AZ model.

2 A restricted dimer model, basic properties

We consider an extension of the dimer system on random causal triangulations
first introduced in [16]. A finite causal triangulation T of the planar disc D, is
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Figure 1: A causal triangulation.

constructed as shown in Fig 1. T is the union of a central disc Σ0 having central
vertex v0 and boundary circle S1, and a sequence of annuli (or time slices) Σk, k >
1, such that Σk is bounded by circles Sk−1 and Sk. For k ≥ 1, Σk is triangulated
by a circular array of triangles each of which contains either one vertex in Sk−1
and two vertices in Sk, called a backward directed triangle, or two vertices in Sk−1
and one vertex in Sk, called a forward directed triangle. Σ0 is triangulated by a
sequence of triangles sharing the central vertex, which we define to be backward
directed. Edges contained in one Sk are called horizontal edges. By convention
we adjoin a forward directed triangle to each of the outermost horizontal edges
(see Fig 1) so that all horizontal edges are shared by a forward and a backward
directed triangle. We assume in the following that the edges/vertices in Sk and
triangles in Σk are ordered clockwise, and it is convenient to assume also that
one of the edges emanating from the central vertex is marked.

Given a vertex v 6= v0 in Sk we denote by e(v) the horizontal edge in T
emanating in positive clockwise direction from v, by ∆(v) the forward directed
triangle containing e(v) in its boundary, and by f(v) the non-horizontal edge in
∆(v) emanating from v, see Fig 2. Moreover, the forward degree σf (v) and the
backward degree σb(v) of v are defined as the number of neighbours of v in Sk+1

and Sk−1, respectively. Note that σf (v), σb(v) ≥ 1 and that σf (v) = 1 if and only
if e(v) separates two forward directed triangles.

Given a causal triangulation T , let T̃ denote its dual graph. A restricted dimer
configuration D on T̃ is a set of edges in T̃ fulfilling

a) no pair of edges in D share a vertex in T̃ ;

b) edges in T̃ dual to edges in T that separate two backward directed triangles
are not admissible in D;

4



v

S

S

k+1

k

∆

e(v)v

f(   )

(v)

Figure 2: Labelling the edges of a forward directed triangle. The arrows indicate
the clockwise direction on the time slices.

c) if v ∈ Sk, k > 0, is a vertex with σf (v) = 1, then f(v) is not dual to a
dimer if either σb(v) > 1 or if σb(v) = 1 and the successor w to v in Sk has
σb(w) > 1.

Here, condition a) is the standard requirement specifying a dimer configuration,
while b) and c) represent further technical conditions allowing an exact solution
by utilizing a mapping onto labelled trees as demonstrated below.

The possible dimer types are illustrated in Fig 3. Dimers dual to horizontal
edges we call type 1, while those shared by a forward and a backward directed
triangle in the same time slice we call types 2 and 2’ respectively depending
on whether or not the backward triangle precedes the forward triangle w.r.t.
clockwise ordering. Type 3 dimers are those dual to edges shared by two forward
directed triangles. Finally we denote by Di the set of edges of type i in D so that
D = D1 ∪D2 ∪D2′ ∪D3.

The grand canonical ensemble we are interested in consists of elements (T,D)
specified by a causal triangulation T and an admissible dimer configuration D on
T̃ . With the three types of dimers we associate fugacities ξ1, ξ2, ξ2′ , ξ3 and define
the partition function

Z(ξ1, ξ2, ξ2′ , ξ3; g) =
∑
(T,D)

g|T |/2ξ
|D1|
1 ξ

|D2|
2 ξ

|D2′ |
2′ ξ

|D3|
3 , (1)

where |A| denotes the number of elements in a set A. It is easy to show that
Z(ξ1, ξ2, ξ2′ , ξ3; g) is well defined for any fixed values of ξ1, ξ2, ξ2′ , ξ3 provided that
|g| is sufficiently small.

It is straightforward to see [16] that Z is a function of ξ2 + ξ2′ for fixed g and
ξ1, ξ3. Therefore, we shall henceforth set ξ2′ = 0, i.e. we further restrict dimer
configurations such that D2′ = ∅, and drop ξ′2 from the notation and write ~ξ =
(ξ1, ξ2, ξ3). Note that for ξ2 = ξ3 = 0 we have Z(ξ1, 0, 0; g) = Z(0, 0, 0; g(1 + ξ1)),
since the number of triangles in a causal triangulation equals twice the number
of horizontal edges and because horizontal dimers are mutually independent in
the absence of non-horizontal dimers.
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Figure 3: Dimer Types. The arrow indicates the clockwise direction on a time
slice.

In order to determine the analyticity properties of Z we shall, as mentioned,
exploit a correspondence between admissible pairs (T,D) and certain labelled
trees which we now explain by slightly generalising a construction given in [16].
From a causal triangulation T one obtains a planar rooted tree τ = β(T ) in the
following way:

i) delete all boundary edges (those belonging to the outmost forward directed
triangles);

ii) delete all horizontal edges e(v) and all non-horizontal edges of the form f(v)
for v ∈ T ;

iii) attach a new root edge to v0 such that the marked edge in T is the rightmost
edge emanating from v0 in β(T ).

It was shown in [18] that β yields a bijective correspondence between causal
triangulations with 2n triangles and rooted planar trees with n+2 vertices and
root of order 1. Note that the vertices of β(T ) different from the root are also
vertices of T and that from now on when referring to a tree we will denote the
vertex next to the root by v0 and call it the first vertex of the tree. A dimer
configuration D on T̃ induces the following labelling ` of the vertices of the tree
τ = β(T ):

1) if e(v) is dual to a dimer in D, set `(v) = 1;

2) if f(v) is dual to a dimer in D and σf (v) > 1, set `(v) = 2;

3) if f(v) is dual to a dimer in D and σf (v) = 1, set `(v) = 3;

4) the root is unlabelled;

5) otherwise, set `(v) = 0.

The restrictions imposed on D are equivalent to the following constraints on `:
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a) if a leaf of β(T ) has label 3 then its preceding neighbour at same height has
label 0 and its successor at same height has label 0 or 1;

b) if a vertex in β(T ) that is not a leaf has label 2, then its rightmost decendant
does not have label 1;

c) a leaf of β(T ) that is the leftmost or the rightmost decendant of its prede-
cessor does not have label 3.

Noting that all edges in T dual to dimers in D are deleted when constructing
β(T ), it is straightforward to show that the correspondence between pairs (T,D)
and pairs (τ, `) with `(v0(τ)) = 0 is bijective. Note also that the number `i of
vertices in β(T ) with label i equals |Di| for i = 1, 2, 3.

Consider now a labelled tree (τ, `) as above and assume the vertex v0 next
to the root has order s + 1, i.e. τ has s branches τ1, . . . , τs rooted at v0. Since
`(v0(τ)) = 0 the labellings of the τi induced by the labelling of τ are independent
and the labelling of the first vertex is unrestricted. However, the labellings of the
different branches rooted at the vertex v0(τi) may, depending on its label, not be
independent due to the constraints a) and b). Now define the partition function
for trees whose first vertex has label i to be

Wi(~ξ; g) =
∑

(τ,`):`(v0)=i

g|τ |ξ`11 ξ
`2
2 ξ

`3
3 , i = 0, 1, 2, (2)

where |τ | denotes the number of edges in τ . Then decomposing trees into the
root edge and their branches rooted at v0 shows that the Wi satisfy the equations

Wi = Fi(W0,W1,W2; ~ξ; g) , (3)

where

F0 = g (1− gξ3W0)H

F1 = g ξ1(1− gξ3W0)H

F2 = g ξ2 (W0 + (1− gξ3W0)W2)H

with
H = {1− (1 + gξ3)W0 −W1 − (1− gξ3W0)W2}−1 . (4)

It follows from the discussion above that

Z(~ξ; g) = g−1W0(~ξ; g)− 1 , (5)

and that non-analytic behaviour of Z(~ξ; g) as a function of g at a critical point

gc(~ξ), of the form

Zc − Z(~ξ; g) ∼ (gc − g)α ,
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for some 0 < α < 1, occurs if and only if W0 exhibits the same behaviour

W0c −W0(~ξ; g) ∼ (gc − g)α . (6)

Here and in the following the notation a ∼ b is used to indicate that there exist
constants c1, c2 > 0 such that c1 a ≤ b ≤ c2 a. By eliminating W1,W2 from (3)
we obtain

(ξ1 + gξ3)ξ2W
3
0 − (1 + ξ1 + ξ2 + gξ3 + g2ξ2ξ3)W

2
0 + (1 + gξ2 + g2ξ3)W0− g = 0 (7)

which, for fixed ~ξ, determines W0 as the unique root vanishing and analytic at
g = 0. For ξ1, ξ2, ξ3 ≥ 0 the Taylor expansion of W0 obtained from (2) has positive
coefficients and hence its radius of convergence gc > 0 is a singularity of W0. This
is a property of W0 that persists, as we shall see, in a larger range S of couplings
ξ1, ξ2, ξ3 that are not necessarily positive. For generic ~ξ in this range, W0c is a
double root of (7) at g = gc and gc is a square root branch point of W0 as a

function of g. If ~ξ ∈ S is such that W0c is a triple root of (7) at g = gc , i.e.

α = 1/3 in (6), then (~ξ; gc) is a multicritical point which we denote by (~ξc; gc).
The condition that gc be a double root is obtained by differentiating (7) w.r.t

W0, so that the critical coupling gc and the corresponding value W0c of W0 satisfy

3(ξ1 +gcξ3)ξ2(W0c)
2−2(1+ξ1 +ξ2 +gcξ3 +g2ξ2ξ3)W0c+(1+gcξ2 +g2cξ3) = 0. (8)

Using this in (7) yields

(1 + ξ1 + ξ2 + gcξ3 + g2cξ2ξ3)(W0c)
2 − 2(1 + gcξ2 + g2cξ3)W0c + 3gc = 0. (9)

and gc and W0c are determined as functions of ~ξ by (8) and (9).
Multicritical points additionally satisfy

3(ξ1c + gcξ3c)ξ2cW0c − (1 + ξ1c + ξ2c + gcξ3c + g2cξ2cξ3c) = 0 . (10)

The existence of such multicritical points can be established by e.g. setting ξ1 = ξ,
ξ2 = κξ and ξ3 = 0, where κ > 0. The value κ = 2 corresponds to the AZ model
considered in [16]. However the results are universal for κ > 0 and we will denote
all these models as AZ models, and explicitly perform the calculations for κ = 1
(except in footnote 2 where we discuss the situation of an arbitrary real value of
κ). For κ = 1 we use (8), (9) and (10) to obtain the equation

ξ3c + 24ξ2c + 3ξc − 1 = 0 (11)

for the critical value of ξ. This polynomial has one positive root and two negative
roots and a closer analysis shows that the largest negative root ξc ≈ −0.278 cor-
responds to a multicritical point (ξc, ξc, 0; gc), while gc is a square root singularity
of W0 for ξ > ξc (for a discussion of the situation for a general value of κ see
footnote 2).
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Figure 4: Graphical illustration of G(ξ, g; r)ij.

3 The two-point function for ξ1 = ξ2 = ξ, ξ3 = 0

We now consider the fractal behaviour of triangulations and the corresponding
labelled trees close to the critical point for the AZ model. The Hausdorff dimen-
sion in the grand canonical ensemble is determined by the decay rate of the two
point function [19].

Concentrating first on trees define a marked labelled tree to be a triple (v, τ, `)
where (τ, `) is a labelled tree as above and v is a vertex in τ different from the
root and the first vertex v0. By d(v) we denote the graph distance from the root
to v. The two-point function G(ξ, g; r) is defined by

(G(ξ, g; r))ij = W−1
j

∑
(v,τ,`):`(v0)=i,`(v)=j,d(v)=r+1

g|τ |ξ`1+`2 ,

for i, j ∈ {0, 1, 2} and r ≥ 1. A schematic illustration of the two-point function is
shown in Fig. 4, from which it follows by standard arguments and considerations
similar to those leading to (3) that

G(ξ, g; r) = T(ξ, g)r , (12)

where

(T(ξ, g))ij =
∂Fi
∂Wj

(13)

which after some simplification gives

T(ξ, g) = g−1W 2
0

 1 1 1
ξ ξ ξ

ξ(1− ξW0) ξW0(1− ξW0)
−1 ξ(1− ξW0)

 . (14)
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Clearly, the matrix T has one eigenvalue λ3 = 0. The two other eigenvalues,
λ1 and λ2, are solutions of the characteristic equation

λ2 −
(
− 1 + (1 + ξg)

W0

g

)
λ+

ξ2W 3
0

g
= 0. (15)

which we rewrite as(
λ− 1

)(
λ− ξ2W 3

0

g

)
+ λ(1− ξW0)

W0

g

∂g

∂W0

= 0. (16)

On the critical line (W0c(ξ), gc(ξ)), ξ ≥ ξc, the last term vanishes and

λ1 = 1, λ2 =
ξ2W0c(ξ)

3

gc(ξ)
for ξ ≥ ξc. (17)

In particular, for ξ = 0 we have W0c = 1/2, gc = 1/4 and λ2 = 0. As ξ decreases
from zero to ξc ≈ −0.278 we find that λ2 increases monotonically to λ2c = 1,
where the value 1 is a simple consequence of (7) and (10).

For fixed ξ > ξc the two eigenvalues are real for ∆g = g − gc small enough
and the dominant eigenvalue is λ1 approaching 1 as g → gc. Hence, we get in
this case

G(ξ, g; r) = e−m(g)r+o(r)

as r →∞, where
m(g) ∼ ∆λ1 = 1− λ1 .

At the critical line for ξ > ξc we have g′(W0) = 0 and g′′(W0) 6= 0, i.e. α = 1/2 in
eq. (6). Thus we obtain from (16)

∆λ1 ∼
∂g

∂W0

∼ |∆g|
1
2 . (18)

Hence, the two-point functions decay exponentially with rate

m(g) ∼ |∆g|
1
2 .

This shows that for the labelled trees with ξ > ξc the global Hausdorff dimension,
defined as the inverse of the critical exponent of m(g) (see e.g. [19]), is dH = 2.

At the multicritical point (ξc, gc), on the other hand, we have g′(W0) =
g′′(W0) = 0 and α = 1/3 in (6). Using this and (10) gives

(1− ξcW0)
∂g

∂W0

= 3ξ2c (∆W0)
2 + ξc∆g , (19)
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where ∆W0 = W0−W0c. Inserting this expression into (16) and setting ∆λ = 1−λ
now gives2

(∆λ)2 +
3

W0c

∆λ∆W0 +
3

(W0c)2
(∆W0)

2 = O(∆W 3
0 ), (20)

and hence

∆λ =
3

2W0c

|∆W0|(1± i/
√

3) +O(∆W 2
0 ). (21)

In particular, λ1 = λ2 is complex for g < gc in this case and we conclude that
G(ξ, g; r) decays exponentially (dressed with oscillating factors) with decay rate

m(g) ∼ Re ∆λ ∼ |∆W0| ∼ |∆g|
1
3 .

This yields the value dH = 3 for the global Hausdorff dimension at ξ = ξc.
Returning to the dimer model on causal dynamical triangulations the two-

point function G(ξ, g; r) is defined in the same manner as for trees by marking
a vertex v at distance d(r) from the central vertex of the triangulation T and
setting

G(ξ, g; r) =
∑

(v,T,D):d(v)=r

g|T |/2ξ|D1|+|D2| .

Using the mapping β between the dimer model and the labelled tree model we
obtain

G(ξ, g; r) = g−1
∑
j

G0j(ξ, g; r)Wj(g) .

In particular, G(ξ, g; r) has the same exponential decay rate as the two-point
functions G(ξ, g; r)ij, and hence the global Hausdorff dimension of the dimer
model coincides with that of the labelled tree model, i.e. dH = 2 for ξ > ξc and
dH = 3 for ξ = ξc.

2 One can repeat the calculations leading to (20) for the general assignment ξ1 = ξ, ξ2 = κξ,
ξ3 = 0, κ > 0, and find that (20) is independent of κ. However the values of W0c, gc and ξc
depend on κ. What is important is the existence of a multicritical point ξc. For κ = 1 this was
ensured by eq. (11). The equation for a general κ is

−b3ξ3c + 3(9− b2)ξ2c − 3bξc − 1 = 0, κ = b+ 2.

For κ > 0 the largest real negative root corresponds to the multicritical point, precisely as in
(11). Interestingly, for the original AZ value b = 0 the equation simplifies to a trivial second
order equation (it is the point where the equation changes from having two negative and one
positive solution to one negative and two positive solutions, the third root moving to −∞
for b → 0− and to ∞ for b → 0+). However, this has no consequences for the discussion of
multicriticality. For κ < 0 there is no negative real solution.
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4 The infinite size limit

In this section we consider an alternative notion of Hausdorff dimension for the
labelled tree model by considering only critical trees, i.e. we shall evaluate the
infinite size limit first and express the Hausdorff dimension in terms of volume
growth on infinite trees. In order to make this precise, let us introduce the finite
size partition functions WiN(~ξ) by restricting the sum in (2) to trees τ of fixed
size N , so that

Wi(~ξ; g) =
∑
N

gNWiN(~ξ) .

The distributions µiN of labelled trees of fixed size N are obtained by normalizing
the weights defining WiN , i.e.

µiN(τ, `) =
1

WiN(~ξ)
ξ`11 ξ

`2
2 ξ

`3
3 .

Obviously, µ0N is non-negative whenever ξ1, ξ2, ξ3 ≥ 0 and hence defines a prob-
ability distribution. For ξ1 = ξ2 = ξ and ξ3 = 0 it is not difficult to see that this
even holds true for ξ ≥ −1

4
, but not for ξc ≤ ξ < −1

4
. Similar remarks apply to

µiN up to a sign factor. Our aim is to consider limits of the expectations 〈·〉iN
with respect to the (signed) distributions µiN as N →∞, for arbitrary values of
~ξ ∈ S.

As a consequence of (6) and standard transfer theorems (see e.g. [20]) the

following asymptotic behaviour of WiN(~ξ) for large N holds:

WiN(~ξ) = ΩiN
−3/2gc(~ξ)

−N(1 + O( 1
N

)) if α = 1/2 , (22)

WiN(~ξ) = ΩiN
−4/3gc(~ξ)

−N(1 + O( 1
N

)) if α = 1/3 , (23)

where the constants Ωi depend on ~ξ. We note that the relations (3) imply

Ω1 = ξ1Ω0 (24)

Ω2 = ξ2W0c
2− ξ2W0c − gcξ3W0c

(1− ξ2W0c)2(1− gcξ3Wc)2
Ω0 . (25)

Using (22) and (23) it follows by a straight-forward generalization of argu-
ments given in [21, 18] that for any local quantity A(τ, `) depending only on the
structure of (τ, `) within a finite distance R from the root of τ , such as the volume
of the ball BR(τ) of radius R centered at the root, the limiting expectation values

〈A〉i = lim
N→∞

〈A〉iN

exist.
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Figure 5: Finite trees attached to the first few vertices on the spine of an infinite
tree.

We next briefly describe how to calculate the limiting expectation values 〈A〉i
in terms of infinite labelled trees, further details can be found in [21, 18]. Here
an infinite labelled tree means an infinite rooted planar tree with root of order
1 with a labelling respecting the same conditions a)- c) as previously. Moreover,
only trees with a single spine, that is an infinite self-avoiding path starting at
the root, contribute to 〈A〉i, see Fig. 5. The spine vertices of an infinite labelled
tree L will be denoted by r, u1, u2, u3, . . . , ordered by increasing distance from the
root r. Thus L is obtained by grafting finite labelled trees with root of order 1,
called branches, at the spine vertices ui on both sides of the spine. Considering
only the finite part r, u1, u2, . . . , uN of the spine one of the branches rooted at uN
is infinite and all other branches are finite. We denote by L(N) the finite labelled
tree obtained by removing the infinite branch at uN except the edge uNuN+1

and consider L(N) as a finite labelled tree with a finite spine r, u1, u2, . . . , uN+1

both of whose end vertices have order 1. By A(L0) we denote the set of all
infinite labelled trees such that L(N) equals a fixed finite labelled tree L0 with a
distinguished spine r, u1, u2, . . . , uN+1. With this notation the limiting weight of
the set A(L0) equals

µi(A(L0)) = Ω−1i Ω`N+1
ρi(L0) , (26)

where ρi(L0) is the grand canonical weight of L0 = (τ0, `0) at the critical point

(~ξ; gc) given by

ρi(τ0, `0) = δ`0(u1),ig
|τ0|−1
c ξ

`01−δ`0(uN+1),1

1 ξ
`02−δ`0(uN+1),2

2 ξ`033 . (27)

The information contained in (26) and (27) suffices to calculate 〈A〉i for any
local quantity A. We now proceed to calculate 〈|BR|〉i, where |BR(L)| denotes the
size of BR(L), i.e. the number of edges in τ whose vertices are at graph distance
at most R from the root. The local Hausdorff dimension dh of the random tree
defined by µi is defined by

〈 |BR| 〉i ∼ Rdh (28)

13



as R→∞. The purpose of the next two subsections is to evaluate dh in the case
ξ3 = 0 and demonstrate that its value coincides with dH as found in Section 3.

4.1 Volume of a finite tree for ξ1 = ξ2 = ξ, ξ3 = 0

We let HR
i denote the (unnormalized) expectation value of the number of vertices

hR(τ) at distance R from the root of a finite tree τ with label i on its vertex v0
at the critical value gc(ξ) of the coupling g, that is

HR
i =

∑
(τ ;`):`(v0)=i

hR(τ)g|τ |c ξ
`1+`2 . (29)

Applying arguments similar to those leading to (3) one obtains, for i = 0, 1, 2,

H1
i = Wic ,

HR
i =

2∑
j=0

T(ξ, gc(ξ))ijH
R−1
j , R ≥ 2, (30)

where T is given by (14). Tc = T(ξ, gc(ξ)) has eigenvalues

λ0 = 0, λ1 = 1, λ2 =
ξ2W0c(ξ)

3

gc(ξ)
, (31)

and right eigenvectors corresponding to the non-zero eigenvalues

e(1) = M =
W 2

0c

gc

 1
ξ

gcW
−2
0c − 1− ξ

 , e(2) =
W 2

0c

gc

 1
ξ

λ2gcW
−2
0c − 1− ξ

 . (32)

Here
M = Ω−1(Ω0,Ω1,Ω2) ,

where

Ω =
2∑
i=0

Ωi ,

such that
∑

iMi = 1.
There are now two cases to consider:

ξ > ξc The eigenvalue λ2 < 1, Tc is diagonalizable and it is straightforward to
show that

HR = (1− λ2)−1
[
(1− (λ2 + 1)gcW

−1
0c ) M + λR−12 (2gcW

−1
0c − 1) e(2)

]
. (33)
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ξ = ξc The eigenvalue λ2 = 1 and we see from (32) that its eigenvector coincides
with M so Tc has non-trivial Jordan normal form and a new vector

ε =

0
0
1

 (34)

emerges satisfying
Tc ε = M + ε. (35)

Setting
W = (W0,W1,W2)

and noting that
Wc = gcW

−1
0c M + (1− 2gcW

−1
0c )ε (36)

then gives

HR = Wc + (R− 1)(1− 2gcW
−1
0c )M , R ≥ 1 . (37)

4.2 Volume of an infinite tree for ξ1 = ξ2 = ξ, ξ3 = 0

We let KR
i denote the (unnormalized) expectation value with respect to the mea-

sure µi of the number kR(τ) of vertices at distance R from the root of an infinite
tree τ up to a normalization factor. Specifically,

KR
i = Ω−1 Ωi 〈kR〉i .

By decomposing the tree into its branches at the vertex u1 next to the root one
finds that KR

i satisfies

KR
i =

∂Fi
∂Wj

KR−1
j +Mj

∂2Fi
∂Wj∂Wk

HR−1
k (38)

or
KR = TcKR−1 + ΓHR−1 (39)

where

Γik = Mj
∂2Fi

∂Wj∂Wk

= MjΛi,jk. (40)

The first term in (39) is the contribution of the infinite branch and the second
term that of the finite branches. As each tree has only a single vertex at height
1,

K1 = M. (41)
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The equation (39) is easily iterated to get

KR = M +
R−1∑
`=1

T`−1c Γ HR−`. (42)

There are again two cases to consider:

ξ > ξc Combining (33) and (42) and noting that

Γ M = 2g−1c W0c M (43)

gives

KR = 2
(W0cg

−1
c − λ2 − 1)

1− λ2
RM +O(1) (44)

from which we get

〈|BR|〉i = Ω−1i Ω
R∑
n=1

Kn
i = Ω

(W0cg
−1
c − λ2 − 1)

1− λ2
R2 +O(R). (45)

It is straightforward to check that the coefficient of the R2 term is positive
for all ξ > ξc so we have shown that dh = 2 in this regime. Note also that
the coefficient diverges at ξ = ξc, where λ2 → 1, indicating that dh changes
there.

ξ = ξc Combining (37) and (42) we have

KR = M +
R−1∑
`=1

T`−1c Γ
(
(1− 2gcW

−1
0c )(ε−M) + gcW

−1
0c M

)
+

R−1∑
`=1

T`−1c Γ
(
(R− `)(1− 2gcW

−1
0c )M

)
(46)

It is straightforward to check that at the tricritical point

Γ ε = 2g−1c W0c

(
M +

1

2
ε

)
. (47)

Using this identity and (35) then gives

KR = 3

(
W0c

2gc
− 1

)
R2 M +O(R). (48)
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It is worth noting that one might have supposed from (35), (37) and (42)
that KR would be O(R3); however the coefficient of this leading term van-
ishes as a consequence of the tri-criticality condition. It follows now that

〈|BR|〉i = Ω−1i Ω
R∑
n=1

Kn
i = Ω

(
W0c

2gc
− 1

)
R3 +O(R2) (49)

The coefficient of the R3 term evaluates to a positive number so we have
shown that dh = 3 at ξ = ξc in the AZ model.

5 The extended model ξ3 6= 0

In [16] it was argued that the AZ model with the CDT coupled to a reduced
set of dimers is not likely to differ significantly from the full CDT-with-dimers
system (hereafter called CDT-D). We claim here that this is probably not correct
by considering what happens when ξ3 6= 0; this perturbation is arguably closer to
the CDT-D model as it incorporates more of the possible dimer types than the
AZ model.

In the most general case T is given by

T(ξ; g) = H

 g(1 + gξ3W1)H W0 W0(1− gξ3W0)
gξ1(1 + gξ3W1)H W1 W1(1− gξ3W0)

gξ2(1−W1(1− gξ3W2))H W2 ξ2W0(1−W1 − gξ3W0)

 . (50)

It is straightforward although tedious to show that on the critical surface gc(ξ1, ξ2, ξ3)

M =
W 2

0c

gc

(
1 + ξ3(1 + ξ1)W

3
0 (2− gξ3W0)

)−1 1
ξ1

gcW
−2
0c − (1 + ξ1)(1− gξ3W0)

2


(51)

is always a right eigenvector with eigenvalue 1 and that the other eigenvalues are
0 (corresponding to the fact that F1 = ξ1F0) and

λ2 =
ξ1ξ2W

3
0

g(1− gξ3W0)2
= gξ1ξ2W0H

2 , (52)

where we have used

H =
W0

g(1− gξ3W0)
.

For definiteness we will first discuss the model with ξ1 = ξ2 = ξ3 = ξ which,
at least naively, is the closest we can get to CDT-D. For ξ > ξc ≈ −0.228 we
find that gc is a square root singularity of W0, so α = 1

2
, and λ2 < 1 at g = gc.
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Consequently m(g) ∼ |∆g| 12 and dH = 2 following the discussion of Section 3.
The infinite graph calculation of the local Hausdorff dimension follows the same
lines as the ξ > ξc case in Section 4 leading to dh = 2. In this region of parameter
space, where the dimer system is not critical, the model has exactly the same
properties as the AZ model.

However at ξ = ξc there is a tricritical point at which Tc is diagonalisable,
λ2 ≈ 0.445 < 1 and m(g) ∼ |∆g| 23 (the absence of a |∆g| 13 term is a consequence
of the tricriticality condition). Thus dH = 3

2
but, as shown in the Appendix,

dh = 1. It is interesting to compare this result with the simpler multicritical tree
model of rooted binary trees with dimers placed on the edges, including the root
edge, in such a way that no more than one dimer can end at any vertex [17].
Letting W1 and W0 be the partition functions for trees with and without a dimer
on the root edge respectively we see that they satisfy equations of the same form
as (3) but with

F0 = g(W 2
0 + 2W0W1 + 1)

F1 = gξ(W 2
0 + 1). (53)

This model also has a tricritical point with ξc = − 4
27

, exponent α = 1
3

and λ2c < 1.
One finds that

∆λ1 ∼
∂g

∂W0

∼ (∆W0)
2 ∼ |∆g|2/3. (54)

which implies that dH = 3/2 for ξ = ξc. On the other hand, using the results
of the Appendix, dh = 1 as there is once again only one unit eigenvalue of Tc.
The ξ1 = ξ2 = ξ3 line of our model thus exhibits exactly the same behaviour as a
standard multi-critical tree model.

These calculations appear to show that the degenerate tri-critical point with
dh = 3 found in the AZ model is very special and not at all characteristic of CDT
dimer models in general. It is instructive to examine the phase diagram in the
(ξ1 = ξ2 = ξ, ξ3) plane, see Fig 6. There is a line of cubic degeneracies in W0

that takes in the point (−0.278 . . . , 0) and extends both above and below the ξ
axis. Using (52) and the identity

g2ξ2H3 − g2(1 + ξ)ξ3H
3 − 1 = 0

which holds at tricritical points as a consequence of (8),(9) and (10) it follows
that

λ2 = 1 + gcξ3(1 + ξ − ξ2W0)H
3 .

Since the expression in parenthesis, H and gc are all positive it follows that on the
tricritical line λ2 < 1 for ξ3 < 0 but that λ2 > 1 for ξ3 > 0. The latter behaviour
is a little strange; it would in fact be a contradiction for a purely real eigenvalue
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3

ξ

ξ

Figure 6: The phase diagram in the (ξ1 = ξ2 = ξ, ξ3) plane. The solid line is the
line of cubic degeneracies in W0. For ξ3 > 0 the physical region S defined in Sec.
2 lies to the right of the long dashed line, which is the line where λ2 = 1. For
ξ3 ≤ 0 the first part of the boundary of S is the lower part of the solid line of
cubic degeneracies in W0. The dotted line makes up the rest of the lower part of
the boundary of S. Along this part W0 is only quadratic degenerate.

of T to go through 1 before criticality is reached (see the Appendix for example).
Closer inspection shows that at small g � gc the eigenvalues are complex and
as g increases they flow as shown in Fig 7. However exponential growth of the
two-point function is a symptom that the series in ξi and g < gc for Z is not
absolutely convergent and the effect of the negative weights is sufficiently strong
that the conventional statistical mechanical interpretation of the model fails. We
conclude that the physical region for ξ3 > 0 extends only as far as the line where
λ2 = 1 at gc. It can be checked that inside the region and along this line there are
only quadratic degeneracies in W0 and that Tc is diagonalisable so dh = dH = 2.
On the other hand for ξ3 < 0 there is a genuine line of tricriticality which includes
the ξ = ξ3 point analysed above and ends at (−0.162 . . . ,−0.582 . . .). Beyond
this point the tricriticality disappears and even on the boundary of the physical
region α = 1

2
and dh = dH = 2.

6 Concluding remarks

At the critical value of the dimer fugacity we expect that CDT-D, the full dimer
model on CDT, represents a lattice regularization of projectable Hořava-Lifshitz
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Im

Figure 7: The flow in the complex plane of the non-zero eigenvalues of T; the
arrow heads show how they move as g increases; λ1 ends at 1, λ2 at a value > 1.

quantum gravity coupled to a (2,5) minimal conformal field theory. In the absence
of a solution to CDT-D we have obtained the solution of a restricted dimer model
and mapped out its phase diagram. In particular, we have seen that the geometric
features of the AZ model [16] are very special and not robust under perturbations.
At generic points of the phase boundary we have found the values of the Hausdorff
dimensions are either dH = 3/2 and dh = 1, coinciding with the values for the
simplest multicritical tree [23, 19], or dH = dh = 2.

One may speculate on the implications of our results for the CDT-D model.
While we do not have any rigorous results in this direction it is worth noting that
the full dimer model on a generalized CDT [24] has been solved exactly in [17]
using a matrix model representation yielding the value dH = 3/2. The generalized
causal triangulations of this model can be defined combinatorially [25] or by using
a special scaling limit of matrix models [24]. This slightly more general set of
triangulations has many of the characteristics of CDT, e.g. dH = dh = 2. Hence
it is tempting on the basis of this result to conjecture that dH = 3/2 and dh = 1
are indeed the correct values for the full dimer model on a CDT.

It is natural to extend the above considerations further. One can define mul-
ticritical generalized CDT models [26], which most likely correspond to specific
fine-tuned scaling limits of matrix models, generalizing the considerations in [17].
Recall that the standard multicritical matrix models from DT provide representa-
tions of 2d Euclidean quantum gravity coupled to certain conformal field theories.
They also have the interpretation of (increasingly complicated) fine-tuned multi-
dimers systems on the DT-set of random graphs. Thus it is possible that the
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multicritical behavior found in [26] represents the effect of fine-tuned multi-dimer
models on the generalized CDT-set of random graphs, and has the continuum
interpretation of certain conformal field theories coupled to 2d Hořava-Lifshitz
gravity.

This leave us with the interpretation of the AZ model. Although this model is
special, it is not that special. As we have seen there is a least a one-parameter set
of coupling constants leading to the same scaling. Thus we believe there should
also be a continuum interpretation of this class of models.
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Appendix: dh and the multi-critical condition

We discuss here how the condition for multi-criticality affects dh in general. We
consider a set of generalised trees with first vertex label `(v0) = i whose partition
functions Wi satisfy

Wi = Fi(W; ~ξ; g), i = 1 . . . N. (55)

The approach to criticality in the grand canonical ensemble (GCE) is governed
by (repeated indices are summed over)

δWi = δg
∂Fi
∂g

+ TijδWj +
1

2
Λi,jk δWjδWk + h.o.t. (56)

where

Tij =
∂Fi
∂Wj

, Λi,jk =
∂2Fi

∂Wj∂Wk

, (Λjk)i = Λi,jk. (57)

Re-arranging

((1− T)δW )i = Wiδg +
1

2
Λi,jk δWjδWk + h.o.t. (58)
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so criticality is reached as g ↑ gc where the largest real eigenvalue of T first reaches
1.

Now, setting g = gc and working in the critical ensemble, consider the infinite
single spine trees with first vertex labelled by `(u1) = i. Decomposing these trees
at their first vertex u1 into an infinite component and finite components we see
that their measures Mi satisfy

Mi =

(
∂Fi
∂Wj

)
c

Mj = TcijMj. (59)

We will assume that they are normalised so that the total measure is 1,

1 =
∑
i

Mi. (60)

We see that T directly relates the infinite spine trees and the GCE. At criticality
it must have at least one eigenvalue which is one and this must be the first real
eigenvalue to reach one, otherwise the system would have reached criticality at
some smaller value of g.

Turning to the local Hausdorff dimension we note from (42), (30) and (59)
that KR

i , the expectation value with respect to the measure µi of the number of
vertices at distance R from the root of an infinite tree, is given by

KR = M +
R−1∑
`=1

T`−1 ΓTR−`−1 W, (61)

where

Γik = Mj
∂

∂Wk

(
∂Fi
∂Wj

)
= MjΛi,jk. (62)

The implications in general of (61) for the Hausdorff dimension depend very
much upon the Jordan decomposition of T = SJS−1 where J is of Jordan Block
form Diag(J<, J1); the block J1 corresponds to r unit eigenvalues and J< to the
N − r eigenvalues which are less than 1. If J1 is diagonal then

J ` = Diag(0, . . . 0, 1, . . . 1) +O(α`) (63)

where α is the largest eigenvalue smaller than 1.
We first consider the case where there is a single unit eigenvalue so J1 = 1.

Introduce the orthonormal basis (ei)j = δij so that

δW = S(µ eN + νa ea) , W = S(A eN +Ba ea) (64)

where a, b = 1 . . . N − 1. A 6= 0 and Ba are constants and up to normalisation
the measure vector is

M = S eN . (65)
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Substituting in (58) we obtain

(1− J<)νa ea = (A eN +Ba ea)δg +
1

2
µ2S−1ΓSeN + µνaS−1ΓS ea

+
1

2
νaνbS−1Λjk(S ea)j(S eb)k . (66)

Since 1−J< is invertible we see that, provided (S−1ΓS)NN is non-zero, µ ∼ (δg)
1
2

and criticality is quadratic. The multi-critical condition is

(S−1ΓS)NN = 0. (67)

Now returning to (61)

KR = M +
R−1∑
`=1

SJ `−1 S−1ΓSJR−`−1S−1 W (68)

whence, using (63),

KR = M +RS (S−1ΓS)NN(S−1 W)N +O(1) (69)

where Si = SiN . We see from (67) and (69) that the linear term linear in R
automatically vanishes at the multi-critical point where, therefore, dh = 1. This
is completely standard multi-criticality and the result is identical to that for
the single component multi-critical tree. It is straightforward to generalise this
analysis to models where J1 is of higher rank but still diagonal and find the same
conclusion that dh = 1. Note that it is always necessary to compute the actual
coefficient of the remaining leading term in a particular model to check that it is
positive otherwise the result is meaningless.

The situation is different if J1 is non-diagonal. We will analyse the simplest
case where there are two unit eigenvalues and we have the simplest non-diagonal
Jordan block

J1 =

(
1 1
0 1

)
. (70)

We then have that

(J `)ij = δi,N−1δj,N−1 + δi,Nδj,N + `δi,N−1δj,N +O(α`). (71)

M is the ordinary eigenvector with eigenvalue 1,

M = SeN−1 (72)
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but now there is a vector belonging to the second eigenvalue 1

ε = SeN (73)

with the property
T ε = M + ε. (74)

Now we have

δW = S(µ eN−1 + λ eN + νa ea) , W = S(A eN + C eN−1 +Ba ea) , (75)

where a, b = 1 . . . N − 2. A 6= 0 and Ba are constants and substituting in (58) we
find

(1− J<)νa ea + λ eN−1 = (A eN + C eN−1 +Ba ea)δg +

+
1

2
S−1Λjk (µM + Sλ eN + νaS ea)j ×

S(µ eN−1 + λ eNµM + νbeb)k + h.o.t. (76)

and closing with eN ,

0 = Aδg +
1

2
µ2(S−1ΓS)NN−1 + . . . (77)

showing that

(S−1ΓS)NN−1 = 0 (78)

is a necessary condition for multi-criticality. Note that because of the Jordan
block structure λ appears linearly on the l.h.s. of (76) so the leading singularity
can only be associated with M, and not with ε. Using (61) and (71) we get

KR
i = Mi +

R−1∑
`=1

Sij′(δj′,N−1δj,N−1 + δj′,Nδj,N + (`− 1)δj′,N−1δj,N)

(S−1ΓS)jn(δn,N−1δm,N−1 + δn,Nδm,N + (R− `− 1)δn,N−1δm,N)(S−1 W)m +O(1)

= Mi +
1

6
(R− 1)(R− 2)(R− 3)SiN−1(S

−1ΓS)NN−1(S
−1 W)N

+
1

2
(R− 1)(R− 2)

N∑
L=N−1

[
SiN−1(S

−1ΓS)NL(S−1 W)L + SiL(S−1ΓS)LN−1(S
−1 W)N

]
+O(R) (79)

We see from (79) that the multi-critical condition automatically suppresses the
(R−1)(R−2)(R−3) in KR but that the quadratic (R−1)(R−2) term survives.
Hence dh = 3, again provided that the numerical coefficient, which has to be
computed in a particular model, is positive.
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