
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is an author's version which may differ from the publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/132203

 

 

 

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/43570266?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/132203


Event detection in Twitter: A machine-learning approach
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Abstract

The large number of messages on Twitter posted each day provide rich insights into real-world
events and public opinion. However, it is difficult to automatically distinguish tweets referring to such
events from everyday chatter, and subsequently to distinguish significant events affecting many people
from insignificant events. We apply a term-pivot approach to event detection from the Twitter stream.
In order to filter out noisy and mundane events, we train a machine learning classifier on several
rich features, and rank the events based on classifier confidence. After training and re-training the
classifier using manually annotated data, we obtain an Fβ=1 score of 0.79. However, a baseline that
only takes into account the frequency of the tweets that refer to an event yields a better Fβ=1 score of
0.86. We argue that performance is highly related to the definition of what makes a significant event,
and that human understanding of this concept is not uniform.

1 Introduction
Microblogging platforms such as Twitter give users a voice to share ideas, opinions, and experiences
with friends and the general public. Owing to the large user base on Twitter, the platform provides
real-time information about what happens in the world. Detecting events and harvesting references to
them from Twitter is therefore a highly valuable goal. However, this task is hampered by the nature and
dynamics of Twitter. While news media select newsworthy items to write about, there is no such top-
down selection process in the Twitter ecosystem. Events of public interest and mundane, insignificant
events may both be characterized by bursty peaks in the usage of a set of terms in Twitter.

To give an impression of term burstiness in Twitter, consider the two examples in Figure 1. Example
(a) displays the event of an excavation near the bridge ‘Waalbrug’ in Nijmegen, represented by a single
joint rise and fall in the usage of the words ‘waalbrug’ and ‘opgegraven’ (Dutch for ‘excavated’) in
Twitter. As a comparison, we also plot the frequency of the frequently used hashtag ‘#lol’ in the same
time window, which does not show any burstiness. It could be hypothesized that the first two terms both
refer to an event, and possibly to the same event. Example (b) shows a similar pattern for the terms
‘brommobiel’ and ‘koekange’, peaking at about the same point in time, contrasted again with the non-
bursty hashtag ‘#lol’. Without any additional knowledge, a system that leverages term burstiness might
label the joint peaks in both examples as an event. However, further inspection shows that the peaks in
example (b) denote a news report about a criminal act in the place of Koekange and an unrelated traffic
accident with a scooter. A proper event detection system needs to filter out such insignificant events,
possibly by taking into account additional features beyond burstiness.

The aim of this research is to expand existing work on detecting significant events on Twitter. We
build on an approach proposed by [10]. They implement the Twevent approach to event detection in
Twitter [7], and expand it by training a classifier on several features of an event to recognize significant
events in contrast to mundane, insignificant events. We reproduce their experimentation and apply it to
two months of Dutch tweets.
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Figure 1: Illustration of bursty and non-bursty term occurrences. Left: ‘waalbrug’ and ‘opgegraven’
(bursty) and ‘#lol’ (non-bursty); right: ‘brommobiel’ and ‘koekange’ (bursty) and ‘#lol’ (non-bursty).

2 Related Work
The detection of events in Twitter has been the goal of many studies. It is mainly approached as a
clustering problem, with burstiness as the most important characteristic to detect an event. The most
salient dichotomy among approaches is what [5] call document-pivot clustering and term-pivot clus-
tering: burstiness is either measured at the level of tweets that share common terms, or at the level of
single terms that display a joint burstiness over time. We provide an overview of the most important
event detection systems, and summarize the performance on retrieving significant events reported by
these studies.

2.1 Document-pivot clustering
The clustering of documents for the detection of events originates from the Topic Detection and Tracking
(TDT) area of research [1]. Given a stream of news messages, any incoming message is linked to an
existing event cluster or is the start of a new event cluster. [9] propose an adaptation of this approach to
fast text streams such as Twitter. Incoming messages are either linked to an existing cluster, or grouped
into a new one dependent on the distance to their nearest neighbour. Events are distinguished from other
clusters based on the growth rate of a cluster. [9] obtain an average precision of 0.34 of retrieved event
tweets versus tweets not related to an event, or spam. [8] reproduce the approach of [9], resulting in the
retrieval of 1,340 events in 28 days of tweets, of which 382 (28%) are found to be significant.

Instead of clustering incoming tweets based on their raw content, alternative approaches focus on
specific aspects of tweets that refer to future events. [11] state that important events on Twitter, in
comparison to mundane events, have a common point in time to which multiple tweets refer explicitly.
They extract events by clustering tweets that refer to the same point in time and mention the same entity.
When ranking events based on the strength of the association between their date and entity, [11] obtained
a P@100 (precision within the top-100 events) of 0.9 and a P@1000 of 0.52.

Yet another way to cluster tweets into events is to apply Latent Dirichlet Allocation (LDA) [2], by
which individual words are linked to a topic based on their co-occurrence with other words. To detect
bursty topics in Twitter, [4] build on the Twitter-tuned LDA implementation by [15], and expand it by
adding topic distributions per time window and per user. Bursty topics are typically detected as a set of
tweets from different users that contain similar words within a time window. A disadvantage of LDA
is its dependence on parameter settings such as the number of topics, and the large number of sampling
iterations that are required, leading to an extensively long duration for large sets of tweets. [4] set the
number of topics to 30 in a period of 91 days, and obtained a precision of 0.76 for these topics (a
precision@5 of 1.0).



2.2 Term-pivot clustering
[5] propose term-pivot (or feature-pivot) clustering as an alternative to document-pivot clustering for
event detection from a news stream. Its two main advantages are the independence from parameter
settings, and the event summary that is readily given by clustered terms. The first effective application
of term-pivot clustering to event detection on Twitter is proposed by [14], who capture the burstiness of
words by approaching them as signals and applying wavelet analysis to them. They obtain a precision
of 0.76 for 21 events retrieved in a month of tweets from a Singapore user base.

[7] argue that multi-word segments or word n-grams, rather than single words, are beneficial both for
the interpretation of an event and the detection of significant events. At the core of their Twevent system
is the extraction of meaningful n-grams from tweets. N -grams are scored by their burstiness, and bursty
n-grams are clustered into candidate events. The significance of a candidate event is dependent on the
Newsworthiness of the individual n-grams, formulated as the combined chance of any n-gram sub-
phrase to occur as an anchor text in Wikipedia, and the mutual similarity scores between the n-grams.
[7] obtained a precision of 0.86 for 101 detected events on the same dataset as [14].

For the works discussed above, event significance is scored by an intuitive measure, such as the
number of cluster terms [14] or the growth rate of a cluster [9]. Aiming to improve over these simple
estimations of event significance, [10] apply Twevent to 15 days of English tweets and annotated the
4,249 resulting clusters as ‘True news event’ or ‘False news event’. The clusters are linked to 15 rich
features presumed to be indicative of their significance (these features are described in more details in
Section 3.3.1). A classifier is trained and tested through 10-fold cross validation on all event clusters,
resulting in a precision of 0.84 on 146 retrieved events, compared to 0.76 on 107 events by the original
Twevent system.

In the study described here we adopt the approach by [10]. Where [10] build on the framework of
Twevent to form clusters of segments, we base this clustering on unigrams rather than on segments. The
rationale behind this is that in Dutch, the language we work with, word formation is characterized by
compounding, which means that Dutch unigrams to a certain extent capture the same information as
English bigrams. Compare, for instance, ‘home owner’ to ‘huizenbezitter’.

As a definition of what makes an event significant, we follow the definition given by [8]: ’Something
is significant if it may be discussed in the media.’ As a proxy, we borrow the idea of [7] to include
the presence of a certain name or concept as an article on Wikipedia as a weight in determining the
significance of the candidate cluster of terms.

3 Experimental Set-up

3.1 Data
We collected two months of Dutch tweets by means of twiqs.nl, an archive of Dutch tweet IDs from
December 2010 onwards [12]. The tweets in twiqs.nl are collected continuously from the Twitter
API on the basis of a seed list of Dutch words and a list of the most active Dutch users. The harvesting
is limited.1 We collected the available tweets from 2013/06/22 until 2013/08/22, and filtered out non-
Dutch tweets according to the language identification offered by twiqs.nl, resulting in a set of 65.02
million tweets.

3.2 Event detection
Our event detection approach takes the following steps.

3.2.1 Unigram selection by burstiness

To select candidate unigrams we first tokenize the tweets with ucto,2 remove punctuation and user
names, and lowercase the remaining words. Additionally, we remove stop words from each tweet. For
each unigram we generated a time sequence of the tweets that contain the unigram. Following [7] we
set the window size for this sequence to 24 hours, focusing on events that occur within a day.

1twiqs.nl harvests an estimated half of all Dutch tweets.
2http://ilk.uvt.nl/ucto



Given a day-by-day sequence of counts for a unigram, we score its burstiness per day by applying
the state automaton approach to burstiness detection [6]. Each day a unigram can take on a bursty or
normal state. The most likely sequence of states for a unigram can be uncovered by applying a Hidden
Markov Model on the observed probability at each stage and the transition probability from state to
state. We base the modeling of these two probabilities on the implementation by [4]. The observed
probability of a count is based on a Poisson distribution for each state, which is defined as follows:

p(fut | vt = l) =
e−µlµfut

l

fut!
(1)

Where fut is the frequency f of unigram u for time window t, l is either 0 or 1, and the normal
and bursty states are denoted by µ0 and µ1, respectively. Following [4], we set µ0 to the average count
of a unigram over time and we set µ1 = 3µ0, i.e. an observed frequency has a higher probability to
represent a bursty state when it approximates three times the average count. Also following [4] we set
the transition probability σ0 to 0.9 and σ1 to 0.6, implying that a transition from a normal state to a
bursty state is not very likely with a chance of 0.1. The chance that a bursty state reverts to a normal
state is higher, with 0.4.

We use the Viterbi algorithm to dynamically find the bursty states for each unigram, and discard the
unigrams without a bursty state as candidates. In our data set of 61 days, the method identifies 253, 472
bursty unigrams, with an average of 4, 088 per day (σ = 703).

3.2.2 Unigram similarity

To cluster unigrams into event clusters, we adopt the approach by [7]. For each day in our dataset,
the similarity between all pairs of bursty unigrams is calculated and clusters are formed based on this
similarity graph. To calculate the similarity, each time window t is divided into M sub-time-windows.
Following [7] we set the size of M to 12 (i.e. two hours per sub-time-window). The similarity between
any pair of unigrams ua and ub on a day is calculated as follows:

sim(ua, ub) =

M∑
m=1

wt(ua,m)wt(ub,m)sim(Tt(ua,m), Tt(ub,m)) (2)

The sub-time-window similarity between unigrams is computed by collecting the tweets in which
the unigrams are mentioned, and generating two pseudo-documents containing all concatenated tweets
in which one or the other unigram occurs. Terms in these documents are weighted by tf − idf , and the
cosine distance between the two pseudo documents is calculated as the similarity score between the two
unigrams. This calculation favors pairs of unigrams that are mentioned with comparable content and
that are most bursty in the same sub-window. Furthermore, it considers the similarity between tweets
rather than the co-occurence of unigrams, which is reasonable given the shortness of tweets.

3.2.3 Term clustering

Given the similarity graphs of bursty unigrams per day that result from the previous step, unigrams are
clustered into event clusters. Following [7], we apply Jarvis-Patrick clustering. This algorithm has two
parameters, k and l. For any two unigrams to be clustered together, they have to occur in each others
k-nearest neighbours and they have to share at least l common neighbours in their k-nearest neighbors.
Advantages of this algorithm are its limited computational cost and the fact that the number of topics
does not have to be defined.

[7] found that the l parameter is too restrictive for this task. Following them, we only took into
account the k parameter and set k = 3, linking unigrams if they occur in each other’s top-3 most similar
unigrams. Unigrams that were not linked to any other unigram were discarded. As a result, we retrieved
a total of 33, 452 event clusters from the 61 days of bursty unigrams (548 on average per day).

3.3 Event significance classification
Event significance classification can be seen as what [10] call ‘event filtering’. The events that result
from clustering are sorted into significant and insignificant events. We apply the same approach to



event filtering as [10]: describing event clusters by rich features and training a classifier to distinguish
significant from insignificant events.

3.3.1 Features

In their research, [10] include 15 rich features. Most of the features that we use are adopted from [10].
We describe the features below, and make a distinction between cluster features and tweet features: re-
spectively the characteristics of the unigrams that describe a cluster and the characteristics of the tweets
in which the unigrams of a cluster occur on the day of their burstiness (referred to as event tweets). For
each of the 15 features, we give a full name and an abbreviation between brackets, which will henceforth
be used to refer to the feature.

Cluster features

• Unigrams (UNI) - the number of unigrams in the event cluster. Arguably, a cluster which is
described by many unigrams is not likely to represent a coherent, significant event.

• Edges (EDGE) - the average number of clustering edges between the unigrams in the event cluster.
This feature describes the density of a cluster.

• Similarity (SIM) - the average similarity score, as described in section 3.2.2, between unigrams
in the event cluster.

• Burstiness (BST) - the average burstiness of unigrams in the event cluster, adopted from the
bursty probability calculation in [7]. This probablity is based on the expected frequency E[u|t] of
a unigram u in a time window t, given its Gaussian distribution:

E[s|t] = NtPs = Nt ∗
1

l

L∑
t=1

fu,t
Nt

(3)

Here, Nt is the number of tweets during day t, L is the number of time windows containing u,
and fu,t is the frequency of u in time window t. Given E[s|t], the bursty probability Pb(s, t) is
calculated as follows:

Pb(s, t) = S(10 ∗ fs,t − (E[s|t] + σ[s|t])
σ[s|t]

) (4)

S is the sigmoid function and σ[s|t] =
√
NtPs(1− Ps, the standard deviation of the Gaussian

distribution.

• Newsworthiness (WIKI) - the average newsworthiness of unigrams, which is operationalized in
[7] as the ratio by which terms that are (in) the title of a Wikipedia page are referred to from other
pages from anchored links. Terms that have a high probability to be used as anchor to their page
are believed to be more newsworthy. To calculate the newsworthiness score for all bursty terms,
we downloaded a dump of the Dutch Wikipedia pages from November 14th 2013 (the closest date
after our data set).3

Tweet features

• Document Frequency (DF) - the relative frequency of the event tweets, calculated as the number
of event tweets on the given day divided by the total number of tweets on that day.

• User Document Frequency (UDF) - the relative number of different users that refer to the event,
calculated as the number of users that posted one of the event tweets, divided by the total number
of event tweets.

• Hashtags (HT) - the average number of hashtags (#) per event tweet

• URLs (URL) - the percentage of event tweets that contain a URL (any token starting with (‘http://’)

• Replies (REP) - the percentage of event tweets that start with a username (tokens that start with a
‘@’), which is typical of a reply.

3http://dumps.wikimedia.org/nlwiki/20131114/



• Mentions (MEN) - the percentage of event tweets that contain a mention of a username, on any
position other than the start of a tweet.

• Cohesiveness (CHS) - the average number of unigrams in tweets. If the event tweets contain two
or more of the clustered unigrams, they are more likely to refer to a cohesive event.

• Informativeness (INF) - the relative number of different words in the event tweets. Spam messages
are often characterized by a narrow vocabulary, while events that arouse the attention of a lot of
people might be referred to with a bigger variation of words.

3.3.2 Classification

While [10] annotate all 4,249 event clusters retrieved by the Twevent approach from their data set, we
did not annotate all 33,452 event clusters retrieved from our data set. Instead we selected a subset of
the data. To make sure we had enough significant events in this subset, we trained a classifier on 350
labeled event clusters on the first two days in our data set and applied it to the remaining days. The 1000
events of which the classifier was most confident were used as data set for our experimentation.

As classifier we made use of the SNoW implementation of Winnow [3]4. This algorithm is known
to offer state-of-the-art results in text classification, and outputs a per-class confidence score by which
instances could be ranked. To tune the different parameters of Winnow (α, β, θ+, θ−, the number
of iterations and the thick seperator), we applied a heuristic hyperparameter optimization scheme that
makes use of wrapped progressive sampling on training data [13].

To obtain labeled data for the preliminary classification we ranked the event clusters in the first two
days based on the average similarity score of their unigrams. One of the authors annotated the top 350
of these events as significant or not, resulting in 153 events labeled as significant and 197 events labeled
as insignificant. The classifier was trained on these 350 labeled events and was applied to all events in
the remaining days in the data set. The 1,000 events that were most confidently scored as significant by
the classifier were used in our main experimentation.

To obtain trustworthy labels for the 1,000 events we asked 8 annotators to each label 250 events as
significant or not. The data was split in a way that each event was annotated by two annotators, with
8 unique annotator pairs (125 events per pair). We presented them with a list of events represented by
a date, the event unigrams, and a sample of 10 of the event tweets. In our explanation of the task, we
gave them the definition of a significant event that we specified in section 2.2, as well as a few examples
of typically significant and insignificant event clusters. The task was to annotate each event as either
significant, insignificant, or doubtful. We additionally asked the annotators to indicate if the event was
a social event, which we planned to use for additional research.

354 of the 1,000 event clusters were indicated by both annotators as significant, 723 were annotated
as significant by at least one of the two annotators and 277 events were annotated by both annotators
as insignificant. The mean inter-annotator agreement was fair (κ = 0.25, with a standard deviation of
0.11).

3.4 Evaluation
Given the 1,000 annotated event clusters, we evaluated classification performance by 10-fold cross-
validation. We apply classification with a strict and lax labeling. For strict labeling, only events that
were indicated as significant by two annotators are labeled as significant, while for the lax labeling,
events that were annotated by one as significant are seen as significant. To score the performance, we
calculate the precision, recall and F1 scores for the retrieval of significant events. As baselines we
ran the classifier separately on the intuitively most effective features for significant event classification:
burstiness (BST), the number of tweets mentioning the event (DF), and the similarity between unigrams
(SIM).

4 Results
The results are given in Table 1. Both in the strict and the lax setting the classifier that bases its judge-
ments on all feature values yields a worse performance than one of the classifiers based on a single

4http://cogcomp.cs.illinois.edu/page/software_view/SNoW



feature. In the strict setting, the relative document frequency is sufficient, while for the lax setting the
term burstiness leads to a peak performance of .94.

Strict Lax
Precision Recall F1 Precision Recall F1

DF .80 .95 .86 .73 .99 .84
SIM .54 .93 .68 .84 .95 .89
BST .57 .84 .68 .93 .94 .94
All .76 .90 .79 .91 .93 .92

Table 1: Results for the classification of events as significant in the strict and lax setting, by performing
classification based on a single feature (DF, SIM or BST) and based on all 13 features.

In Table 2 we show the five events that were most confidently ranked as significant by the classifier
that uses all features. Three of the events are arguable significant for a large number of people: the
football match ‘Spanje-Italie’, a goal of Clarence Seedorf, and a reference to the television program
‘Miracle Run’. The next event is of a personal nature (school performance), while the final case is only
arguably newsworthy (breeding insects for improving the environment).

date event terms example tweet
27-06-2013 spanje-italie, italie spanje-italie kijken ik ben voor itali
15-07-2013 botafogo clarence RT @433NL VIDEO Oud maar nog steeds gedreven

Clarence Seedorf 37 scoorde vanavond een heerlijke goal
voor Botafogo http://t.co/Wj7hp

15-07-2013 efron zac miracle @BBergstra op rtl 8 Miracle run Gaat over een autistische
tweeling met Zac Efron x

03-07-2013 bevorderd gymnasium Bevorderd naar gymnasium 3 :-)
04-07-2013 milieuproblemen kweken Insecten kweken als op lossing voor voedsel en mi-

lieuproblemen http://t.co/cRTFvL7ToT

Table 2: events classified as significant most confidently based on all 13 features in a 10-fold cross-
validation setting.

5 Conclusion and discussion
We reproduced the term-pivot approach to event detection proposed by [7] and applied it to two months
of Dutch tweets. In line with [10] we annotated the resulting events on their significance and trained
a machine learning classifier based on 13 features. We found that the relative frequency by which an
event is mentioned provides a sufficient cue to recognize significant events as opposed to feeding the
classifier all 15 features, yielding Fβ=1 scores of 0.86 and 0.79, respectively.

Our system obtains precision values that are similar to the ones reported by [10] (around 0.80), while
our recall values are much higher. An explanation is that [10] train and test on a much larger set of 4,249
events with a smaller fraction of significant events, making the task more challenging. Furthermore, we
train and test on the already ranked output of our classifier. As [10] we find that the number of event
tweets and the number of URLs in these tweets are important features to recognize significant events. On
the other hand, user document frequency (UDF), newsworthiness (WIKI) and similarity values (SIM),
reported by them as useful features, did not have a big influence on the classifier performance in our
experiment.

In our experiment, two annotators labeled each event. The low agreement value (κ = 0.25) shows
that it is difficult even for humans to decide whether an event is significant or not. We found that it is
not trivial to provide the annotators with an unambiguous definition of what makes a significant event.
In future work we will attempt to develop a sharper definition.
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