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1. Introduction

Two-dimensional quantum Liouville gravity and the theory of 
random triangulations (or matrix models) most likely describe the 
same theory, two-dimensional quantum gravity coupled to confor-
mal field theories with a central charge c ≤ 1. The two realizations 
are sufficiently different that the “proof” that they describe the 
same theory is basically by comparing the result of calculations 
of certain “observables”. The major problem of such a compari-
son has been to identify the observables to be compared in the 
two formulations. This problem has to a large extent been solved 
in [2] for one and two-point correlation functions and in [3] for 
three- and four-points correlation functions. Here we will address 
an observable, the so-called “magnetization” at the Lee–Yang edge 
singularity. We will show how the general assumptions of operator 
mixing put forward in [1–3] allow us to obtain agreement between 
the critical exponent of the Lee–Yang “magnetization” calculated in 
quantum Liouville gravity and using matrix models.

The rest of this article is organized as follows: in the next sec-
tion we recapture how to calculate the magnetization exponent σ
in the Ising model and at the Lee–Yang edge singularity using stan-
dard conformal field theory. In Section 3 we then show how to 
reconcile Liouville and matrix model results.

2. Ising models and dimer models

The Ising model on an arbitrary connected graph G V with V
vertices and L links is defined by

ZG V (β, H) =
∑
{σi}

exp

(
β

L∑
〈i j〉=1

σiσ j + H
V∑

i=1

σi

)
, (1)
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where the Ising spin σi (which can take values ±1) is located at 
vertex i, 〈i j〉 symbolizes that vertices i and j are neighbors in G V , 
and β and H signify inverse the temperature and a magnetic field, 
respectively.

If G V is a regular two-dimensional lattice, e.g. a square lattice, 
the partition function ZG V (β, H = 0) has a second order phase 
transition for a certain value βc in the limit V → ∞. Let us cal-
culate〈
eH

∑
i σi

〉
β=βc , H=0 = e−FG V (H), (2)

using the partition function ZG V (βc, 0). For large V the free energy 
FG V (H) becomes extensive and the magnetization m is given by

FG V (H) = f (H)V
(
1 + o(V )

)
, m = − df

dH
∼ |H|σ ,

σ = 1

15
, (3)

for small H .
The two-dimensional Ising model at its critical point βc is a 

conformal field theory with central charge c = 1/2. Let us recall 
how the above result is derived using conformal field theory. Con-
sider a conformal field theory and let Φ be a primary operator 
with scaling dimension �0, i.e. Φ(

√
λx) = λ−�0Φ(x) (we consider 

Φ to be the product of its holomorphic and anti-holomorphic 
parts, i.e. real). Under a scaling x → √

λx we thus have

A =
∫

d2x → λA, D0 =
∫

d2xΦ(x) → λ1−�0 D0. (4)

We can study a “deformation” away from the conformal point by 
adding the term

δD0 = δ

∫
d2xΦ, [δ] = [A]�0−1 (5)
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to the action. The last equation in (5) states the dimension of the 
coupling constant δ in terms of the dimension of the area A of the 
2d universe. As in Eq. (2) we can write〈
e−δD0

〉
0 = e−F A(δ), (6)

where the average is calculated at the critical point. For large ar-
eas A we expect F A to be extensive. For dimensional reasons we 
thus have, δ being the only coupling constant,

F A(δ) = f (δ)A
(
1 + o(A)

)
, f (δ) = kδ

1
1−�0 . (7)

The “Φ magnetization” is thus

mΦ = −df

dδ
∼ δ�0/(1−�0), i.e. σΦ = �0

1 − �0
. (8)

Applying this to the spin operator Φ1,2 of the (3, 4) minimal con-
formal field theory which has central charge c = 1/2 and corre-
sponds to the Ising model, we have �0 = 1/16 and thus σΦ1,2 =
1/15 in agreement with (3). For the (2, 5) minimal conformal field 
theory which has c = −22/5 there is only one non-trivial primary 
operator, again Φ1,2, and �0 = −1/5. The corresponding magneti-
zation exponent is σΦ1,2 = −1/6.

Everything said above can be directly transferred to quantum 
Liouville gravity as long as we consider the partition function for 
a fixed area which we then take large to avoid finite size effects. 
More precisely, the partition function for a conformal field theory 
with central charge c coupled to the Liouville field and with the 
area of the 2d “universe” fixed to be A is defined as

Z A =
∫

DϕDψe−S L(ϕ,ĝ)−Sc(ψ,ĝ)δ

(∫
d2x

√
ĝeαϕ − A

)
. (9)

In (9) Sc(ψ) is the matter action and SL(ϕ) the Liouville action. 
ĝab is a fiducial metric in the decomposition of the metric gab =
eϕ ĝab , thereby defining the Liouville field. Changing variables ϕ →
ϕ + ρ in the functional integral allows us to obtain (for surfaces 
with spherical topology)

Z A ∼ Aγ0−3, γ0 = c − 1 − √
(25 − c)(1 − c)

12
. (10)

For a given conformal field theory and a given primary field Φ , 
the observable D0 defined above and the area A are changed to

D =
∫

d2x
√

ĝeβϕΦ, A =
∫

d2x
√

ĝeαϕ I. (11)

In particular the area has become an observable on equal footing 
with D , associated with the (trivial) primary field I (the identity). 
The coefficients β, α are determined by the requirement that the 
observables D and A are invariant under diffeomorphisms and in 
2d this implies that they are invariant under conformal transfor-
mations [11]. However, D still has a scaling dimension relative to 
the area A. Let us define the expectation value of an observable O
for fixed area as

〈O〉A = 1

Z A

∫
DϕDψOe−S L(ϕ,ĝ)−Sc(ψ,ĝ)

× δ

(∫
d2x

√
ĝeαϕ − A

)
. (12)

One has〈
f
(
λ−β/α D

)〉
λA = 〈

f (D)
〉
A (13)

for any function f . This follows by the change of integration vari-
able ϕ → ϕ +α−1 log λ in the functional integral (12). In particular 
we have

〈D〉λA = λβ/α〈D〉A, i.e. 1 − � = β

α
, (14)

by analogy with (4). The scaling dimension � is thus determined 
by α and β and is given by the KPZ formula [10]

� =
√

1 − c + 24�0 − √
1 − c√

25 − c − √
1 − c

. (15)

As in the ordinary conformal field theory case we can define 
the “magnetization” related to Φ by considering the perturbation 
away from the conformal point by the action

δD = δ

∫
d2x

√
ĝeβϕΦ, [δ] = [A]�−1, (16)

in analogy with (5). As in (6) we have〈
e−δD 〉

A = e−F A(δ), F (δ) = f (δ)A
(
1 + G(A)

)
,

f (δ) = kδ1/(1−�). (17)

The “magnetization” is thus

m = −df

dδ
∼ δ�/(1−�), i.e. σ = �

1 − �
. (18)

In the case of the Ising model (i.e. c = 1/2) coupled to the Liouville 
field the exponent �0 changes from 1/16 to � = 1/6 according 
to (16). Thus we find that σ0 changes from 1/15 to σ = 1/5. This 
value was first obtained using the random matrix models in [6]
and is a strong test of the equivalence between the continuum 
limit of the random surface models coupled to matter and quan-
tum Liouville gravity. Applied to the (2, 5) minimal conformal field 
theory coupled to the Liouville field, σ0 changes from −1/6 to 
σ = −1/3.

Finally it can be convenient to consider the grand partition 
function where the area is not kept fixed

Z(μ, δ) =
∫

dA Z Ae−μA 〈
e−δD 〉

A ∼ (
μ + kδ1/(1−�)

)2−γ0
. (19)

We obtain

Z(μ,0) ∼ μ2−γ0 , Z(0, δ) = δ2−γ (δ),

γ (δ) = γ0 − 2�

1 − �
. (20)

We also observe that if the action μA + δD is viewed as a small 
perturbation away from the conformal point μ = δ = 0 and μ
and δ are of the same order of magnitude, the singular behavior of 
Z(μ, δ) is dominated by μ(2−γ0) if the scaling dimension � > 0. If 
� < 0, as can be the case for non-unitary conformal field theories, 
the singular behavior of Z(μ, δ) will be dominated by δ(2−γ (δ)) . 
We note for future reference that for the (2, 5) minimal confor-
mal field theory γ0 = −3/2 and γ (δ) = −1/3. In a grand canonical 
context it is natural to define

Z(μ, δ) = e−F (μ,δ), 〈A〉μ,δ = − dF

dμ
,

M(δ) = −dF

dδ
= m(δ)〈A〉μ,δ, (21)

and we have

〈A〉μ,δ = 1

μ + kδ1/(1−�)
, m(δ) ∼ δ�/(1−�). (22)

For a given value of δ we have

〈A〉μ,δ → ∞ for μ ↘ μ̄(δ), (23)
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where the condition

μ̄(δ) + kδ1/(1−�) = 0 (24)

determines the “critical” value of the cosmological constant μ for 
a given value of δ. In particular we have

dμ̄

dδ
∼ m(δ). (25)

2.1. Dimers

Consider the Ising model on the graph G V defined above. It has 
a high temperature expansion

ZG V = (2 cosh H)V (cosh β)L[1 + tanh2 H
[
θ(1)β + O

(
β2)]

+ tanh4 H
[
θ(2)β2 + 0

(
β4)] + · · ·] (26)

where θ(n) is the number of ways one can put down n dimers on 
the graph G V without the dimers touching each other (so-called 
hard dimers). For imaginary magnetic fields it is thus possible to 
take the high temperature limit where β → 0 and H = i H̃ → iπ/2
in such a way that ξ = β tanh2 H is kept fixed. In this limit the 
terms in the bracket [· · ·] in Eq. (26) become the partition function

ZG V (ξ) =
∑

n

θ(n)ξn (
ξ = −β tan2 H̃

)
(27)

of a hard dimer model with fugacity ξ (which is negative for 
H̃ ∈ ]0, π/2[). For β < βc the Ising model is known to have 
a phase transition at a critical, purely imaginary magnetic field 
Hc(β) = i H̃c(β), the so-called Lee–Yang edge singularity [7] (as-
suming as before that we have a regular graph G V , and that we 
take V → ∞). It is also known that one can formally associate a 
“magnetization” to this transition [8]:

ZG V (β, H̃) = e−FG V (β,H̃), FG V (β, H̃) ∼ f (β, H̃)V , (28)

where

m(β) = − df

d(�H̃)
∼ (�H̃)σ0 , �H̃ = H̃ − H̃c(β). (29)

The critical exponent σ0 is independent of β for β < βc . H̃c(β) →
π/2 for β → 0 and at this point we can extract σ from the dimer 
partition function (27). The dimer model has a critical point ξc for 
a negative value of the fugacity ξ which is precisely the limit of 
−β tan2 H̃(β) for β → 0. Writing

ZG V (ξ) = e−FG V (ξ), FG V (ξ) = f (ξ)V , (30)

we obtain

m = − df

d�ξ
∼ (�ξ)σ0 , �ξ = ξ − ξc. (31)

Finally it was shown in [9] that the critical behavior of the Lee–
Yang edge singularity or the hard dimer model could be associated 
with the (2, 5) minimal conformal field theory, and from the above 
arguments, using conformal field theory we know the correspond-
ing σ0 = −1/6. This is in agreement with numerical determina-
tions of σ0 on regular lattices.

Once this is established we can formally couple the Lee–Yang 
edge singularity to quantum gravity in the sense that the critical 
behavior is determined by the coupling between the (2, 5) confor-
mal field theory and the Liouville theory. From the above we thus 
expect the magnetization exponent to change from −1/6 to −1/3, 
and we would naively expect to obtain that result if we could ex-
plicitly solve the Ising model in an imaginary magnetic field or 
the hard dimer model on the set of random graphs used to rep-
resent 2d gravity. In fact one can solve both models on random 
graphs and one obtains σ = 1/2 [4].

3. Operator mixing

Let us for simplicity choose to work with the dimer model 
and discuss how we can re-interpret the result of [4] using the 
general philosophy outlined in [1–3]. The coupling of the dimer 
model to 2d gravity is done by summing over connected random 
graphs G V . Here we restrict ourselves to a set of planar graphs, i.e. 
we define

Z V (ξ) =
∑
G V

1

CG V

ZG V (ξ), (32)

where CG denotes the order of the automorphism group of the 
graph G . We can introduce a grand partition function by also sum-
ming over graphs with different number of vertices:

Z(g, ξ) =
∑

V

gV Z V (ξ). (33)

Let us choose the simplest set of planar random graphs, namely 
the set where all vertices have order four. The corresponding 
Z(g, ξ) can be calculated using matrix model techniques [12,4]. 
For details we refer to [4]. Here we are only interested in the 
result. There exists a critical ξc . For each ξ ≥ ξc there exists a cor-
responding critical ḡ(ξ), the radius of convergence of the power 
series (33). We write

Z V (ξ) = e−F V (ξ), F V (ξ) = f (ξ)V
(
1 + o(V )

)
,

log ḡ(ξ) = f (ξ). (34)

On a regular lattice one would clearly identify f (ξ) as the free 
energy density and expect to calculated the critical exponent σ
according to (31). This calculation was performed in [4]:

ḡ(ξ) = 1

450ξ2

[
(1 + 10ξ)3/2 − 1

] − 1

30ξ
(35)

i.e. expanding around ξc = 1/9 one obtains

�ḡ(ξ) + 10

9
�ξ = 20

√
10

9
�ξ3/2 + O

(
�ξ2), (36)

where

�ξ = ξ − ξc, �ḡ(ξ) = ḡ(ξ) − ḡ(ξc). (37)

Differentiating (36) after �ξ we obtain

df

dξ

∣∣∣∣
singular

= d log ḡ

dξ

∣∣∣∣
singular

∼ �ξ1/2. (38)

Clearly this is at odds with the KPZ value σ = −1/3 mentioned 
above for the Lee–Yang edge singularity. We now explain how this 
is due to operator mixing of A and D , following the logic outlined 
in [1–3].

Denote ḡ(ξc) by gc . The first observation is that [12,4]

Z(g, ξc)|singular = �g−1/3−2, �g = gc − g, (39)

i.e. one obtains γ (δ) (= −1/3) rather than γ0 (= −3/2) for the 
critical susceptibility exponent related Z . Naively one would have 
made the following identification in (33)(

g

gc

)V

→ e−μA (40)

by introducing a scaling parameter a (with the dimension of length 
relative to A which we define to have the dimension of length 
squared)

�g = μa2, A = V a2, a → 0. (41)
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But this is clearly too simple as it would imply a critical behavior 
�g−γ0−2 in (39) according to Liouville theory. �g has to contain 
some reference to the coupling δ. In some sense this is natural 
since both A and D appear when we move away from the con-
formal point μ = δ = 0. Fixing ξ = ξc and changing gc → gc − �g
is one way to move away from the point gc, ξc corresponding to 
μ = δ = 0. The change (36) is another way, where we move along 
the critical line with a �ḡ(ξ) determined by �ξ . It should thus be 
compared to (24) where μ̄(δ) + kδ1/(1−�) = 0, which defines “crit-
icality” in the theory perturbed by the A, D terms in the action. 
This condition allows us to obtain the relation between μa2, δa3

and �g , �ξ if we, in accordance with [1–3], assume that we deal 
with an analytic coupling constant redefinition. To lowest order, 
which is all we need, we thus have

a2μ = �g(ξ) + c2�ξ, a3δ = c3�g(ξ) + �ξ. (42)

The condition μ̄ + kδ2/3 = 0 implies

�ḡ(ξ) + c−1
3 �ξ = c−1

3

(
k−1(c−1

3 − c2
))3/2

�ξ3/2

+ O
(
�ξ2). (43)

Comparing with (36) we obtain

a3δ = �ξ + 9

10
�ḡ(ξ), a2μ̄(δ) = �ḡ(ξ) + d�ξ, (44)

where d = 10/9 − k(2
√

10 )2/3. This shows explicitly that �g cou-
ples to δ as anticipated from Eq. (39).

By construction we now have μ̄(δ) ∼ δ2/3 and thus the cor-
rect Liouville magnetization. Further, it is amusing to check how 
the “wrong” result (38) actually becomes correct if one pays atten-
tion to the details.1 (38) is obtained by differentiating (36) after 
�ξ . For the special linear combination (44) Eq. (36) can be written 
as

a3δ
(
�ξ,�ḡ(ξ)

) = 20
√

10

9
�ξ3/2 + O

(
�ξ2), (45)

and differentiating with respect to �ξ leads to

a3 dδ

d�ξ
∼ �ξ1/2 or

dδ

dμ̄
∼ μ̄1/2 + O (a), (46)

i.e. according to Eq. (25) exactly the correct Liouville equation for 
the magnetization m if σ = −1/3.

As mentioned one can also solve the Ising model coupled to 2d 
gravity [5,6]. The matrix models use the grand canonical ensemble 
of graphs, i.e. starting with the partition function (1) one performs 
the same steps as in Eqs. (32) and (33) for the dimer model. We 
thus have a partition function Z(g, β, H). Above the critical tem-
perature we find a critical line with a critical imaginary magnetic 
field [4] Hc(β) = i H̃c(β), β < βc , analogous to what we find on a 
fixed graph. For a fixed value of β < βc we have an equation simi-
lar to the dimer equation (36) [4]

�ḡ(H̃) + d3�H̃ ∼ �H̃3/2, �H̃ = H̃ − H̃c(β), (47)

1 The author of [4] had no motivation to pay attention to details, since his work 
was done before the understanding of the possibility of operator mixing. In fact his 
seminal paper was precisely what eventually led to this understanding.

from which one would conclude that σ = 1/2. As for the dimer 
model, this should be understood as the result of operator mixing, 
and one should really write

a2μ̄ = �ḡ(H̃) + d2�H̃, a3δ = d−1
3 �ḡ(H̃) + �H̃ (48)

in order to recover the KPZ exponent.
Let us briefly mention the ordinary critical point of the Ising 

model on a dynamical graph. The critical exponents calculated 
in [5,6] match the KPZ results, even without accounting for mix-
ing. Regarding σ (and γ0) one can explicitly check that the naive 
calculation is unaffected by operator mixing (cf. the discussion af-
ter (20)). When the magnetic field is zero the model has a Z2
symmetry, which guarantees that the spin operator Φ1,2 is not 
turned on in the continuum language. This, in turn, ensures that 
also the exponent α associated with the thermal operator Φ2,1
comes out “right” in [6].

4. Discussion

We have shown how the calculation in [4] leads to agreement 
between the critical exponents of the “magnetization” calculated 
in the hard dimer model coupled to dynamical triangulations and 
in quantum Liouville theory coupled to a (2, 5) minimal conformal 
field theory. The price of this agreement is that the naive sepa-
ration between geometric and matter degrees of freedom which 
might seem self-evident for models of spins living on dynamical 
graphs can thus not be taken for granted.

Acknowledgements

J.A., A.G. and A.I. acknowledge support from the ERC Advanced 
Grant 291092 “Exploring the Quantum Universe” (EQU) and by 
FNU, the Free Danish Research Council, through the grant “Quan-
tum Gravity and the Role of Black Holes”. J.A. was supported 
in part by Perimeter Institute of Theoretical Physics. Research at 
Perimeter Institute is supported by the Government of Canada 
through Industry Canada and by the Province of Ontario through 
the Ministry of Economic Development & Innovation.

References

[1] C. Crnkovic, P.H. Ginsparg, G.W. Moore, Phys. Lett. B 237 (1990) 196.
[2] G.W. Moore, N. Seiberg, M. Staudacher, Nucl. Phys. B 362 (1991) 665.
[3] A.A. Belavin, A.B. Zamolodchikov, J. Phys. A 42 (2009) 304004, arXiv:0811.0450 

[hep-th].
[4] M. Staudacher, Nucl. Phys. B 336 (1990) 349.
[5] V.A. Kazakov, Phys. Lett. A 119 (1986) 140.
[6] D.V. Boulatov, V.A. Kazakov, Phys. Lett. B 186 (1987) 379.
[7] C.N. Yang, T.D. Lee, Phys. Rev. 87 (1952) 404;

T.D. Lee, C.N. Yang, Phys. Rev. 87 (1952) 410.
[8] M.E. Fisher, Phys. Rev. Lett. 40 (1978) 1610;

P.J. Kortman, R.B. Griffiths, Phys. Rev. Lett. 27 (1971) 1439.
[9] J.L. Cardy, Phys. Rev. Lett. 54 (1985) 1354.

[10] V.G. Knizhnik, A.M. Polyakov, A.B. Zamolodchikov, Mod. Phys. Lett. A 3 (1988) 
819.

[11] F. David, Mod. Phys. Lett. A 3 (1988) 1651;
J. Distler, H. Kawai, Nucl. Phys. B 321 (1989) 509.

[12] V.A. Kazakov, Mod. Phys. Lett. A 4 (1989) 2125.

http://refhub.elsevier.com/S0370-2693(14)00420-1/bib63676Ds1
http://refhub.elsevier.com/S0370-2693(14)00420-1/bib6D7373s1
http://refhub.elsevier.com/S0370-2693(14)00420-1/bib627As1
http://refhub.elsevier.com/S0370-2693(14)00420-1/bib627As1
http://refhub.elsevier.com/S0370-2693(14)00420-1/bib73746175646163686572s1
http://refhub.elsevier.com/S0370-2693(14)00420-1/bib6B617A616B6F76s1
http://refhub.elsevier.com/S0370-2693(14)00420-1/bib626Bs1
http://refhub.elsevier.com/S0370-2693(14)00420-1/bib6C79s1
http://refhub.elsevier.com/S0370-2693(14)00420-1/bib6C79s2
http://refhub.elsevier.com/S0370-2693(14)00420-1/bib666973686572s1
http://refhub.elsevier.com/S0370-2693(14)00420-1/bib666973686572s2
http://refhub.elsevier.com/S0370-2693(14)00420-1/bib6361726479s1
http://refhub.elsevier.com/S0370-2693(14)00420-1/bib6B707As1
http://refhub.elsevier.com/S0370-2693(14)00420-1/bib6B707As1
http://refhub.elsevier.com/S0370-2693(14)00420-1/bib64646Bs1
http://refhub.elsevier.com/S0370-2693(14)00420-1/bib64646Bs2
http://refhub.elsevier.com/S0370-2693(14)00420-1/bib6B617A616B6F7631s1

	A note on the Lee-Yang singularity coupled to 2d quantum gravity
	1 Introduction
	2 Ising models and dimer models
	2.1 Dimers

	3 Operator mixing
	4 Discussion
	Acknowledgements
	References


