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1 Introduction

The renormalization group (RG) underlies most of our modern understanding of quantum

and statistical field theories [1, 2]. There are different ways to implement the RG procedure.

Whereas standard sliding scale arguments (Gell-mann-Low) are particularly suitable for

weakly coupled computations, it is only with Wilson’s ideas that non-perturbative insights

have been possible.

The arena where the RG acts is theory space. This space is parametrized by all

couplings corresponding to terms which are consistent with symmetries of the systems.

The beta functions for the couplings define a vector field in theory space, and the RG flow

can be seen in geometrical terms as a certain trajectory in this space.

From this point of view the infrared physics depends upon the differential equation

governing the flow as well as on the boundary conditions. If the initial point sits at a finite

scale (for example, it is a bare action depending on some UV cutoff Λ), one is considering

an effective field theory, whose range of validity is limited by the cutoff scale. However, if

we want a theory to be called fundamental, we would like to be able to push the initial

scale to arbitrarily high values, eventually to infinity. The only known way to perform this

limit is to hit a UV fixed point.

Fixed point theories do not depend on any intrinsic scale since they are scale invariant.

As a consequence they can be used to model systems at criticality. These theories are char-

acterized by dimensionless couplings and physical quantities exhibit scaling relations which

can be observed in experiments. These relations arise in very different systems sharing the

same dimensionality, symmetry and field content. This is what is usually referred to as

the concept of universality, the independence of the critical properties of a system from

its microscopic details. The RG offers a simple and intuitive explanation of universality:

the critical properties of a system are determined by the fixed point, microscopic actions

defined at different scales that flow to the same fixed point, or equivalently that belong to

the same basin of attraction of a fixed point, will describe the same criticality.

We see that in this light the problem of understanding the critical properties realized in

nature boils down to the classification of all the different fixed points. In two dimensions we

know that every unitary scale invariant theory is also conformal invariant, so the problem

further reduces to the classification of all possible conformal field theories (CFT). This

can be done via algebraic methods, exploiting the properties of the associated Virasoro

algebra [3, 4].

A fixed point theory can then be deformed by adding weakly coupled operators that

trigger a nontrivial flow out of the fixed point. By considering the linearization of this

flow we can obtain all the remaining CFT data (like scaling dimensions and other critical

exponents) that characterize the physical system and the way in which it responds to

deformations. This is also the main idea of conformal perturbation theory.

So far our discussion has been limited to the neighborhood of a fixed point. The next

natural step is to try to gain more information on the global properties of theory space.

Such information is provided by Zamolodchikov’s c-theorem [5], which states that in every

unitary Poincaré invariant theory there exists a function of the coupling constants, the
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c-function, that decreases from CFTUV to CFTIR, and that is stationary at the endpoints

of the flow, where its value equals the central charge of the corresponding CFT. Note

that the difference between the two central charges is an intrinsic quantity (intrinsic mean-

ing independent of spurious contributions like scheme dependence of the renormalization

procedure), so the content of the theorem is highly nontrivial.

In this case a complete RG analysis requires the ability to follow the flow arbitrarily

far away from a fixed point. Unless the two fixed points are sufficiently close to each other

we cannot rely on perturbative schemes. The non-perturbative framework we will use to

address these issues is the functional renormalization group (fRG) based on the effective

average action (EAA) [6]. The EAA is a functional whose scale dependence is given by an

exact flow equation [7] which, being exact, allows to explore non-perturbative aspects. A

first application of exact RG equations to the c-function has been explored in [8, 9].

The main purpose of this paper is to move the first steps necessary in order to give a

bridge between these two general results: the c-theorem and the computation of universal

quantities related to the integrated flow between fixed points (that is, to global proper-

ties of theory space), and the fRG formalism based on the exact flow for the EAA. Our

approach will be mainly a constructive one. We will give a general recipe to construct

a c-function compatible with Zamolodchikov’s theorem within the fRG framework. After

identifying a natural candidate for a scale dependent c-function, ck, we will be able to

write an exact non-perturbative flow equation for it. Of course, there are only few cases

in which the exactness of the flow equation can be used and one usually needs to resort

to approximations. However, we will see that already for a simple truncation as the local

potential approximation the flow equation gives results compatible with the c-theorem.

Our viewpoint will be based upon a curved space construction. The reason for this is

twofold. First, this avoids having to resort to algebraic techniques or OPE analysis: the

central charge, for instance, becomes the coefficient of the conformal anomaly, which in

curved space becomes an operator anomaly in the one point function. Second, this is more

suitable for functional techniques, as the derivation of the trace anomaly matching condition

will show, and more useful to write a general effective action. Indeed, this construction will

require an investigation of what is the general form of the EAA away from fixed points,

since the usual expansion in local operators is incapable of giving a nonzero running for

ck. Working in curved space the natural candidate for ck is the coefficient of the Polyakov

action. We will take this as our definition for the c-function and leave for further study the

mapping between our approach and the one based on local RG with spacetime dependent

couplings [10, 11].

The paper will be organized as follows. In section 2 we will construct a Weyl-invariant

functional measure and discuss the form of a CFT on curved background. This will lead us

to a re-derivation of the trace anomaly matching condition, from which the “integrated”

c-theorem follows from known results [12]. We will then move on to discuss the scale

dependent c-function, and obtain our flow equation for it, in section 3. This construction

uses the EAA as the main tool, so in section 4 we will investigate its general form. In

section 5 we discuss various applications of our formalism while in section 6 we put forward a

simple relation between the beta function of Newton’s constant and the running c-function.

Section 7 is devoted to the conclusions.

– 3 –
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2 The integrated c-theorem

We start by reviewing the integrated c-theorem expressing the change of the central charge

∆c = cUV − cIR along a RG trajectory connecting two fixed point theories, or equivalently

two CFTs. We will work in curved space where the central charge, or equivalently the

conformal anomaly, can be seen as the coefficient of the Polyakov term in the effective

action. When we specify the background metric to be of the specific form gµν = e2τδµν ,

with τ the “dilaton”, ∆c becomes the coefficient of the operator
∫
τ∆τ and can be easily

extracted. But before we need to briefly discuss functional measures in curved space,

Weyl-invariant quantization and the form of the effective action for a CFT on a curved

background.

2.1 Weyl-invariant quantization and functional measures

The standard diffeomorphism invariant path integral measure in curved space [13], denoted

here DIg , is Weyl-anomalous: under a Weyl transformation of the background metric gµν →
e2τgµν and of the fields φ → ewτφ, where w is the conformal weight of the field,1 one

encounters the conformal anomaly:

DIe2τg (ewτφ) = DIgφ e−cΓWZ [τ,g] , (2.1)

where c is the central charge of the CFT, which we want to use as UV action in the path

integral, and ΓWZ [τ, g] is the Wess-Zumino action:

ΓWZ [τ, g] = − 1

24π

∫
d2x
√
g [τ∆τ + τR] , (2.2)

where ∆ ≡ −∇µ∇µ is the Laplacian.

The Wess-Zumino action can be integrated to give the related Polyakov action,

SP [g] = − 1

96π

∫
d2x
√
gR

1

∆
R , (2.3)

which, upon Weyl variation, gives back (2.1):

SP [e2τg]− SP [g] = ΓWZ [τ, g] . (2.4)

The Polyakov action generates to the following quantum energy-momentum tensor,

〈Tµν〉 =
c

48π

[
−2∇µ∇ν 1

∆
R−

(
∇µ 1

∆
R

)(
∇ν 1

∆
R

)
+

−2gµνR+
1

2
gµν

(
∇α 1

∆
R

)(
∇α

1

∆
R

)]
,

which is anomalous: 〈
Tµµ
〉

= − c

24π
R . (2.5)

1For a scalar field wφ = −
(
d
2
− 1 +

ηφ
2

)
, while for a fermion field wψ = −

(
d
2
− 1

2
+

ηψ
2

)
. The conformal

weight of the metric is wg = 2 in every dimension.
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This is the conformal anomaly, in the two dimensional case. In curved space, where it can

be written in terms of curvature invariants, the conformal anomaly manifests itself already

in the one-point function (2.5), while in flat space it is seen only starting from the two-point

function. For example, in flat space the two point function of the energy-momentum tensor

obtained from the Polyakov action, when written in complex coordinates, reproduces the

standard CFT result [3]:

〈TzzTww〉 =
1

(2π)2

c/2

(z − w)4
. (2.6)

This relation shows the equivalence between the central charge and anomaly coefficient.

We can use the Polyakov action to define, formally, a new measure in the following way:

DIIg φ ≡ DIgφ ecSP [g] . (2.7)

Now using (2.1) and (2.4) one can show that indeed (2.7) is Weyl-invariant:

DIIe2τg (ewτφ) = DIe2τg (ewτφ) ecSP [e2τg]

= DIgφ e−cΓWZ [τ,g]ecSP [g]+cΓWZ [τ,g]

= DIIg φ . (2.8)

With these definitions, we now look at the effective action. First we define the standard

Weyl non-invariant effective action:2

e−ΓI [ϕ,g] =

∫
1PI
DIgχ e−S[ϕ+χ,g] . (2.9)

If the bare or UV action is conformally invariant S[ewτφ, e2τg] = S[φ, g], this is not so for

the standard effective action, which instead satisfies the Wess-Zumino relation:

ΓI [e
wτϕ, e2τg]− ΓI [ϕ, g] = cΓWZ [τ, g] . (2.10)

Using instead the Weyl-invariant measure defined in (2.7) to define the effective action,

e−ΓII [ϕ,g] =

∫
1PI
DIIg χ e−S[ϕ+χ,g] , (2.11)

gives rise to a Weyl-invariant effective action:

ΓII [e
wτϕ, e2τg] = ΓII [ϕ, g] . (2.12)

Equation (2.12) is valid only when ΓII [ϕ, g] = S[ϕ, g], but still is important from the RG

point of view: it is possible to obtain a Weyl-invariant effective action only if there are

no perturbations to the UV action and thus no induced RG flow. Thus the (bare) UV

action and the (effective) IR action are the same in this case. Said in other words, the

path integration amounts to the substitution of the quantum field with the average field.

A purely Gaussian theory provides an example where one can check explicitly the validity

of equation (2.12).

Similar reasoning has been made in [14] with the exception that in that work a

Stückelberg trick was used to maintain Weyl-invariance for any UV action.

2We define
∫

1PI
≡
∫
e
∫ √

g Γ(1,0)[ϕ,g]χ where Γ(1,0)[ϕ, g] ≡ δΓ[ϕ,g]
δϕ

.

– 5 –
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2.2 CFT action on curved background

We have seen how to define, at least formally, a Weyl-invariant effective action starting from

a Weyl invariant UV action via the functional measure (2.7), which is to be understood as

the measure we will use from now on. Nevertheless on a curved background the effective

action of a CFT is not Weyl-invariant since every CFT with c 6= 0 is anomalous, and

thus its action must contain a Polyakov term. Still, in absence of relevant perturbations,

quantization will just give the IR effective action equal to the UV action.

These considerations lead to the following “split” form for the effective action of a

general CFT in presence of a background metric:

Γ[φ, g] = SCFT [φ, g] + cSP [g] . (2.13)

Here SCFT [φ, g] is the curved space generalization of the flat space CFT action SCFT [φ] ≡
SCFT [φ, δ], defined by its Taylor series expansion in terms of correlation functions of φ,

these being, in principle, exactly known. Very few CFT actions can be written in local

form, these are the Gaussian, the Ising model (in the fermion representation) and the Wess-

Zumino-Witten AKM actions [4]. SP [g] is the Polyakov action and c its central charge.

Other possible Weyl-invariant terms depending on the metric alone are not present in d = 2,

but appear in higher dimensions.

We now give an explicit example of this construction. The Gaussian theory has c = 1

and is the simplest example of a CFT:

Sc=1
CFT [φ, g] =

1

2

∫
√
gφ∆φ . (2.14)

Using the one-loop trace-log formula starting from the Gaussian UV action ΓUV we find:

ΓIR[φ, g] = ΓUV [φ, g] +
1

2
Tr log ∆− SP [g] = ΓUV [φ, g] , (2.15)

where the second term is due to the integration of the fluctuations, while the Polyakov

term with the minus sign comes from the Weyl-invariant measure (2.7). The two cancel

since the 1
2Tr log ∆ = SP [g]. In order to have ΓUV 6= ΓIR one needs to add a relevant

perturbation triggering the RG flow.

2.3 Anomaly matching from the path-integral

Starting from ΓUV [φ, g] = SUV [φ, g] + cUV SP [g] plus relevant operators, we can consider

the IR effective action obtained by integrating out fluctuations:

e−ΓIR[ϕ,g] =

∫
1PI
Dgχ e−SUV [ϕ+χ,g]−cUV SP [g]+relevant

= e−cUV SP [g]

∫
1PI
Dgχ e−SUV [ϕ+χ,g] . (2.16)

Since the metric is non-dynamical we passed the Polyakov term through the path integral.

Here by relevant we mean, depending on the case, massive deformations or marginally

– 6 –
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relevant ones. An example of the first are mass terms like m2

2 φ
2 or mψ̄ψ, while Yang-Mills

theory is an example of the second case.

If we now flow to an IR fixed point, by virtue of the splitting property (2.13), we

must have ΓIR[φ, g] = SIR[φ, g] + cIRSP [g]. Choosing a dilaton background of the form

gµν = e2τδµν , we are left with:

e−SIR[ϕ,e2τ δ]e(cUV −cIR)ΓWZ [τ,δ] =

∫
1PI
De2τ δχ e−SUV [ϕ+χ,e2τ δ]+relevant , (2.17)

where we used (2.4) on flat space ΓWZ [τ, δ] = SP [e2τδ]. In order to recover the flat space

measure we first shift χ→ ewτχ and ϕ→ ewτϕ and then use the invariance (2.7):

e−SIR[ewτϕ,e2τ δ]e(cUV −cIR)ΓWZ [τ,δ] =

∫
1PI
Dδχ e−SUV [ewτ (ϕ+χ),e2τ δ]+relevant . (2.18)

Then we use the conformal invariance properties of the actions, i.e. we substitute SUV [ewτφ,

e2τδ] = SUV [φ] and SIR[ewτφ, e2τδ] = SIR[φ] since both actions are Weyl-invariant:

e−SIR[ϕ]e(cUV −cIR)ΓWZ [τ,δ] =

∫
1PI
Dδχ e−SUV [χ+ϕ]+relevant . (2.19)

Note that Dδχ ≡ Dχ is the flat space measure. The only remaining dependence on τ is

due to the relevant terms, which make the path integral non-trivial. The last equality tells

us that the dilaton effective action (generated by matter loops) compensates exactly the

difference between the anomalies in the UV and IR. This is precisely the anomaly matching

condition considered in [12, 15].

2.4 Proof of the integrated c-theorem

We can now prove the integrated c-theorem following [12]. From equation (2.19),

e−SIR[ϕ]e−
cUV −cIR

24π

∫
τ∆τ =

∫
1PI
Dχ e−SUV [ϕ+χ]+relevant , (2.20)

we can read off ∆c from the terms of the dilaton two-point function quadratic in momenta.

The relevant terms can be expanded in powers of τ :

relevant =

∫
d2x τ Θ +O(τ2) , (2.21)

where Θ ≡ Tµµ and we omitted all terms of order τ2 or greater since it is easy to see that

they will not contribute to
∫
τ∆τ . We are thus interested in the following expectation:〈

e
∫
τ Θ
〉∣∣∣
τ2

=
1

2

∫
d2x

∫
d2y τxτy 〈ΘxΘy〉 . (2.22)

We now only have to expand τy around τx:

τy = τx + (y − x)µ ∂µτx +
1

2
(y − x)µ (y − x)ν ∂µ∂ντx + . . . ; (2.23)

use translation invariance and compare with the coefficient of
∫
τ∆τ to find:

∆c = 3π

∫
d2xx2 〈ΘxΘ0〉IR , (2.24)

which is the integrated version of the c-theorem. From here one simply notices that the

integral is positive due to reflection positivity and concludes that ∆c ≥ 0 [4, 5].

– 7 –
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3 Flow equation for the c-function

The c-theorem states [5] that for a two-dimensional unitary quantum field theory, invariant

under rotations and whose energy-momentum tensor is conserved, there exists a function

c of the coupling constants which is monotonic along the RG flow and, at a fixed point,

is stationary and equal to the central charge of the corresponding CFT. Therefore this

function c is such that ∂tc < 0 (where the “RG time” is given by the logarithm of the

radius t = log r, so the flow is towards the infrared for r →∞, hence the minus sign). The

differential equation for c can be integrated from r = 0 to r = ∞ and gives back (2.24).

A natural trial definition for an interpolating c-function is given by taking (2.24) with the

integral which has been cut off at some scale µ (see for instance [16]):

∆c (µ) ≡ cUV − c (µ) = 3π

∫ 2π

0
dϕ

∫ µ−1

0
dr r3 〈Θ(r)Θ(0)〉 . (3.1)

We will follow a different approach. Instead of cutting off directly in real space we will

cutoff in momentum space. This will allow us to naturally connect with the framework of

the functional Renormalization Group (fRG) and to derive an exact RG flow equation the

c-function.

3.1 The fRG flow equation for the c-function

To construct the c-function is to consider a Wilsonian RG prescription. A clever way to

do the momentum shell integration in a smooth way, is to introduce a suppressing factor

in the path integral via Dgχ → Dgχ e−∆Sk[ϕ,g]. The role of the cutoff action ∆Sk[ϕ, g] is

to restrict the integration to modes above the IR scale k. In this way we obtain a scale

dependent effective action Γk[ϕ, g], which, using (2.13), can be decomposed as:

Γk[ϕ, g] = Sk[ϕ, g] + ckSP [g] + gravitational terms . (3.2)

where Sk[ϕ, g] is defined by Sk[0, g] = 0 and ck is the scale dependent c-function. By

“gravitational terms” we mean the purely geometrical terms depending on the metric alone,

like
∫ √

g or
∫ √

gR, generated by fluctuations. The collection of the Γk[ϕ, g] for all k

constitute the RG trajectory connecting ΓUV [ϕ, g] to ΓIR[ϕ, g]; a cartoon of this shown in

figure 1. If we now repeat the steps leading to equation (2.20), but with the cutoff term

added, we arrive at:

e−Sk[ϕ,e2τ δ]e−
cUV −ck

24π

∫
τ∆τ =

∫
1PI
Dχ e−SUV [ϕ+χ]+relevante−∆Sk[ewτχ,e2τ δ] . (3.3)

Now a derivative of (3.3) with respect to the “RG time” t = log k gives the RG flow of the

central charge:

∂tck = −24π
〈
∂t∆Sk[e

wτχ, e2τδ]
〉 ∣∣∣∫

τ∆τ
, (3.4)

in which the expectation value is calculated within the regularized path integral. We see

that we obtain the flow of the c-function if we are able to evaluate the r.h.s. of (3.4),

– 8 –
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ΓUV

ΓIR

Γk

Figure 1. Cartoon depicting the flow in theory space: if the UV action ΓUV satisfies the Wess-

Zumino relation (2.10) with c = 0, then the IR action ΓIR satisfies the Wess-Zumino relation (3.18)

and the EAA, interpolating between the two, must satisfy (3.17) with Ck = ck − cUV .

after specifying the form of the cutoff action. The running of ck is related to the coarse-

grained dilaton two-point function. To understand how to handle this equation, we need

to introduce the effective average action (EAA).

In the functional RG framework, one considers an IR regulator quadratic in the fields:

∆Sk [φ, g] =
1

2

∫
d2x
√
gφRk(∆)φ , (3.5)

chosen to suppress field modes in a covariant way: if φn is an eigenfunction of the covariant

Laplacian ∆φn = λnφn, Rk will act as a mass insertion for modes with λn � k2, while

leaving unchanged the ones with λn � k2. In this way we obtain a scale-dependent

partition function:

Zk[J, g] = eWk[J,g] =

∫
Dφ e−S[φ,g]−∆Sk[φ,g]+

∫ √
gJφ . (3.6)

The effective average action is then defined as the (shifted) Legendre transform:

Γk[ϕ, g] =

∫
d2x
√
gJϕϕ−Wk [Jϕ, g]−∆Sk [ϕ, g] , (3.7)

where ϕ = 〈φ〉 and Jϕ is obtained by inverting the solution of δWk[J,g]
δJ = ϕJ . By using its

definition in the path integral, one finds the integro-differential equation satisfied by the

EAA (in which φ = ϕ+ χ):

e−Γk[ϕ,g] =

∫
1PI

Dχe−SUV [ϕ+χ,g]−cUV SP [g]−∆Sk[χ,g] . (3.8)

The main virtue of these definitions is that the EAA satisfies an exact RG flow equation [7].

A scale derivative of (3.8) gives:

∂tΓk[ϕ, g] = 〈∂t∆Sk[χ, g]〉 =
1

2
Tr
{
〈χAχB〉 ∂tRABk [g]

}
, (3.9)

– 9 –
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in which the expectation values are calculated with the fRG-regularized path integral. Us-

ing the fact that the Legendre transform of the generator of connected correlation functions

is Γk + ∆Sk, we have:

〈χAχB〉 =

(
δ2Γk[ϕ, g]

δϕAδϕB
+RABk [g]

)−1

. (3.10)

Substituting back in the previous expression we find the functional RG equation satisfied

by the EAA:

∂tΓk[ϕ, g] =
1

2
Tr

(
δ2Γk[ϕ, g]

δϕδϕ
+Rk[g]

)−1

∂tRk[g] . (3.11)

This equation is well defined, exact and offers a way to define QFTs non-perturbatively [6].

From the exact flow equation for the EAA we obtain a corresponding equation for the

c-function. In particular, we can express the r.h.s. of (3.4) using (3.9):

∂tck = −24π ∂tΓk[e
wτϕ, e2τδ]

∣∣∣∫
τ∆τ

. (3.12)

Equation (3.12) is the exact flow equation for the c-function in the fRG framework. Us-

ing (3.11) in the r.h.s. leads to the following explicit form:

∂tck = −12π Tr

(
∂tRk[τ ]

Γ
(2,0)
k [ϕ, τ ] +Rk[τ ]

)∣∣∣∣∣∫
τ∆τ

, (3.13)

where we defined Γ[ϕ, τ ] ≡ Γ[ewτϕ, e2τδ] and Rk[τ ] ≡ Rk[e2τδ]. The exact RG flow equation

for the c-function is the main result of this section.

To write more explicitly the flow equation for the c-function we define the regularized

propagator Gk[τ ] ≡ (Γ(2,0)[ϕ, τ ] + Rk[τ ])−1, perform two functional derivatives of (3.12)

with respect to the dilaton, set τ = 0 and extract the term proportional to ∆:

∂tck = −24π
{

TrGk

(
Γ

(2,1)
k +R

(1)
k

)
Gk

(
Γ

(2,1)
k +R

(1)
k

)
Gk∂tRk

− 1

2
TrGk

(
Γ

(2,2)
k +R

(2)
k

)
Gk∂tRk

− TrGk

(
Γ

(2,1)
k +R

(1)
k

)
Gk∂tR

(1)
k +

1

2
TrGk∂tR

(2)
k

}∣∣∣
∆
, (3.14)

where all quantities are evaluated at ϕ = τ = 0. Note that in (3.14) we had to derive

the cutoff kernel Rk, since this depends explicitly on the dilaton. As shown in [18], these

additional terms in the flow equation for the proper-vertices are crucial in maintaining

background symmetry when employing the background field method.

The flow equation in the form (3.14) is a bit cumbersome so we introduce a compact

notation to rewrite it in a simpler way. If we introduce the formal operator ∂̃t = ∂tRk
∂
∂Rk

,

we can rewrite the flow equation (3.12) for the c-function as:

∂tck = −12πTr ∂̃t logGk[τ ]
∣∣∣∫
τ∆τ

, (3.15)
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Figure 2. Diagrammatic representation of the two terms in the r.h.s. of the flow equation (3.16)

for the c-function.

where we used the following simple relations:

∂̃tGk[τ ] = −Gk[τ ]∂tRk[τ ]Gk[τ ] ∂̃t logGk[τ ] = G−1
k [τ ]∂̃tGk[τ ] = Gk[τ ]∂tRk[τ ] .

Now we can rewrite the flow equation (3.14) in the following compact form:

∂tck = 12πTr ∂̃t

{(
Γ

(2,1)
k +R

(1)
k

)
Gk

(
Γ

(2,1)
k +R

(1)
k

)
Gk

}
−12πTr ∂̃t

{(
Γ

(2,2)
k +R

(2)
k

)
Gk

} ∣∣∣
∆
, (3.16)

where again all quantities are evaluated at ϕ = τ = 0. This is the form that we will use

in applications in section 5. Finally, we can represent diagrammatically the two terms on

the r.h.s. of (3.16) as in figure 2 and switch to momentum space to evaluate the diagrams

by employing the techniques presented in [18]. In particular, continuous lines represent

matter regularized propagators Gk[0], while vertices with m-external wavy lines are the

matter-dilaton vertices Γ
(2,m)
k [ϕ, τ ] +R

(m)
k [τ ]. Finally, each loop represents a

∫
d2x ∂̃t or a∫ d2q

(2π)2 ∂̃t trace.

3.2 fRG derivation of the integrated c-theorem

We now rederive both the integrated c-theorem and the exact flow equation for the c-

function using a fRG theory space perspective.

Away from a fixed point, apart for a Wess-Zumino term with running coefficient,

that for the moment we call Ck, there must be many additional terms spoiling the fixed

point Wess-Zumino relation (2.10). Since these terms vanish at a fixed point they must be

proportional to the (dimensionless) beta functions. We can thus make the following ansatz:

Γk[e
wτϕ, e2τg]− Γk[ϕ, g] = CkΓWZ [τ, g] + β–terms . (3.17)

This relation can be read as a generalized running Wess-Zumino action. The β–terms

indicate terms proportional to (at least one) dimensionless beta function which vanish at

the CFTs and are generated along the flow by the fact that we are moving away from

criticality.

If we now use the Weyl-invariant measure to construct the EAA, then at the UV fixed

point, that is for k → ∞, we must have CUV = 0. On the other hand, if we are not

quantizing in a Weyl-invariant manner, we should reproduce the Wess-Zumino relation

both at k = ∞ and k = 0. This tells us that in fact Ck = ck − cUV if the UV theory

is quantized in a Weyl-invariant manner and Ck = ck if not. Weyl-invariant quantization

corresponds, in the EAA formalism, to a constant shift of Ck.
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Relation (3.17) can be used to give an equivalent RG derivation of the integrated c-

theorem. When we flow for k → 0 to a fixed point theory CFTIR, relation (3.17) tells us

that:

ΓIR[ewτϕ, e2τg]− ΓIR[ϕ, g] = (cIR − cUV ) ΓWZ [τ, g] . (3.18)

If we now set gµν = δµν and expand ΓIR[ϕ, τ ] ≡ ΓIR[ewτϕ, e2τδ] in powers of the dilaton

we find:

ΓIR[ewτϕ, e2τδ] = ΓIR[ϕ, 0] +

∫
d2x τx

δ

δτx
ΓIR[ϕ, τ ]

∣∣∣
τ→0

+
1

2

∫
d2x

∫
d2y τxτy

δ2

δτxδτy
ΓIR[ϕ, τ ]

∣∣∣
τ→0

+O(τ3) . (3.19)

The functional derivatives of the effective action are related to the traces of the energy-

momentum tensor:

〈Θx〉IR =
δ

δτx
ΓIR[ϕ, τ ]

∣∣∣
τ→0

〈ΘxΘy〉IR =
δ2

δτxδτy
ΓIR[ϕ, τ ]

∣∣∣
τ→0

. (3.20)

The first relation is identically zero at a CFT, i.e. 〈Θx〉IR = 0 . Inserting the second

relation in (3.19) and expanding, as before, τy around τx using (2.23) gives immediately the

integrated c-theorem (2.24). This derivation represents a consistency of the ansatz (3.17).

It is now clear that from the Wess-Zumino relation at finite k (3.17) we can easily read

off the flow of the central charge. In this way, since ∂tck = ∂tCk, from the coefficient of∫
τ∆τ in ∂tΓk[e

wτϕ, e2τδ] we recover the exact RG flow equation for the c-function (3.12).

Another way to see that the flow of the c-function is given by (3.12) is to recognize that

Ck is nothing more than the coupling constant of the Polyakov action. As we said, when

working on curved backgrounds one should always add the Polyakov term to a truncation.

Thus the Wess-Zumino action on the r.h.s. of (3.17) derives from the presence of the

Polyakov action, with coefficient Ck, in the EAAs on the l.h.s. of the same equation. Then,

as just seen in the previous paragraph, a t-derivative relates ∂tck to the two-point function

of the dilaton. In principle one can obtain the flow of Ck directly as the coefficient of∫ √
gR 1

∆R but this is more laborious. Finally, note that the inclusion of the Polyakov

action with running central charge makes the truncation consistent with the conformal

anomaly both in the UV and in the IR. To understand the β-terms we will consider, in

the next section, the scale anomaly.

4 General form of the effective average action

In this section we put forward some requirements which an ansatz for the EAA should

satisfy. These requirements are motivated from the fact that the EAA should reproduce

some generic features of QFTs, namely the scale and the conformal anomaly. In particular

we will try to shed light on the nature of the β-terms introduced in equation (3.17).
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4.1 The local ansatz and its limitations

When studying truncations of the EAA, one generally starts by expanding the functional

in terms of local operators compatible with the symmetries of the system:

Γk[ϕ, g] =
∑
i

gi,k

∫
d2x
√
gOi[ϕ, g] . (4.1)

This equation defines the running coupling constants gi,k, which become the coordinates

that parametrize theory space in the given operator basis.

A class of operators, which is not complete, but allows many computations to be

performed analytically, is the one composed of powers of the field, i.e. Oi[ϕ, g] = ϕ2i and

gi,k =
λ2i,k

(2i)! . In this approximation, one usually re-sums the field powers into a running

effective potential Vk(ϕ) and equivalently considers the following ansatz for the EAA:

Γk[ϕ, g] =

∫
d2x
√
g

[
1

2
ϕ∆ϕ+ Vk(ϕ)

]
, (4.2)

known as local potential approximation (LPA). Within this this truncation the exact flow

equation (3.11) becomes a partial differential equation:

∂tVk(ϕ) = cd
kd

1 + V ′′k (ϕ)/k2
, (4.3)

with c−1
d = (4π)d/2Γ(d/2 + 1). Even such a simple truncation is able to manifest quali-

tatively all the critical information relative to the theory space of scalar theories and in

particular the fixed point structure [19, 20].

However, the effective action usually contains also nonlocal terms. Some of these

nonlocal terms are directly related to the finite part of the effective action [21, 22], which

generally has a complicated form encoding all the information contained in the correlation

functions or amplitudes. These terms are not present in the LPA which can be seen as the

limit where we discard all the momentum structure of the vertices.

Nevertheless there are other nonlocal terms that are non-zero only away from a fixed

point: these are the β-terms introduced in equation (3.17). As we will explain in this

section these terms are needed to recover known results and will play a central role in our

computations. If we limit ourselves to the local truncation ansatz (4.1), then one finds

that the flow equation for the c-function is driven only by the classical non Weyl-invariant

terms, which is not correct. This is not due to the fact that the flow equation (3.12) is

wrong, rather, it is the truncation ansatz (4.1) that is insufficient. Fluctuations induce the

β-terms of equation (3.17) and we will see that these are crucial in driving the flow of the

c-function.

We will argue that these nonlocal terms have a precise form. We will do this requiring

the EAA to reproduce the scale anomaly.

4.2 Nonlocal ansatz and the scale anomaly

It is easy to understand the origin of the terms on the r.h.s. of (3.17) which are linear in

τ : they are related to the scale anomaly. To see this let us rescale the fields and expand
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the EAA in powers of the dilaton:

Γk[ϕ, τ ] = Γk[ϕ, 0] +

∫
d2x τ 〈Θ〉k +O(τ2) , (4.4)

where:

〈Θ〉k =
δ

δτ
Γk[ϕ, τ ]

∣∣∣
τ→0

, (4.5)

defines the scale dependent energy-momentum tensor trace. In the IR the EAA reduces to

the standard effective action, which generally is scale anomalous. If we start with some UV

action deformed by terms of the form
∑

j gj
∫
d2x
√
gOi, the corresponding scale anomaly

in flat space reads: ∫
d2x
√
g 〈Θ〉IR = −

∑
i

(βi − digi)
∫
d2xOi[ϕ, δ] , (4.6)

where di are the dimensions of the coupling constants. The expression in brackets is nothing

but the beta function of the dimensionless coupling:

kdi β̃i = βi − digi . (4.7)

This is a standard result known from both ordinary and conformal perturbation theories [4].

Now we consider again the β-terms on the r.h.s. of (3.17). They come from the con-

formal variation of the EAA which should include also the terms due to the scale anomaly.

Therefore it is natural to generalize the above equation for a generic k:

〈Θx〉k = −
∑
i

kdi β̃i

∫
d2xOi[ϕ, δ] . (4.8)

If we insert this into (4.4) we find:

Γk[ϕ, τ ] = Γk[ϕ, 0]− τ
∑
i

kdi β̃i

∫
d2xOi[ϕ, δ] +O(τ2) . (4.9)

This expression gives a non trivial flow of the c-function since we now have the vertex

Γ
(2,1)
k [ϕ, τ ]

∣∣∣
ϕ=τ=0

= −
∑
i

kdi β̃i

∫
O(2,0)
i [0, 0] (4.10)

to insert in the r.h.s. of the exact flow equation (3.16).

We now propose a covariant form for (4.9) using the following properties:

gµν → e2τgµν → 1

2∆
R→ 1

2∆
R+ τ . (4.11)

With this and Oi → ewiτOi, it is easy to verify that the action

Γk[ϕ, g] =
∑
i

gi,k

∫
√
gOi[ϕ, g]− 1

2

∑
i

βi

∫
√
gOi[ϕ, g]

1

∆
R+ · · · , (4.12)
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reproduces (4.9) to linear order in τ . In order to get an ansatz consistent also with the

conformal anomaly we need to add to (4.12) the Polyakov term with as coefficient the

running central charge Ck:

Γk[ϕ, g] =
∑
i

gi,k

∫
√
gOi[ϕ, g]− 1

2

∑
i

βi

∫
√
gOi[ϕ, g]

1

∆
R− Ck

96π

∫
√
g R

1

∆
R . (4.13)

The form (4.13) represents a parametrization of the EAA consistent with (3.17) to linear

order in the beta functions and hints to what could be the general for of the EAA away

from criticality. For the time being we will not improve further our ansatz, since we will

see in the next section, that the understanding of the linear terms in the beta functions is

already sufficient to build the c-function in some non-trivial cases. We hope to come back

to the issue of higher order terms in τ , which may play a role in making a bridge between

the fRG perspective adopted here and the ideas related to the local RG [10, 11].

5 Applications

5.1 Checking exact results

Here we provide two examples where the c-function and the difference cUV − cIR are

computed and can be compared to known exact results. We will consider a free scalar field

and a free (Majorana) fermionic field whose fixed point actions are perturbed by a mass

term, so they flow to cIR = 0.

5.1.1 Massive deformation of the Gaussian fixed point

We consider a scalar field with Gaussian action and cUV = 1 perturbed by a mass

term. Since the beta function of the mass is zero (there are no interactions), our gen-

eral ansatz (4.13) for the EAA reads:

Γk[φ, g] =
1

2

∫
d2x
√
g φ(∆ +m2)φ− ck

96π

∫
√
gR

1

∆
R , (5.1)

or when we rescale the fields:

Γk[φ, e
2τδ] =

1

2

∫
d2xφ

(
∆ + e2τm2

)
φ− ck

24π

∫
τ∆τ . (5.2)

It’s clear that the only interaction between φ and τ is the one induced by the dimension of

the mass. In order to avoid possible vertices coming from the cutoff action we use the mass

cutoff Rk(z) = ak2 which has the advantage of having no dependence with respect to the

background metric. We have introduced the parameter a to check the cutoff independence

of the result. After a short computation3 we find the following flow:

∂tck =
4ak2m4

(ak2 +m2)3 , (5.3)

where m is the dimensionful mass. This RG flow occurs along trajectory–I of figure 3.

3We need to evaluate the first diagram of figure 2, for more details see section 5.2.
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m̃2
k

λ̃k

G

WF

I

II

III

Figure 3. The flow in the (m̃2
k, λ̃k) plane showing the Gaussian (G) and Ising (WF) fixed

points. The flow induced by the massive deformation of the Gaussian fixed point is represented by

trajectory–I, the flow induced by the massive deformation of the Ising fixed point is represented by

trajectory–II while the flow between the two fixed point happens along trajectory–III.

Integrating the above differential equation, with the initial condition c∞ = 1 (the

central charge of the Gaussian fixed point) we find:

ck = 1− m4

(ak2 +m2)2 . (5.4)

In the k → 0 limit this gives c0 = 0 which implies ∆c = 1 independently of the cutoff

parameter a. As expected a massive deformation of the Gaussian fixed point leads in the

IR to a theory with zero central charge.

5.1.2 Massive deformation of the Ising fixed point

In this example we make a massive deformation of the Ising fixed point. The critical

Ising model is described by a free Majorana fermion and a massive deformation of this

correspond to consider T > Tc [4]. According to our general ansatz (4.13) and considering

that, as before, the mass beta function is zero, the EAA reads:

Γk[ψ̄, ψ, g] =

∫
d2x
√
g ψ̄
(
/∇+m

)
ψ − ck

96π

∫
√
gR

1

∆
R , (5.5)
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or after the rescaling:

Γk[e
τ/2ψ̄, eτ/2ψ, e2τδ] =

∫
d2x ψ̄

(
/∇+ eτm

)
ψ − ck

24π

∫
τ∆τ . (5.6)

The computation proceeds along the lines of the scalar case. Once again we use the mass

cutoff Rk = ak and we find:

∂tck =
akm2

(ak +m)3 .

This RG flow occurs along trajectory–II of figure 3.

Integrating this equation with boundary condition c∞ = 1
2 (the central charge of the

Ising model) leads to

ck =
1

2
− m2

2 (ak +m)2 , (5.7)

which gives c0 = 0 and ∆c = 1
2 as expected.

5.2 The c-function in the local potential approximation

The local potential approximation (LPA), introduced in section 4.1, is characterized by the

action (4.2); in our case generalizes to:

Γk[ϕ, g] =

∫
d2x
√
g

[
1

2
ϕ∆ϕ+ Vk(ϕ)− 1

2
∂tVk(ϕ)

1

∆
R− ck

96π
R

1

∆
R

]
, (5.8)

or after rescaling the fields:

Γk[ϕ, e
2τδ] =

∫
d2x

[
1

2
ϕ∆ϕ+ e2τVk(ϕ)− ∂tVk(ϕ) τ − ck

24π
τ∆τ

]
. (5.9)

If we now pass to dimensionless variables, ϕ = k−wϕ̃ and Vk(ϕ) = k2Ṽk(ϕ̃), then the second

and third terms in the above equation, to linear order in τ , become Vk(ϕ) − k2∂tṼk(ϕ̃)τ ,

so that the scalar-dilaton interaction is proportional to the dimensionless scale derivative

of the potential.

To obtain the flow equation for the c-function we use (3.16) and the mass cutoff

Rk(z) = k2 so that all cutoff vertices drop out. Only the first diagram of figure 2 contributes

terms of order p2 in the external momenta, more specifically we need to evaluate the

integral:

∂tck = −12π(∂tṼ
′′
k (ϕ0))2k4

∫
d2q

(2π)d
G2
k(q

2)Gk
(
(p+ q)2

)
∂tRk(q

2)
∣∣∣
p2
, (5.10)

with the following regularized propagator:

Gk(q
2) =

1

q2 + V ′′k (ϕ0) +Rk(q2)
. (5.11)

Here ϕ0 is the minimum of the running effective potential, i.e. the solution of V ′k(ϕ) = 0.

With the mass cutoff one finds the following result:∫
d2q

(2π)d
G2
k(q

2)Gk
(
(p+ q)2

)
∂tRk(q

2)
∣∣∣
p2

= − 1

12πk4(1 + Ṽ ′′k (ϕ0))3
, (5.12)
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Figure 4. ∂tck in the (m̃2
k, λk) plane. We marked with a red dot the position of the Gaussian and

Ising fixed points.

provided that Ṽ ′′k (ϕ0) > −1, since otherwise the momentum integral does not converge.

Inserting this back in (5.10) finally gives:

∂tck =
(∂tṼ

′′
k (ϕ0))2

(1 + Ṽ ′′k (ϕ0))3
, (5.13)

which is the flow equation for the c-function in the LPA with a mass cutoff. This the main

result of this section. Note that since (5.13) is valid under the condition Ṽ ′′k (ϕ0) > −1, the

c-theorem ∂tck ≥ 0 is indeed satisfied within the LPA.

5.2.1 Flow between the Gaussian and Ising fixed points

We now consider the simple case where there are just two running couplings parametrizing

theory space, i.e. we expand the running effective potential in a Taylor series:

Vk(ϕ) =
1

2!
m2
kϕ

2 +
1

4!
λkϕ

4 + . . . (5.14)

where m2
k is the mass and λk the quartic self-interaction. Inserting (5.14) in the flow

equation for the effective potential (4.3) and projecting out the flow of the two couplings

gives, after passing to dimensionless variables m2
k = k2m̃2

k and λ2
k = k2λ̃k, the following

system of beta functions:

∂tm̃
2
k = −2m̃2

k −
1

4π

λ̃k
(1 + m̃2

k)
2

∂tλ̃k = −2λ̃k +
3

2π

λ̃2
k

(1 + m̃2
k)

3
. (5.15)

This system has two fixed points: the Gaussian (m̃2
k, λ̃k) = (0, 0) and the Ising (m̃2

k, λ̃k) =

(−1
4 ,

3π
2 ). The Gaussian fixed point has two IR repulsive directions, while the Ising fixed

point has one IR repulsive and one IR attractive direction. The trajectories starting along

these directions are shown in figure 3, in particular trajectory–III connects the two fixed

points. One can see that this last trajectory is the set of points where the dimensionless

mass beta function vanishes λ̃k = −8π m̃2
k (1 + m̃2

k).
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We can now use (5.13) to evaluate the c-function in this truncation. This turns out to

be simply related to the square of the dimensionless mass beta function:

∂tck =
1

(1 + m̃2
k)

3

(
∂tm̃

2
k

)2
=

1

(1 + m̃2
k)

3

(
2m̃2

k +
1

4π

λ̃k
(1 + m̃2

k)
2

)2

. (5.16)

As for (5.13), the result is only valid for m̃2
k > −1, so in this range we do have ∂tck ≥ 0,

which is consistent with the c-theorem. The flow (5.16) is similar to the one given in [9],

which was there found “by trial and error”. Equation (5.16) is the first non-trivial example

of explicit flow equation for the c-function obtained using the procedure presented in this

work. In figure 4 we plot ∂tck in the plane (m̃2
k, λ̃k): one can see that the magnitude of

∂tck is smaller along a “valley” containing the two fixed points. Along this valley lies the

trajectory connecting them, trajectory–III of figure 3.

We would like to compute ∆c by integrating the flow of the central charge along

the path connecting the Gaussian and Ising fixed points, but in this simple truncation

trajectory–III is defined by the vanishing of the dimensionless mass beta function, and

thus ∂tck is zero along it. To find a non-trivial result, we need to consider a more refined

truncation ansatz for the running effective potential. We leave these studies to future work.

5.2.2 Sine-Gordon model

We now consider the Sine-Gordon model which, in the continuum limit, is described by

the following action [4]:

SSG[φ] =

∫
d2x

[
1

2
φ∆φ− m2

β2
(cos (βφ)− 1)

]
, (5.17)

where m is the mass and β is a coupling constant. This theory can be seen as a massive

deformation of the Gaussian fixed point action (with cUV = 1) and indeed we will find

cIR = 0.

The Sine-Gordon model can be described by an LPA with effective potential:

Vk(ϕ) = −
m2
k

β2
k

(cos (βkϕ)− 1) . (5.18)

We find the following form for the beta functions of mk and βk:

∂tm̃
2
k =

m̃2
k

(
β2
k − 8π

(
1 + m̃2

k

))
4π
(
1 + m̃2

k

)
∂tβk = −

3m̃2
kβ

3
k

8π
(
1 + m̃2

k

)2 ,
where m̃2

k = m2
k/k

2 is the dimensionless mass. Inserting the Sine-Gordon running poten-

tial (5.18) into the flow equation (5.13) now gives:

∂tck =
m̃4
k

(
β2
k − 8π

(
1 + m̃2

k

))2
16π2

(
1 + m̃2

k

)5 . (5.19)

We solved the system of equations numerically imposing cUV = 1 finding ∆c ' 0.998, in

satisfactory agreement with the exact result ∆c = 1. In figure 5 we plot the running of ck
as well as its beta function.
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Figure 5. Flow of the Sine-Gordon model: the continuos line shows the running of the c-function

and the dotted line has a bell shape meaning that the beta function of ck is zero at the endpoints

of the flow.

5.3 The c-function in the loop expansion

The last approximation we will consider is the loop expansion. The exact flow equation

for the EAA (3.11) can be solved perturbatively [23, 24] loop by loop. We review this in

the appendix. In the first part of this section we will look at the various contributions

diagrammatically, while in the second part we will explicitly evaluate one subclass of these.

5.3.1 Zamolodchikov’s metric: diagrammatics

Using relation (A.4) we can compute the running of the EAA at each order in the loop

expansion. The running of the L-th term ∂tΓL,k, say, will contain a contribution to the

running of ck that we will call ∂tcL,k. The term cL,k arises only from diagrams with L

matter loops and two dilaton external lines. In this way we can build a loop expansion for

the c-function.

We can start by applying this construction step by step so to make clear how everything

works. We will work with a Z2-symmetric scalar theory, so that the part linear in the dilaton

of our general ansatz (4.13) takes the form:∑
n

1

(2n)!
β̃2nϕ

2nτ , (5.20)

where β̃2 is the mass beta function, β̃4 is the ϕ4 coupling beta function, and so on.

At one loop, we have only the following diagram, obtained from (A.5) of the appendix

by functional derivation with respect to the dilaton,
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Here we adopt the same diagrammatic rules of section 3.2 where the continuous line rep-

resents the regularized propagator (in this case given in equation (A.6) of the appendix),

while the wavy line represents the dilaton. On every diagram the operator ∂̃t acts, but in

this case it is just ∂t. In this diagram the vertices, are derived from (5.20), is the mass

beta function, so this contribution goes like β̃2
2 and we recover the LPA result (5.13) as one

would expect.

From the flow of the two-loop contribution, (A.11) of the appendix, we obtain different

terms. We get the “non-diagonal” contribution (we will make this jargon clear in a second):

proportional to β̃2 β̃4. Together with this, we also have the following 2-loop diagonal

contributions:

which are proportional to λ2 β̃
2
2 . These represent a diagonal but coupling-dependent con-

tribution, in the sense that couplings do not only appear through the beta functions. When

going to 3-loops, 4-loops and so on, corresponding diagrams must be considered for all the

diagonal contributions.

At three loops (remember we are considering a Z2-symmetric theory, so there are no

scalar odd power interactions) we get again the “diagonal” contributions:

both proportional to β̃2
4 , as well as a nondiagonal one:

proportional to β̃2 β̃6. From these first diagrams we clearly see that from the structure of

the loop expansion we only get terms quadratic in the beta functions.

We can indeed follow Zamolodchikov and define the “metric” gij through:

∂tck = gij β̃
iβ̃j . (5.21)

Our construction gives a diagrammatic representation of it within the loop expansion. It

is also clear now what we meant by diagonal or nondiagonal contributions: they refer to
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the entries of this metric. In principle one can evaluate all these diagrams for a generic

cutoff Rk(z) but this turns out to be a difficult analytical task. In the next section we will

be able to evaluate analytically one particular class of diagonal entries.4

5.3.2 Diagonal contributions

At L-loop order, the simplest coupling-independent diagonal contribution comes from the

following diagram:

...

corresponding to the expression:

∂tΓL,k = − 1

2(L+ 1)!
β̃2
L+1 k

4

∫
d2x

∫
d2y τxτy ∂̃t [Gk (x− y)]L+1 (5.22)

(which generalizes equation (A.15) of the appendix). In the above equation the 2(L + 1)!

comes from the symmetry factor of the diagram, and the minus sign from the fact that

we are acting with an overall ∂̃t. To recover the contribution to ∂tck is simple: expand τy
around x as in equation (2.23), and isolate the proper term according to equation (3.12).

To see more explicitly the form that the metric of Zamolodchikov takes, we need some

preliminary results. Using a mass cutoff Rk = k2, the zero mass running renormalized

propagator (A.6) will be the same as the standard massive one, only with k2 in place of

the mass m2, and the cutoff vertices play no role. In real space the propagator reads:

Gk (x− y) =
1

2π
K0

(
|x− y|

√
ak2
)
, (5.23)

where K0 is the Bessel K-function of order zero. We introduced the parameter a, eventually

to be sent to 1, since in this way we have the simpler formula

∂̃tf [Rk] = 2∂a f
[
ak2
]∣∣
a→1

. (5.24)

The different contributions are then calculated after expanding τy around x using (2.23).

We find:

∂tΓL,k =
k4

(L+ 1)!
β̃2
L+1

∫
d2x τx∆τx

∫
d2y

y2

2(2π)L+1
∂a

[
K0

(
|y|
√
ak2
)]L+1

∣∣∣∣
a→1

. (5.25)

These diagonal terms can be written to all orders, they give a contribution to the flow

equation for ck of the form:

∂tcL,k = AL β̃2
L+1 , (5.26)

in which we defined the quantity

AL ≡
3

2LπL−1L!

∫ ∞
0

dxx4 [K0 (x)]LK1 (x) . (5.27)

4One can see that in the limit m2 → 0 and for coupling-independent entries this are the only non-zero

diagonal contributions.
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A1 A2 A3 A4 A5 A6 A7

1 0.0182 4.778× 10−4 1.485× 10−5 5.066× 10−7 1.825× 10−8 6.8× 10−10

Table 1. First few numerical values of AL.

Note the interesting thing that contributions at loop order L are proportional to the square

of the beta function of the coupling λ̃L+1,k. Thus the flow of ck receives contributions from

all loops (as it is inherently non-perturbative) but a given interaction starts to contribute

only at a given loop order. All the AL can be evaluated numerically and they turn out

to be positive. The numerical values of the first AL are shown in table 1. Note the fast

decrease relative to the one-loop value.

We can now write down the contribution of this class of diagrams to the running of

the c-function at all loops in the Z2-symmetric case:

∂tc
(diagonal)
k =

∞∑
i=1

A2i−1 β̃
2
2i , (5.28)

which also gives the explicit form for the diagonal entries of the Zamolodchikov metric.

Since this sum is manifestly positive, we can say that the c-theorem is satisfied to all loops

by the diagonal terms considered.

As we have seen previously, the entries of Zamolodchikov’s metric contain a coupling-

independent piece, plus further pieces proportional to increasing powers of the coupling

constants, as we increase the loop order. The positivity properties of the metric are far

from trivial when all these terms are involved. However, when the couplings are sufficiently

small, the positivity will be determined solely by the coupling independent terms.

5.3.3 Non-unitary theories

Finally we make a comment on when the c-theorem is not satisfied, i.e. the case when

∂tck < 0. We know that the c-theorem does not hold without the unitarity assumption [5].

This can indeed be checked explicitly. It’s easy to see that when one considers interactions

with complex couplings then the coefficients in the loop expansion turn negative. For

instance, one notable example is the Lee-Yang model [4], in which one introduces the

non-unitary complex interaction:

SLY [φ] =

∫
d2x

[
1

2
φ∆φ+ igφ3

]
. (5.29)

A simple analysis reveals that this interaction contributes to the running of ck through the

following diagram:

which turns out to have the wrong sign to be consistent with the c-theorem:

∂tck = −A2 β̃
2
3 < 0 , (5.30)

since A2 > 0, as reported in table 1.

– 23 –



J
H
E
P
0
7
(
2
0
1
4
)
0
4
0

6 The c-function and Newton’s constant

In this section we derive an interesting relation between the c-function and the matter

induced beta function of Newton’s constant.5 This can then be used to obtain another

form of the flow of the central charge ∂tck.

6.1 Relation between ck and βGk

To obtain this relation we need to consider what happens when in equaiton (4.12) we set

O = R . Since the coupling constant of the invariant
∫ √

gR is − 1
16πGk

, where Gk is the

running Newton’s constant, one finds, for the gravitational part of the EAA, the following

form:6

Γk[0, g] =

∫
d2x
√
g

[
− 1

16πGk
R− 1

4
∂t

(
− 1

16πGk

)
R

1

∆
R+ . . .

]
. (6.1)

We recognize that the Polyakov term above is the same that we included in our general

anstaz for the EAA (4.13). Thus we infer that there is a relation between the beta function

of Newton’s constant and the running c-function:

∂t

(
− 1

16πGk

)
=
Ck

24π
. (6.2)

This is a nontrivial statement by itself. It tells us that the running c-function for a certain

matter field type can also be computed from the contributions of that kind of matter to

the beta function of Newton’s constant. In fact a derivative of (6.2) with respect to the

RG scale gives (remember that ∂tCk = ∂tck):

∂tck =
3

2G2
k

(
∂tβGk − 2

β2
Gk

Gk

)
, (6.3)

where βGk ≡ ∂tGk is the Newton’s constant beta function. We will check the consistency

of relation (6.2) in the case of a minimally coupled and a self-interacting scalar.

6.2 Minimally coupled scalar

Consider a minimally coupled scalar describing a massive deformation of the Gaussian

fixed point as discussed in section 5.1.1. The action is given in (5.1) and the exact flow

equation (3.11) for this case reads:

∂tΓk[ϕ, g] =
1

2
Tr

∂tRk(∆)

∆ +m2 +Rk(∆)
. (6.4)

Note that the dilaton plays no role now, since we are free to set τ = 0. Instead, to find

ck using (6.2) we need to extract the terms in the trace on the r.h.s. of (6.4) that are

5In what follows we identify the Newton’s constant as the coupling in front of the Ricci scalar. In a non

linear sigma model on curved target space this coupling is equivalently identified as the dilaton constant

mode.
6We need here 1/4 instead of 1/2 because of the the further symmetry we have in exchanging the two Rs.
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Figure 6. ck and ∂tck as a function of k for a massive deformation of a minimally coupled scalar.

Mass (a = 1), optimized (a = 1) and exponential (a = 1, b = 1) cutoffs (upper curves), exponential

(a = 1, b = 1
2 ) cutoff (middle curves), exponential (a = 1, b = 3

2 ) cutoff (lower curves). In all cases

we set m2 = 1.

proportional to the invariant
∫ √

gR. As usual, this can be done using the heat kernel

expansion [25]. Defining hk(z) = ∂tRk(z)
z+m2+Rk(z)

, one finds:

1

2
Trhk(∆)

∣∣∣∫ √
gR

=
1

8π

1

6
hk(0)

∫
d2x
√
gR , (6.5)

which, when compared with the scale derivative of − 1
16πGk

∫ √
gR on the l.h.s. of (6.4),

gives:

∂t

(
− 1

16πGk

)
=

1

8π

1

6
hk(0) . (6.6)

Thus our formula (6.2) leads to:7

ck =
1

2
hk(0) . (6.7)

Note that this relation is valid for arbitrary cutoff function Rk(z), as opposed to the result

of section 5.1.1 valid only for the mass cutoff. For both the mass cutoff Rk(z) = ak2 and

the optimized cutoff Rk(z) = a(k2 − z)θ(k2 − z) we find the following form:

ck =
ak2

ak2 +m2
. (6.8)

For the exponential cutoff Rk(z) = az

ebz/k
2−1

, with parameters a and b, we find:

ck =
ak2

ak2 + bm2
. (6.9)

7We are not using Weyl quantization so Ck = ck
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Figure 7. ∂tck in the (m̃2
k, λk) plane according to (6.13) for a = 1 and b = 1

2 . We marked with

a red dot the position of the Gaussian and Ising fixed points and the trajectory–III connecting

them. One can note that the trajectory connecting the two fixed points lies along a “valley” where

the variation in the flow of the central charge is zero.

In all cases and for all values of the parameters a and b we find that cUV = 1 and cIR = 0

as expected. A derivative of (6.9) gives the flow of the c-function:

∂tck =
2abk2m2

(ak2 + bm2)2 . (6.10)

The interpolating ck of equation (6.9) and the flow of the last equation are shown in figure 6.

We clearly see that the flow is scheme dependent, but the integral of it along a trajectory,

giving ∆c, is universal.

6.3 Self-interacting scalar

We consider now an interacting scalar, i.e. the LPA action (5.9) of section 5.2. We can

obtain ck directly from equation (6.9) by just making the replacement m2 → V ′′k (ϕ0):

ck =
ak2

ak2 + bV ′′k (ϕ0)
. (6.11)

A scale derivative now gives:

∂tck = −
abk2 (∂tV

′′
k (ϕ0)− 2V ′′k (ϕ0))(

ak2 + bV ′′k (ϕ0)
)2 . (6.12)

We need to decide the value of ϕ0 where to evaluate this expression. In this case it

is important to distinguish the ordered from the broken phase. If the running effective

potential has the polynomial form (5.14), then we have ϕ0 = 0 in the ordered phase and

ϕ0 = ±
√

6m2
k/λk in the broken phase, the two phases being separated by trajectory–III

and its continuation. Inserting these expressions in (6.12) gives the following form for the
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flow of ck:

∂tck =


− ab ∂tm̃2

k

(a+b m̃2
k)2 ordered phase

2ab ∂tm̃2
k

(a−2b m̃2
k)2 broken phase .

(6.13)

As shown in figure 7, the flow (6.13), even if not proportional to the square of the dimen-

sionless beta function, is positive ∂tck ≥ 0 in the (m̃2
k, λk) plane, it is zero at the fixed

points and on trajectory–III connecting them.

This calculation represents a non-trivial check of relation (6.2) and shows how this

relation can be used explicitly to compute ck in a given truncation by means of heat kernel

techniques.

7 Conclusions

In this work we have explored a new way to study the flow of the c-function within the

framework of the functional RG based on the effective average action (EAA). This function

interpolates between the UV and IR central charges of the corresponding CFTs and is thus

a global feature of the flow, related to the integration of it along a trajectory connecting

two fixed points, independent of scheme ambiguities.

Our main result is an RG exact equation for the running c-function based on the

identification of it with the coefficient of the running Polyakov action. This equation

relates the flow of the central charge to the exact flow of the EAA. To solve the equation

for non-trivial cases we built a suitable ansatz requiring the EAA to reproduce generic

features of QFTs, namely the scale and the conformal anomalies. In its own right this is

an interesting result since it teaches us that a consistent ansatz for the EAA off criticality

should include some nonlocal terms proportional to beta functions. Of course we do not

claim full generality for this ansatz, but we found that it is sufficiently accurate to trigger

the flow of the c-function in non-trivial cases. Explicit computations, within the local

potential approximation and the loop expansion, have been presented in section 5 showing

the compatibility of our framework with the c-theorem.

Moreover we have put forward a relation between the beta function of Newton’s con-

stant and the running conformal anomaly. This relation comes from internal consistency of

the generic ansatz for the EAA we proposed and allows us to use heat kernel techniques to

compute the RG running of the c-function. We also checked this other relation in explicit

cases, finding it consistent. Nevertheless we point out that our analysis is not complete.

The works [10, 11, 16] highlight that there are some subtleties related to the definition of

the c-function. A complete mapping between the local RG approach and the fRG is still

lacking and further study is needed in this direction. Another issue, which has not been

touched at all, is the generalization of these ideas to the higher dimensional case, in partic-

ular d = 4 where one can consider similar constructions for the a-function [10, 11, 26, 27],

which we leave to future work.
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A Loop expansion from the fRG

The exact flow equation (3.11) satisfied by the EAA can be solved iteratively. If we

choose as seed for the iteration the bare action, then the iteration procedure reproduces

the renormalized loop expansion [23, 24].

One starts with Γ0,k ≡ SΛ, where SΛ is the UV or bare action, and sets up an iterative

solution (the subscript 0 indicates the order of the iteration, Λ is the UV cutoff and k is the

RG scale) by plugging Γ0,k into the r.h.s. of the flow equation and integrates the resulting

differential equation with the boundary condition Γ1,Λ = SΛ. The solution Γk,1 is then

plugged back into the r.h.s. of the flow equation and the procedure is be repeated.

To see this let us introduce } as a loop counting parameter and expand the EAA:

Γk = SΛ +

∞∑
L=1

}LΓL,k . (A.1)

The bare action is k-independent ∂tSΛ = 0. The exact flow equation (3.11) now takes the

form:

} ∂tΓ1,k [ϕ] + }2∂tΓ2,k [ϕ] + . . . =
}
2

Tr
∂tRk

S
(2)
Λ [ϕ] +Rk + }Γ

(2)
1,k [ϕ] + }2Γ

(2)
2,k [ϕ] + . . .

. (A.2)

The original flow equation (3.11) is finite both in the UV and IR: to maintain these prop-

erties the bare action SΛ has to contain counterterms to cancel the divergencies that may

appear in the ΓL,k. Thus we define:

SΛ = S0 +
∞∑
L=1

}L∆SL,Λ , (A.3)

where each counterterm ∆SL,Λ is chosen to cancel the divergent part of ΓL,0. Since this

divergent part is the same as the divergent part of ΓL,k (we refer to [24] for more details on

this point), this choice renders the denominator of (A.2) finite. Here S0 is the renormalized

action, i.e. the bare action with renormalized fields, masses and couplings. From (A.2) we

can read off the flow of the L-th loop contribution:

∂tΓL,k [ϕ] =
1

(L− 1)!

∂L−1

∂}L−1

∂tΓk [ϕ]

}

∣∣∣∣
}→0

. (A.4)

The one-loop equation is straightforward:

∂tΓ1,k [ϕ] =
1

2
TrGk [ϕ] ∂tRk , (A.5)

where the k-dependent renormalized propagator,

Gk[ϕ] =
1

S
(2)
0 [ϕ] +Rk

, (A.6)

depends on k only trough the cutoff Rk. Thus, within the loop expansion, the operator ∂̃t,

introduced in section 3.2, is equivalent to ∂t.
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We can integrate the one-loop flow equation (A.5) between the UV and IR scales. We

choose the UV initial condition ΓL,Λ = 0 for L > 0 since the UV action is just the bare

action. We find:

Γ1,k = −
∫ Λ

k

dk′

k′
∂t′Γ1,k′ = −1

2

∫ Λ

k

dk′

k′
TrGk′∂t′Rk′

=
1

2

∫ Λ

k
dk′Tr ∂k′ logGk′ =

1

2
Tr logGk

∣∣∣∣Λ
k

. (A.7)

Note that in the second line we have exchanged the order of the trace and the derivative.

This has been possible since we inserted an additional UV regulator Λ (one can also use

dimensional regularization [24]). In the following all manipulations are intended with an

implicit UV cutoff Λ.

We now choose ∆SL,Λ = −[ΓL,0]div and define the renormalized one-loop contribution:

[Γ1,0]ren ≡ lim
Λ→∞

(Γ1,k + ∆S1,Λ) =
1

2
[Tr logGk]ren . (A.8)

Obviously, this limit is finite only if the theory is perturbatively renormalizable.

Now let us consider the two-loop contribution:

∂tΓ2,k =
∂

∂}
∂tΓk
}

∣∣∣
}→0

= −1

2
TrGk[Γ

(2)
1,k]renGk∂tRk =

1

2
Tr[Γ

(2)
1,k]ren∂tGk. (A.9)

We can plug in the one-loop result previously found. To do that we need to compute the

Hessian Γ
(2)
1,k:

Γ
(2)
1,k = −1

2
GkS

(3)
0 GkS

(3)
0 +

1

2
S

(4)
0 Gk , (A.10)

where we suppressed all indices. Using the above equation we get:

∂tΓ2,k =
1

2

[
−1

2
GkS

(3)
0 GkS

(3)
0 +

1

2
S

(4)
0 Gk

]ab
ren

[∂tGk]
ba

=
1

2
∂t

[
− 1

3 · 2
Gcdk S

(3)ade
0 Gefk S

(3)bfc
0 Gabk +

1

2 · 2
S

(4)abcd
0 Gcdk G

ab
k

]
ren

, (A.11)

where we used relations (3.16) to extract the overall scale derivative. Integrating and

renormalizing (A.5) as before gives:

Γ2,k =

[
− 1

12
Gcdk S

(3)ade
0 Gefk S

(3)bfc
0 Gabk +

1

8
S

(4)abcd
0 Gcdk G

ab
k

]
ren

. (A.12)

In the limit k → 0 we recovered the usual two-loop result with the correct coefficients and

in (nested) renormalized form. We can represent diagrammatically these contributions by

adopting the same rules of section 3.2 with the difference that a continuous line represents

a renormalized regularized propagator and vertices are constructed from the renormalized

action S
(m)
0 . To each loop we associate an integration

∫
d2x in coordinate space or

∫ d2q
(2π)2 in

momentum space and we act overall with ∂t. Proceeding along these lines all the standard

loop expansion can be recovered at any loop order. From now on, for notational simplicity
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we will omit to explicitly report renormalized quantities with bracket, since these can be

understood from the context.

Starting at three-loop order there are many different contributions. Here we show how

to compute the following diagram,

that we will use and generalize in section 5.3. We start from the following three-loop term

flow:

∂tΓ3,k =
1

2

(
Gabk Γ

(2)bc
1,k Gcdk Γ

(2)de
1,k Gegk −G

ab
k Γ

(2)bc
2,k Gcgk

)
∂tR

ga
k . (A.13)

We need the Hessian of the two-loop renormalized contribution, considering that we are

interested only in the three-loop contribution in which there are two vertices S
(4)
0 . Therefore

we select:

Γ
(2)mn
2,k =

1

12

[
Gcdk S

(4)adem
0 Gefk S

(4)bfcn
0 Gabk +Gcdk S

(4)aden
0 Gefk S

(4)bfcm
0 Gabk

]

−1

8

[(
−Gaa1

k S
(4)a1a2mn
0 Gk,a2b

)
S

(4)abcd
0 Gcdk +Gabk S

(4)abcd
0

(
−Gca1

k S
(4)a1a2mn
0 Ga2d

k

)]
.

(A.14)

So we find:

∂tΓ3,k =
1

2

[
Gabk

(
−1

2
S

(4)bca1a2

Λ Ga1a2
k

)
Gcdk

(
−1

2
S

(4)dea3a4

Λ Ga3a4
k

)
Gegk

−Gabk Γ
(2)bc
2,k Gcgk

]
∂tR

ga
k ;

recalling −∂tGkG
(−1)
k = Gk∂tRk we pick up the contribution of the diagram we are inter-

ested in:

∂tΓ3,k = −1

2
Gqmk

(
1

6
Gcdk S

(4)adem
0 Gefk S

(4)bfcn
0 Gabk

)
(−∂tGnrk )G

(−1)rq
k + · · ·

= −1

2

(
1

6
Gcdk S

(4)adeq
0 Gefk S

(4)bfcn
0 Gabk

)
(−∂tGnqk ) + · · ·

= ∂t

[(
− 1

4 · 12

)
Gqmk Gcdk S

(4)adem
0 Gefk S

(4)bfcn
0 Gabk G

nq
k

]
+ · · · , (A.15)

where we used the cyclicity of the trace. Note that the symmetry factor of the three-loop

contribution to the effective action is automatically recovered. Similarly one can easily

obtain all the higher loop diagrams of this form.
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