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Abstract. Automatic theorem provers struggle to discharge proof obligations of
interactive theorem provers. This is partly due to the large number of background
facts that are passed to the automatic provers as axioms. Axiom selection algo-
rithms predict the relevance of facts, thereby helping to reduce the search space
of automatic provers. This paper presents an introduction to axiom selection as
a machine learning problem and describes the challenges that distinguish it from
other applications of machine learning.

1 Introduction

The foundations of modern mathematics were laid at the end of the 19th century and the
beginning of the 20th century. Seminal works such as Frege’s Begriffsschrift [8] estab-
lished the notion of mathematical proofs as formal derivations in a logical calculus. In
Principia Mathematica [51], Whitehead and Russell set out to show by example that all
of mathematics can be derived from a small set of axioms using an appropriate logical
calculus. Even though Gödel later showed that no consistent axiom system can capture
all mathematical truth [9], Principia showed that normal mathematics can indeed be
catered for by a formal system. Proofs could now be rigidly defined, and verifying the
validity of a proof was a simple matter of checking whether the rules of the calculus
were correctly applied. But formal proofs were extremely tedious to write (and read),
and so they found no audience among practicing mathematicians.

1.1 Interactive Theorem Proving

With the advent of computers, formal mathematics became a more realistic proposal.
Interactive theorem provers (ITP), or proof assistants, are computer programs that sup-
port the creation of formal proofs. Proofs are written in the input language of the ITP,
which can be thought of as being at the intersection between a programming language,
a logic, and a mathematical typesetting system. In an ITP proof, each statement the user
makes gives rise to a proof obligation. The ITP ensures that every proof obligation is
discharged by a correct proof.

ACL2 [21], Coq [3], HOL4 [41], HOL Light [14], Isabelle [37], Mizar [12], and
PVS [38] are perhaps the most widely used ITPs. Figures 1 and 2 show a simple in-
formal proof and the corresponding Isabelle proof. Virtually all ITPs provide some
built-in automation in the form of tactics that perform arbitrarily complex reasoning.



Theorem There are infinitely many primes:
for every number n there exists a prime p > n.

Proof [after Euclid]
Given n. Consider k = n! + 1, where n! = 1 ·2 ·3 · . . . ·n.
Let p be a prime that divides k.
For this number p we have p > n: otherwise p ≤ n;
but then p divides n!, so p cannot divide k = n! + 1,
contradicting the choice of p. QED

Figure 1: An informal proof that there are infinitely many prime numbers [50]

In Figure 2, the by command specifies which tactic should be applied to discharge the
current proof obligation.

Developing proofs in ITPs usually requires a lot more work than sketching a proof
with pen and paper. Nevertheless, the benefit of gaining quasi-certainty about the cor-
rectness of the proof led a number of mathematicians to adopt these systems.

The largest mechanization project is probably the ongoing formalization of the
proof of Kepler’s conjecture by Thomas Hales and his colleagues in HOL Light [13].
Other major undertakings are the formal proofs of the four-color theorem [10] and of the
odd-order theorem [11] in Coq, both developed under Georges Gonthier’s leadership.
In terms of mathematical breadth, the Mizar Mathematical Library [30] is perhaps the
main achievement of the ITP community so far: With nearly 52000 theorems, it covers
a large portion of the mathematics taught at the undergraduate level.

1.2 Automatic Theorem Proving

In contrast to interactive theorem provers, automatic theorem provers (ATPs) work
without human interaction. They take a problem as input, consisting of a set of axioms
and a conjecture, and attempt to deduce the conjecture from the axioms. The TPTP
(Thousands of Problems for Theorem Provers) library [42] has established itself as a
central infrastructure for exchanging ATP problems. Its main developer also organizes
an annual competition, CADE’s ATP Systems Competition (CASC) [43], that measures
progress in this field. E [40], SPASS [49], Vampire [39], and Z3 [35] are well-known
ATPs for classical first-order logic.

Some researchers apply ATPs to open mathematical problems. William McCune’s
proof of the Robbins conjecture using a custom ATP is the main success story [31].
More recently, ATPs have also been integrated into ITPs [6,19,46], where they help in-
crease the productivity by reducing the number of manual interactions needed to carry
out a proof. Instead of using a built-in tactic, the ITP translates the current proof obli-
gation (e.g., the lemma that the user has just stated but not proved yet) into an ATP
problem. If the ATP can solve it, the proof is translated to the logic of the ITP and
the user can proceed. In a recent study, about 70% of the proof obligations arising in a
representative Isabelle corpus could be solved by ATPs [26].



theorem Euclid: ∃p ∈ prime. n < p
proof −

let ?k = n! + 1
obtain p where prime: p ∈ prime and dvd: p dvd ?k

using prime-factor-exists by auto
have n < p
proof −

have ¬ p ≤ n
proof

assume p ≤ n
with prime-g-zero have p dvd n! by (rule dvd-factorial)
with dvd have p dvd ?k−n! by (rule dvd-diff)
then have p dvd 1 by simp
with prime show False using prime-nd-one by auto

qed
then show ?thesis by simp

qed
from this and prime show ?thesis . .

qed

corollary ¬ finite prime
using Euclid by (fastsimp dest!: finite-nat-set-is-bounded simp: le-def)

Figure 2: An Isabelle proof corresponding to the informal proof of Figure 1 [50]

1.3 Industrial Applications

Apart from mathematics, formal proofs are also used in industry. With the ever increas-
ing complexity of software and hardware systems, quality assurance is a large part of
the time and money budget of projects. Formal mathematics can be used to prove that
an implementation meets a specification. Although tests might still be mandated by cer-
tification authorities, formal proofs can both drastically reduce the testing burden and
increase confidence that the systems are bug-free.

AMD and Intel have been verifying floating-point procedures since the late 1990s
[15, 34], partly as a consequence of the Pentium bug. Microsoft have had success ap-
plying formal verification methods to Windows device drivers [2]. One of the largest
software verification projects so far is seL4, a verified operating system kernel [22].

1.4 Learning to Reason

One of the main reasons why formal mathematics and related technologies have not
become mainstream yet is that developing ITP proofs is tedious. The reasoning capa-
bilities of ATPs and ITP tactics are in many respects far behind what is considered
standard for a human mathematician. Developing an interactive proof requires not only
knowledge of the subject of the proof, but also of the ITP and its libraries.
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Proof obligation First-order problem

Isabelle proof ATP proof

Figure 3: Sledgehammer [6] integrates ATPs (here E) into Isabelle

One way to make users of ITPs more productive is to improve the success rate of
ATPs. ATPs struggle with problems that have too many unnecessary axioms since they
increase the search space. This is especially an issue when using ATPs from an ITP,
where users have access to thousands of facts (axioms, definitions, lemmas, theorems,
and corollaries) in the background libraries. Each fact is a potential axiom for an ATP.3

Axiom selection algorithms heuristically select facts that are likely to be useful for in-
clusion as axioms in the problem given to the ATP.

Learning mathematics involves studying proofs to develop a mathematical intuition.
Experienced mathematicians often know how to approach a new problem by simply
looking at its statement. Assume that p is a prime number and a,b ∈ N− {0}. Consider
the following statement:

If p | ab, then p | a or p | b.

Even though mathematicians know many areas of mathematics (e.g., linear algebra,
probability theory, analysis), when trying to prove the above statement they would ig-
nore those areas and rely on their knowledge about number theory. At an abstract level,
they perform axiom selection to reduce their search space.

Axiom selection algorithms typically rely on static features of the conjecture and
axioms [16, 33]. For example, if the conjecture involves π and sin, they will prefer ax-
ioms that contain either of these two symbols, ideally both. The main drawback of such
approaches is that they focus exclusively on formulas, ignoring the rich information
contained in proofs. In particular, they do not learn from previous proofs. In this paper,
we present an overview to axiom selection as a machine learning problem, an idea in-
troduced one decade ago by Urban [44]. In a way, we are trying to teach the computer
mathematical intuition.

2 Machine Learning in a Nutshell

This section aims to provide a high-level introduction to machine learning; for a more
thorough discussion, we refer to standard textbooks [4, 29, 36].

3 A terminological note is in order. ITP axioms are fundamental assumption in the common
mathematical sense (e.g., the axiom of choice). In contrast, ATP axioms are arbitrary formulas
that can be used to establish the conjecture.



Machine learning concerns itself with extracting information from data. Some typ-
ical examples of machine learning are listed below:

Spam classification Predict if a new email is spam
Face detection Find human faces in a picture
Web search Predict the websites that contain the information the user is looking for

The results of a learning algorithm is a function that takes a new datapoint (email,
picture, search query) and returns a target value (spam / not spam, location of faces,
ranking of relevant websites). The learning is done by optimizing a score function over
a training dataset. Typical score function are accuracy (how many emails were correctly
labeled?) and the root mean square error (the Euclidean distance between the predicted
values and the actual values). Elements of the training datasets are datapoints together
with their expected value. For example:

Spam classification A set of emails together with their classification
Face detection A set of pictures where all faces are marked
Web search A set of query–websites tuples

The performance of the learned function critically depends on the quality of the
training data, as expressed by the aphorism “Garbage in, garbage out.” Getting training
data that is representative for the problem, and hence generalizes well, is crucial.

In addition to the training data, problem features are also essential. Features are the
input of the prediction function and should describe the relevant attributes of the data-
point. A datapoint can have several possible feature representations. Feature engineer-
ing concerns itself with identifying relevant features [28]. To simplify computations,
most machine learning algorithms require that the features are a (sparse) real-valued
vector. Potential features are listed below.

Spam classification A list of all the words occurring in the email
Face detection The matrix containing the color values of the pixels
Web search The n-grams of the query

From a mathematical point of view, most machine learning problems can be reduced
to an optimization problem. Let D⊆ X×T be a dataset consisting of datapoints and their
corresponding target values. Let ϕ : X→ F be a feature function that maps a datapoint
to its feature representation in the feature space F (usually a subset of Rn some n ∈ N).
Furthermore, let F be a function space and s a (convex) score function s : D×F → R.
Elements of F map features to the target space T—i.e., F ⊆ (F→ T ). One possible goal
is to find the function f ∈ F that maximizes the average score over the training set D.
The main differences between various learning algorithms are the function space and
the score function they use.

If the function space is too expressive, overfitting may occur: The learned function
might perform well on the training data, but poorly on unseen data. A simple example
is trying to fit a polynomial of degree n−1 through n training datapoints; this will give
perfect scores on the training data but is likely to yield a curve that behaves so wildly as
to be useless to make predictions. The issue is well known from the world of finance,
where very sophisticated models have been successfully applied to predict the past.



Regularization is used to balance function complexity with the result of the score
function. To estimate how well a learning algorithm generalizes or to tune metapara-
meters (e.g., the regularization parameter or the maximum degree of a polynomial),
cross-validation partitions the training data in two sets: one set used for training, the
other for the evaluation.

3 Axiom Selection as a Machine-Learning Problem

Using an ATP within an ITP requires a method to filter out irrelevant axioms during
the creation of the ATP problem. Since most ITPs libraries contain several thousands of
theorems, simply translating every library fact into an ATP axiom overwhelms the ATP;
indeed, parsing huge problem files has been an issue with some ATPs. To use machine
learning to create such a relevance filter, we must first answer three questions:

1. What is the goal of the learning?
2. What is the training data?
3. What are the features?

At a first glance, the goal seems clear:

Given an ATP problem with axioms A and conjecture c,
predict a subset of axioms B ⊆ A that is sufficient for proving c.

But what does “sufficient” mean exactly? Clearly, the ATP’s chances of success depend
on which ATP is used, the time limit, and even the computer hardware. Moreover, there
can be several potentially disjoint subsets from which the conjecture can be derived, re-
flecting the existence of alternative proofs. Which subset should then be chosen? Before
we can answer these questions, we must introduce the training data.

3.1 The Training Data

The training data is extracted from the proof library of the ITP. For Isabelle, this could
mean the libraries included with the prover or the Archive of Formal Proofs [23]; for
Mizar, the Mizar Mathematical Library [30]. The data could also include custom li-
braries defined by the user or third parties.

Abstracting from its source, we assume that the training data consists of a set of
facts (axioms, definitions, lemmas, theorems, corollaries) equipped with

– a visibility relation that for each fact states which other facts appear before it;
– a dependency tree that for each fact shows which facts were used in its proof (for

lemmas, theorems, and corollaries);
– a formula tree representation of each fact.

Example. Figure 4 introduces a simple, constructed library. For each statement, ev-
ery statement that occurs above it is visible. Axioms 1 and 2 and Definitions 1 and 2
are visible from Theorem 1, whereas Corollary 1 is not visible. Figure 5 presents the
corresponding dependency tree. Finally, Figure 6 shows the formula tree of ∀x x+1> x.



Axiom 1. A

Axiom 2. B

Definition 1. C if and only if A

Definition 2. D if and only if C

Theorem 1. C
Proof. By Axiom 1 and Definition 1.
Corollary 1. D
Proof. By Theorem 1 and Definition 2.

Figure 4: A simple library

Cor. 1

Thm. 1Def. 2

Ax. 1 Def. 1Ax. 2

Figure 5: The dependency tree of the library of Figure 4, where edges denote depen-
dency between facts

∀

x >

+

x 1

x

Figure 6: The formula tree for ∀x x + 1 > x



3.2 What to Learn

Having defined the training data, we can now reconsider the initial learning goal:

Given an ATP problem with axioms A and conjecture c,
predict a subset of axioms B ⊆ A that is sufficient for proving c.

In the ATP-as-tactic setting, the conjecture of the corresponding ATP problem is the
current proof obligation the ITP user wants to discharge and the axioms are the visible
facts. Since the score function only needs to be defined on the training dataset, the
dependency tree can be used to define which axioms are sufficient. This allows us the
restate the learning goal as follows:

Given an ITP proof obligation c,
predict the parents of c in the dependency tree.

For now, we ignore alternative proofs and assume that the dependencies extracted from
the ITP are the dependencies that an ATP would use. Of course, predicting the exact
parents is unrealistic. Treating axiom selection as a ranking rather than a subset selec-
tion problem allows more room for error and hence simplifies the problem. With this
adjustment, we can state the final version of our learning goal:

Given a training dataset and the formula tree of a proof obligation (Section 3.1),
rank the visible facts according to their predicted usefulness.

In the training phase, the learning algorithm is allowed to learn from the proofs
of all visible facts. The score function is chosen to optimize the ranks of the proof
dependencies. For all facts in the training set, their corresponding dependencies should
be ranked as high as possible.

It has often been observed that it is better to invoke an ATP repeatedly with different
options for a short period of time (e.g., 5 seconds) than to let it run undisturbed until the
user stops it. This optimization is called time slicing. Having a ranking function makes
it possible to create different ATP problems for different slices, each with a different
number of axioms, as illustrated in Figure 7. Slices with few axioms are more likely to
find complex proofs involving a few obvious axioms, whereas those with lots of axioms
might find simple proofs involving more obscure axioms.

3.3 Features

Almost all learning algorithms require the features of the input data to be a real vector.
Therefore a method is needed to translate formula trees representing a proof obligation
into real vectors.

Symbols. A simple approach is to take the set of symbols of a formula as its feature set.
The symbols correspond to the node labels in the formula tree. It usually makes sense
to leave out symbols corresponding to variables, since variable names are immaterial.

Let n denote the vector size, which should be at least as large as the total number of
symbols in the library. Let i be an injective index function that maps each symbol s to



ATP problem i

ATP problem 1

ATP problem m

Axiom ranking

Sledgehammer

n1
highest ranked facts

ni highest ranked facts

nm highest ranked facts

Figure 7: Sledgehammer generates several ATP problems (slices) from a single ranking

a positive number i(s) ≤ n. The feature representation of a formula tree t is the binary
vector ϕ(t) such that ϕ(t)( j) = 1 if and only if the symbol with index j appears in t.

The example formula tree in Figure 6 contains the symbols ∀, >, +, and 1 (but not
the variable x). Given n = 10, i(∀) = 1, i(>) = 4, i(+) = 6, and i(1) = 7, the corresponding
feature vector is (1,0,0,1,0,1,1,0,0,0).

Subterms and subformulas. In addition to the symbols, one can also include as fea-
tures the subterms and subformulas of the formula to prove—i.e., the subtrees of the
formula tree [47]. For example, the formula tree in Figure 6 has subtrees associated
with x, 1, x + 1, x > x + 1, and ∀x x + 1 > x. Adding all subtrees significantly increases
the size of the feature vector. Many subterms and subformulas appear only once in the
library and are hence useless for making predictions. An approach to curtail this explo-
sion is to consider only small subtrees (e.g., those with a height of at most 2 or 3).

Types. The formalisms supported by the vast majority of ITP systems are typed (or
sorted), meaning that each term can be given a type that describes the values that can be
taken by the term. Examples of types are int, real, real × real, and real→ real. Adding
the types that appear in the formula tree as additional features can help [18, 26]. Like
terms, types can be represented as trees, and we may choose between encoding only
basic types or also some or all complex subtypes.

Context. Due to the way humans develop complex proofs, the last few facts that were
proved are likely to be useful in a proof of the current goal [7]. However, the machine
learning algorithm might rank them poorly because they are new and hence little used,
if at all. Adding the feature vectors of the nearby facts to the feature vector of the proof



obligation, in a weighted fashion, is a method for ensuring that they obtain a better rank.
This method is particularly useful when a formula has very few or very general features
but occurs in a wider context.

4 Challenges

Axiom selection has several peculiarities that restrict which machine learning algo-
rithms can be effectively used. In this section, we illustrate these challenges on a large
fragment of Isabelle’s Archive of Formal Proofs (AFP). The AFP benchmarks con-
tain 165964 facts distributed over 116 entries contributed by dozens of Isabelle users.4

Most entries are related to computer science (e.g., data structures, algorithms, program-
ming languages, and process algebras). The dataset was generated using Sledgeham-
mer [26] and is available publicly at http://www.cs.ru.nl/~kuehlwein/downloads/
afp.tar.gz.

4.1 Features

The features introduced in Section 3.3 are very sparse. For example, the AFP contains
20461 symbols. Adding small subterms and subformulas as well as basic types raises
the total number of features to 328361. Rare features can be very useful, because if two
facts share a very rare feature, the likelihood that one depends on the other is very high.
However, they also lead to much larger and sparser feature vectors.

Figure 8 shows the percentage of features that appear in at least x facts in the AFP,
for various values of x. If we consider all features, then only 3.37% of the features
appear in more than 50 facts. Taking only the symbols into account gives somewhat
less sparsity, with 2.65% of the symbols appearing in more than 500 facts. Since there
are 165964 facts in total, this means that 97.35% of all symbols appear in less than
0.3% of the training data.

Another peculiarity of the axiom selection problem is that the number of features
is not a priori fixed. Introducing new names for new concepts is standard mathematical
practice. Hence, the learning algorithm must be able to cope with an unbounded, ever
increasing feature set.

4.2 Dependencies

Like the features, the dependencies are also sparse. On average, an AFP fact depends
on 5.5 other facts; 19.4% of the facts (axioms and definitions) have no dependencies at
all, and 10.7% have at least 20 dependencies. Figure 9 shows the percentage of facts
that are dependencies of at least x facts in the AFP, for various values of x. Less than
half of the facts (43.0%) are a dependency in at least one other fact, and 94593 facts
are never used as dependencies. This includes 32259 definitions as well as 17045 facts
where the dependencies could not be extracted and were hence left empty. Only 0.08%
of the facts are being used as dependencies more than 500 times.

4 A number of AFP entries were omitted because of technical difficulties.

http://www.cs.ru.nl/~kuehlwein/downloads/afp.tar.gz
http://www.cs.ru.nl/~kuehlwein/downloads/afp.tar.gz
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Figure 8: Distribution of the feature appearances in the Archive of Formal Proofs

The main issue is that the dependencies in the training data might be incomplete or
otherwise misleading. The dependencies extracted from the ITP are not necessarily the
same as an ATP would use [1]. For example, Isabelle users can use induction in an inter-
active proof, and this would be reflected in the dependencies—the induction principle is
itself a (higher-order) fact. But ATPs are limited to first-order logic without induction.
If an alternative first-order proof is possible, this is the one that should be learned. Ex-
periments with combinations of ATP and ITP proofs indicate that ITP dependencies are
a reasonable guess, but learning from ATP dependencies yields better results [25, 47].

More generally, the training data lacks information about alternative proofs. In prac-
tice, this means that any evaluation method that relies only on the training data can-
not reliably evaluate whether an axiom selection algorithm produces good predictions.
There is no choice but to actually run ATPs—and even then the hardware, time limit,
and version of the ATP can heavily influence the results.

4.3 Online Learning and Speed

Any algorithm for axiom selection must update its predictions model and create pre-
dictions fast. The typical use case is that of an ITP user who develops a theory fact by
fact, proving each along the way. Usually these facts depend on one another, often in
the familiar sequence definition–lemma–theorem–corollary. After each user input, the
prediction model might need to be updated. In addition, it is not uncommon for users to
alter existing definitions or lemmas, which should trigger some relearning.

Speed is essential for a axiom selection algorithm since the automated proof finding
process needs to be faster than manual proof creation. The less time is spent on updating
the learning model and predicting the axiom ranking, the more time can be used by
ATPs. Users of ITPs tend to be impatient: If the automatic provers do not respond
within half a minute or so, they usually prefer to carry out the proof themselves.
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Figure 9: Distribution of the dependency appearances in the Archive of Formal Proofs

4.4 Translations between Logics

There is a wide gap between the ITPs’ and the ATPs’ logics. Much research has been
concerned with bridging the gap between the two, by encoding ITP into ATP formulas.
The main difficulties are connected with the ITPs’ support for higher-order construct
(e.g., quantification over functions and predicates, λ-expressions) and rich polymorphic
type systems. Complete translations of both features are well known, but they lead to
so much clutter that the proof search effectively grinds to a halt.

In practice, interactive problems are mostly first-order and their type information
is largely irrelevant. This can be exploited to yield a lightweight translation, by en-
coding higher-order constructs locally (and leaving the first-order parts of the problem
unchanged) [32] and by keeping a minimal amount of type information necessary to
prevent the discovery of spurious proofs (i.e., proofs that are ill-typed in the ITP) [5].

5 Conclusion

This paper provided an introduction to the axiom selection problem. For further reading,
we refer to Kühlwein et al. [27], which reviews several algorithms on a benchmark suite
derived from the Mizar Mathematical Library, and Kaliszyk and Urban [19,20], which
introduced a nearest-neighbor approach to axiom selection. Urban and Vyskočil give a
more results-oriented introduction [48].

Machine learning has also been employed to improve other aspects of ATP reason-
ing. In particular, learning algorithms have been used to predict which search strategies
are most likely to succeed in finding a proof [17, 24, 45].
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