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The lattice constant, bulk modulus, and shear constant of TbN are calculated by means of density functional
theory (DFT) in the local density approximation (LDA) and generalized gradient approximation (GGA), with
4f states treated as valence electrons or core electrons. In addition, local Coulomb repulsions U are treated both
statically as in the LDA+U approach and dynamically as in the dynamical mean-field theory in the Hubbard-I
approximation. It is shown that all methods, except DFT-LDA with 4f electrons treated as either valence states,
produce lattice constants and bulk moduli in good agreement with experiment. In the LDA+U approach multiple
minima are found, and we focus on the competition between a state with cubic symmetry and a state obtained
from atomic Hund’s rules. We find the state with cubic symmetry to be 0.59 eV lower in energy than the Hund’s
rules state, while the opposite was obtained in previous literature. The shear constant is shown to be rather
sensitive to the theoretical method used, and the Hund’s rules state obtained in LDA+U is found to be unstable
towards tetragonal shear. As to the magnetism, we find that the calculation based on the Hubbard-I approximation
reproduces observations with the best accuracy. Finally, the spectral properties of TbN are discussed, together
with the general applicability of the different methods in describing rare-earth elements and compounds.
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I. INTRODUCTION

In the past decades, it has been shown that calculations
based on density functional theory (DFT) [1,2] reproduce
measured materials properties, e.g., the elastic constants,
equation of state, catalytic activity, conductivity, lattice dy-
namics, surface tension, work function, and the spin and orbital
moments, with good accuracy for most elements and various
compounds [3]. This conclusion holds for those systems
with weak electron-electron correlations, where the exchange
correlation functional can be parametrized using information
from the uniform electron gas as in the local density approxi-
mation (LDA) or generalized gradient approximation (GGA).
This, however, is far from the situation of the 4f shell of
the rare-earth elements, where the direct electron-electron
repulsion is significant and cannot without further effort be
incorporated in ab initio theory, where no input is expected
from experimental data.

Based on the wealth of experimental information available
for the rare earths [4], it is by now established that the 4f

shell has localized electron states, where band-dispersion
effects are negligible. The electron-electron repulsion within
the 4f shell is found to be minimized by the formation
of a Russell-Saunders coupled ground state, and with the
exception of the α phase of Ce, Eu, and Yb, all rare-earth
elements form a trivalent configuration in the solid. Eu and
Yb are divalent, since this configuration provides a half-filled
or filled 4f shell [5]. This understanding of the 4f shell of
the rare earths is the basis of the so called standard model of
this class of elements [6]. The standard model explains all the
essential properties of the rare-earth elements, like the crystal
structure [7,8], equilibrium volume [8,9], bulk modulus [8,9],
valence stability [10], crystal field splittings, and the magnetic
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phase diagram [11]. The standard model applies as well to
compounds involving rare-earth elements, albeit in some
cases a mixed valent behavior is observed [12,13], where the
electronic configuration of the 4f shell fluctuates between
two integer occupancies, i.e., f n and f n+1.

Any theory on the electronic structure of the rare-earth ele-
ments should reproduce the behavior observed in the standard
model. In the past this was achieved by treating the 4f elec-
trons as being part of the core states, so that measured densities,
structural stability, and bulk modulus were reproduced with
good accuracy [7–9]. The interatomic exchange interaction,
which is in this case given by the RKKY mechanism, was also
reproduced by a theory that treats the 4f electrons as part of a
chemically inert core [11]. Lately, parametrized Hartree-Fock
theory in the form of the LDA+U approximation [14] has
become popular for treating the electron-electron repulsion
of the 4f shell [15–17]. Although the chemical inertness of
the 4f shell can be achieved in this way, by pushing occupied
states to low energies, and unoccupied states well above the
Fermi level, it is unclear how well the calculated electronic
structure agrees with measured valence band spectra. It
is also not clear whether the LDA+U approximation
can reproduce more delicate materials properties of rare
earths, like elastic constants, magnetic moments, or valence
stability.

Dynamical mean-field theory (DMFT) [18] in the form
of the Hubbard-I approximation (HIA) [19] has recently
shown promising results in describing the spectral properties
of several rare-earth systems [20–25]. The treatment of the
4f shell in this way holds great promise since it naturally
describes many of the experimentally known facts of the rare
earths, in particular the Russell-Saunders ground state and the
formation of atomic multiplets.

In this work we apply the theories discussed so far for the
rare earths to the terbium nitride compound. These theories will
be compared for the calculation of the lattice constant, bulk
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modulus, shear constant, magnetic moments, and one-particle
excitation spectrum. Terbium nitride was chosen as it is
a particularly significant example of the interplay between
atomiclike effects and one-electron crystal field splittings,
which provides a complication for effective one-electron
theories. Moreover, TbN and all other rare-earth nitrides
are very relevant for the scientific community, due to the
easily tunable magnetic properties, which often coexist with a
semiconducting character, making them interesting candidates
for spintronics [26].

II. DETAILS OF CALCULATIONS

All the calculations reported in the present paper were
carried out using a full potential linear muffin-tin orbital (FP-
LMTO) method [27]. We used LDA and GGA parametriza-
tions of the exchange-correlation functional as formulated
by Perdew and Wang [28] and by Perdew, Burke, and
Ernzerhof [29]. The Brillouin zone was sampled through a
conventional Monkhorst-Pack mesh of 30 × 30 × 30 k points,
leading to a total of 904 vectors in the irreducible wedge.
The basic geometrical and basis setup was the same for all
calculations, with the exception of the 4f states, described
below. For the definition of the muffin-tin sphere of nitrogen
we used a radius of 2.056 a.u., and for terbium one of 2.18 a.u.
in case of LDA and 2.41 a.u. for GGA. This smaller radius for
LDA was necessary due to the overbinding tendency of LDA
with the 4f electrons in the valence (see Table I). The main
valence basis functions were chosen as 6s, 6p, and 5d states,
while 5s and 5p electrons were treated as pseudocore in a
second energy set [27]. The 4f states were treated as valence
states for some simulations and as core states for some other
simulations. In the latter case 5f states were instead added

TABLE I. Calculated and experimental values for equilibrium
lattice constant, bulk modulus, and shear constant of TbN bulk. The
theoretical values are obtained by means of LDA and GGA for
4f electrons treated as core states (CORE) and as valence states
(VALENCE), whereas for LDA+U and GGA+U solutions with
cubic symmetry (CUBIC) and maximal orbital moment (HUND)
are reported. LDA+DMFT[HIA] refers to a LDA+DMFT calcu-
lation where the effective impurity problem is solved within the
Hubbard I approximation. The calculated values are compared with
experimental values for the equilibrium lattice constant and bulk
modulus [36,37], while two previous computational studies [38,39]
are used as reference for the shear constant.

Method a (Å) B (GPa) C ′ (GPa)

LDA VALENCE 4.77 186 166
GGA VALENCE 4.91 140 115
LDA CORE 4.90 177 160
GGA CORE 4.99 162 146
LDA+U CUBIC 4.87 179 147
LDA+U HUND 4.87 182 <0
GGA+U CUBIC 4.97 152 114
LDA+DMFT[HIA] 4.89 160 145
Experiment 4.92 150
Theory from Ref. [38] 115
Theory from Ref. [39] 131

to the valence electrons, in order to have basis functions with
f angular character. Three kinetic energy tails were used for
6s and 6p states, corresponding to the default [27] values 0.3,
−2.3, and −0.6 Ry. Only the first two tails were used for all
the other basis functions.

Apart from pure DFT in LDA or GGA, we also performed
simulations in combination with DMFT [18]. Details on the
implementation used in this work are given elsewhere [23,30–
33], and we refer the reader to those studies for a complete
description of our methods. In the present paper the effective
impurity problem arising in the DMFT cycle was solved in the
HIA [23]. Conforming to existing notation, we will address
this method with the acronym LDA+DMFT[HIA]. Moreover,
we have performed other calculations, where the effective
impurity model was solved in the Hartree-Fock approximation,
which corresponds to the LDA/GGA+U approach [14,15]
in the most general fully rotationally invariant form [18].
In the LDA/GGA+U and LDA+DMFT[HIA] simulations
we used slightly different local orbitals to which we ap-
plied the Hubbard U correction, respectively ORT and MT
orbitals. These orbitals are constructed from LMTOs, that
have a representation involving structure constants, spherical
harmonics, and a numerical radial representation inside the
muffin-tin spheres. These functions are matched continuously
and differentiably at the border of the muffin-tin spheres to
Hankel or Neumann functions in the interstitial. The ORT
basis originates from these native LMTOs after a Löwdin
orthonormalization. The MT orbitals, instead, are atomiclike
orbitals where the radial part comes from the solution of the
radial Schrödinger equation inside the muffin-tin sphere at
an energy corresponding to the “center of gravity” of the
relevant energy band. For a more detailed description about the
correlated orbital bases, we refer to Ref. [30]. There, it is also
shown that they generally lead to very similar results. Finally,
the double counting correction [18] was set up in the fully
localized limit (FLL) [15] for the LDA/GGA+U simulations,
while in LDA+DMFT[HIA] was fixed to adjust [23,32] the
position of the first multiplet peak below the Fermi level at
−0.15 Ry, which is the measured value for trivalent elemental
Tb. This value was kept unchanged for different strains and
lattice constants, analogously to what was done in Ref. [25].
Concerning the Coulomb interaction parameters, a U of
9.46 eV and a J of 1.246 eV were used, in agreement with the
work of Larson et al. [17]. This choice corresponds [15] to the
Slater integrals F0 = 9.46 eV, F2 = 14.97 eV, F4 = 10.00 eV,
and F6 = 7.40 eV.

In order to obtain the lattice constant and bulk modulus we
calculated the total energy for different atomic volumes. These
data were fitted through the Murnaghan equation of state [34],
which gave us the equilibrium volume V0 and bulk modulus.
For a cubic lattice and small strains, it can be shown that the
shear constant, C ′, can be obtained from the expression [35]

�E

V0
= 6C ′δ2. (1)

Here �E is the total energy difference with respect to
equilibrium volume caused by the strain δ. This corresponds
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to a volume conserving strain matrix
⎛
⎝

1 + δ 0 0

0 1 + δ 0
0 0 1

(1+δ)2

⎞
⎠, (2)

which acts on the unit cell vectors. The muffin-tin radii were
kept fixed for all the calculations for different strains and
atomic volumes to minimize numerical errors in the energetics
of the core states.

III. RESULTS

A. Lattice properties

Just like the other rare-earth nitrides, TbN crystallizes in
the rocksalt structure [17,26]. Equilibrium lattice constants
a and bulk moduli B obtained with the aforementioned
computational methods are reported in Table I, together with
the experimental values [36,37]. All the results presented here
were obtained without spin-orbit coupling. This approximation
is motivated by the fact that spin-orbit coupling effects are
small for the delocalized spd states and thus should not
influence much the bonding properties [8]. In the next two
subsections we will discuss the effects of spin-orbit coupling
more in detail.

The first column of Table I specifies the method used for
the calculation, as described in the previous section. The label
VALENCE refers to the treatment of the 4f electrons as
valence electrons, while the label CORE indicates that the
4f electrons are treated as nonhybridizing core states. In the
case of LDA+U and GGA+U the 4f electrons are treated
as valence states, so none of the previous labels is needed.
However, when this method is applied to f -electron systems,
a plethora of local minima can be obtained, corresponding to
different local density matrix at convergence. Here we consider
two significant electronic configurations, labeled as HUND
and CUBIC. The former corresponds to a Russell-Saunders
coupling of the 4f states, which is consistent with the standard
model of the rare earths, while the latter corresponds to
the solution where the 4f configuration respects the cubic
symmetry of the lattice. These two solutions are usually found
by converging from different starting density matrices. In our
calculations, instead, we applied different initial potentials
whose symmetries were broken with respect to certain mul-
tipole moments [40]. At convergence these two approaches
are supposed to be equivalent. For GGA+U we report only
results for the CUBIC state, since it was not possible to obtain
the solution that corresponds to the HUND state.

From Table I it is clear that all methods except LDA
VALENCE reproduce the lattice constant very well. The bulk
modulus appears to be more sensitive to the method used.
However, all methods except LDA VALENCE and LDA+U

HUND give a value within 20% of the experimental value. For
the shear constant C ′ there are unfortunately no experimental
data available and therefore we compared our calculations with
other theoretical analyses [38,39]. The study from Ref. [38] is
based on a two-body interionic potential theory with modified
ionic charge to include the Coulomb screening effect. The
study from Ref. [39], instead, is based on DFT through a
projector-augmented-wave (PAW) method in GGA.

FIG. 1. Schematic representation of LDA+U total energies, f -
projected orbital moment (Lz), and spin moment (2Sz) of CUBIC
and HUND states as calculated in the present paper and by Larson
et al. [17]. In the “present study” part the full and dashed lines
correspond to respectively a calculation without (NO SOC) and
with (SOC) spin-orbit coupling. In the Larson et al. part the total
energy difference corresponds to a scalar relativistic calculation. The
moments are obtained by doing one iteration with spin-orbit coupling
on top of this fully converged scalar relativistic calculation.

All calculations except one lead to a positive shear constant,
which indicates that the cubic structure is stable under the
considered deformation. The lack of a positive shear constant
for the LDA+U HUND calculation proves that this calculation
has an inner instability towards a tetragonal strain. We explored
different shears to find the crystal geometry corresponding to
the minimal energy in the LDA+U HUND calculation. We
found that a volume conserving strain along the z direction
resulted in the ground state when the c/a ratio was about
0.985. In Ref. [17] it was argued that the cubic symmetry
breaking of the 4f charge density would not have major effects
on the measured x-ray diffraction spectra, due to the small
contribution to the total charge density. However, our results
show that this symmetry breaking produces a sizable tetragonal
distortion of the lattice, which is in contradiction with the
experimentally observed cubic crystal structure.

A more detailed comparison of the CUBIC and HUND
states in our study and the corresponding states reported by
Larson et al. [17] is given in Fig. 1. In this figure the full
and dashed lines of the present study part correspond to
respectively a calculation without (NO SOC) and with (SOC)
spin-orbit coupling. For the part of this figure corresponding
to Larson et al. it is important to note that the total energy
difference comes from a scalar relativistic calculation without
spin-orbit coupling. However, in their study the f -projected
orbital and spin moments, respectively Lz and 2Sz where z

is the magnetization direction, are obtained by turning on
spin-orbit coupling for one iteration after converging this scalar
relativistic calculation. Thus, for comparing the total energy
difference between the CUBIC and HUND states of Larson
et al. and our study, we should use the results obtained without
spin orbit coupling. We find that the LDA+U CUBIC state
is more favorable in energy than the HUND state of 0.59 eV.
Larson et al. find instead the opposite result [17], and with a
much larger energy difference, i.e., about 5 eV. The HUND
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states in both corresponding studies have the same 4f spin
moment (6 μB) and orbital moment (3 μB). The total moment
in this case becomes 9 μB , which corresponds well to the total
magnetic moment obtained from Russell-Saunders coupling
and to what in general is expected for a trivalent Tb atom in
elemental form, or in any compound. For the CUBIC states,
when comparing our results with those by Larson et al., only
the 4f spin moment is in good agreement, and has a value
of about 3 μB . The orbital moments, instead, are different, as
reported in Fig. 1. This is due to the scheme used in Ref. [17]
to extract the magnetic moments as explained above. This is
why the CUBIC state of Larson et al. does not have pure
cubic symmetry and has a nonzero orbital moment. In the next
subsection (spin-orbit coupling and magnetic properties) we
discuss the orbital and spin magnetic moments coming from
a fully self-consistent treatment of the spin-orbit coupling.
Finally, we would like to emphasize that, for the total energy
difference between the CUBIC and HUND states, the same
configurations are used as in the work of Larson et al. For
the CUBIC state this means that the minority spin electron
occupies the a2u state and for the HUND state the state with
Lz = 3 quantum number is occupied.

To further analyze the disagreement in the ground state,
we performed additional LDA+U calculations with the full-
potential linear augmented plane-wave method (FLAPW)
FLEUR [41]. Here we found that the CUBIC state is 0.58 eV
lower in energy than the HUND state, in accordance to the
FP-LMTO results. Finally, we should mention that we also
explored the effects of the inclusion of an additional term Ud

for the local Coulomb interaction between the Tb 5d electrons,
with J = 0 for the sake of simplicity. We found that the energy
difference between the CUBIC and HUND states remains
basically unchanged.

B. Spin-orbit coupling and magnetic properties

In this subsection we will analyze the influence of
spin-orbit coupling and the magnetic properties. Before we
continue two things must be emphasized. First, we used
the equilibirum structures obtained above (see Sec. III A)
for this investigation. Second, all LDA/GGA as well as
LDA+U and LDA+DMFT[HIA] calculations reported above
are done without spin-orbit coupling. However, for the
magnetic properties to which the 4f -electron contribution is
crucial, the spin-orbit coupling must be included. Note that the
orbital moments discussed in the previous subsection for the
LDA+U approach were purely induced by the local Coulomb
interaction, which can favor states obeying the second Hund’s
rule [42]. The inclusion of the spin-orbit coupling, instead,
offers a more complete picture and allows us to also consider
the effects associated to the third Hund’s rule. The results
of our calculations, for selected methods, are summarized in
Table II. For DFT simulations in LDA and 4f electrons treated
as valence states, a total moment of 7.3 μB , consisting of a spin
moment of 6 μB and an orbital moment of 1.3 μB , is found.
The self-consistent LDA+U simulations were started from
the CUBIC and HUND states discussed previously, and are
therefore indicated with the same labels, although the cubic
symmetry is now broken due to the presence of spin-orbit
coupling and finite magnetization.

TABLE II. Calculated and experimental values for the orbital,
spin, and total magnetic moments of TbN bulk. The meaning of the
labels is the same as in Table I, but here we have also included
corrections due to the spin-orbit coupling. The experimental value is
taken from the study of Ref. [37], as discussed in the main text.

Method Lz 2Sz Lz + 2Sz

LDA VALENCE 1.3 6.0 7.3
LDA+U CUBIC 2.2 5.3 7.5
LDA+U HUND 3.4 5.0 8.4
LDA+DMFT[HIA] 2.7 5.7 8.4
Experiment 8.5

When starting from the CUBIC state, we obtain a spin moment
of 5.3 μB and an orbital moment of 2.2 μB , giving a total
moment of 7.5 μB . Conversely, when starting from the HUND
state, we obtain a spin moment of 5.0 μB and an orbital moment
of 3.4 μB . These new simulations can also be used to check
the previously discussed total energies of the LDA+U ground
state. With the inclusion of relativistic effects, we find that
the CUBIC state is 0.29 eV lower in energy than the HUND
state, in qualitative agreement with our previous results. These
results are also presented in Fig. 1.

Evaluating the magnetic moment with LDA+DMFT[HIA]
is a bit more involved, due to problems related to the double
counting correction [32]. The HIA requires as input the
projected local Hamiltonian of the 4f shell, which, for spin-
polarized solutions, contains the 4f -shell exchange splitting.
This exchange splitting arises from both intraorbital and
interorbital contributions [32]. The former is due to the local
Coulomb interaction between the 4f electrons, and should
ideally be considered only at the level of the HIA. Therefore,
one should remove it from the input local Hamiltonian, but
unfortunately it is not possible to disentangle this term from
the interorbital contributions. Here we solve this problem by
substituting the entire exchange splitting with an approximate
expression for the interorbital contributions, as is explained
below.

The exchange energy of rare earths can be approxi-
mated [43,44] as

EX = 1

4

∑
l,l′

Ill′mlml′ . (3)

Here l denotes the angular quantum number, ml = n
↑
l − n

↓
l are

the corresponding spin moments, and Ill′ are atomic exchange
integrals. Since the s and p states do not create any significant
magnetic moment, the main interorbital contribution to the
exchange energy of the 4f states comes from the interaction
with the Tb 5d states. Thus the exchange splitting of the
4f shell caused by the interaction with the d states can be
calculated from the interorbital energy E

f d

X = If dmf md/2 as
follows:

�E
f d

X = ∂E
f d

X

∂n
↑
f

− ∂E
f d

X

∂n
↓
f

= ∂E
f d

X

∂mf

∂mf

∂n
↑
f

− ∂E
f d

X

∂n
↓
f

∂mf

∂n
↓
f

= If dmd. (4)
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This exchange interaction acts as an effective field on the 4f

shell, and we have added it as such, with a strength determined
by Eq. (4). This was evaluated from an If d integral of 7 mRy,
taken from Ref. [44], and a self-consistently calculated value of
md of 0.006 μB . This exchange interaction is then considered
as an effective field, which breaks the 2J + 1 degeneracy of
the ground state configuration, so that only the lowest |J,MJ 〉
level is occupied. We find that this level (which does hybridize
slightly with other orbitals) carries a magnetic moment of
8.4 μB , of which 2.7 μB comes from the orbital part and
5.7 μB from the spin part. The calculation of the md moment is
associated with some uncertainty, since this value will depend
slightly on details of the calculation, e.g., the choice of muffin-
tin radius. To test the sensitivity of the calculated 4f moment
to the value of md , we increased md by one order of magnitude
in Eq. (4), and performed a calculation of the 4f moment as
described above. We then obtain a 4f projected moment of
8.7 μB , of which 2.8 μB comes from the orbital part and 5.9 μB

from the spin part. Hence the sensitivity of the 4f moment to
the choice of the parameters in Eq. (4) is not large, and the
important aspect is that the 2J + 1 degeneracy is lifted by the
interaction with an interorbital exchange field.

From the low temperature experimental work in
Refs. [36,37] it has been reported that the magnetic ordering
of TbN, and other rare-earth nitrides, depends critically on
the carrier concentration, which can be controlled by slight
modifications of N concentration. Saturation moments of
6.7–7 μB/Tb atom have been reported for samples where
there is still a small antiferromagnetic component [37] to the
essentially dominating ferromagnetic exchange. Samples that
have solely ferromagnetic interatomic exchange have been
reported to have moments of 8.5 μB/Tb atom. [37] This
value is close to the value expected from the standard model
of a trivalent Tb atom, and is also close to the calculations
based on LDA+U HUND and LDA+DMFT[HIA]. The latter,
however, agrees better with the standard model with respect to
the balance between spin and orbital contributions to the total
magnetic moment. Namely from the standard model an orbital
momentum contribution of 3 μB /atom and a spin moment of
6 μB /atom is expected.

C. Spectral properties

In Fig. 2 we show the total density of states and the
projected density of states for the N 2p, Tb 5d, and Tb
4f electrons. We report on all the methods discussed in
the previous subsection, i.e., LDA VALENCE [Fig. 2(a)],
LDA+U CUBIC [Fig. 2(b)], LDA+U HUND [Fig. 2(c)],
and LDA+DMFT[HIA] [Fig. 2(d)]. All these calculations are
spin polarized and include the effects due to the spin-orbit
coupling. For LDA VALENCE, two sharp peaks are observed
in the 4f -projected density of states, one corresponding to
the majority spin channel and the other to the minority
spin channel. This minority spin channel is pinned at the
Fermi level, because it is partially filled. At the moment no
experimental photoemission spectra of TbN are available to
compare with theoretical spectra. However, due to the highly
localized character of the 4f electrons, it is very unlikely that
density of states can have a finite Tb 4f contribution at the
Fermi level. In trivalent elemental Tb, where several material

properties emphasize a smaller degree of localization, the 4f

spectral features are found at higher binding energy [20,21].
In Fig. 2(b) we see that for the LDA+U CUBIC solution,

which is our LDA+U ground state, there is no or little
4f spectral intensity at the Fermi level. We observe instead
different peaks of the 4f -projected density of states well below
and well above the Fermi level. Here the peaks at −8 eV and
−7 eV come from respectively the t1u and t2u state, and the
peak at −6 eV from the a2u state. These peaks are not due
to the formation of atomic multiplets, but are caused on a
single particle level. Hence, although they have more structure,
compared to the LDA calculation, these structures are not the
ones typically found for trivalent Tb, in elemental form or in
compounds.

In Fig. 2(c) we report the spectrum of the LDA+U HUND
solution. This is not our ground state but it may be useful to
look at its spectral properties in order to check if the observed
features resemble or not the atomiclike multiplets. To this aim
we can compare Figs. 2(c) and 2(d). In the LDA+DMFT[HIA]
calculations, the 4f -projected density of states (dashed-dotted
red line) undoubtedly shows peaks caused by the formation
of atomic multiplets [23,24]. The spectral structure below
the Fermi energy corresponds to f 8 to f 7 transitions, while
the structure above it to f 8 to f 9 transitions. The largest
differences between LDA+U HUND and LDA+DMFT[HIA]
calculation can be found in the majority spin channel. In the
LDA+U HUND spectrum the 4f peaks are closer to the Fermi
level, of about 4 eV, and also the shape and relative positions
of the peaks seem to differ. For example, LDA+U HUND
has two 4f peaks at −5 and −4 eV, which are absent in
the LDA+DMFT[HIA] spectrum. Also LDA+DMFT[HIA]
has 4f peaks with multiplet features below −10 eV, while
LDA+U HUND does not have this.

Due to the fact that some majority 4f states overlap with
the N 2p states, a (small) hybridization with them can also
influence the binding properties (see again Table I). One could
speculate that these differences are caused by an artificial
increase of the exchange splitting due to the method illustrated
in the previous subsection. To verify this point, we have
computed the spectral properties also in the paramagnetic
phase, shown in Fig. 3. The Hubbard-I approximation is a
proper many-body theory, and takes into account several Slater
determinants in the ground state and excited states. Therefore,
the paramagnetic spectrum is expected to be very similar to the
spin-integrated ferromagnetic spectrum. However, in the para-
magnetic phase no approximation on the exchange has been
made, and therefore eventual differences with the magnetic
case could be traced to that. The total densities of states (DOS)
in Figs. 2(d) and 3 are very similar, confirming that, in TbN,
the differences between LDA+U and LDA+DMFT[HIA]
are indeed fundamental. The qualitative differences outlined
in this paragraph are in good agreement with a previous
study on ErAs, where similar methods were employed [24].
However, in the latter study the largest discrepancies between
LDA+DMFT[HIA] and LDA+U HUND were found in the
minority spin channel.

Finally, in Fig. 3 the major excitation peaks were also
labeled in the corresponding atomic notation. The first peak
below the Fermi level, at around −4 eV, corresponds to a
transition to the 8S7/2 state. The first peak above the Fermi
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FIG. 2. (Color online) Total density of states (full black lines), and projected density of states of N 2p (dashed blue lines), Tb 5d (dotted
green lines), and Tb 4f (dashed-dotted red lines) electrons. The most relevant methods of this study are reported in the different quadrants:
LDA VALENCE (a), LDA+U CUBIC (b), LDA+U HUND (c), and LDA+DMFT[HIA] (d). Note that the scale of the y axis is different in
(a) compared to (b), (c), and (d).

level, at around 3 eV, corresponds to a transition to 6H15/2.
Overall, the spectra of Figs. 2(d) and 3 are consistent with a
typical spectrum of a trivalent Tb atom, either in elemental
form or in compounds [20,21,45]. Besides the obvious ad-
vantage that multiplet configurations are taken into account
in the LDA+DMFT[HIA] scheme, we also expect from
previous calculations on heavy rare-earth elements that the
LDA+DMFT[HIA] calculation will resemble the measured
spectral properties of TbN-bulk best (see, e.g., [20,21,45]).
In these works an excellent comparison is found between
LDA+DMFT[HIA] calculated and experimental (XPS and
BIS) spectra, also including elemental, trivalent Tb.

IV. CONCLUSION

We have investigated the applicability of several theoretical
methods to describe the 4f states of an archetypical rare-
earth compound, TbN. These treatments included LDA/GGA
(with 4f electrons in valence and core), LDA/GGA+U ,
and LDA+DMFT in the Hubbard-I approximation. We have

focused our investigation on structural properties, equilibrium
lattice constant, bulk modulus, magnetism, and spectra. We
have studied two significant local minima of the LDA+U

method. One is characterized by a 4f density matrix close
to that given by Hund’s rules, and labeled as HUND. The
other one, labeled as CUBIC, originates from the one-particle
levels of a cubic crystal field, and retains the cubic symmetry
when spin-orbit coupling is neglected. This CUBIC solution
has been found to have lower energy compared to the HUND
solution in all cases, i.e., with and without spin-orbit coupling,
with and without considering a Ud term for the Tb 5d states,
and also with a different electronic structure code.

When focusing on the equilibrium lattice constant, all
methods reproduce the measured data with good accuracy,
except for LDA with 4f electrons in the valence. The bulk
modulus and shear constant appear to be rather sensitive
to the method used, and we find that the LDA+U method
with a HUND solution results in a negative C ′ constant,
which is the signature of a sizable tetragonal distortion of
the NaCl structure. This result is, however, in contradiction
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FIG. 3. (Color online) Total density of states (full black lines),
and projected density of states of N 2p (dashed blue lines), Tb 5d

(dotted green lines), and Tb 4f (dashed-dotted red lines) electrons in
LDA+DMFT[HIA] without spin polarization.

to experiments. In the case of the magnetic properties only
LDA+DMFT in the Hubbard-I approximation is consistent
with the standard model of the rare earths, and gives a
total, as well as spin and orbital, magnetic moment in
good agreement with experiment, while all other methods

have major or minor deficiencies. For the spectral properties
only LDA+DMFT in the Hubbard-I approximation was
able to capture the expected atomic multiplets, but our
assessment cannot be complete due to the lack of experimental
photoemission data.

Thus our overall conclusion is that of all the theoretical
methods used for the calculation of the different physical prop-
erties of TbN, it is only LDA+DMFT that is consistent with the
standard model and available experimental data. This conclu-
sion is expected to hold for rare-earth systems in general, and
it is suggested here that for theoretical studies of rare-earth
systems, the LDA+DMFT in the Hubbard-I approximation
should be considered as the primary theoretical tool.
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Katsnelson, A. Svane, and O. Eriksson, Phys. Rev. B 79, 165104
(2009).

[24] L. V. Pourovskii, K. T. Delaney, C. G. Van de Walle, N. A.
Spaldin, and A. Georges, Phys. Rev. Lett. 102, 096401 (2009).

[25] M. S. Litsarev, I. Di Marco, P. Thunström, and O. Eriksson,
Phys. Rev. B 86, 115116 (2012).

[26] F. Natali, B. J. Ruck, N. O. V. Plank, H. J. Trodahl, S. Granville,
C. Meyer, and W. R. L. Lambrecht, Prog. Mater. Sci. 58, 1316
(2013).

[27] J. M. Wills, M. Alouani, P. Andersson, A. Delin, O. Eriks-
son, and O. Grechnyev, in Full-Potential Electronic Structure
Method, edited by H. Dreysse, Electronic Structure and Physical
Properties of Solids: Springer Series in Solid-State Sciences
(Springer-Verlag, Berlin, 2010).

[28] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

205109-7

http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRevB.20.1315
http://dx.doi.org/10.1103/PhysRevB.20.1315
http://dx.doi.org/10.1103/PhysRevB.20.1315
http://dx.doi.org/10.1103/PhysRevB.20.1315
http://dx.doi.org/10.1103/PhysRevLett.38.564
http://dx.doi.org/10.1103/PhysRevLett.38.564
http://dx.doi.org/10.1103/PhysRevLett.38.564
http://dx.doi.org/10.1103/PhysRevLett.38.564
http://dx.doi.org/10.1103/PhysRevB.31.1909
http://dx.doi.org/10.1103/PhysRevB.31.1909
http://dx.doi.org/10.1103/PhysRevB.31.1909
http://dx.doi.org/10.1103/PhysRevB.31.1909
http://dx.doi.org/10.1103/PhysRevB.58.4345
http://dx.doi.org/10.1103/PhysRevB.58.4345
http://dx.doi.org/10.1103/PhysRevB.58.4345
http://dx.doi.org/10.1103/PhysRevB.58.4345
http://dx.doi.org/10.1103/PhysRevLett.79.4637
http://dx.doi.org/10.1103/PhysRevLett.79.4637
http://dx.doi.org/10.1103/PhysRevLett.79.4637
http://dx.doi.org/10.1103/PhysRevLett.79.4637
http://dx.doi.org/10.1209/epl/i2000-00218-2
http://dx.doi.org/10.1209/epl/i2000-00218-2
http://dx.doi.org/10.1209/epl/i2000-00218-2
http://dx.doi.org/10.1209/epl/i2000-00218-2
http://dx.doi.org/10.1103/PhysRevB.44.943
http://dx.doi.org/10.1103/PhysRevB.44.943
http://dx.doi.org/10.1103/PhysRevB.44.943
http://dx.doi.org/10.1103/PhysRevB.44.943
http://dx.doi.org/10.1088/0953-8984/9/4/002
http://dx.doi.org/10.1088/0953-8984/9/4/002
http://dx.doi.org/10.1088/0953-8984/9/4/002
http://dx.doi.org/10.1088/0953-8984/9/4/002
http://dx.doi.org/10.1103/PhysRevB.63.205112
http://dx.doi.org/10.1103/PhysRevB.63.205112
http://dx.doi.org/10.1103/PhysRevB.63.205112
http://dx.doi.org/10.1103/PhysRevB.63.205112
http://dx.doi.org/10.1103/PhysRevB.75.045114
http://dx.doi.org/10.1103/PhysRevB.75.045114
http://dx.doi.org/10.1103/PhysRevB.75.045114
http://dx.doi.org/10.1103/PhysRevB.75.045114
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/PhysRevB.57.6884
http://dx.doi.org/10.1103/PhysRevB.57.6884
http://dx.doi.org/10.1103/PhysRevB.57.6884
http://dx.doi.org/10.1103/PhysRevB.57.6884
http://dx.doi.org/10.1016/j.ssc.2006.08.049
http://dx.doi.org/10.1016/j.ssc.2006.08.049
http://dx.doi.org/10.1016/j.ssc.2006.08.049
http://dx.doi.org/10.1016/j.ssc.2006.08.049
http://dx.doi.org/10.1103/PhysRevB.72.245102
http://dx.doi.org/10.1103/PhysRevB.72.245102
http://dx.doi.org/10.1103/PhysRevB.72.245102
http://dx.doi.org/10.1103/PhysRevB.72.245102
http://dx.doi.org/10.1103/PhysRevB.76.235101
http://dx.doi.org/10.1103/PhysRevB.76.235101
http://dx.doi.org/10.1103/PhysRevB.76.235101
http://dx.doi.org/10.1103/PhysRevB.76.235101
http://dx.doi.org/10.1103/PhysRevB.79.165104
http://dx.doi.org/10.1103/PhysRevB.79.165104
http://dx.doi.org/10.1103/PhysRevB.79.165104
http://dx.doi.org/10.1103/PhysRevB.79.165104
http://dx.doi.org/10.1103/PhysRevLett.102.096401
http://dx.doi.org/10.1103/PhysRevLett.102.096401
http://dx.doi.org/10.1103/PhysRevLett.102.096401
http://dx.doi.org/10.1103/PhysRevLett.102.096401
http://dx.doi.org/10.1103/PhysRevB.86.115116
http://dx.doi.org/10.1103/PhysRevB.86.115116
http://dx.doi.org/10.1103/PhysRevB.86.115116
http://dx.doi.org/10.1103/PhysRevB.86.115116
http://dx.doi.org/10.1016/j.pmatsci.2013.06.002
http://dx.doi.org/10.1016/j.pmatsci.2013.06.002
http://dx.doi.org/10.1016/j.pmatsci.2013.06.002
http://dx.doi.org/10.1016/j.pmatsci.2013.06.002
http://dx.doi.org/10.1103/PhysRevB.45.13244
http://dx.doi.org/10.1103/PhysRevB.45.13244
http://dx.doi.org/10.1103/PhysRevB.45.13244
http://dx.doi.org/10.1103/PhysRevB.45.13244


L. PETERS et al. PHYSICAL REVIEW B 89, 205109 (2014)

[29] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,
3865 (1996).

[30] A. Grechnev, I. Di Marco, M. I. Katsnelson, A. I.
Lichtenstein, J. Wills, and O. Eriksson, Phys. Rev. B 76, 035107
(2007).

[31] I. Di Marco, J. Minár, S. Chadov, M. I. Katsnelson,
H. Ebert, and A. I. Lichtenstein, Phys. Rev. B 79, 115111
(2009).
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