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EFFECTIVE GENERICITY AND DIFFERENTIABILITY

RUTGER KUYPER AND SEBASTIAAN A. TERWIJN

Abstract. We prove that a real x is 1-generic if and only if every differentiable

computable function has continuous derivative at x. This provides a counterpart
to recent results connecting effective notions of randomness with differentiability.

We also consider multiply differentiable computable functions and polynomial
time computable functions.

1. Introduction

The notion of 1-genericity is an effective notion of genericity from computability
theory that has been studied extensively, see e.g. Jockusch [6], or the textbooks
Odifreddi [11] and Downey and Hirschfeldt [5]. 1-Genericity, or Σ0

1-genericity
in full, can be defined using computably enumerable (c.e.) sets of strings as
forcing conditions. This notion captures a certain type of effective finite extension
constructions that is common in computability theory. In this paper we give an
characterization of 1-genericity in terms of familiar notions from computable analysis.
This complements recent results by Brattka, Miller, and Nies [1] that characterize
various notions of algorithmic randomness in terms of computable analysis. For
example, in [1] it was proven (building on earlier work by Demuth [4]) that an
element x ∈ [0, 1] is Martin-Löf random if and only if every computable function
of bounded variation is differentiable at x. Note that the notion of Martin-Löf
randomness, which one could also call Σ0

1-randomness, is the measure-theoretic
counterpart of the topological notion of 1-genericity.

The main result of this paper is as follows.

Theorem 1.1. A real x ∈ [0, 1] is 1-generic if and only if every differentiable
computable function f : [0, 1]→ R has continuous derivative at x.

The two implications of this theorem will be proven in Theorems 4.3 and 5.2.
Note that by “differentiable computable function” we mean a computable function
that is classically differentiable, so that in particular the derivative need not be
continuous. Our result can be seen an effectivization of a result by Bruckner and
Leonard.

Theorem 1.2. (Bruckner and Leonard [3, p. 27]) A set A ⊆ R is the set of
discontinuities of a derivative if and only if A is a meager Σ0

2 set.

One might expect that, in analogy to Theorem 1.1, n times differentiable com-
putable functions would characterize n-genericity. However, in section 7 we show
that 1-genericity is also equivalent to the nth derivative of any n times differentiable
computable function being continuous at x. In section 8 we consider differentiable
polynomial time computable functions and show that again these characterize
1-genericity.
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2 R. KUYPER AND S. A. TERWIJN

Our notation is mostly standard. We denote the natural numbers by ω. The
Cantor space of all infinite binary sequences is denoted by 2ω, and 2<ω is the set
of all finite binary strings. For a finite string σ and a finite or infinite string x, we
denote by σ v x that σ is an initial segment of x. For a string σ ∈ 2<ω, we have

[σ] =
{
x ∈ 2ω : σ v x

}
.

The product topology on 2ω, sometimes called the tree topology, or the finite
information topology, has all sets of the form [σ] as basic open sets. For a set
A ⊆ 2<ω, we let

[A] =
⋃
σ∈A

[σ].

Thus every set A of finite strings defines an open subset of 2ω. A subset of 2ω is
a Σ0

1 class, or effectively open, if it is of the form [A], with A ⊆ 2<ω computably
enumerable (c.e.). A set is a Π0

1 class, or effectively closed, if it is the complement of a
Σ0

1 class. Thus Σ0
1 and Π0

1 classes form the first levels of the effective Borel hierarchy.
As usual, the levels of the classical Borel hierarchy are denoted by boldface symbols
Σ0
n and Π0

n. These notions are defined in the same way for [0, 1], using rational
intervals as basic opens. We denote the interior of a set V ⊆ 2ω by Int(V ).

For unexplained notions from computability theory, we refer to Odifreddi [10] or
Downey and Hirschfeldt [5]. For background in descriptive set theory we refer to
Kechris [7] or Moschovakis [9]. Further background on (classical) Baire category
theory can also be found in Oxtoby [12].

2. 1-Genericity

First, let us recall what it means for an element x ∈ 2ω to be 1-generic. We
will then discuss 1-genericity for elements of [0, 1]. A discussion of the properties
of arithmetically generic and 1-generic sets can be found in Jockusch [6]. The
“forcing-free” formulation of genericity we use here is due to Posner, see [6, p115].

Given a sequence x ∈ 2ω and a set A ⊆ 2<ω, we say that x meets A if there
exists σ v x such that σ ∈ A; equivalently, if x ∈ [A]. The set A is dense along x if
for every σ v x there is an extension τ w σ such that [τ ] ⊆ [A]; equivalently, if x is
in the closure of the open set [A].

Definition 2.1. An element x ∈ 2ω is 1-generic if x meets every c.e. set A ⊆ 2<ω

that is dense along x.

We now reformulate the definition of 1-genericity into a form that will be conve-
nient in what follows. This formulation is also better suited for the discussion of
generic real numbers (as opposed to infinite strings).

Lemma 2.2. Let A ⊆ 2<ω and let V = 2ω \ [A]. Then A is dense along x if and
only if x is not in the interior of V . Therefore, A is dense along x and x does not
meet A if and only if x ∈ V \ Int(V ).

Proof. Note that A is dense along x if and only if every open set containing x has
nonempty intersection with [A]. Thus, A is dense along x if and only if every open
set disjoint from [A] does not contain x. However, the open sets disjoint from [A]
are exactly the open sets contained in V , of which Int(V ) is the largest. Thus A is
dense along x if and only if Int(V ) does not contain x. �

Corollary 2.3. For any x ∈ 2ω we have that x is 1-generic if and only if for every
Π0

1 class V ⊆ 2ω we have x 6∈ V \ Int(V ).

One of the reasons this is interesting to mention explicitly is because a typical
example of a nowhere dense set is a closed set with its interior removed, and the
Π0

1 sets are the simplest type of closed sets. Thus, the Corollary 2.3 says that x
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is 1-generic if it is not in any of the simple, typical nowhere dense sets. This way
of looking at 1-generic sets complements the usual motivation of 1-genericity by
forcing, and it also allows one to easily compare 1-genericity with weak 1-genericity
(since x is weakly 1-generic if it is not in any Π0

1-class with empty interior, see [5]).
With this equivalence in mind, we can now also define what it means for an

element of [0, 1] to be 1-generic.

Definition 2.4. Let x ∈ [0, 1]. We say that x is 1-generic if for every Π0
1 class

V ⊆ [0, 1] we have x 6∈ V \ Int(V ).

There is a natural ‘almost-homeomorphism’ between 2ω and [0, 1]: given an
infinite sequence x ∈ 2ω we have 0.x ∈ [0, 1] (interpreting the sequence as a decimal
expansion in binary), and conversely given y ∈ [0, 1] we can take the binary expansion
of y containing infinitely many 0s, which gives us an element of 2ω. Note that the
problem of nonunique expansions only occurs for rationals, which are not 1-generic
anyway. It is thus natural to ask if the notions of 1-genericity in these two spaces
correspond via this mapping. The next proposition says this is indeed the case.

Proposition 2.5. For any irrational x ∈ [0, 1] we have that x is 1-generic if and
only if its (unique) binary expansion is 1-generic in 2ω.

Proof. Let 2ω− be the set of infinite binary sequences which contain infinitely many
0s and infinitely many 1s. Then the ‘almost-homeomorphism’ given above in fact
restricts to a homeomorphism to 2ω− and [0, 1]−, where [0, 1]− is [0, 1] without the
dyadic rationals. Therefore, 1-genericity on 2ω− and [0, 1]− (which are defined as in
Definition 2.4) coincide.

Note that 2ω− is dense in 2ω and that [0, 1]− is dense in [0, 1]. Thus, it is enough
if we can show that if Y ⊆ X is such that Y is dense in X, then 1-genericity on X
and Y coincide for elements y ∈ Y . Given a Π0

1 class V ⊆ X, let W = V ∩ Y . Then
W is a Π0

1 class in Y . Conversely, every Π0
1 class W ⊆ Y is of the form W = V ∩ Y

by definition of the induced topology.
We claim that IntX(V ) ∩ Y = IntY (W ). Clearly, IntX(V ) ∩ Y ⊆ IntY (W ).

Conversely, if we let IntY (W ) = U ∩ Y for some open U ⊆ X, then U ⊆ IntX(V ∪
(X \ Y )). Towards a contradiction, assume that U ∩ (X \ V ) 6= ∅, then this is a
nonempty open set. However, we also have U ∩ (X \ V ) ⊆ X \ Y , which contradicts
the fact that Y is dense in X. Thus, we see that U ⊆ V , and therefore U ⊆ IntX(V ).
So, IntX(V ) ∩ Y = IntY (W ).

So, we see that y 6∈ V \ IntX(V ) if and only if y 6∈W \ IntY (W ). This completes
the proof. �

3. Effective Baire class 1 functions

In this section we will discuss what it means for a function to be of effective Baire
class 1, and discuss some of the basic properties of these functions. First, let us
recall what it means for a function on the reals to be computable. Our definitions
follow Moschovakis [9].

Definition 3.1. Let f : [0, 1] → R. We say that f is computable if for every
basic open set U we have that f−1(U) is Σ0

1 uniformly in U , i.e. if there exists
a computable function α : Q × Q → ω such that for all q, r ∈ Q we have that
f−1((q, r)) is equal to the Σ0

1 class given by the index α(q, r).

Definition 3.1 is equivalent to the formulation with computable functionals, see
e.g. the discussion in Pour-El and Richards [13].

Functions of effective Baire class 1 are obtained by weakening the above definition
as follows.
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Definition 3.2. A function f : [0, 1]→ R is of effective Baire class 1 if for every
basic open set U we have that f−1(U) is Σ0

2 uniformly in U .

Replacing Σ0
2 by Σ0

2 in the above definition, we obtain what is known as a function
of (non-effective) Baire class 1. Before we give an important example of an effective
Baire class 1 function, let us first consider the following proposition, which gives an
equivalent condition for a function to be of effective Baire class 1. This proposition
mirrors the classical proposition which says that a function is of Baire class 1 if
and only if it is a pointwise limit of continuous functions, see e.g. Kechris [7, p.
192]. (This does not hold for all Polish spaces; it holds for f : X → Y if either X is
zero-dimensional or Y = R.)

Proposition 3.3. Let f : [0, 1]→ R. The following are equivalent:

(i) f is of effective Baire class 1,
(ii) f is the pointwise limit of a uniform sequence of computable functions, i.e. there

exists a sequence f0, f1, . . . of functions from [0, 1] to R converging pointwise
to f and a computable function α : ω ×Q×Q→ ω such that for all q, r ∈ Q
and all n ∈ ω we have that f−1n ((q, r)) is equal to the Σ0

1 class given by the
index α(n, q, r).

Proof. (ii) → (i): Let f0, f1, . . . be a sequence of uniformly computable functions
converging to f and let U be any basic open set. Then U =

⋃
i∈ω,Vi⊆U Vi, where

V0, V1, . . . is a computable enumeration of the closed intervals with rational endpoints.
We claim:

f−1(U) =
⋃
Vi⊆U

⋃
n∈ω

⋂
m>n

f−1m (Vi),

which is clearly Σ0
2 uniformly in U .

To prove the claim, let x ∈ f−1(U). Then f(x) ∈ U , so there exists Vi ⊆ U
such that f(x) ∈ Int(Vi), say (f(x)− ε, f(x) + ε) ⊆ Vi. Let n ∈ ω be such that for
every m > n we have that |fm(x)− f(x)| < ε. Then for every m > n we have that
x ∈ f−1m (Vi), which proves the first inclusion.

Conversely, let n ∈ ω, Vi ⊆ U and x ∈
⋂
m>n f

−1
m (Vi). Then for every m > n we

have fm(x) ∈ Vi, and since Vi is closed we then also have f(x) = limm→∞ fm(x) ∈
Vi ⊆ U , which completes the proof of the claim.

(i) → (ii): This follows by effectivizing Kechris [7, Theorem 24.10]; this result
is also mentioned (without proof) in Moschovakis [9, Exercise 3.E.14]. Since this
implication is not used anywhere in this paper, we will not go into further detail. �

Using this proposition, we can now give an important example of effective Baire
class 1 functions: derivatives of computable functions. This also explains our interest
in them.

Corollary 3.4. Let f : [0, 1]→ R be a differentiable computable function. Then f ′

is of effective Baire class 1.

Proof. Let fn(x) = 2n(f(x + 2−n) − f(x)). To account for the problem that for
x+ 2−n > 1 the value f(x+ 2−n) is not defined, we let f(y) = −f(2− y) + 2f(1) for
y > 1 (i.e. we flip and mirror f on [1, 2]). Then the sequence f0, f1, . . . is uniformly
computable and converges pointwise to f ′, so f ′ is of effective Baire class 1 by
Proposition 3.3. �

4. Continuity of Baire class 1 functions

At the basis of this section lies the following important classical result.

Theorem 4.1. (Baire) Let f : [0, 1]→ R be of (non-effective) Baire class 1. Then
the points of discontinuity of f form a meager Σ0

2 set.
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Proof. See Kechris [7, Theorem 24.14] or Oxtoby [12, Theorem 7.3]. �

We will now effectivize this result.

Theorem 4.2. Let f : [0, 1]→ R be of effective Baire class 1. Then f is continuous
at every 1-generic point.

Proof. We effectivize the proof from Kechris [7, Theorem 24.14]. Let U0, U1, . . . be
an effective enumeration of the basic open sets. Now f is continuous at x if and only
if the inverse image of every neighborhood of f(x) is a neighborhood of x. Thus, f
is discontinuous at x if and only if there exists an open set U containing f(x) such
that every open set contained in f−1(U) does not contain x. Hence

{x ∈ [0, 1] | f is discontinous at x} =
⋃
n∈ω

f−1(Un) \ Int(f−1(Un)).

Now, let x be such that f is discontinuous at x and let n be such that x ∈
f−1(Un) \ Int(f−1(Un)). Because f is of effective Baire class 1, we know that
f−1(Un) is Σ0

2. So, let f−1(Un) =
⋃
i∈ω Vi, where each Vi is Π0

1. Then it is directly
verified that

f−1(Un) \ Int(f−1(Un)) ⊆
⋃
i∈ω

(Vi \ Int(Vi)).

Let i be such that x ∈ Vi \ Int(Vi). Then x is not 1-generic by Definition 2.4. �

Combining this result with the fact that derivatives of computable functions are of
effective Baire class 1, we get the first implication of Theorem 1.1 as a consequence.

Theorem 4.3. If f : [0, 1]→ R is a computable function, then f ′ is continuous at
every 1-generic real.

Proof. From Corollary 3.4 and Theorem 4.2. �

5. Functions discontinuous at non-1-generics

In this section we will prove the second implication of Theorem 1.1. To this end,
we will build, for each Π0

1 class V , a Volterra-style differentiable computable function
whose derivative will fail to be continuous at the points whose non-1-genericity is
witnessed by V . We have to be careful in order to make this function computable.

Theorem 5.1. Let V be a Π0
1 class. Then there exists a differentiable computable

function f : [0, 1]→ R such that f ′ is discontinuous at every x ∈ V \ Int(V ).

Proof. In the construction of f below, we first define auxiliary functions g and h.
Construction. We define an auxiliary function g, with the property that g is

differentiable and computable, and g′ is continuous on (0, 1) and discontinuous at 0
and 1.

Define the function h on [0, 1] by h(0) = 0 and

h(x) = x2 sin(
1

x2
)

for x > 0. Then h is computable and differentiable, with derivative h′(0) = 0 and

h′(x) = 2x sin(
1

x2
)− 2

1

x
cos(

1

x2
)

when x > 0. Note that h′ is discontinuous at x = 0. Fix a computable x0 ∈ (0, 12 ]
such that h′(x0) = 0. Such an x0 exists, because h′ has isolated roots, and isolated
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roots of computable functions are computable. Now define g on [0, 1] by

g(x) =



0 if x = 0

h(x) if x ∈ (0, x0]

h(x0) if x ∈ [x0, 1− x0]

h(1− x) if x ∈ [1− x0, 1)

0 if x = 1.

Then g is a differentiable computable function, with derivative

g′(x) =



0 if x = 0

h′(x) if x ∈ (0, x0]

0 if x ∈ [x0, 1− x0]

−h′(1− x) if x ∈ [1− x0, 1)

0 if x = 1.

In particular, we see that g′ is continuous exactly on (0, 1). We will use g to
construct f .

For the given Π0
1 class V , let U = [0, 1] \ V , and fix computable enumerations

q0, q1, . . . and r0, r1, . . . of rational numbers in [0, 1] such that U =
⋃
n∈ω[qn, rn]

and such that the (qn, rn) are pairwise disjoint. We will construct f as a sum of a
sequence f0, f1, . . . of uniformly computable functions. We define fn by:

(5.1) fn(x) =


0 if x ∈ [0, qn]
rn − qn

2n
g

(
x− qn
rn − qn

)
if x ∈ [qn, rn]

0 if x ∈ [rn, 1].

Finally, we let f =
∑∞
n=0 fn.

Verification. We first show that f is computable. To this end, first observe that
each fn is supported on (qn, rn), and therefore the supports of the different fn are
disjoint. Furthermore, each fn is bounded by 2−n.

Let (a, b) be a basic open subset of R. We distinguish two cases. First, assume
0 6∈ (a, b). We assume a > 0, the case b < 0 is proven in a similar way. Let n ∈ ω
be such that 2−n < a. Then, since the supports of the fm are disjoint, and each fm
is bounded by 2−m, we have

f−1((a, b)) = (f0 + · · ·+ fn)−1((a, b)),

which is Σ0
1 because a finite sum of computable functions is computable.

In the second case, we have 0 ∈ (a, b). Let n be such that |a|, |b| > 2−n. Then,
again because the supports of the fm are disjoint, we see that if x is not in the
support of any fm for m 6 n then certainly f(x) ∈ (a, b). Therefore we have

f−1((a, b)) = (f0 + · · ·+ fn)−1((a, b)) ∪
⋂
m6n

([0, 1] \ [qm, rm]),

which is also Σ0
1. It is clear that the case distinction is uniformly computable, so it

follows that f is computable.

Next, we check that f is differentiable. We first note that every fn is differentiable,
because g is differentiable. Let x ∈ [0, 1]. We distinguish two cases. First, if x is in
some (qn, rn) then it is immediate that f is differentiable at x with derivative f ′n(x),
because the intervals (qn, rn) are disjoint. Next, we consider the case where x is not
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in any interval (qn, rn). Note that in this case we have f(x) = 0. Fix m ∈ ω. Then
we have:

lim
y→x

∣∣∣∣ f(y)

y − x

∣∣∣∣ 6 lim
y→x

∣∣∣∣ (f0 + · · ·+ fm)(y)

y − x

∣∣∣∣+ lim
y→x

∣∣∣∣ (fm+1 + fm+2 + . . . )(y)

y − x

∣∣∣∣ .
Because f0 + · · ·+ fm is differentiable at x with derivative 0, this is equal to:

lim
y→x

∣∣∣∣ (fm+1 + fm+2 + . . . )(y)

y − x

∣∣∣∣ .(5.2)

To show that this limit is 0, we will prove that it is bounded by 1
2m(1−x0)

for

every m. Let y ∈ [0, 1] be distinct from x. Let us assume that x < y; the other
case is proven in the same way. If y is not in any (qn, rn) for n > m + 1 then
(fm+1 + fm+2 + . . . )(y) = 0. Otherwise, there is exactly one such n. Then:∣∣∣∣ (fm+1 + fm+2 + . . . )(y)

y − x

∣∣∣∣ =

∣∣∣∣fn(y)

y − x

∣∣∣∣ 6 ∣∣∣∣ fn(y)

y − qn

∣∣∣∣ ,
where the last inequality follows from the fact that x does not lie in (qn, rn). We
distinguish three cases. First, if z = y−qn

rn−qn ∈ (0, x0], then∣∣∣∣ fn(y)

y − qn

∣∣∣∣ =

∣∣∣∣2−n(rn − qn)g(z)

y − qn

∣∣∣∣ =
∣∣2−nz sin(z−2)

∣∣ 6 2−n 6
1

2m(1− x0)
.

Next, if z ∈ [x0, 1− x0] (which is nonempty because x0 6 1
2 ), then∣∣∣∣ fn(y)

y − qn

∣∣∣∣ 6 2−n(rn − qn)x20
y − qn

=
2−nx20
z
6 x02−n 6

1

2m(1− x0)

where we use the fact that z > x0. Finally, if z ∈ [1− x0, 1], then∣∣∣∣ fn(y)

y − qn

∣∣∣∣ =

∣∣∣∣2−n(rn − qn)h(1− z)
y − qn

∣∣∣∣ 6 1

2nz
6

1

2n(1− x0)
6

1

2m(1− x0)
.

Combining this with (5.2) we see that limy→x

∣∣∣ f(y)y−x

∣∣∣ 6 1
2m(1−x0)

. Since m was

arbitrary this shows that f is differentiable at x, with derivative f ′(x) = 0.

Finally, we need to verify that f ′ is discontinuous at x for all x ∈ V \ Int(V ).
Therefore, let x ∈ V \ Int(V ). Then every open set W containing x has nonempty
intersection W ∩U (recall that U = [0, 1] \V ), but this intersection does not contain
x. We have shown above that f ′(x) = 0. We will show that for every open interval
I containing x there is a point y ∈ I such that f ′(y) 6 −1, which clearly shows that
f ′ cannot be continuous at x. Fix an open interval I containing x. Then I ∩ U 6= ∅,
so there is an n ∈ ω such that I ∩ [qn, rn] is nonempty. Note that I contains x and
therefore I cannot be a subinterval of [qn, rn]. Therefore there exists a qn < s < ri
such that either [qn, s) ⊆ I or (s, rn] ⊆ I. We will assume the first case; the second
case is proven in a similar way.

Note that on [qn, s) the function f ′ is equal to f ′n. For y ∈ (qn, s) we thus have:

f ′(y) = 2−ng′((y − qn)/(rn − qn)).

So, we need to show that there is a y ∈ (qn, s) such that g′((y−qn)/(rn−qn)) 6 −2n,
or equivalently, that there is a z ∈ (0, (s − qn)/(rn − qn)) such that g′(z) 6 −2n.
Without loss of generality, (s − qn)/(rn − qn) < x0. Let k > n be such that
2−k 6 s−qn

rn−qn . Then:

g′
(
1/
(
2k
√
π
))

=
1

2k−1
√
π

sin(22kπ)− 2k+1
√
π cos(22kπ)

= −2k+1
√
π 6 −2k 6 −2n.
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This completes the verification. �

Theorem 5.2. If x ∈ [0, 1] is such that every differentiable computable function
f : [0, 1]→ R has continuous derivative at x, then x is 1-generic.

Proof. If x is not 1-generic, then there is a Π0
1 class V such that x ∈ V \ Int(V ).

Applying Theorem 5.1 to V gives a differentiable computable function f for which
f ′ is discontinuous at x. �

6. n-Genericity

The notion of 1-genericity (Definition 2.1) corresponds to the first level of the
arithmetical hierarchy. Higher genericity notions can be defined using forcing
conditions from higher levels of the arithmetical hierarchy. As for 1-genericity, an
equivalent formulation can be given as follows, see Jockusch [6]:

Definition 6.1. An element x ∈ 2ω is n-generic if x meets every Σ0
n set of strings

A ⊆ 2<ω that is dense along x.

As usual, let ∅′ denote the halting set, and let ∅(n) denote the n-th jump. Since
a Σ0

n set of strings is the same as a Σ0
1 set of strings relative to ∅(n−1), a set is

n-generic if and only if it is 1-generic relative to ∅(n−1).
Corollary 2.3 relativizes to:

Proposition 6.2. For any x ∈ 2ω we have that x is n-generic if and only if for

every Π0,∅(n−1)

1 class V ⊆ 2ω we have x 6∈ V \ Int(V ).

Note that in general a Π0,∅(n−1)

1 class in 2ω is not the same as a Π0
n class, since

the latter need not even be closed. (And even if one assumes that the class is closed
the notions are not the same, see [5, p76].)

Given this equivalence, we can now generalize Definition 2.4 to:

Definition 6.3. Let x ∈ [0, 1]. We say that x is n-generic if for every Π0,∅(n−1)

1

class V ⊆ [0, 1] we have x 6∈ V \ Int(V ).

Further justification for this definition comes from the fact that Proposition 2.5
relativizes: An irrational x ∈ [0, 1] is n-generic according to Definition 6.3 if and
only if its binary expansion is n-generic in 2ω.

It is straightforward to check that the results of all the previous sections relativize
to an arbitrary oracle A. This gives the following relativized version of Theorem 1.1:

Theorem 6.4. A real x ∈ [0, 1] is 1-generic relative to A if and only if for every
differentiable A-computable function f : [0, 1]→ R, f ′ is continuous at x.

Taking A = ∅(n−1), this immediately gives the following characterization of
n-genericity:

Corollary 6.5. A real x ∈ [0, 1] is n-generic if and only if for every differentiable
∅(n−1)-computable function f : [0, 1]→ R, f ′ is continuous at x.

Also, taking all n together, we see that a real x is arithmetically generic if and
only if every differentiable arithmetical function has continuous derivative at x.

7. Multiply differentiable functions

We have characterized 1-genericity using the continuity of the derivatives of
(once) differentiable computable functions. One might wonder: what kind of effective
genericity for x corresponds to every twice differentiable, computable function having
continuous second derivative at x? Or, more generally, what corresponds to every n
times differentiable, computable function having continuous nth derivative at x?
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It turns out that the answer is always 1-genericity. To show this we will need the
following proposition, which essentially tells us that the case for n > 2 collapses to
the case n = 2.

Proposition 7.1. Let f : [0, 1]→ R be computable and twice continuously differen-
tiable. Then f ′ is computable.

Proof. See e.g. Pour-El and Richards [13, Theorem 1.2]. �

If the second derivative of a computable function exists, it is easy to see that it is
of effective Baire class 2 (i.e. a pointwise limit of a computable sequence of functions
of effective Baire class 1), by similar arguments as in the proof of Corollary 3.4
However, using the following proposition we can easily see that the second derivative
of a computable function is in fact of effective Baire class 1.

Proposition 7.2. Let f : [0, 1]→ R be twice differentiable. Then

f ′′(x) = lim
h→0

f(x+ h) + f(x− h)− 2f(x)

h2
.

Proof. See e.g. Rudin [14, p. 115]. �

Theorem 7.3. Fix n > 1. Then a real x ∈ [0, 1] is 1-generic if and only if every n
times differentiable, computable function f : [0, 1]→ R has continuous nth derivative
at x.

Proof. For n = 1 this is exactly Theorem 1.1. So, we may assume n > 2. First, if
x ∈ [0, 1] is not 1-generic, then by Theorem 1.1 there is a differentiable, computable
function g : [0, 1] → R such that g′ is not continuous at x. Now let h1 = g and
let hi be a computable antiderivative of hi−1 for 2 6 i 6 n (which exists by Ko [8,
Theorem 5.29]). Then, if we let f = hn, we see that f is an n times differentiable,
computable function such that f (n) is discontinuous at x.

Conversely, if f is an n times differentiable, computable function, then f (n−2) is
computable by Proposition 7.1. So, f (n) is of effective Baire class 1 by Proposition
7.2. Thus, if f (n) is discontinuous at x, then x is not 1-generic by Theorem 4.2. �

8. Complexity theoretic considerations

In this section we discuss polynomial time computable real functions. The theory
of these functions is developed in Ko [8], to which we refer the reader for the
basic results and definitions. Briefly, a function f : [0, 1]→ R is polynomial time
computable if for any x ∈ [0, 1] we can compute an approximate value of f(x) to
within an error of 2−n in time nk for some constant k.

Most of the common functions from analysis, such as rational functions and
the trigonometric functions, as well as their inverses, are all polynomial time
computable, see e.g. Brent [2] and Weihrauch [15]. Also, the polynomial time
computable functions are closed under composition. With this knowledge, it is not
difficult to see that the construction of the function f in section 5 can be modified to
yield a polynomial time computable function, rather than just a computable one. For
this it is also needed that the complement of the Π0

1 class V from Theorem 5.1 can
be represented by a polynomial time computable set of strings. This is similar to the
fact that every nonempty computably enumerable set is the range of a polynomial
time computable function, simply by sufficiently slowing down the enumeration.
Since the enumeration of U = [0, 1] \ V in the proof of Theorem 5.1 is now slower,
the definition of fn in (5.1) has to be adapted by replacing 2n by 2t(n), where t(n)
is the stage at which the interval (qn, rn) is enumerated into U . This modification
ensures that the functions fn are uniformly polynomial time computable, so that
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also the function f =
∑∞
n=0 fn, is polynomial time computable. Thus we obtain the

following strengthening of Theorem 5.1:

Theorem 8.1. Let V be a Π0
1 class. Then there exists a differentiable polynomial

time computable function f : [0, 1] → R such that f ′ is discontinuous at every
x ∈ V \ Int(V ).

We now have the following variant of Theorem 1.1:

Theorem 8.2. A real x ∈ [0, 1] is 1-generic if and only if for every differentiable
polynomial time computable function f : [0, 1]→ R, f ′ is continuous at x.

Proof. The “only if” direction is immediate from Theorem 1.1. For the “if” direction;
if x is not 1-generic, then there is a Π0

1 class V such that x ∈ V \Int(V ). Theorem 8.1
then gives a differentiable polynomial time computable function f for which f ′ is
discontinuous at x. �
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